A Statistical Taylor Theorem and Extrapolation of Truncated Densities

Constantinos Daskalakis
Massachusetts Institute of Technology
Vasilis Kontonis
KONTONIS @ WISC.EDU
University of Wisconsin-Madison
Christos Tzamos
TZAMOS@WISC.EDU
University of Wisconsin-Madison

Manolis Zampetakis
MZAMPET@BERKELEY.EDU
University of California, Berkeley

Editors: Mikhail Belkin and Samory Kpotufe

Abstract

We show a statistical version of Taylor's theorem and apply this result to non-parametric density estimation from truncated samples, which is a classical challenge in Statistics Woodroofe (1985); Stute (1993). The single-dimensional version of our theorem has the following implication: "For any distribution P on $[0,1]$ with a smooth log-density function, given samples from the conditional distribution of P on $[a, a+\varepsilon] \subset[0,1]$, we can efficiently identify an approximation to P over the whole interval $[0,1]$, with quality of approximation that improves with the smoothness of P."

To the best of knowledge, our result is the first in the area of non-parametric density estimation from truncated samples, which works under the hard truncation model, where the samples outside some survival set S are never observed, and applies to multiple dimensions. In contrast, previous works assume single dimensional data where each sample has a different survival set S so that samples from the whole support will ultimately be collected.

From a technical point of view, a central challenge that we face is to bound the extrapolation error of multivariate polynomial approximation. Our main technical contribution is to show a novel way to prove strong bounds on the extrapolation error of our algorithms invoking only well-studied anti-concentration theorems, which we believe that it will have applications beyond truncated statistics. ${ }^{1}$

Keywords: non-parametric density estimation, truncated statistics, extrapolation error

Acknowledgments

Constantinos Daskalakis was supported by NSF Awards IIS-1741137, CCF-1617730, and CCF1901292, by a Simons Investigator Award, by the Simons Collaboration on the Theory of Algorithmic Fairness, by a DSTA grant, and by the DOE PhILMs project (No. DE-AC05-76RL01830). Christos Tzamos and Vasilis Kontonis were supported by the NSF grant CCF-2008006.

[^0]
References

Ibrahim Ahamada and Emmanuel Flachaire. Non-parametric econometrics. OUP Catalogue, 2010.
Andrew R. Barron and Chyong-Hwa Sheu. Approximation of density functions by sequences of exponential families. The Annals of Statistics, 19(3):1347-1369, 1991. ISSN 00905364. URL http://www.jstor.org/stable/2241953.

Andrew R Barron, Lhszl Gyorfi, and Edward C van der Meulen. Distribution estimation consistent in total variation and in two types of information divergence. IEEE transactions on Information Theory, 38(5):1437-1454, 1992.

Behrouz Behmardi, Raviv Raich, and Alfred O Hero. Entropy estimation using the principle of maximum entropy. In 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2008-2011. IEEE, 2011.

Shalev Ben-David, Adam Bouland, Ankit Garg, and Robin Kothari. Classical lower bounds from quantum upper bounds. In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 339-349, 2018.

Axel Börsch-Supan and Vassilis A Hajivassiliou. Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models. Journal of econometrics, 58(3):347-368, 1993.

Zdravko I. Botev, Joseph F. Grotowski, and Dirk P. Kroese. Kernel density estimation via diffusion. The Annals of Statistics, 38(5):2916-2957, 2010.

Clément L Canonne, Anindya De, and Rocco A Servedio. Learning from satisfying assignments under continuous distributions. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 82-101. SIAM, 2020.

Stéphane Canu and Alex Smola. Kernel methods and the exponential family. Neurocomputing, 69 (7-9):714-720, 2006.

Anthony Carbery and James Wright. Distributional and ℓ^{q} norm inequalities for polynomials over convex bodies in \mathbb{R}^{n}. Mathematical research letters, 8(3):233-248, 2001.

Xiaohong Chen, Yanqin Fan, and Viktor Tsyrennikov. Efficient estimation of semiparametric multivariate copula models. Journal of the American Statistical Association, 101(475):1228-1240, 2006.

A Clifford Cohen. Truncated and censored samples: theory and applications. CRC press, 1991.
Constantinos Daskalakis, Themis Gouleakis, Christos Tzamos, and Manolis Zampetakis. Efficient statistics, in high dimensions, from truncated samples. In the 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2018.

Constantinos Daskalakis, Themis Gouleakis, Christos Tzamos, and Manolis Zampetakis. Computationally and statistically efficient truncated regression. In Conference on Learning Theory, pages 955-960, 2019.

Leslaw Gajek. On the minimax value in the scale model with truncated data. The Annals of Statistics, 16(2):669-677, 1988.

Mariano Gasca and Thomas Sauer. Polynomial interpolation in several variables. ADV. COMPUT. MATH, 12:377-410, 2000.

Kaan Gokcesu and Suleyman S Kozat. Online density estimation of nonstationary sources using exponential family of distributions. IEEE transactions on neural networks and learning systems, 29(9):4473-4478, 2017.

Irving J Good. Maximum entropy for hypothesis formulation, especially for multidimensional contingency tables. The Annals of Mathematical Statistics, 34(3):911-934, 1963.

James J Heckman. The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. In Annals of economic and social measurement, volume 5, number 4, pages 475-492. NBER, 1976.

Andrew Ilyas, Manolis Zampetakis, and Daskalakis Constantinos. A theoretical and practical framework for regressionand classification from truncated samples. In AISTATS 2020, 2020.

Vasilis Kontonis, Christos Tzamos, and Manolis Zampetakis. Efficient truncated statistics with unknown truncation. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages 1578-1595. IEEE, 2019.

Tze Leung Lai and Zhiliang Ying. Estimating a distribution function with truncated and censored data. The Annals of Statistics, pages 417-442, 1991.

Qi Li and Jeffrey Scott Racine. Nonparametric econometrics: theory and practice. Princeton University Press, 2007.

Gangadharrao S Maddala. Limited dependent variable models using panel data. Journal of Human resources, pages 307-338, 1987.

Alexander Schrijver (auth.) Martin Grötschel, László Lovász. Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics 2. Springer-Verlag Berlin Heidelberg, 2 edition, 1993. ISBN 9780387136240,038713624X,354013624X,3540152857,3540170960. URL http://gen. lib.rus.ec/book/index.php?md5=70edd72d6da66b28a18839be9c2b1f9a.

Daniel McDonald. Minimax density estimation for growing dimension. In Artificial Intelligence and Statistics, pages 194-203, 2017a.

Daniel J McDonald. Minimax density estimation for growing dimension. arXiv preprint arXiv:1702.08895, 2017b.

Jerzy Neyman. Smooth test for goodness of fit. Scandinavian Actuarial Journal, 1937(3-4):149199, 1937.

WJ Padgett and Diane T McNichols. Nonparametric density estimation from censored data. Communications in Statistics-Theory and Methods, 13(13):1581-1611, 1984.

James Renegar. On the computational complexity of approximating solutions for real algebraic formulae. SIAM J. Comput., 21(6):1008-1025, 1992a. doi: 10.1137/0221060. URL https: //doi.org/10.1137/0221060.

James Renegar. On the computational complexity and geometry of the first-order theory of the reals, part III: quantifier elimination. J. Symb. Comput., 13(3):329-352, 1992b. doi: 10. 1016/S0747-7171(10)80005-7. URL https://doi.org/10.1016/S0747-7171 (10) 80005-7.

David W Scott. Multivariate density estimation: theory, practice, and visualization. John Wiley \& Sons, 2015.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algorithms. Cambridge university press, 2014.

Jeffrey S Simonoff. Smoothing methods in statistics. Springer Science \& Business Media, 2012.
Bharath Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Aapo Hyvärinen, and Revant Kumar. Density estimation in infinite dimensional exponential families. Journal of Machine Learning Research, 18, 2017.

Winfried Stute. Almost sure representations of the product-limit estimator for truncated data. The Annals of Statistics, 21(1):146-156, 1993.

Alexandre B Tsybakov. Introduction to nonparametric estimation. Springer Science \& Business Media, 2008a.

Alexandre B Tsybakov. Introduction to nonparametric estimation. Springer Science \& Business Media, 2008b.

Matt P Wand and M Chris Jones. Kernel smoothing. CRC press, 1994.
Shaojun Wang, Russell Greiner, and Shaomin Wang. Consistency and generalization bounds for maximum entropy density estimation. Entropy, 15(12):5439-5463, 2013.

Larry Wasserman. All of nonparametric statistics. Springer Science \& Business Media, 2006.
Michael Woodroofe. Estimating a distribution function with truncated data. The Annals of Statistics, 13(1):163-177, 1985.

Ximing Wu. Exponential series estimator of multivariate densities. Journal of Econometrics, 156 (2):354-366, 2010.

[^0]: 1. Extended abstract. Full version appears as [arXiv reference,2106.15908], https://arxiv.org/abs/2106. 15908
