A Statistical Taylor Theorem and Extrapolation of Truncated Densities

Constantinos Daskalakis
Massachusetts Institute of Technology

Vasilis Kontonis
University of Wisconsin-Madison

Christos Tzamos
University of Wisconsin-Madison

Manolis Zampetakis
University of California, Berkeley

Editors: Mikhail Belkin and Samory Kpotufe

Abstract

We show a statistical version of Taylor’s theorem and apply this result to non-parametric density estimation from truncated samples, which is a classical challenge in Statistics Woodroofe (1985); Stute (1993). The single-dimensional version of our theorem has the following implication: “For any distribution \(P \) on \([0, 1]\) with a smooth log-density function, given samples from the conditional distribution of \(P \) on \([a, a + \varepsilon] \subset [0, 1]\), we can efficiently identify an approximation to \(P \) over the whole interval \([0, 1]\), with quality of approximation that improves with the smoothness of \(P \).”

To the best of knowledge, our result is the first in the area of non-parametric density estimation from truncated samples, which works under the hard truncation model, where the samples outside some survival set \(S \) are never observed, and applies to multiple dimensions. In contrast, previous works assume single dimensional data where each sample has a different survival set \(S \) so that samples from the whole support will ultimately be collected.

From a technical point of view, a central challenge that we face is to bound the extrapolation error of multivariate polynomial approximation. Our main technical contribution is to show a novel way to prove strong bounds on the extrapolation error of our algorithms invoking only well-studied anti-concentration theorems, which we believe that it will have applications beyond truncated statistics. ¹

Keywords: non-parametric density estimation, truncated statistics, extrapolation error

Acknowledgments

Constantinos Daskalakis was supported by NSF Awards IIS-1741137, CCF-1617730, and CCF-1901292, by a Simons Investigator Award, by the Simons Collaboration on the Theory of Algorithmic Fairness, by a DSTA grant, and by the DOE PhILMs project (No. DE-AC05-76RL01830). Christos Tzamos and Vasilis Kontonis were supported by the NSF grant CCF-2008006.

References

