
Proceedings of Machine Learning Research vol 134:1–29, 2021 34th Annual Conference on Learning Theory

Frank-Wolfe with a Nearest Extreme Point Oracle

Dan Garber DANGAR@TECHNION.AC.IL
Technion - Israel Institute of Technology, Haifa, Israel

Noam Wolf WOLFNOAM@CAMPUS.TECHNION.AC.IL

Technion - Israel Institute of Technology, Haifa, Israel

Editors: Mikhail Belkin and Samory Kpotufe

Abstract
We consider variants of the classical Frank-Wolfe algorithm for constrained smooth convex min-
imization, that instead of access to the standard oracle for minimizing a linear function over the
feasible set, have access to an oracle that can find an extreme point of the feasible set that is closest
in Euclidean distance to a given vector. We first show that for many feasible sets of interest, such
an oracle can be implemented with the same complexity as the standard linear optimization oracle.
We then show that with such an oracle we can design new Frank-Wolfe variants which enjoy sig-
nificantly improved complexity bounds in case the set of optimal solutions lies in the convex hull
of a subset of extreme points with small diameter (e.g., a low-dimensional face of a polytope). In
particular, for many 0–1 polytopes, under quadratic growth and strict complementarity conditions,
we obtain the first linearly convergent variant with rate that depends only on the dimension of the
optimal face and not on the ambient dimension.

1. Introduction

The Frank-Wolfe (FW) algorithm (aka the conditional gradient method) is a classical first-order
method for minimzing a smooth and convex function f(·) over a convex and compact feasible set
K Frank and Wolfe (1956); Levitin and Polyak (1966); Jaggi (2013), where in this work we assume
for simplicity that the underlying space is Rd (though our results are applicable to any Euclidean
vector space). This algorithm has regained significant interest within the machine learning and
optimization communities in recent years due to the fact that, aside of access to a first-order oracle
of the objective function, it only requires on each iteration to minimize a linear function over the
feasible set which, in many cases of interest, is much more efficient than computing projections, as
required by projected/proximal gradient methods. Another benefit of the method is that when the
number of iterations is not too high, it produces iterates that are given as an explicit sparse convex
combination of extreme points of the feasible set Jaggi (2013).

The well-known convergence rate of the method is O(βD2
K/t), where β is the smoothness

parameter of the objective, DK is the Euclidean diameter of the set, and t is the iteration counter. It
is well-known that this rate is not improvable even if the objective function is strongly convex (see
for instance Lan (2013)), a property that is well known to allow for faster convergence rates, and
in particular linear rates, for projected/proximal gradient methods Nesterov (2018); Beck (2017).
Indeed, in recent years there is a significant research effort to design Frank-Wolfe variants with
linear convergence rates under strong convexity or the weaker assumption of quadratic growth (see
Definition 1 in the sequel), with most efforts focused on the case in which the feasible set is a convex
and compact polytope GuéLat and Marcotte (1986); Garber and Hazan (2013, 2016); Lacoste-Julien
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and Jaggi (2015); Beck and Shtern (2017); Garber and Meshi (2016); Pena et al. (2016); Pena and
Rodriguez (2019); Diakonikolas et al. (2020); Garber (2020).

Despite of the above results, there is a significant disadvantage for both the standard Frank-
Wolfe method and its linearly converging variants for polytopes (in comparison to projected/proximal
gradient methods) that has not been addressed so far — the inherent dependency of the convergence
rates on the diameter of the feasible set. First, while projected/proximal gradient methods enjoy the
benefit of “warm-start” initialization, i.e., their convergence rates often depend on the distance of
the initialization point from the optimal set (see for instance Nesterov (2018); Beck (2017)), for the
Frank-Wolfe method we do not get such a dependence and even with a “warm-start” initialization,
the rate depends on the diameter of the entire feasible set1. Second, existing linearly convergent vari-
ants for polytopes depend on the diameter of the polytope, i.e., the convergence rate is of the form
exp(−Θ(D−2K t)), where DK is the diameter (e.g., Garber and Hazan (2016); Lacoste-Julien and
Jaggi (2015); Garber and Meshi (2016)), which is in stark contrast to proximal/projected gradient
methods which, under strong convexity/quadratic growth of objective, enjoy a linear convergence
rate with exponent that is independent of the diameter.

Such inferior dependence on the diameter is of great importance in many setups of interest for
Frank-Wolfe-type methods. As a running example, consider polytopes that arise naturally from
combinatorial structures such as the flow polytope (convex-hull of source-target paths in a directed
acyclic graph), the spanning trees polytope of a graph, the perfect matchings polytope of a bipartite
graph, or the base-polyhedron of a matroid. In all of these cases, solving the Frank-Wolfe linear
optimization step can be done very efficiently using simple well-known combinatorial algorithms.
However, for all of these polytopes the Euclidean diameter is in worst-case Θ(

√
n), where n is the

number of vertices in the above-mentioned graph-induced polytopes, and the size of the bases of
the matroid in case of the base-polyhedron. Thus, with high-dimensional problems in mind, it is of
clear interest to improve the complexity of Frank-Wolfe-type methods in terms of the diameter.

Our approach towards tackling this challenge is to consider Frank-Wolfe variants with a seem-
ingly stronger oracle than the standard linear optimization oracle. As we shall discuss in the sequel,
it turns our that in many setups of interest, this stronger oracle could be implemented with the same
complexity as the standard linear optimization oracle.

Concretely, let us denote the set of extreme points of the feasible set by V . The Frank-Wolfe
method assumes the availability of an oracle that solves the following linear optimization problem
over V:

arg min
v∈V

v>∇f(x), (1)

where x is some feasible point. We emphasize that the linear problem is solved over the set of
extreme points (and not entire feasible set), since in most cases of interest indeed an efficient imple-
mentation of the linear optimization oracle will only consider the extreme points of the set (e.g., in
all combinatorial polytopes mentioned above and for other settings of interest such as the nuclear
norm ball of matrices or the set of trace-bounded positive semidefinite matrices Jaggi (2013)).

1. In Freund and Grigas (2016) it was shown that with a modified step-size, a “warm-start” could be leveraged to reduce
the number of iterations required by Frank-Wolfe to reach a desired approximation error by an additive constant,
however the resulting rate still depends on the diameter of the entire set.
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In this paper we suggest using the following oracle which minimizes an `2-regularized version
of (1):

arg min
v∈V

v>∇f(x) + λ‖v − x‖2, (2)

where ‖ · ‖ denotes the Euclidean norm and λ > 0. Note that (2) could be rewritten as

arg min
v∈V

‖v −
(
x− 1

2λ
∇f(x)

)
‖2. (3)

That is, we assume that given some point y we can efficiently find the nearest extreme point (NEP)
in the feasible set. We thus refer to an oracle for solving (3) as a NEP oracle. Here it is very
important to emphasize that the optimization problems (2), (3) are only solved w.r.t. the set of
extreme points — the set V . This is very different from the regularized oracles suggested before in
Migdalas (1994); Lan (2013) which solve certain regularized problems w.r.t. the entire feasible set,
and thus have complexity similar to that of computing projection over the set, which is exactly the
computational bottleneck that Frank-Wolfe-type methods aim to avoid. We also note that an oracle
of the form (2) was implicitly already considered in Garber (2016), but there it was for the specific
case in which the feasible set is the spectrahedron (unit-trace positive semidefinite matrices) and the
aim was to obtain faster rates in terms of the iteration counter t.

Let us denote by X ∗ the optimal set, that is X ∗ = arg minx∈K f(x). We also denote f∗ =
minx∈K f(x). Define

S∗ ∈ arg minS⊆V{max
u,v∈S

‖v − u‖ : X ∗ ⊆ conv(S)}, D∗ = max
u,v∈S∗

‖v − u‖. (4)

That is, S∗ is a subset of extreme points of minimum diameter whose convex-hull contains the
optimal set X ∗, and D∗ is the corresponding diameter. Also, when K is a convex and compact
polytope, we let F∗ denote the lowest-dimensional face of K such that X ∗ ⊆ F∗ and we let DF∗
denote the Euclidean diameter of F∗. As we shall discuss in detail in the sequel, in many cases
of interest we have that D∗ � DK or DF∗ � DK. For instance, when there is a unique optimal
solution which is an extreme point we have that D∗ = 0, or very often in case K is a polytope and
dimF∗ � d — a natural notion of sparsity for polytopes.

Our main contributions, in an informal and simplified presentation, are as follows:

1. We show that for many feasible sets of interest the NEP oracle (3) could be implemented with
the same complexity as the standard optimization linear oracle (1). Cases of interest include
0–1 polytopes, nuclear norm balls of matrices, bound-trace positive semidefinite matrices, the
unit spectral norm ball of matrices, and unstructured convex hulls. See Section 1.2.

2. We present a natural variant of the Frank-Wolfe method which replaces the linear optimization
oracle with a NEP oracle and enjoys an improved rate of O(β(D∗2 + D2

L)/t), where DL is
the diameter of the initial level set.2 Assuming quadratic growth of the objective w.r.t. the
feasible set, this rate improves to O(βD∗2/t) plus a lower-order term of the form log(t)/t2.
We also show such rates are not possible to obtain via Frank-Wolfe variants using a linear
optimization oracle. See Theorems 2 and 4.

2. That is DL = max{‖u− v‖ | u ∈ K,v ∈ K, f(u) ≤ f(x1), f(v) ≤ f(x1)}, where x1 is the initialization point.
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3. In case K is a polytope and quadratic growth holds, we present a linearly convergent FW
variant which replaces the linear optimization oracle with a NEP oracle and enjoys a rate of
the form exp(−t/(dD2

F∗)), which improves upon the previous best exp(−t/(dD2
K)) (e.g.,

Garber and Hazan (2013, 2016); Lacoste-Julien and Jaggi (2015).3 For many polytopes of
interest this gives the first linearly convergent algorithm with rate independent of the diameter
of the entire polytope and whose per-iteration oracle complexity matches that of Frank-Wolfe.
See Theorem 5.

4. In caseK is a polytope and both quadratic growth and strict complementarity (see definition in
the sequel) hold, our linearly convergent variant converges with rate exp(−t/(dimF∗D2

F∗)),
where dimF∗ is the dimension of the optimal faceF∗. As a consequence, for many 0–1 poly-
topes we obtain the first FW variant whose convergence rate is independent of the dimension,
provided that F∗ is low-dimensional. See Theorem 6.

5. We demonstrate that a NEP oracle could also lead to similar improvements to those in item 2
above in the stochastic setting, by analyzing a variant of the Stochastic Frank-Wolfe method.
See Theorem 12.

1.1. Notation

We use boldface lowercase letters to denote vectors and lightface letters to denote scalars. When
considering the space of matrices Rm×n or that of symmetric n × n matrices Sn, we use bold-
face uppercase letters to denote matrices. Throughout, we let ‖·‖ denote the Euclidean norm. For
matrices we let ‖·‖2 denote the spectral norm (i.e., largest singular value) and ‖·‖F denote the (Eu-
clidean) Frobenius norm. For a set S of points in a Euclidean vector space we let conv(S) denote
their convex-hull. Given a point x and convex and compact set S in a Euclidean vector space, we
let dist(x,S) denote the Euclidean distance of x from S.

1.2. Examples of feasible sets of interest

0–1 polytopes: 0–1 polytopes are polytopes which satisfy V ⊆ {0, 1}d, i.e., all vertices have
either 0 or 1 entries. This family of polytopes captures many combinatorial polytopes of interest in-
cluding the flow polytope, the spanning-tree polytope, the perfect matchings polytope of a bipartite
graph, the base polyhedron of a matroid, the unit simplex, the hypercube [0, 1]d, and many more.

For such polytopes, the NEP oracle could be implemented directly using a linear optimization
oracle since for any vector y we have

arg min
v∈V

‖v − y‖2 = arg min
v∈V

‖v‖2 − 2v>y = arg min
v∈V

v>1− 2v>y = arg min
v∈V

v>(1− 2y),

where 1 denotes the all-ones vector.
For many of these polytopes (e.g., flow polytope, perfect matchings polytope of a bipartite

graph, hypercube, but not the simplex), the diameter of the optimal face scales with its dimen-
sion, e.g., diam(F∗) = Θ(

√
dimF∗). Thus, when the optimal set X ∗ is contained within a low-

dimensional face F∗, we indeed have that D∗ ≤ DF∗ � DK. Low-dimensionality of the optimal

3. Here for simplicity we hide dependencies on certain geometric quantities of the polytope which are standard for such
results, as well as on the objective’s condition number β/α, where α is the quadratic growth parameter.
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face can be seen as a natural notion of sparsity (since it implies any optimal solution can be ex-
pressed as a sparse convex combination of extreme points), which is an important concept in many
machine learning / statistical settings (see also discussions in the recent work Garber (2020)).

The spectrahderon and trace-norm balls: The spectrahderon {X ∈ Sn : X � 0, Tr(X) =
τ} = conv{τuu> | u ∈ Rn, ‖u‖ = 1} and the nuclear norm ball {X ∈ Rm×n | ‖X‖∗ ≤
τ} = conv{τuv> | u ∈ Rm,v ∈ Rn, ‖u‖ = ‖v‖ = 1}, where τ > 0, are two highly popular
convex relaxations for matrix rank constraint, and are ubiquitous in convex relaxations for low-
rank matrix recovery problems (e.g., low-rank matrix completion). Optimization over these sets is
one of the main reasons for the increasing popularity of Frank-Wolfe-type methods, since linear
optimization over these sets amounts to a rank-one SVD computation — a task for which there
exists very efficient iterative methods (e.g., power iterations, Lanczos algorithm), while Euclidean
projection requires in general a full-rank SVD computation Jaggi and Sulovskỳ (2010); Garber
(2016); Allen-Zhu et al. (2017). Since all extreme points of these sets have the same Euclidean
norm, the NEP oracle is equivalent to the linear optimization oracle — see Norm-uniform sets in the
sequel, and hence could be implemented with the same complexity.

Consider now the case in which the feasible set is the spectrahedron and suppose that the optimal
solution is unique and can be written in the form X∗ =

∑m
i=1 λiτuiu

>
i , where (λ1, . . . , λm) is in

the unit simplex, ‖ui‖ = 1, i = 1, . . . ,m, and for all i 6= j we have (u>i uj)
2 ≥ 1 − γ, for

some γ > 0. In this case, it follows that D∗ ≤ maxi,j ‖τuiu>i − τuju>j ‖F ≤
√

2γτ . Thus, for
γ � 1 (which means X∗ admits a crude approximation via a rank-one matrix), we can indeed have
D∗ �

√
2τ = DK. Clearly, a similar argument holds for the nuclear norm ball as well.

Unit spectral norm ball: Consider the set of matrices K = {X ∈ Rm×n | ‖X‖2 ≤ 1} =
conv{U ∈ Rm×n | U>U = I}, m ≥ n. Linear optimization over this set amounts to a SVD
computation Jaggi (2013). Since, as in the previous example, all extreme points have the same
Euclidean norm, the NEP oracle is equivalent to the linear optimization oracle (see Norm-uniform
sets next). While for this set we have DK = 2

√
n, similarly to the example for the spectrahedron

above, we can clearly have D∗ � 2
√
n.

Norm-uniform sets: In case all extreme points have the same Euclidean norm i.e., ‖u‖ = ‖v‖
for all u,v ∈ V , we clearly have that the NEP oracle could be implemented using a single call to
the standard linear optimization oracle since for any vector y:

arg min
v∈V

‖v − y‖2 = arg min
v∈V

‖v‖2 − 2v>y = arg min
v∈V

v>(−2y).

Note that many of the above examples (e.g., perfect matchings polytope, base polyhedron of a
matroid, spectrahedron, nuclear norm ball, unit spectral norm ball etc.) satisfy this property. Clearly,
`1, `2 and `∞ balls in Rd also satisfy this property.

Unstructured convex-hulls: In case the feasible setK is given by its set of extreme points without
further structure, i.e.,K = conv{V}, where the set V is explicitly given, linear optimization amounts
to computing the linear function over all extreme points and taking the minimum. Clearly, we can
also implement the NEP oracle with the same complexity.
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1.3. The quadratic growth property

Most (but not all) results we report in this paper hold under the quadratic growth property which
has similar consequences to strong convexity but is a weaker assumption.

Definition 1 (quadratic growth) We say a function f : K → R satisfies the quadratic growth
property with parameter α > 0 w.r.t. a convex and compact set K if for all x ∈ K it holds that
dist(x,X ∗)2 ≤ 2α−1 (f(x)− f∗).

Quadratic growth is known to hold whenever f(x) is of the form f(x) = g(Ax) + b>x for
αg-strongly convex g : Rm → R, A ∈ Rm×d, and K is a convex and compact polytope (see for
instance Beck and Shtern (2017); Garber (2019a)). Very recently, it was also established that for the
important matrix domains — the spectrahedron and nuclear norm ball (mentioned above), for f(·)
of this form which also satisfies a certain strict complementarity condition, quadratic growth also
holds, see Ding et al. (2020b,a); Garber (2019b). Note that such structure of f(·) holds in particular
for g(z) = ‖z− y‖2 and A being an underdetermined linear map which captures some of the most
fundamental problems in statistics and machine learning.

2. Main Results

In this section we present our novel algorithms and corresponding convergence rates. The complete
proofs, as well as additional results, are given in the appendix.

2.1. A NEP Oracle-based Frank-Wolfe Variant for General Convex Sets

Our first line of results concerns a straightforward adaptation of the standard Frank-Wolfe method,
where the call to the linear optimization oracle is replaced with a call to the NEP oracle, see Al-
gorithm 1 below. We note that we use a modified step-size η̃t for the convex combination on each
iteration (and not the one used to compute the new extreme point vt) in order to guarantee that
out method is a decent method which is important for achieving the improved dependencies on the
initialization point.

Algorithm 1 Frank-Wolfe with Nearest Extreme Point Oracle
1: Input: sequence of step-sizes {ηt}t≥1 ⊂ [0, 1]
2: x1 ← some arbitrary point in V
3: for t = 1, 2, . . . do
4: vt ← arg minv∈V v

>∇f(xt) + βηt
2 ‖xt − v‖2

{equivalent to vt ← arg minv∈V ‖v − (xt − (βηt)
−1∇f(xt))‖2}

5: pick η̃t ∈ [0, 1] such that f((1− η̃t)xt + η̃tvt) ≤ min{f((1− ηt)xt + ηtvt), f(xt)}
6: xt+1 ← (1− η̃t)xt + η̃tvt
7: end for

Theorem 2 Using Algorithm 1 with step-size ηt = 2
t+1 we have

∀t ≥ 2 : f(xt)− f∗ ≤
2β(D∗2 +D2

L)

t+ 1
,

where DL is the diameter of the initial level set (see Footnote 2).
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Moreover, if f(·) has the quadratic growth property over K with parameter α > 0, then

∀t ≥ 2 : f(xt)− f∗ ≤
2βD∗2

t+ 1
+

8β2

α (D∗2 + min{2α−1(f(x1)− f∗), D2
L}) log(t)

t2
.

Theorem 2 shows that as opposed to the standard convergence rate of the Frank-Wolfe method
which, regardless of the initialization, is O(βD2

K/t), our NEP oracle-based variant has a rate of
the form O(βD∗2/t) plus an additional natural term that depends on the quality of the initial-
ization point. In particular, under quadratic growth, this additional term decays at a fast rate of
O(log t/t2), and thus even without good initialization, our algorithm has significantly improved
complexity whenever D∗ � DK.

2.1.1. COMPLEMENTARY LOWER BOUND FOR LINEAR OPTIMIZATION-BASED FW VARIANTS

We now present a complementary result showing that the rates reported in Theorem 2 are impossible
to obtain in general for Frank-Wolfe variants using only a linear optimization oracle.

Definition 3 (Frank-Wolfe-type method (see also Garber (2020))) An iterative algorithm for the
optimization problem minx∈K f(x), whereK is convex and compact and f(·) is smooth and convex,
is a Frank-Wolfe-type method if on each iteration t, it performs a single call to the linear optimiza-
tion oracle of K w.r.t. the point ∇f(xt), i.e., computes some vt ∈ arg minv∈K v

>∇f(xt), where
xt is the current iterate, and produces the next iterate xt+1 by taking some convex combination of
the points in {x1,v1, . . . ,vt}, where x1 is the initialization point.

Theorem 4 Let K = [0, 1]d, and fix a positive integer m < d. Let x∗ = 1
2

∑m
i=1 ei, i.e., x∗ has

1
2 for the first m coordinates and 0 for the rest. Now consider the minimization of the function
f(x) = 1

2‖x − x∗‖2 over K starting at x1 = em+1. Then, for any Frank-Wolfe-type method
there exists a sequence of answers returned by the linear optimization oracle such that for any
t ≤ b

√
d−m− 1c, the tth iterate of the algorithm xt satisfies f(xt)− f∗ ≥ 1

4 .

Note that for the problem described in Theorem 4 it holds that f(x1)−f∗ = 1
2 + m

8 ,D∗ =
√
m,

and α = β = 1. Thus, when m �
√
d, we have that O(m) iterations suffice for Algorithm 1 to

obtain approximation error < 1/4, while any Frank-Wolfe-type method with a linear optimization
oracle will require Ω(

√
d) iterations. Moreover, all currently existing upper-bounds for Frank-

Wolfe-type methods actually require Ω(d) iterations (since D2
K = d in this case).

2.2. A NEP Oracle-based Linearly-Convergent Variant for Polytopes

We now turn to discuss our NEP oracle-based linearly convergent algorithm for the case in which the
feasible setK is a convex and compact polytope. Our algorithm (see Algorithm 2) is an adaptation of
the fully-corrective Frank-Wolfe variant Jaggi (2013), where the linear optimization step is replaced
in a straightforward manner with the new NEP oracle (similarly to Algorithm 1). On each iteration
of the algorithm we optimize either the quadratic-upper bound on the objective due to smoothness
(Option 1) or the objective itself (Option 2) over the convex-hull of all previously found vertices.

We make some comments regarding the efficient solution of the quadratic optimization problem
in lines 7 and 9 of Algorithm 2. Regarding line 7, when the number of vertices in the decomposi-
tion of the current iterate k satisfies k � d, using a preprocessing step (i.e., explicitly computing
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Algorithm 2 Linearly Convergent Frank-Wolfe for Polytopes with a NEP Oracle
1: Input: a sequence {ρt}t≥1 ⊂ [0, 1]
2: x1 ← some arbitrary point in V
3: for t = 1, 2, . . . do
4: Let

∑k
i=1 λivi be an explicitly maintained decomposition of xt to vertices

5: vk+1 ← arg minu∈Vu
>∇f(xt) + βρt‖u− xt‖2

6: Option 1:
7: xt+1 ← arg minx∈conv(v1,...,vk+1)

x>∇f(xt) + β
2 ‖x− xt‖2

8: Option 2 (fully-corrective):
9: xt+1 ← arg minx∈conv(v1,...,vk+1)

f(x)
10: end for

v>i ∇f(xt), v>i xt, v
>
i vj , i = 1, . . . , k + 1, j = 1, . . . , k + 1), this problem could be reformu-

lated as convex quadratic minimization over the k-dimensional unit simplex. Such problems can be
efficiently solved via fast first-order methods. The problem in line 9 can also be reformulated as
a convex problem over the k-dimensional unit simplex however, solving it via first-order methods
requires more evaluations of the objective’s gradients.

In order to present our guarantees for Algorithm 2, we require some additional notation. Fol-
lowing Garber and Hazan (2016); Garber (2020) we assume K is a convex and compact polytope in
the form K := {x ∈ Rd |A1x = b1, A2x ≤ b2}, A1 ∈ Rm1×d, A2 ∈ Rm2×d. For a face F of K
we define:

dimF := d− dim span{{A1(1), · · ·A1(m1)}∪
{A2(i) : i ∈ [m2],∀x ∈ F : A2(i)

>x = b2(i)}}.

We letF∗ ⊆ K denote the lowest-dimensional face of P containing the set of optimal solutions, i.e.,
X ∗ ⊆ F∗. In the following we write F∗ = {x ∈ Rd |A∗1x = b∗1, A

∗
2x ≤ b∗2}.4 We let A∗ denote

the set of all dimF∗ × d matrices whose rows are linearly independent rows chosen from the rows
of A∗2. We define ψ = maxM∈A∗ ‖M‖2 and ξ = minv∈V∩F∗ mini{b∗2(i)−A∗2(i)

>v | b∗2(i) >
A∗2(i)

>v}. Finally, we let DF∗ denote the diameter of the optimal face.

Theorem 5 Suppose that K is a convex and compact polytope and quadratic growth holds with
parameter α > 0. Let C ≥ f(x1) − f∗ and M ≥ max{βα(4 + 8dµ2D2

F∗),
1
2}, where µ = ψ

ξ .5

Using Algorithm 2 with parameter ρt =
min{

√
2Cdµ2

α
exp
(
− 1

4M
(t−1)

)
,1}

2M for all t ≥ 1 one has,

∀t ≥ 1 : f(xt)− f∗ ≤ C exp
(
− t− 1

4M

)
.

4. The rows of A∗1 are exactly the rows of A1 plus rows of A2 which correspond to constraints that are tight for all
points in F∗ and the vector b∗1 is defined accordingly. The rows of A∗2 are the rows of A2 which correspond to
constraints that are satisfied by some of the points in F∗ but not by others, and the vector b∗2 is defined accordingly.

5. Note that for polytopes such as the flow polytope, the perfect matchings polytope of a bipartite graph, the [0, 1]d

hypercube and the unit simplex it holds that µ = 1.
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Theorem 5 improves upon the state-of-the art complexity bounds for Frank-Wolfe-type methods
for general polytopes Garber and Hazan (2016)6 by replacing the dependency onD2

K withD∗2F∗ . For
instance, for the [0, 1]d hypercube, when dimF∗ � dwe haveD2

F∗ = Θ(dimF∗)� D2
K = Θ(d).

We note that while Theorem 5 relies on a pre-defined sequence of step-sizes {ρt}t≥1 which can
be difficult to tune in practice, in Theorem 11 (Section C.2) we prove that the same rate can be
obtained using an adaptive step-size by applying a logarithmic-scale search on each iteration t to
choose a value for ρt which gives the largest decrease in function value.

2.2.1. IMPROVED DEPENDENCE ON DIMENSION UNDER STRICT COMPLEMENTARITY

While for many polytopes Theorem 5 implies significant improvement in the dependence on the
dimension whenever dimF∗ � d, still the exponent has explicit dependence on the dimension d.

In a very recent work Garber (2020) it was shown that even when the optimal face is low-
dimensional, without further assumptions, Frank-Wolfe-type methods (as defined in Definition 3)
cannot avoid such dependence. It was also shown that under a strict complementarity condition
(see Assumption 1), it is possible to improve the explicit dependence on the dimension d to only
dependence on the dimension of the optimal face F∗. The strict complementarity assumption, in
the context of analyzing Frank-Wolfe-type methods, was suggested by Wolfe himself Wolfe (1970),
and it was also instrumental in the early work GuéLat and Marcotte (1986) on linearly-converging
Frank-Wolfe methods, but not in the more modern ones such as Garber and Hazan (2013, 2016);
Lacoste-Julien and Jaggi (2015). Garber (2020) motivated this assumption by proving it implies the
robustness of the optimal face F∗ to small perturbations in the objective function f(·).

Assumption 1 (strict complementarity) There exist δ > 0 such that for all x∗ ∈ X ∗ and v ∈ V:
if v ∈ V \ F∗ then (v− x∗)>∇f(x∗) ≥ δ; otherwise, if v ∈ V ∩ F∗ then (v− x∗)>∇f(x∗) = 0.

Theorem 6 Suppose that in addition to the assumptions of Theorem 5, Assumption 1 also holds
with some parameter δ > 0, and let C ≥ f(x1)−f∗, M1 ≥ max{4βα + 8βD2

F∗ max{2κ, δ−1}, 12},
and M2 ≥ {4βα + 16βκD2

F∗ ,
1
2}, where κ = 2µ2 dimF∗

α .

Using Algorithm 2 with parameters ρt =
min{

√
2max{2κ,δ−1}C exp

(
− 1

4M1
(t−1)

)
,1}

2M1
for all t ≥ 1, one

has,

∀t ≥ 1 : f(xt)− f∗ ≤ C exp
(
− t− 1

4M1

)
. (5)

Furthermore, in case that 2κ ≤ δ−1 and dimF∗ > 0 (i.e. κ > 0), denoting τ ≥ 4M1 log( C
δ2κ

) + 1

and for all t ≥ τ , using ρt =
min{2δκ exp(− t−τ

8M2
),1}

2M2
instead of the above value, one has,

∀t ≥ τ : f(xt)− f∗ ≤ δ2κ exp
(
− t− τ

4M2

)
. (6)

6. We note that i. while other results on linearly converging FW variants have complexity bounds that are stated using
different quantities, such as the pyramidal width in Lacoste-Julien and Jaggi (2015), their worst-case complexity
bounds do not improve over Garber and Hazan (2016), and ii. while Garber and Meshi (2016) presented a FW
variant with improved dependence on the dimension (but without improvement in dependene on DK), their result
applies only to a very restricted family of polytopes and in particular a strict subset of the 0–1 polytopes.

9
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Theorem 6 improves upon Garber (2020) by replacing the dependence on DK with DF∗ . Thus,
for many polytopes of interest, when dimF∗ � d, Theorem 6 has no explicit dependence on the
ambient dimension d, but only on the dimension of the low-dimensional optimal face F∗. In par-
ticular, as discussed, for many polytopes of interest, the NEP oracle could be implemented using a
single call to the linear optimization oracle, and as a result, for many 0–1 polytopes, under quadratic
growth and strict complementarity, we obtain the first linearly convergent algorithm with the same
per-iteration oracle-complexity as Frank-Wolfe and with dimension-independent convergence rate
whenever dimF∗ � d.

2.3. A NEP Oracle-based Frank-Wolfe Variant for Stochastic Optimization

Our last result concerns a standard stochastic optimization setting in which f(·) is given by a
stochastic first-order oracle with stochastic gradients upper-bounded in `2 norm by some G > 0.

Stochastic Frank-Wolfe-type methods have also received notable attention in recent years, in-
cluding the use of the conditional-gradient sliding approach and various variance reduction methods,
see for instance Lan and Zhou (2016); Hazan and Luo (2016). Here however, in order to demon-
strate the benefit of our NEP oracle to this setting as well, we only focus on the most basic method
known as the Stochastic Frank-Wolfe (SFW) algorithm, which replaces the exact gradient in the
Frank-Wolfe method with a mini-batched stochastic gradient (see Hazan and Luo (2016)). Also,
here for simplicity we only focus on the case in which f(·),K satisfy the quadratic growth property.

Our algorithm, which is a straight-forward adaptation of the SFW algorithm is given as Al-
gorithm 3 (replacing the call to the linear optimization oracle with a call to the NEP oracle) in
Appendix 2.3.

Theorem 7 Suppose f,K satisfy the quadratic growth property with some α > 0. Using Algo-
rithm 3 with step-size ηt = 2

t+1 and mini-batch sizes that satisfy

mt ≥ max
{(G(t+ 1)

βDK

)2
,min

{(GDK(t+ 1)

βD∗2

)2
,
(αG(t+ 1)2

8β2DK

)2}}
,

for any 0 < ε ≤ 16β2DK
2

α , expected approximation error ε is achieved after Õ
(

max{βD
∗2

ε , βDK√
αε
}
)

calls to the NEP oracle and Õ
(
βG2 max

{
DK

2D∗2

ε3
, DK
α3/2ε3/2

, DK
3

α1/2ε5/2

})
stochastic gradient evalu-

ations, where Õ suppresses poly-logarithmic terms in β2DK
2

αε .

Let us compare Theorem 7 with the standard SFW method which requires O(βG2D4
K/ε

3)
stochastic gradients and O(βD2

K/ε) calls to the linear optimization oracle Hazan and Luo (2016),
and the state-of-the-art — the stochastic conditional gradient sliding (SCGS) method Lan and Zhou
(2016) which requires optimal O(G2/(αε)) stochastic gradients and O(βD2

K/ε) calls to the linear
optimization oracle. The improvement over SFW is quite clear , both in terms of the stochastic
oracle and the optimization oracle (at least when α is not trivially small). While SCGS has clear
advantage in terms of the stochastic oracle complexity7, we see that when the main concern is the
optimization oracle complexity and D∗ � DK, already the simple stochastic scheme in Algorithm
3 can have significant advantage over SCGS.

7. This is not surprising since, as opposed to SCGS, SFW cannot leverage the quadratic growth to improve the stochastic
gradient complexity.

10
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3. Proof Ideas

In this section we describe the main novel components in the analysis of Algorithms 1,2 — novel
bounds on the per-iteration error reduction which are independent of the diameter of the set.

3.1. Error reduction for Algorithm 1

Lemma 8 Using Algorithm 1 with any choice of step-sizes {ηt}∞t=1 one has,

∀t ≥ 1 : f(xt+1)− f∗ ≤ (1− ηt)(f(xt)− f∗) +
βη2t
2

(dist(xt,X ∗)2 +D∗2).

Proof Fix some iteration t ≥ 1 and let x∗ be the optimal solution closest to xt. From the β-
smoothness of f(·), the optimality of vt, and the definition of the set S∗ in (4), we have that,

f(xt+1) ≤ min
v∈S∗

f(xt) + ηt(v − xt)
>∇f(xt) +

βη2t
2
‖v + x∗ − x∗ − xt‖2

= min
v∈S∗

f(xt) + ηt(v − xt)
>∇f(xt) +

βη2t
2

(
‖xt − x∗‖2

+ 2(xt − x∗)>(x∗ − v) + ‖v − x∗‖2
)

≤ min
v∈S∗

f(xt) + ηt(v − xt)
>∇f(xt)

+
βη2t
2

(
dist(xt,X ∗)2 + 2(xt − x∗)>(x∗ − v) +D∗2

)
≤
(a)
f(xt) + ηt(x

∗ − xt)
>∇f(xt)

+
βη2t
2

(dist(xt,X ∗)2 + 2(xt − x∗)>(x∗ − x∗) +D∗2)

≤ f(xt)− ηt(f(xt)− f∗) +
βη2t
2

(dist(xt,X ∗)2 +D∗2),

where (a) holds since x∗ ∈ conv(S∗) and since v>∇f(xt) + βηt(xt−x∗)>(x∗−v) is linear in v.
Subtracting f∗ from both sides concludes the proof.

3.2. Error reduction for Algorithm 2

We now proceed to the main lemma in the proof of Theorems 5, 6 which will allow us to bound the
improvement on each iteration of Algorithm 2.

Lemma 9 Fix some iteration t ≥ 1 of Algorithm 2 (when either Option 1 or 2 are used) and
consider a convex decomposition of xt into vertices: xt =

∑k
i=1 λivi, and fix some η ∈ [0, 1].

Suppose there exists R ≤ 1 such that some x∗ ∈ X ∗ can be written as x∗ =
∑k

i=1(λi −∆∗i )vi +∑k
i=1 ∆∗i z for ∆∗i ∈ [0, λi], z ∈ F∗ and

∑k
i=1 ∆∗i ≤ R. Then, using ρt = ηR one has that,

f(xt+1)− f∗ ≤ (1− η)(f(xt)− f∗) + η2β
(
2‖xt − x∗‖2 + 4R2D2

F∗
)
.

11
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This lemma indeed allows us to obtain linear rates since, as it was shown in Garber and Hazan
(2016); Garber (2020), informally speaking, we can take R = O(‖xt − x∗‖) = O(

√
f(xt)− f∗).

Proof First, note that we can assume w.l.o.g. that
∑k

i=1 ∆∗i = R (see Observation 1 in Ap-
pendix C.1).
Now let pt = x∗ − Rz + Rvk+1 and yt+1 = (1 − η)xt + ηpt. Note that since pt =

∑k
i=1(λi −

∆∗i )vi+
∑k

i=1 ∆∗ivk+1, we have that pt ∈ conv(v1, . . . ,vk+1) and thus yt+1 ∈ conv(v1, . . . ,vk+1).
Thus by the β-smoothness of f(·) and the optimality of xt+1 (as defined in either line 7 or 9 of Al-
gorithm 2), we have that,

f(xt+1) ≤ f(xt) + (yt+1 − xt)
>∇f(xt) +

β

2
‖yt+1 − xt‖2

= f(xt) + η(x∗ −Rz +Rvk+1 − xt)
>∇f(xt) +

η2β

2
‖x∗ −Rz +Rvk+1 − xt‖2

≤ f(xt) + η(x∗ − xt)
>∇f(xt) + ηR(vk+1 − z)>∇f(xt)

+ η2β(‖x∗ −Rz− (1−R)xt‖2 +R2‖vk+1 − xt‖2)
≤ f(xt) + η(x∗ − xt)

>∇f(xt)

+ η2β(‖x∗ −Rz− (1−R)xt‖2 +R2‖w∗ − xt‖2) (7)

where in the last inequality we let w∗ be a vertex in F∗ such that w∗>∇f(xt) ≤ z>∇f(xt) and
we use the fact that since ρt = ηR, we have that vk+1 ∈ arg minu∈Vu

>∇f(xt) + βηR‖u− xt‖2.
Note that

‖w∗ − xt‖2 ≤ 2‖w∗ − x∗‖2 + 2‖xt − x∗‖2 ≤ 2‖xt − x∗‖2 + 2D2
F∗ . (8)

Also,

‖x∗ −Rz− (1−R)xt‖2 = ‖(1−R)x∗ − (1−R)xt +Rx∗ −Rz‖2

≤ 2(1−R)2‖xt − x∗‖2 + 2R2D2
F∗ . (9)

Plugging-in (8),(9) into (7), we have

f(xt+1) ≤ f(xt) + η(x∗ − xt)
>∇f(xt)

+ η2β
(
2R2‖xt − x∗‖2 + 2R2D2

F∗ + 2(1−R)2‖xt − x∗‖2 + 2R2D2
F∗
)

≤ f(xt) + η(x∗ − xt)
>∇f(xt) + η2β

(
2‖xt − x∗‖2 + 4R2D2

F∗
)
,

where we have used the fact that maxR∈[0,1]R
2 + (1−R)2 = 1.

Finally, using the gradient inequality and subtracting f∗ from both sides we get the proof.

4. Experiments

In this section we present numerical evidence that demonstrate the benefits of our NEP oracle-based
algorithms. Due to lack of space, additional results are deferred to Appendix E.

We conducted two experiments. In the first experiment we consider minimizing a random least-
squares objective over the unit hypercube [0, 1]d. In the second experiment we consider the task of

12
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video co-localization taken from Lacoste-Julien and Jaggi (2015) which takes the form of minimiz-
ing a convex quadratic objective over the flow polytope. Note that in both experiments the feasible
set is a convex and compact polytope. In both experiments we compare the performances of the
original Frank-Wolfe algorithm (FW), the Frank-Wolfe with away-steps (AFW) variant Lacoste-
Julien and Jaggi (2015), the fully-corrective Frank-Wolfe variant (FC) Jaggi (2013)8, our Algo-
rithm 1 (NEP FW), and our Algorithm 2 with the fully-corrective option (NEP FC). For the video
co-localization experiment we also included the pairwise Frank-Wolfe variant (PFW) Lacoste-Julien
and Jaggi (2015) and the DICG Frank-Wolfe variant (with line-search) Garber and Meshi (2016).

In both experiments, when implementing the fully corrective variants (FC, NEP FC), we used a
constant number of FISTA Beck and Teboulle (2009) iterations in order to compute the next iterate
(i.e., finding an approximate solution to the problem in line 9 of Algorithm 2). For our NEP oracle-
based algorithms which require the smoothness parameter β, we set it precisely according to the
data (i.e., largest eigenvalue of the Hessian, which is fixed since the objectives are quadratic).

4.1. Hypercube-constrained least-squares

We consider the problem minx∈[0,1]d
1
2‖Ax− b‖2, where we take A to be a m × d matrix, m =

175, d = 200, with standard Gaussian entries and we set b = Ax∗, where x∗ is constructed by first
choosing a random vertex of the hypercube and then changing it’s first 5 entries to 0.5. Thus, x∗,
which is also an optimal solution, lies on a face of dimension 5 of the hypercube. The initialization
point for all algorithms is taken to be 0. For both standard Frank-Wolfe and Algorithm 1 we used
the theoretical step-size 2

t+1 (an alternative is to use line-search but for both variants it seems to
give inferior results on this problem). For Algorithm 1 we skipped line 5 since it had no observable
impact on performance. For Algorithm 2, on each iteration t we took ρt ∈ {2a/4ρt−1}4a=−4 which
achieves the lowest function value, where initially we set ρ0 = 0.5. For the FC and NEP FC
variants, on each iteration t we used 50 iterations of FISTA to compute the next iterate xt+1. Also,
the smoothness constant Lt of the FISTA objective was chosen to be fixed throughout all iterations
and its was empirically tuned, resulting in 2 · 104 for Algorithm 2 and 5 · 104 for FC.

Figure 1 shows the results averaged over 50 i.i.d. runs (where in each run we sample a fresh
matrix A and an optimal solution x∗). As can be seen, NEP FC significantly outperforms all other
algorithms both with respect to the number of iterations and runtime. Also, it can be seen that
the simple addition of the NEP oracle in the NEP FW method leads to substantial improvement in
performance compared to the standard Frank-Wolfe method. Moreover, with respect to runtime,
NEP FW outperforms all other methods except for NEP FC.

4.2. Video co-localization

For our second experiment we use a formulation of the video co-localization task as a convex
quadratic problem over the flow polytope (which is a 0–1 polytope), a formulation that was orig-
inally proposed in Joulin et al. (2014). We used the same dataset and initialization point used in
Lacoste-Julien and Jaggi (2015) and Garber and Meshi (2016). The dimension of the problem is
d = 660 and the optimal solution has 66 non-zero coordinates and no coordinate is equal to 1, which
implies that the optimal face is indeed low-dimensional.

8. Fully-corrective Frank-Wolfe is equivalent to using the fully-corrective option in Algorithm 2 with ρt = 0 i.e. with
a linear optimization oracle instead of the NEP oracle.
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Figure 1: Comparison of Frank-Wolfe variants on the hypercube-constrained least-squares prob-
lem. The results are the average of 50 i.i.d. runs.

As opposed to the previous experiment, here for both the standard Frank-Wolfe method and
Algorithm 1 we used line-search to set the step-size since for both it gives better results than the
fixed 2

t+1 step-size. For Algorithm 1 we use the theoretical constant ηt = 2
t+1 for the regularization

weight when calling the NEP oracle. For Algorithm 2 we used ρt = (1/
√

2)t+1. For both FC and
NEP FC variants, on each iteration t we used 10 iterations of FISTA to compute xt+1, where as in
the previous experiment, the FISTA smoothness parameter was fixed throughout all iterations and
tuned empirically, resulting in a value of 0.25 for both variants.

Since the optimal value of the objective is not known we find it approximately using 1000
iteration of DICG Garber and Meshi (2016) (which results in a duality gap of 10−15).

The results are given in Figure 2. As it can be seen, NEP FC outperforms all other algorithms,
both with respect to the number of iterations and running time. Although it may seem that the
difference between NEP-FC and FC is not significant, the ratio between the time it takes FC to
reach an approximation error of 10−12 and the time it takes NEP FC to reach the same error is 1.21.
Furthermore, it can be seen that the simple addition of the NEP oracle in the NEP FW method leads
to substantial improvement in performance compared to the standard Frank-Wolfe method, and that
with respect to running time, NEP FW outperforms the linearly-converging variants AFW and PFW.

Figure 2: Comparison of Frank-Wolfe variants on the video co-localization problem. The times
shown are the averages of 200 runs.
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Appendix A. Proof of Theorem 2

For clarity, we first restate the theorem and then prove it.

Theorem 2 Using Algorithm 1 with step-size ηt = 2
t+1 we have

∀t ≥ 2 : f(xt)− f∗ ≤
2β(D∗2 +D2

L)

t+ 1
,

where DL is the diameter of the initial level set (see Footnote 2).
Moreover, if f(·) has the quadratic growth property over K with parameter α > 0, then

∀t ≥ 2 : f(xt)− f∗ ≤
2βD∗2

t+ 1
+

8β2

α (D∗2 + min{2α−1(f(x1)− f∗), D2
L}) log(t)

t2
.

Proof Using Lemma 8 with our choice of step size ηt, we have that for all t ≥ 1,

f(xt+1)− f∗ ≤ (1− 2

t+ 1
)(f(xt)− f∗) +

2βD∗2

(t+ 1)2
+

2βdist(xt,X ∗)2

(t+ 1)2
.

Thus, from Lemma 10 we have that for any t ≥ 2,

f(xt)− f∗ ≤
1

t2

t−1∑
k=1

2β(D∗2 + dist(xk,X ∗)2)

≤
1
t−1
∑t−1

k=1 2βD∗2

t+ 1
+

1

t2

t−1∑
k=1

2βdist(xk,X ∗)2

=
2βD∗2

t+ 1
+

1

t2

t−1∑
k=1

2βdist(xk,X ∗)2 (10)

≤ 2βD∗2

t+ 1
+

1
t−1
∑t−1

k=1 2βdist(xk,X ∗)2

t+ 1
. (11)

Since Algorithm 1 is a decent method (i.e., the function value never increases from one iteration to
the next), and so all iterates as well as the optimal set X ∗ are contained within the initial level set
L, for any t ≥ 1 we can bound dist(xt,X ∗) ≤ DL.

Thus, using (11) we have that,

∀t ≥ 2 : f(xt)− f∗ ≤
2βD∗2

t+ 1
+

2βD2
L

t+ 1
.

If we additionally assume quadratic growth, we can use again the fact that Algorithm 1 is a
decent method, in order bound dist(xt,X ∗)2 ≤ 2

α(f(x1)− f∗) which results in the bound

∀t ≥ 2 : f(xt)− f∗ ≤
2βD∗2

t+ 1
+

2βmin{2α−1(f(x1)− f∗), D2
L}

t+ 1
. (12)
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Thus, denoting M = 2β(D∗2 + min{ 2α(f(x1) − f∗), D2
L}), using again the quadratic growth of

f(·) and (10) we have that for any t ≥ 2,

f(xt)− f∗ ≤
2βD∗2

t+ 1
+

4β

αt2

t−1∑
k=1

(f(xk)− f∗) ≤
(a)

2βD∗2

t+ 1
+

4β

αt2

t−1∑
k=1

M

k + 1

=
2βD∗2

t+ 1
+

4β
α M(

∑t
k=1

1
k − 1)

t2
≤ 2βD∗2

t+ 1
+

4β
α M log(t)

t2
, (13)

where (a) follows from the definition of M and the bound in (12).
Thus, plugging-in the value of M in (13) we indeed have that,

∀t ≥ 2 : f(xt)− f∗ ≤
2βD∗2

t+ 1
+

8β2

α (D∗2 + min{2α−1(f(x1)− f∗), D2
L}) log(t)

t2
.

Lemma 10 Let {at, bt}∞t=1 be non-negative scalars such that,

∀t ≥ 1 : at+1 ≤ (1− 2

t+ 1
)at +

bt
(t+ 1)2

.

Then, we have that for any t ≥ 2,

at ≤
1

t2

t−1∑
k=1

bk.

In particular, when {bt}∞t=1 is upper-bounded by M > 0 we have that,

∀t ≥ 2 : at ≤
M

t+ 1
.

Proof First we define a sequence {ât}∞t=1 such that â1 = a1 and ∀t ≥ 1 : ât+1 = (1 − 2
t+1)ât +

bt
(t+1)2

. Note that â2 = b1
4 and that for any t ≥ 1, at ≤ ât.

Thus, since {ât}∞t=2 is of the form ât+1 = ctât + b̄t (a first-order non-homogeneous recurrence
relation) we have that for any t ≥ 2,

ât =

(
t−1∏
i=2

ci

)(
â2 +

t−1∑
k=2

b̄k∏k
i=2 ci

)
.

Thus, noting that for any k ≥ 2,

k∏
i=2

(1− 2

i+ 1
) =

k∏
i=2

i− 1

i+ 1
=

2

k(k + 1)
,
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we have that for t ≥ 3,

at ≤ ât =
2

t(t− 1)

(
â2 +

t−1∑
k=2

k(k + 1)

2
· bk

(k + 1)2

)

=
(a)

2

t(t− 1)

t−1∑
k=1

k(k + 1)

2
· bk

(k + 1)2
=

1

t(t− 1)

t−1∑
k=1

kbk
k + 1

≤ 1

t(t− 1)
· t− 1

t

t−1∑
k=1

bk =
1

t2

t−1∑
k=1

bk,

where (a) holds since â2 = b1
4 (note that for that reason the bound also holds for t = 2).

Finally, if {bt}∞t=1 is upper-bounded by some M > 0, we have that for any t ≥ 2,

at ≤
1

t2

t−1∑
k=1

bk ≤
(t− 1)M

(t+ 1)(t− 1)
=

M

t+ 1
.

Appendix B. Proof of Theorem 4

For clarity, we first restate the theorem and then prove it.

Theorem 4 Let K = [0, 1]d, and fix a positive integer m < d. Let x∗ = 1
2

∑m
i=1 ei, i.e., x∗ has

1
2 for the first m coordinates and 0 for the rest. Now consider the minimization of the function
f(x) = 1

2‖x − x∗‖2 over K starting at x1 = em+1. Then, for any Frank-Wolfe-type method
there exists a sequence of answers returned by the linear optimization oracle such that for any
t ≤ b

√
d−m− 1c, the tth iterate of the algorithm xt satisfies f(xt)− f∗ ≥ 1

4 .

Proof Clearly, the unique optimal solution is x∗ and f∗ = f(x∗) = 0. Let k = b
√
d−m− 1c and

let S0, S1 . . . , Sk be a partition of the last d−m− 1 coordinates (i.e., of the set {m+ 2 ≤ i ≤ d :
i ∈ N}) such that each Si, i = 1, . . . , k contains exactly k coordinates. Consider now the iterates
of some Frank-Wolfe-type method. Observe that for any t ≥ 1, since the last d−m coordinates of
∇f(xt) = xt−x∗ are the same as those of xt, the last d−m coordinates of a valid answer returned
by the linear optimization oracle can contain 0 in coordinates in which xt is non-zero, and either
0 or 1 in coordinates in which xt is 0. Thus, a valid sequence of answers returned by the linear
optimization oracle on iterations 1 ≤ t ≤ k may set on each iteration t ∈ {1, . . . , k} the oracle’s
output vt to contain 1 in the coordinates in St and 0 in the rest of the last d −m coordinates (i.e.,
the coordinates in (

⋃k
i=0 Si \ St) ∪ {m+ 1}).

For any vector x ∈ Rd we let x(d−m) denote the restriction of x to the last d −m coordinates.
Now, fix some t ≤ k+1. Since xt ∈ conv(x1,v1, . . . ,vk), there exist some w ∈ conv(v1, . . . ,vk)
and γ ∈ [0, 1] such that xt = (1 − γ)x1 + γw. Note that since w(d−m) is a convex combina-
tion of k orthogonal vectors (v(d−m)

1 , . . . ,v
(d−m)
k ), each having Euclidean norm

√
k, we have that

‖w(d−m)‖2 ≥ 1. Thus, using the fact that x∗(d−m) = 0 and that w(d−m) is orthogonal to x
(d−m)
1 ,
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we have that,

f(xt)− f∗ =
1

2
‖xt − x∗‖2 ≥ 1

2
‖x(d−m)

t ‖2 =
1

2
‖(1− γ)x

(d−m)
1 + γw(d−m)‖2

=
1

2
(1− γ)2‖x(d−m)

1 ‖2 +
1

2
γ2‖w(d−m)‖2 ≥ 1

2
(1− γ)2 +

1

2
γ2 ≥ 1

4
,

where the last inequality holds since minγ∈[0,1](1− γ)2 + γ2 = 1
2 .

Thus, we indeed have that for any t ≤ k = b
√
d−m− 1c, f(xt)− f∗ ≥ 1

4 .

Appendix C. Results and proofs missing from Section 2.2

In Section C.1 we prove Theorem 5, in Section C.2 we prove that the linear convergence rate in
Theorem 5 also holds if instead of using a predefined sequence {ρt}t≥1, we use an adaptive-step
size strategy, and in Section C.3 we prove Theorem 6.

C.1. Proof of Theorem 5

We first prove the following technical observation which was used in the proof of Lemma 9 and
then prove the theorem.

Observation 1 Suppose that K is a convex and compact polytope and let x ∈ K which is given
by a convex combination of vertices x =

∑k
i=1 λivi. Suppose there exists R ≤ 1 such that some

x∗ ∈ X ∗ can be written as x∗ =
∑k

i=1(λi − ∆∗i )vi +
∑k

i=1 ∆∗i z for ∆∗i ∈ [0, λi], z ∈ F∗ and∑k
i=1 ∆∗i ≤ R. Then, x∗ can also be written as, x∗ =

∑k
i=1(λi − ∆̄i)vi +

∑k
i=1 ∆̄iz̄ where,

∆̄i ∈ [0, λi], z̄ ∈ F∗ and
∑k

i=1 ∆̄i = R.

Proof Denote R′ =
∑k

i=1 ∆∗i and assume R′ < R. Let γ = R−R′
1−R′ and note that since R′ < R ≤ 1,

γ ∈ [0, 1]. We will show that ∆̄i = (1− γ)∆∗i + γλi and z̄ = (1−γ)R′
R z + γ

Rx
∗ satisfy the required

conditions.
Indeed, since γ ∈ [0, 1], we have that ∆̄i ∈ [0, λi], and since

(1− γ)R′ + γ =
R′(1−R)

1−R′
+
R−R′

1−R′
= R, (14)

we have that, z̄ = (1−γ)R′
R z + γ

Rx
∗ is a convex combination of points in F∗ and thus in F∗ itself.

Moreover, using (14) we have that,

k∑
i=1

∆̄i = (1− γ)
k∑
i=1

∆∗i + γ
k∑
i=1

λi = (1− γ)R′ + γ = R.

Finally, we indeed have that,

x∗ = (1− γ)x∗ + γx∗ =
k∑
i=1

(1− γ)(λi −∆∗i )vi + (1− γ)R′z + γx∗

=

k∑
i=1

(λi − ∆̄i)vi +Rz̄,
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completing the proof.

Before continuing to the proof of Theorem 5 we first restate it.

Theorem 5 Suppose that K is a convex and compact polytope and quadratic growth holds with
parameter α > 0. Let C ≥ f(x1)−f∗ and M ≥ max{βα(4 + 8dµ2D2

F∗),
1
2}, where µ = ψ

ξ . Using

Algorithm 2 with parameter ρt =
min{

√
2Cdµ2

α
exp
(
− 1

4M
(t−1)

)
,1}

2M for all t ≥ 1 one has,

∀t ≥ 1 : f(xt)− f∗ ≤ C exp
(
− t− 1

4M

)
,

Proof The proof is by induction on t. For t = 1 the bound holds by the definition of the constant C.
Now suppose the bound holds for some t ≥ 1. We will show that it holds for t + 1. Let

x∗t ∈ X ∗ be the closest optimal solution to xt and let
∑k

i=1 λivi be the decomposition of xt used
in Algorithm 2.
By Lemma 5.5 from Garber and Hazan (2016) there exist ∆∗i ∈ [0, λi], i = 1, . . . , k and z ∈ F∗,
such that x∗t =

∑k
i=1(λi −∆∗i )vi +

∑k
i=1 ∆∗i z, and

∑k
i=1 ∆∗i ≤ min{

√
dµ‖xt − x∗t ‖, 1}, which

by the quadratic growth of f(·) together with the induction assumption, implies that
∑k

i=1 ∆∗i ≤
min{

√
2Cdµ2

α exp(− 1
4M (t− 1)), 1}, where M is as defined in the theorem.

Therefore, takingR = min{
√

2Cdµ2

α exp(− 1
4M (t− 1)), 1} and η = 1

2M , we have that ρt = ηR

and
∑k

i=1 ∆∗i ≤ R and thus, we can use Lemma 9 which implies that,

f(xt+1)− f∗ ≤ (1− η)(f(xt)− f∗) + η2β(2‖xt − x∗t ‖2 + 4R2D2
F∗)

≤
(a)

(1− η)Ce−
t−1
4M + η2β(

4C

α
e−

t−1
4M +

8Cdµ2D2
F∗

α
e−

t−1
4M )

≤
(b)

(1− η)Ce−
1

4M
(t−1) +Mη2Ce−

1
4M

(t−1)

=
(c)

(1− 1

4M
)Ce−

1
4M

(t−1) ≤
(d)
Ce−

1
4M

t,

where (a) holds by the induction assumption and the quadratic growth of f(·), (b) holds due to the
definition of M , (c) holds since η = 1

2M , and (d) holds since 1− x ≤ e−x.

C.2. Linear convergence with adaptive step-sizes

We now prove that, in principle, the linear rate of Theorem 5 can be achieved with an adaptive choice
of the parameter ρt, instead of the predefined value listed in Theorem 5. Theorem 11 demonstrates
that it suffices to do a log-scale search over ρt, i.e., check values ρt = 1, 12 ,

1
4 ,

1
8 , . . . , and take

the one which leads to the largest decrease in function value. Note that according to the theorem
and since K is compact, if the target accuracy we are looking to obtain is some ε > 0, we need not
consider values of ρt below someO(ε). Thus, the overall number of search steps will be logarithmic
in 1/ε, and the overall increase in complexity due to the use of such adaptive step-sizes will be an
O(log 1/ε) factor.
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Theorem 11 Suppose that all of the assumptions of Theorem 5 hold and denote h1 = f(x1)− f∗
and M∗ = max{βα(4 + 8dµ2D2

F∗),
1
2}. Consider running Algorithm 2 and for all t ≥ 1 define

ρ∗t = min{
√
dµ·dist(xt,X ∗),1}

2M∗ . Suppose that for all t ≥ 1 we use some value ρt ∈ [
ρ∗t
2 , ρ

∗
t ]. Then, with

these parameters one has,

∀t ≥ 1 : f(xt)− f∗ ≤ h1 exp
(
− 3(t− 1)

16M∗

)
.

Proof Fix some iteration t ≥ 1. Using the same notation and arguments as in the proof of The-
orem 5, by Lemma 5.5 from Garber and Hazan (2016) we can take R = min{

√
dµ‖xt − x∗t ‖, 1}

(note that ‖xt − x∗t ‖ = dist(xt,X ∗) as x∗t denotes the closest optimal solution to xt). Thus, taking
η = ρt/R and noting that by the definition of ρt in the theorem, η ∈ [ 1

4M∗ ,
1

2M∗ ], by Lemma 9 we
have that,

f(xt+1)− f∗ ≤ (1− η)(f(xt)− f∗) + η2β(2‖xt − x∗t ‖2 + 4R2D2
F∗)

≤
(a)

(1− η)(f(xt)− f∗) + η2β(
4

α
+

8dµ2D2
F∗

α
)(f(xt)− f∗)

=
(b)

(1− η +M∗η2)(f(xt)− f∗) ≤
(c)

(1− 3

16M∗
)(f(xt)− f∗),

where (a) follows from the quadratic growth of f(·) and the definition of R, (b) follows from the
definition of M∗, and (c) holds since η ∈ [ 1

4M∗ ,
1

2M∗ ].
Using the fact that 1− x ≤ e−x, we have that,

f(xt)− f∗ ≤ h1(1−
3

16M∗
)t−1 ≤ h1 exp

(
− 3(t− 1)

16M∗

)
.

C.3. Proof of Theorem 6

The proof goes along the same lines as the proof of Theorem 5, but this time, since we assume
δ-strict complementarity, we can use Lemma 2 from Garber (2020) instead of Lemma 5.5 from
Garber and Hazan (2016) in order to upper-bound the amount of probability mass we need to move
from the convex decomposition of the point xt in order to reach the closest optimal solution x∗,
yielding a dimension-independent linear convergence rate.

For clarity, before continuing to the proof of the theorem we first restate it.

Theorem 6 Suppose that in addition to the assumptions of Theorem 5, Assumption 1 also holds
with some parameter δ > 0, and let C ≥ f(x1)− f∗, M1 ≥ max{4βα + 8βD2

F∗ max{2κ, δ−1}, 12}
and M2 ≥ {4βα + 16βκD2

F∗ ,
1
2}, where κ = 2µ2 dimF∗

α .

Using Algorithm 2 with parameters ρt =
min{

√
2max{2κ,δ−1}C exp

(
− 1

4M1
(t−1)

)
,1}

2M1
for all t ≥ 1, one

has,

∀t ≥ 1 : f(xt)− f∗ ≤ C exp
(
− t− 1

4M1

)
. (5)
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Furthermore, in case that 2κ ≤ δ−1 and dimF∗ > 0 (i.e. κ > 0), denoting τ ≥ 4M1 log( C
δ2κ

) + 1

and for all t ≥ τ , using ρt =
min{2δκ exp(− t−τ

8M2
),1}

2M2
instead of the above value, one has,

∀t ≥ τ : f(xt)− f∗ ≤ δ2κ exp
(
− t− τ

4M2

)
. (6)

Proof We first prove the rate in (5) by induction on t. For t = 1 the bound holds by the definition
of the constant C.

Now, suppose the bound holds for some t ≥ 1. We will show that it holds for t + 1. Let
x∗t ∈ X ∗ be the closest optimal solution to xt =

∑k
i=1 λivi and denote ht = f(xt) − f∗. Then,

by Lemma 2 from Garber (2020), there exist ∆∗i ∈ [0, λi], i = 1, . . . , k, and z ∈ F∗, such that
x∗t =

∑k
i=1(λi −∆∗i )vi +

∑k
i=1 ∆∗i z and

∑k
i=1 ∆∗i ≤ min{1, δ−1ht +

√
κht}.

Since when δ−1ht >
√
κht we have that

∑k
i=1 ∆∗i ≤ min{1, 2δ−1ht} ≤ min{1, δ−1/2

√
2ht},

and otherwise we have that
∑k

i=1 ∆∗i ≤ min{1, 2
√
κht}, by taking the maximum of the two

we have that
∑k

i=1 ∆∗i ≤ min{1,max{
√

2κ, δ−1/2}
√

2ht}. Thus, taking η = 1
2M1

and R =

min{1,
√

2 max{2κ, δ−1}C exp(− t−1
4M1

)}, where M1 is as defined in the theorem, we have that

ρt = ηR and
∑k

i=1 ∆∗i ≤ R, and therefore we can use Lemma 9 which implies that,

ht+1 ≤ (1− η)ht + η2β(2‖xt − x∗t ‖2 + 4R2D2
F∗)

≤
(a)

(1− η)Ce
− 1

4M1
(t−1)

+ η2β(
4

α
Ce
− 1

4M1
(t−1)

+ 8 max{2κ, δ−1}D2
F∗Ce

− 1
4M1

(t−1)
)

≤
(b)

(1− η)Ce
− 1

4M1
(t−1)

+M1η
2Ce

− 1
4M1

(t−1)

=
(c)

(1− 1

4M1
)Ce

− 1
4M1

(t−1) ≤
(d)
e
− 1

4M1
t
,

where (a) holds by the induction assumption and the quadratic growth of f(·), (b) holds due to the
definition of M1, (c) holds since η = 1

2M1
, and (d) holds since 1− x ≤ e−x.

Now we turn to prove the rate in (6). The proof goes along the same lines as the proof of (5), but
now we have from (5) that for τ as defined in the theorem, it holds that hτ ≤ δ2κ, and since when
ht ≤ δ2κ we have that

∑k
i=1 ∆∗i ≤ min{1, δ−1ht +

√
κht} ≤ min{1, 2

√
κht}, we can replace

C with δ2κ and max{2κ, δ−1} with 2κ in the above arguments, and get the desired bound for all
t ≥ τ .

Appendix D. Results and proofs missing from Section 2.3

Our NEP Oracle-based Stochastic Frank-Wolfe variant is given in Algorithm 3
In Section D.1 we prove a theorem on the convergence rate of Algorithm 3. Then, in Section

D.2 we prove Theorem 7.
Throughout this section, for all t ≥ 1 we denote h̄t = E[f(xt)− f∗].
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Algorithm 3 Stochastic Frank-Wolfe with a Nearest Extreme Point Oracle
1: Input: a sequence of step-sizes {ηt} ⊂ [0, 1], a sequence of mini-batch sizes {mt} ⊂ N
2: x1 ← some arbitrary point in V
3: for t = 1 . . . do
4: Compute ∇̃t as the average of mt iid unbiased estimators of∇f(xt)
5: vt ← arg minv∈V v

>∇̃t + βηt
2 ‖xt − v‖2

6: xt+1 ← (1− ηt)xt + ηtvt
7: end for

D.1. Convergence rate of Algorithm 3

Theorem 12 Assume f(·),K satisfy the quadratic growth property with parameter α > 0. Then,
using Algorithm 3 with step-size ηt = 2

t+1 and mini-batch sizes that satisfy

mt ≥ max

{(
G(t+ 1)

βDK

)2

,min

{(
GDK(t+ 1)

βD∗2

)2

,

(
αG(t+ 1)2

8β2DK

)2
}}

,

one has,

∀t ≥ 2 : E[f(xt)− f∗] ≤
4βD∗2

t+ 1
+

32β2

α D2
K log(t)

t2
.

We first prove a lemma on the improvement (in expectation) on each iteration of Algorithm 3, and
then we prove the theorem.

Lemma 13 Fix some iteration t ≥ 1 of Algorithm 3 and let dt ≥ E[dist(xt,X ∗)2]. Then, using a
step-size ηt ∈ [0, 1] and mini-batch size mt ≥ ( 2GDK

βηtmin{D∗2+dt,DK2})
2 one has,

h̄t+1 ≤ (1− ηt)h̄t + βη2t (min{D∗2 + dt, DK
2}).

Proof Let x∗ be the closest optimal solution to xt. We will upper-bound ∇̃>t vt + βηt
2 ‖vt − xt‖2 in

two ways.
On one hand, consider an extreme point u∗ ∈ arg minv∈V∇̃>t v. By the optimality of vt we have
that,

∇̃>t vt +
βηt
2
‖vt − xt‖2 ≤ ∇̃>t u∗ +

βηt
2
‖u∗ − xt‖2 ≤ ∇̃>t x∗ +

βηtDK
2

2
.

On the other hand, since x∗ is a convex combination of extreme points from the set S∗, as in the
proof of Lemma 8, there must exist some w∗ ∈ S∗ such that,

∇̃>t w∗ + βηt(w
∗ − x∗)>(x∗ − xt) ≤ ∇̃>t x∗.
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Thus, denoting d̄t = dist(xt,X ∗), by the optimality of vt we have that,

∇̃>t vt +
βηt
2
‖vt − xt‖2 ≤ ∇̃>t w∗ +

βηt
2
‖w∗ − xt‖2 =

∇̃>t w∗ +
βηt
2
‖w∗ − x∗ + x∗ − xt‖2 =

∇̃>t w∗ +
βηt
2
‖w∗ − x∗‖2 + βηt(w

∗ − x∗)>(x∗ − xt) +
βηt
2
‖xt − x∗‖2 ≤

∇̃>t x∗ +
βηtD

∗2

2
+
βηtd̄

2
t

2
.

Thus, denoting M̄t = min{D∗2 + d̄2t , DK
2}, we have that,

∇̃>t vt +
βηt
2
‖vt − xt‖2 ≤ ∇̃>t x∗ +

βηtM̄t

2
. (15)

Now, from the β-smoothness of f(·) we have that,

f(xt+1)− f(xt) ≤ ∇f(xt)
>(xt+1 − xt) +

β

2
‖xt+1 − xt‖2

= ηt∇f(xt)
>(vt − xt) +

βη2t
2
‖vt − xt‖2

= ηt(∇f(xt)− ∇̃t)>(vt − xt) + ηt∇̃>t (vt − xt) +
βη2t
2
‖vt − xt‖2

≤
(a)
ηt(∇f(xt)− ∇̃t)>(vt − xt) + ηt∇̃>t (x∗ − xt) +

βη2t M̄t

2

= ηt∇f(xt)
>(x∗ − xt) + ηt(∇f(xt)− ∇̃t)>(vt − x∗) +

βη2t M̄t

2

≤
(b)
ηt(f(x∗)− f(xt)) + ηtDK‖∇̃t −∇f(xt)‖+

βη2t M̄t

2
,

where (a) follows from (15), and (b) follows from the convexity of f(·) and the Cauchy-Schwarz
inequality.

Now, using Jensen’s inequality we have that E[‖∇̃t −∇f(xt)‖] ≤
√
E[‖∇̃t −∇f(xt)‖2] ≤ G√

mt
,

which by our choice ofmt, is at most βηtmin{D∗2+dt,DK2}
2DK

. Thus, taking expectation and noting that
E[M̄t] = E[min{D∗2 + d̄2t , DK

2}] ≤ min{D∗2 + dt, DK
2}, we have that

h̄t+1 − h̄t ≤ −ηth̄t + βη2t (min{D∗2 + dt, DK
2}).

Finally, rearranging, we have that

h̄t+1 ≤ (1− ηt)h̄t + βη2t (min{D∗2 + dt, DK
2}).

Proof [Proof of Theorem 12] First note that for any t ≥ 1,

mt ≥
(
G(t+ 1)

βDK

)2

=

(
2GDK

βηt min{DK2, D∗2 +DK
2}

)2

.

25



GARBER WOLF

Thus, we can use Lemma 13 with the trivial bound DK2 ≥ E[dist(xt,X ∗)2] which, with our choice
of step size ηt, implies that,

∀t ≥ 1 : h̄t+1 ≤ (1− 2

t+ 1
)h̄t +

4βDK
2

(t+ 1)2
,

which by Lemma 10 (with M = 4βDK
2) gives us the bound,

∀t ≥ 2 : h̄t ≤
4βDK

2

t+ 1
. (16)

Now, for any t ≥ 1, let dt = 8βDK
2

α(t+1) . By the quadratic growth of f(·) and (16), we have that
E[dist(xt,X ∗)2] ≤ dt. Thus, since the mini-batch sizes satisfy for all t ≥ 1,

mt ≥ max

{(
G(t+ 1)

βDK

)2

,min

{(
GDK(t+ 1)

βD∗2

)2

,

(
αG(t+ 1)2

8β2DK

)2
}}

= max

{(
2GDK

βηtDK
2

)2

,min

{(
2GDK

βηtD∗
2

)2

,

(
2GDK
βηtdt

)2
}}

=

(
2GDK

βηt min{DK2,max{D∗2, dt}}

)2

≥
(

2GDK

βηt min{DK2, D∗2 + dt}

)2

,

we can use Lemma 13 with dt = 8βDK
2

α(t+1) , which, by our choice of step size ηt implies that,

∀t ≥ 1 : h̄t+1 ≤ (1− 2

t+ 1
)h̄t +

4β

(t+ 1)2
(
D∗2 +

8βDK
2

α(t+ 1)

)
.

Thus, by Lemma 10, for any t ≥ 2, we have that,

h̄t ≤
1

t2

t−1∑
k=1

4β
(
D∗2 +

8βDK
2

α(k + 1)

)
≤

1
t−1
∑t−1

k=1 4βD∗2

t+ 1
+

32β2DK
2

α
·
∑t

k=1
1
k − 1

t2

≤ 4βD∗2

t+ 1
+

32β2

α DK
2 log(t)

t2
,

concluding the proof.

D.2. Proof of Theorem 7

For clarity, we first restate the theorem and then prove it.

Theorem 7 Suppose f,K satisfy the quadratic growth property with some α > 0. Using Algo-
rithm 3 with step-size ηt = 2

t+1 and mini-batch sizes that satisfy

mt = max
{(G(t+ 1)

βDK

)2
,min

{(GDK(t+ 1)

βD∗2

)2
,
(αG(t+ 1)2

8β2DK

)2}}
,

for any 0 < ε ≤ 16β2DK
2

α , expected approximation error ε is achieved after Õ
(

max{βD
∗2

ε , βDK√
αε
}
)

calls to the NEP oracle and Õ
(
βG2 max

{
DK

2D∗2

ε3
, DK
α3/2ε3/2

, DK
3

α1/2ε5/2

})
stochastic gradient evalu-

ations, where Õ suppresses poly-logarithmic terms in β2DK
2

αε .
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Proof Let 0 < ε ≤ 16β2DK
2

α and note that for t ≥ 8βD∗2ε−1, it holds that 4βD∗2

t+1 ≤
ε
2 .

Now, let M > 0 such that
√

2M
ε log(2Mε ) ≥ 2, and observe that for all t ≥

√
2M
ε log(2Mε ) it holds

that,

M log(t)

t2
≤
(a)

M log(
√

2M
ε log(2Mε ))

2M
ε log(2Mε )

≤
(b)

M log(2Mε )
2M
ε log(2Mε )

=
ε

2
,

where (a) holds since M log(t)
t2

is monotonically decreasing in t for t ≥ 2, and (b) holds since
log(2Mε ) ≤ 2M

ε .

Thus, takingM = 32β2DK
2

α , note that since 0 < ε ≤ 16β2DK
2

α = M
2 , we have that,

√
2M
ε log(2Mε ) ≥√

4 log(4) > 2, and thus, we have that,

∀t ≥

√
64β2D2

K
αε

log

(
64β2D2

K
αε

)
:

32β2

α DK
2 log(t)

t2
≤ ε

2
.

Thus, denoting T =
⌈

max

{
8βD∗2

ε ,

√
64β2D2

K
αε log

(
64β2D2

K
αε

)}⌉
, using Theorem 12 we have that

for all t ≥ T ,

h̄t ≤
4βD∗2

t+ 1
+

32β2

α DK
2 log(t)

t2
≤ ε

2
+
ε

2
= ε.

Thus, we indeed reach ε expected approximation error in O
(

max{βD
∗2

ε ,
βDK log1/2(

β2DK
2

αε
)√

αε
}
)

calls
to the linear oracle.

Now, let ngrad be the number of stochastic gradient used until iteration T . Note that we have
that,

ngrad =
T−1∑
t=1

mt ≤ TmT−1 = T max

{(
GT

βDK

)2

,min

{(
GDKT

βD∗2

)2

,

(
αGT 2

8β2DK

)2}}
= max

{
G2T 3

β2DK
2 ,min

{
G2DK

2T 3

β2D∗4
,
α2G2T 5

64β4DK
2

}}
. (17)

Thus, when 8βD∗2

ε ≥
√

64β2D2
K

αε log(
64β2D2

K
αε ) we have that, T =

⌈8βD∗2
ε

⌉
= O(βD

∗2

ε ), and thus
using (17), we have that,

ngrad ≤ max

{
G2T 3

β2DK
2 ,
G2DK

2T 3

β2D∗4

}
=
(a)

G2DK
2T 3

β2D∗4
= O

(
G2DK

2

β2D∗4
· β

3D∗6

ε3

)
= O

(
βG2DK

2D∗2

ε3

)
,

where (a) holds since D∗ ≤ DK.
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Otherwise, we have that, T =

⌈√
64β2D2

K
αε log(

64β2D2
K

αε )

⌉
= O

(βDK log1/2(
β2DK

2

αε
)√

αε

)
, and thus,

using (17) we have that,

ngrad ≤ max

{
G2T 3

β2DK
2 ,

α2G2T 5

64β4DK
2

}
= O

(
max

{
G2

β2DK
2 ·

β3DK
3 log3/2(β

2DK
2

αε )

α3/2ε3/2
,
α2G2

β4DK
2 ·

β5DK
5 log5/2(β

2DK
2

αε )

α5/2ε5/2

})

= O

(
max

{
βG2DK log3/2(β

2DK
2

αε )

α3/2ε3/2
,
βG2DK

3 log5/2(β
2DK

2

αε )

α1/2ε5/2

})
.

Thus, we indeed achieve ε expected approximation error after

O

(
βG2 max

{
DK

2D∗2

ε3
,
DK log3/2(β

2DK
2

αε )

α3/2ε3/2
,
DK

3 log5/2(β
2DK

2

αε )

α1/2ε5/2

})

stochastic gradient evaluations.

Appendix E. Additional numerical results

E.1. Hypercube-constrained least-squares

Figure 3: Comparison between the standard Frank-Wolfe method (FW) and our NEP FW variant on
the hypercube-constrained least-squares problem. These are the same results as in Figure
1 but focusing only on these two variants.

E.2. Video co-localization

In Figure 6 we present the performance of the algorithms measured by the duality gap (as was done
in Lacoste-Julien and Jaggi (2015) and Garber and Meshi (2016)). It can be seen that although

28



FRANK-WOLFE WITH A NEAREST EXTREME POINT ORACLE

Figure 4: Comparison between our NEP FC variant with 50 iterations of FISTA per iteration and
the FC variant with various choices for the number of FISTA iterations (the number of
FISTA iterations is shown besides the algorithm’s name) on the hypercube-constrained
least-squares problem. The results are the average of 50 i.i.d. runs (where in each run we
sample fresh A,x∗).

Figure 5: Comparison of Frank-Wolfe variants on the video co-localization problem. The times
shown are the averages of 200 runs. These are the same results as in Figure 2, but focusing
on FC vs. NEP FC (left panel) and FW vs. NEP FW (right panel).

NEP FC still outperforms all other algorithms, it only gives a slight improvement over FC and that
NEP FW only slightly outperforms FW, and is out preformed by AFW and PFW both with respect
to time and number of iterations. Here we remind the reader that while we proved the theoretical
superiority of our NEP oracle-based algorithms w.r.t. the (primal) approximation error, we did not
give any improved bounds w.r.t. the duality gap, and we leave it for future work to settle the question
whether or not the use of a NEP oracle could lead to provably faster dual convergence.
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Figure 6: Comparison of Frank-Wolfe variants on the video co-localization problem in terms of the
duality gap. The times shown are the averages of 200 runs.
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