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Abstract
This paper explores a theory of generalization for learning problems on product distributions, com-
plementing the existing learning theories in the sense that it does not rely on any complexity mea-
sures of the hypothesis classes. The main contributions are two general sample complexity bounds:
(1) Õ

(
nk
ε2

)
samples are sufficient and necessary for learning an ε-optimal hypothesis in any problem

on an n-dimensional product distribution, whose marginals have finite supports of sizes at most k;
(2) Õ

(
n
ε2

)
samples are sufficient and necessary for any problem on n-dimensional product distri-

butions if it satisfies a notion of strong monotonicity from the algorithmic game theory literature.
As applications of these theories, we match the optimal sample complexity for single-parameter
revenue maximization (Guo et al., STOC 2019), improve the state-of-the-art for multi-parameter
revenue maximization (Gonczarowski and Weinberg, FOCS 2018) and prophet inequality (Correa
et al., EC 2019; Rubinstein et al., ITCS 2020), and provide the first and tight sample complexity
bound for Pandora’s problem.
Keywords: Generalization, Sample Complexity, Auctions, Prophet Inequalities, Pandora’s Prob-
lem

1. Introduction

The learning process is a process of choosing an appropriate function from a given set
of functions. — Vapnik (1998)

Generalization is widely recognized as one of the fundamental pillars of learning theory. A general
learning problem asks whether we can select a function, often referred to as a hypothesis, from a
hypothesis class to maximize or minimize the expectation w.r.t. an underlying distribution over the
data domain, based on samples from the distribution. While it may be easy to select a hypothesis that
maximizes or minimizes the average over the samples, how can we ensure that it generalizes and
gets a similar performance on the underlying distribution? More quantitatively, we may ask about
its sample complexity: how many samples are sufficient and necessary for choosing a hypothesis
that is optimal on the true distribution up to an ε error?

A widely studied example is the classification problem in supervised learning. In this problem,
each data point is a feature-label pair (x, y) ∈ X × Y , where X is the feature domain, e.g., Rn,
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and Y is the label domain, e.g., {0, 1}. Each hypothesis corresponds to a classifier, i.e., a feature-
to-label mapping f : X 7→ Y ; its value on a data point (x, y) is L

(
f(x), y

)
for some loss function

L, e.g.,
∣∣f(x)− y

∣∣. The goal is to learn a classifier from samples to minimize the expected loss on
the underlying distribution.

Meanwhile, the general learning problem also captures a wide range of optimization problems
in the Bayesian model. The problem of learning revenue-maximizing auctions from data is a recent
example, which has received a lot of attention in algorithmic game theory and more generally in
theoretical computer science. In this example, each data point comprises the valuations of the
bidders; each hypothesis corresponds to an auction and its value is defined to be the revenue of the
auction on the given valuations. We aim to learn an auction from sample valuations to maximize
the expected revenue on the underlying value distributions.

1.1. Generalization from Complexity Measures of the Hypothesis Class

Most sample complexity bounds in learning theory rely on detailed structures of the hypothesis
class H, and they hold for arbitrary distributions over the data domain. In particular, they build on
various complexity measures of the hypothesis class, including the covering number Anthony and
Bartlett (2009), Vapnik-Chervonenkis (VC) dimension Vapnik and Chervonenkis (2015), Natarajan
dimension Natarajan (1989), pseudo-dimension Pollard (1990), fat-shattering dimension Bartlett
et al. (1996), Rademacher complexity Bartlett and Mendelson (2002); Koltchinskii and Panchenko
(2000), local Rademacher complexity Bartlett et al. (2002), etc. Informally, each complexity mea-
sure provides a parameter d which represents the “degrees-of-freedom” of the hypothesis class H,
and the corresponding sample complexity upper bound has the form Õ

(
d
ε2

)
.

For example, the VC dimension characterizes the sample complexity of binary classification
problems, and the Natarajan dimesnion captures that of multiclass classification problems (see, e.g.,
Shalev-Shwartz and Ben-David (2014)), if the underlying distribution could be arbitrary.

Further, the example of learning revenue-optimal auctions from data, in particular, the spe-
cial case of selling a single item to n bidders, has been investigated using the covering number
(e.g., Devanur et al. (2016), Gonczarowski and Nisan (2017)), pseudo-dimension (e.g., Morgenstern
and Roughgarden (2015)), and Rademacher complexity (e.g., Syrgkanis (2017)). The “degrees-of-
freedom” bounds in these works are all Õ

(
n
ε

)
and thus, lead to the same Õ

(
n
ε3

)
sample complexity

upper bound.1 The bound once again holds for arbitrary distributions of the valuations, even corre-
lated ones, although the problem of revenue-optimal auction design often considers product value
distributions.

1.2. Our Contributions: A Theory of Generalization on Product Distributions

While the above theories suggest that simpler hypotheses generalize better, it has been increasingly
important to consider complex ones. On the one hand, deep neural networks generalize surpris-
ingly well on classification problems on real-world data despite their complexity (e.g., Zhang et al.
(2017)). On the other hand, the revenue-optimal auction for selling even two heterogeneous items
could have an infinite menu complexity (e.g., Daskalakis et al. (2013)). To this end, this paper asks:

1. Nonetheless, these works are different in that they either prove sample complexity bounds for different families of
distributions beyond the [0, 1]-bounded ones, and/or provide slightly different bounds in the logarithmic factors.
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Is there a complementary theory of generalization building on the simplicity of data
instead of the hypothesis class?

In particular, it is standard to assume that the data is drawn from a product distribution in op-
timization problems in the Bayesian model, including the aforementioned revenue-maximization
problem, prophet inequality and Pandora’s problem. Can we get sample complexity bounds from
the independence of data dimensions, and only minimum knowledge about the hypotheses?

Implicit Attempts in Previous Works. We first review several recent sample complexity bounds
for specific optimization problems that implicitly explore the power of independent data dimensions.
Cole and Roughgarden (2014) and Roughgarden and Schrijvers (2016) used independence in the
single-parameter revenue maximization problems to analyze coordinate-wise the convergence of
the empirical distribution to the true distribution. Correa et al. (2019) employed a similar approach
on prophet inequality. Their analyses of convergence, however, are problem dependent.

Cai and Daskalakis (2017) proposed a hybrid argument that used the independence of data
dimensions in multi-item auctions to derive sample complexity bounds from complexity measures
of the hypothesis class w.r.t. each coordinate of the data domain. Their hybrid approach benefits
from independence, yet still relies on complexity measures of the hypothesis class.

Gonczarowski and Weinberg (2018) and Guo et al. (2019) are the closest to this paper. Gonczarowski
and Weinberg (2018) exploited independence in multi-parameter revenue maximization to construct
an improved covering number that holds specifically on product distributions. Although they did
not explicitly ask the above conceptual question, their techniques implicitly showed generalization
of complex hypotheses on product distributions; the resulting bound is inferior in the logarithmic
factor compared to Theorem 5 in this paper. Guo et al. (2019) used independent data dimensions
and a notion of monotonicity to derive optimal sample complexity bounds for single-parameter rev-
enue maximization problems in the matroid setting. It is the closest to this paper. Part of our results
can be viewed as generalizing theirs to all problems with the same notion of monotonicity.

Our Results. The contributions of the paper are two general sample complexity bounds from the
independence of data dimensions, unrelated to any complexity measures of the hypothesis class.
Both results use the same algorithm which we call the product empirical reward maximizer/risk
minimize (PERM). It selects the best hypothesis w.r.t. a product empirical distribution such that
each coordinate is a uniform distribution over the corresponding coordinate of the samples. This is
different from the usual notion of empirical distribution, i.e., the uniform distribution over sample
vectors, which is not a product distribution in general. The first result considers finite data domains.

Informal Theorem Suppose the data has n independent dimensions, each of which takes up to
k possible values. Then, O

(
nk
ε2

log 1
δ

)
samples are sufficient for a uniform convergence of any

hypothesis class up to ε-optimality with probability at least 1 − δ. In other words, simultaneously
and uniformly for every hypothesis, its expectation under E is ε-close to its expectation under D.
Further, Ω

(
nk
ε2

)
samples are necessary.

The proof of the upper bound is simple in hindsight. We bound the total variation distance
between the product empirical distribution and the true distribution, using the connection between
the total variation distance and the Hellinger distance, and a vector concentration inequality.

Despite its simplicity, the above theorem gives strong sample complexity upper bounds for the
aforementioned optimization problems. In single-parameter revenue maximization, e.g., single-item
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This paper
Previous results

Finite domain (§3) Strong monotonicity (§4)
General bound O

(
nk
ε2

log 1
δ

)
Õ
(
n
ε2

)
-

Single-parameter O
(
n
ε3

log 1
δ

)
Õ
(
n
ε2

)
Õ
(
n
ε2

)
Multi-parameter O

(
n
ε4

log 1
δ

)
- O

(
n
ε4

log n
εδ

)
Prophet inequality O

(
n
ε3

log 1
δ

)
Õ
(
n
ε2

)
Õ
(
n2

ε2

)
, Õ
(
n
ε6

)
Pandora’s problem O

(
n3

ε3
log 1

δ

)
Õ
(
n
ε2

)
-

Table 1: Summary of sample complexity upper bounds, in comparisons with the state-of-the-art.
The results in bold are the best upper bounds in different settings. We use single-item
auctions, and n-item auctions with a unit-demand bidder as the running examples of
single- and multi-parameter revenue maximization. The bounds may vary in other set-
tings; see Sec. 3 and 4. The previous results for the three settings are from Guo et al.
(2019), Gonczarowski and Weinberg (2018), and Correa et al. (2019), Rubinstein et al.
(2020) respectively.

auctions, the value can be discretized to multiples of ε Devanur et al. (2016); replacing k = 1
ε gives

an O
(
n
ε3

log 1
δ

)
upper bound. Hence, using only that the value domain could be discretized, the

theorem matches the sample complexity upper bounds mentioned in Section 1.1, which relied on
detailed knowledge of single-parameter auctions such as its various complexity measures. In fact,
the above theorem improves in the log factor.

In multi-parameter revenue maximization, e.g., with one unit-demand bidder and n items, the
value domain can be discretized to multiples of ε2 Balcan et al. (2008); hence, letting k = 1

ε2
gives

an O
(
n
ε4

log 1
δ

)
upper bound, improving the state-of-the-art by Gonczarowski and Weinberg (2018)

in the log factor.2

Further, we show that the type domain in prophet inequality can be discretized to multiples of
ε, leading to an O

(
n
ε3

log 1
δ

)
upper bound. It improves the previous bound by Correa et al. (2019) in

the dependence in n, and the bound by Rubinstein et al. (2020) in the dependence in ε. In prophet
inequality with i.i.d. rewards in particular, it implies that Õ

(
n
)

samples are sufficient to learn a
0.745-competitive algorithm. Concurrent to Rubinstein et al. (2020), this answers an open question
by Correa et al. (2019).3

Finally, we show that the type domain of Pandora’s problem can also be discretized to multiples
of ε, giving the first polynomial sample complexity bound for the problem.

Our second result revisits the notion of strong monotonicity, a key ingredient of the optimal
sample complexity bounds for single-parameter revenue maximization by Guo et al. (2019). Strong
monotonicity means that the expected value of the optimal hypothesis w.r.t. a distribution D̃ does
not decrease when it is applied to another distribution D that stochastically dominates D̃ . We
generalize the analysis by Guo et al. (2019) to any strongly monotone problem.

2. Gonczarowski and Weinberg (2018) only claim polynomial sample complexity; the stated bound is derived using
their techniques to the best of our efforts.

3. The best algorithm, with full knowledge of the distribution, is strictly better than 0.745-competitive. Hence, we may
consider ε a constant in this result. Further, unlike our model, Correa et al. (2019) consider unbounded distributions
and multiplicative approximation; nonetheless, Appendix C.4 shows how to get the stated bounds in their model.
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Informal Theorem Suppose the data has n independent dimensions. Then, Θ̃
(
n
ε2

)
samples are

sufficient and necessary for learning an arbitrary strongly monotone hypothesis class.

Further, we show that prophet inequality and Pandora’s problem are both strongly monotone.
Using this theorem, we get an Õ

(
n
ε2

)
upper bound for single-parameter revenue maximization,

prophet inequality, and Pandora’s problem.4 The linear dependence on the data dimension n is tight
for all three problems. We remark that while the bound for single-parameter revenue maximization
is the same as that by Guo et al. (2019), ours directly uses the PERM, which corresponds to the
empirical Myerson auction, while that by Guo et al. (2019) needs an appropriate regularization to
the product empirical distributions and uses the regularized empirical Myerson auction.

2. Preliminaries

2.1. Model

A general learning problem (e.g., Chapter 1.4 of Vapnik (2013)) is defined by a hypothesis class
denoted as H. We will abuse notation and refer to the problem defined by a hypothesis class H
as problem H. Each hypothesis h ∈ H is a mapping from T = T1 × T2 × · · · × Tn to [0, 1],
where Ti ⊆ R is the domain of the i-th coordinate of the data type. We will refer to n as the data
dimension of the problem, to make a distinction with various learning dimensions in the literature
which measure the complexity of the hypothesis class. For a concrete running example, readers
may think of T1 = T2 = · · · = Tn = [0, 1]. For any data type t ∈ T, and any hypothesis h ∈ H,
h(t) is the reward obtained by hypothesis h on a data point of type t.

Given a distribution D over T, we seek to pick a hypothesis h ∈ H to maximize the expected
reward: h

(
D
) def

= Et∼D

[
h
(
t
)]
.

Further, let OPTH
(
D
)

denote the optimal expected reward. We will omit the subscript H for

brevity when the hypothesis class is clear from the context. OPTH
(
D
) def

= suph∈H h
(
D
)
.

Throughout this paper, we will assume that D = D1×D2× · · · ×Dn is a product distribution,
as it is a standard assumption in all examples considered in the paper. See Section 2.2 for details.

A learning algorithm for a problem H takes N i.i.d. samples from the underlying distribution
D as input and returns a hypothesis h ∈ H. Let Ei denote the uniform distribution over the i-th
coordinate of the samples. We call E = E1 × E2 × · · · × En the product empirical distribution,
and its optimal hypothesis hE the product empirical reward maximizer (PERM).

For any 0 ≤ ε ≤ 1, a hypothesis h is an ε-additive approximation if: h
(
D
)
≥ OPT

(
D
)
− ε .

The sample complexity of a problem H is the minimum number of samples N for which there
is a learning algorithm so that, for any distribution D, it takes N i.i.d. samples and returns an ε-
additive approximation with probability at least 1− δ. The sample complexity bounds in this paper
depend on the data dimension n, the approximation parameter ε, and the confidence parameter δ .
In our first set of results, they further depend on the sizes of the data type domain Ti’s. Importantly,
they are independent of any complexity measure of the hypothesis classH. We remark that when all
hypotheses are [0, H]-bounded, our sample complexity bounds imply ε·H-additive approximations.

4. Concurrently and independently, Fu and Lin (2020) also proved an Õ
(
n
ε2

)
upper bound for Pandora’s problem.
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2.2. Examples

Next, we define several example problems for which the theory developed in this paper improves
or matches the state-of-the-art sample complexity bounds. We define each problem only with the
minimum detail necessary for verifying that it is a special case of the above model. In particular, we
intentionally do not characterize the optimal hypothesis to stress the main feature of our theory: it
requires almost no knowledge of the hypothesis class; instead, it only needs that (1) D is a product
distribution, and (2) some generic structural property, e.g., the data type domain can be discretized,
or the problem satisfies strong monotonicity, which will be discussed in more details in Section 4.

Single-parameter Revenue Maximization. For simplicity of exposition, we use single-item auc-
tions with n bidders as the running example. Each bidder i has a type ti ∈ [0, 1] that represents its
value for the item, and is drawn independently from Di. An auction A maps any type profile t to
an allocation x ∈ [0, 1]n, ‖x‖1 ≤ 1, and a payment vector p ∈ [0, 1]n. For any bidder i, xi is the
probability that the bidder gets the item, and pi is its payment. Its utility equals xiti − pi.

A bidder’s type is private information known only to itself; therefore, the auctioneer must ask the
bidders to report the values. Hence, the literature focuses on dominant-strategy incentive compatible
(DSIC) auctions, which ensure that for any bidder, reporting the value truthfully always maximizes
its utility. The goal is to pick a DSIC auction to maximize the expected revenue. Readers are
referred to Myerson (1981) for a characterization of the revenue optimal auction.

To place it in our framework, define the hypothesis classH by having a hypothesis hA for every
DSIC auction A, such that hA(t) equals the revenue of auction A on a type profile t.

Readers who are familiar with auction theory may verify that the techniques in Section 3 apply
to arbitrary single-parameter problems, and those in Section 4 apply to the matroid setting.5

Multi-parameter Revenue Maximization. For simplicity of exposition, we use single-bidder
auctions with n items as the running example. Section 3 will discuss the extension to multi-bidder
multi-item auctions. The bidder has a type t ∈ [0, 1]n such that ti is its value for item i, and is
drawn independently from Di. There are various settings with different definitions of the bidder’s
value for subsets of items. The most-studied ones are the unit-demand bidder, whose value for a
subset of items is the maximum value for a single item in the subset, and the additive bidder, whose
value is the sum of item values it gets. An auction A maps any type t to a subset of items to be
allocated to the bidder and its payment. The bidder’s utility is equal to its value for the allocated
subset minus the payment. The goal is to pick a DSIC auction to maximize the expected revenue.
Readers are referred to Cai et al. (2012) for an LP-based characterization of the optimal auction.

Similar to the single-parameter setting, define the hypothesis classH by having a hypothesis hA
for every DSIC auction A, such that hA(t) equals the revenue of auction A on type t.

Prophet Inequality. Consider n rewards which arrive one at a time; each reward ti ∈ [0, 1] is
drawn independently from Di. On observing each reward, the algorithm must immediately decide
whether to take it or not; it can take at most one reward. The goal is to maximize the expected
reward. Readers are referred to Samuel-Cahn (1984) for an algorithm that gets at least a half of the
expected max reward, and Correa et al. (2017) for an improved algorithm in the case of i.i.d. rewards
that gets a 0.745 fraction of the expected max reward. Some readers may know it as the optimal
stopping problem, while it is often known as prophet inequality in theoretical computer science.

5. This part of our results rely on a notion called strong revenue monotonicity, which we will discuss in more details in
Section 4. It is only known to hold in the matroid setting. Whether it further generalizes is an open problem.
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To put it in our framework, define the hypothesis class H by having a hypothesis hA for every
algorithm A, such that hA(t) equals what the algorithm gets when the reward sequence is t.

Pandora’s Problem. Consider n boxes; each box i has a reward ti ∈ [0, 1] drawn from Di and
a fixed cost ci ∈ [0, 1] for opening it. In each round, the algorithm decides whether to take the
best observed reward, or to open a new box. The goal is to maximize the reward it gets minus the
total cost. To interpret it in our framework, define the hypothesis class H by having a hypothesis
hA for every algorithm A. If we let hA(t) equals what the algorithm gets minus the cost when the
reward sequence is t, its range would be [−n, 1] instead of [0, 1]. In the main text, we use a simple
normalization, which let hA be the above value plus n and scaled by 1

n+1 . Appendix D.4 presents a
more specialized method that gives the tight sample complexity bound.

2.3. Metrics for Probability Distributions

Consider two distributions P,Q over a sample domain T . For concreteness, think of T as a cube in
the Euclidean space, e.g., [0, 1] or [0, 1]n.

Total Variation Distance. The total variation distance is a half of the L1 distance: δ
(
P,Q

)
=

1
2‖P −Q‖1.

The following useful fact about total variation distance follows by its definition.

Lemma 1 For any distributions P,Q over a sample domain T , and any function h : T 7→ [0, 1]:∣∣h(P )− h(Q)∣∣ ≤ δ(P,Q) .
Recall that we are interested in multi-dimensional product distributions. It is hard to directly

measure the total variation distance among such distributions. The standard method is to instead
consider either the Kullback-Leibler divergence or the Hellinger distance; they are both additive in
that we can account for the distance in each coordinate separately, and both can be related to the
total variation distance. This paper uses the latter because it has better properties.

Hellinger Distance. The Hellinger distance between P and Q, denoted as H
(
P,Q

)
, is given by:

H2
(
P,Q

)
= 1

2

∫
T

(√
dP −

√
dQ
)2
.

More formally, for any measure λ over T so that both P andQ are absolutely continuous w.r.t. λ,

let dPdλ and dQ
dλ be the Radon-Nikodym derivatives. We have: H2

(
P,Q

)
= 1

2

∫
T

(√
dP
dλ −

√
dQ
dλ

)2

dλ .

For example, if P and Q are continuous over [0, 1] with density functions p and q, or if P and
Q are distributions over a discrete set T with probability mass functions p and q, we have:

H2
(
P,Q

)
=

1

2

∫ 1

0

(√
p(t)−

√
q(t)

)2
dt or H2

(
P,Q

)
=

1

2

∑
t∈T

(√
p(t)−

√
q(t)

)2
.

The next two lemmas relate the Hellinger distance with the total variation distance, and formal-
ize its additivity. Readers are referred to Gibbs and Su (2002) for details of these properties and a
comprehensive discussion on different metrics for probability distributions.

Lemma 2 SupposeP andQ are distributions over a sample domain T . Then, we have: H2
(
P,Q

)
≤

δ
(
P,Q

)
≤
√

2H
(
P,Q

)
.

Lemma 3 Suppose P and Q are product distributions over T = T1 × T2 × · · · × Tn. Then,
1−H2

(
P,Q

)
=
∏n
i=1

(
1−H2

(
Pi, Qi

))
.

7
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2.4. Vector Concentration Inequality

We will use the following Bernstein-style concentration inequality that bounds the `2-norm of the
sum of independent random vectors.

Lemma 4 (Equation 6.12 of Ledoux and Talagrand (1991)) Let X1,X2, . . . ,XN beN i.i.d. ran-
dom vectors in Rd such that for all i ∈ [N ], E

[
‖Xi‖22

]
≤ σ2, and ‖Xi‖2 ≤ M for some constant

M > 0. Then, for any positive ∆:

Pr
[ ∣∣∣∥∥∑N

i=1 Xi

∥∥
2
− E

[∥∥∑N
i=1 Xi

∥∥
2

]∣∣∣ > ∆
]
≤ 2 exp

(
− ∆2

2Nσ2

(
2− exp(2M∆

Nσ2 )
))

.

3. Problems with Finite (Discretized) Domain

3.1. General Sample Complexity Bounds

This section offers a theory of generalization for arbitrary hypotheses with finite domain.

Theorem 5 For any product distribution D over T such that |Ti| ≤ k for all 1 ≤ i ≤ n, suppose
for some sufficiently large constant C > 0, the number of samples is at least: C · nk

ε2
log 1

δ . Then,
with probability at least 1− δ, for any h : T→ [0, 1], we have

∣∣h(D)− h(E)
∣∣ ≤ ε . In particular,

the PERM is an ε-additive approximation.

The proof is simple in hindsight. The key is bounding the convergence of the product empirical
distribution to the true distribution in terms of the Hellinger distance, as in the next lemma. We
remark two natural attempts to prove Theorem 5 and Lemma 3 which would lead inferior bounds.
First, one may consider a hybrid argument that switches Di to Ei one coordinate at a time and
bounds the resulting generalization error; see, e.g., Cai and Daskalakis (2017) for applications of
this strategy on related but different results. It would lead to an additional factor n and a worse
log factor which depends on n. Second, one may apply standard concentration inequalities and the
union bound to cap the deviation for each data type in each coordinate, and calculate the resulting
Hellinger distance. See the first version of this paper for this strategy. It would lead to a worse log
factor, which depends on both k and n.

Lemma 6 When the number of samples isN , with probability at least 1−δ, we have: H2(D,E) =
O
(
nk
N log 1

δ

)
.

We proceed with the proof of Theorem 5 assuming the correctness of the lemma, whose proof
is deferred to Appendix A.1.
Proof of Theorem 5: By Lemma 6 and the stated number of samples, with probability at least
1 − δ, H2(D,E) ≤ ε2

2 . Further by Lemma 2, we have δ(D,E) ≤
√

2 ·H(D,E) ≤ ε . Then, the
theorem follows by Lemma 1.

We complement Theorem 5 with a matching lower bound up to a logarithmic factor. The proof
is deferred to Appendix A.2.

Theorem 7 There exists a sufficiently small constant c > 0, such that for all ε ∈ [0, 1], there exists
a problem H on a finite domain T = T1 × · · · × Tn with |Ti| = k for all 1 ≤ i ≤ n, such that no
algorithm gives an expected ε-additive approximation with probability larger than 2

3 if the number
of input samples of the algorithm is less than: c · nk

ε2
.

8
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3.2. Applications

Although some problems are defined on continuous domains, most can be discretized, including all
examples defined in Section 2.2. Observe that by rounding each sample to the closest discretized
value, we effectively sample from the discretized distribution. Next we discuss the applications of
Theorem 5 on the examples; the discretization arguments are either from previous works, or deferred
to the appendix because they do not provide much insight. While some results will be subsumed by
those in the next section, they are already comparable with the state-of-the-art in meaningful ways.
We restress that our bounds are obtained knowing effectively nothing about the problems other
than that the domains can be discretized, while previous works generally rely on detailed problem
structures. Since it only rely on an appropriate discretization of the date domain, we believe the
same approach can be applied to other problems not covered in this paper.

Single-parameter Revenue Maximization. Devanur et al. (2016) showed that we may w.l.o.g.
round values down to multiples of ε in single-parameter revenue maximization if the target is an
O(ε)-additive approximation. Hence, with k = 1

ε , Theorem 5 matches the previous results by
Morgenstern and Roughgarden (2015), Devanur et al. (2016), and Syrgkanis (2017) discussed in
Section 1.1, i.e., the best bounds before the recent work of Guo et al. (2019). In fact, our bound is
better in the logarithmic factors.

Theorem 8 In a single-item auction with n bidders whose values are bounded in [0, 1], the sample
complexity is at most O

(
n
ε3

log 1
δ

)
.

Multi-parameter Revenue Maximization. We consider the case for selling n-items to a unit-
demand (resp., additive) bidder. It is known that rounding the item values down to multiples of ε2

(resp., ε2/n) for a unit-demand (resp. additive) bidder is w.l.o.g. due to a reduction from approx-
imate DSIC auctions to DSIC auctions, which states any ε2-DSIC mechanism can be transformed
into a DSIC mechanism with at most ε loss in revenue (see, e.g., Balcan et al. (2008), attributed to
Nisan). Therefore, Theorem 5 gives the following bounds that improve the best known results by
Gonczarowski and Weinberg (2018) in the log factor.

Theorem 9 In a multi-item auction with n items and a unit-demand bidder whose values are
bounded in [0, 1], the sample complexity is at most O

(
n
ε4

log 1
δ

)
.

Theorem 10 In a multi-item auction with n items and an additive bidder whose values are bounded
in [0, 1], the sample complexity is at most O

(
n2

ε4
log 1

δ

)
.6

Multiple Bidders. For n-bidder m-item auctions, Theorem 5 gives an Õ
(
mnk
ε2

)
bound if the buy-

ers are unit-demand and their value domains are finite with size k, improving those by Gonczarowski
and Weinberg (2018) in the log factor. For continuous value domains, however, there is no existing
transformation from approximate DSIC to DSIC auctions in this more general setting; as a result, the
aforementioned discretization no longer works. Either we settle with approximate DSIC auctions,
or need to know more about the relation between approximate and exact DSIC auctions, which is
a fundamental question on its own in auction theory. Readers are referred to Gonczarowski and
Weinberg (2018) for an extensive discussion on this topic.

6. In the additive case, the optimal revenue is bounded by [0, n]. The stated bound is an ε-approximation w.r.t. the nor-
malized revenue divided by a factor 1

n
. The bound would be Õ

(
n4

ε4

)
for an ε-approximation without normalization.
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Prophet Inequality. We show that the rewards in prophet inequality can be discretized w.l.o.g.
to multiples of ε. Hence, letting k = 1

ε , we get a sample complexity bound that improves the
recent work of Correa et al. (2019) in the dependence in n, and the concurrent result by Rubinstein
et al. (2020) in the dependence in ε, with bounded rewards in [0, 1] and additive approximation.
The discretization argument and an extension to the original setting of Correa et al. (2019) with
unbounded rewards and multiplicative approximation is deferred to Appendix C.

Theorem 11 In the prophet inequality setting with n items whose rewards are bounded in [0, 1],
the sample complexity is at most O

(
n
ε3

log 1
δ

)
.

Pandora’s Problem. Recall that the main text uses a simple normalization by a factor 1
n+1 to

ensure that the hypotheses in Pandora’s problem has range [0, 1]. Hence, to get an ε-approximation
w.r.t. Pandora’s problem, we need a ε

n+1 -approximately optimal hypothesis. Further, we show that
the rewards can be w.l.o.g. discretized to multiples of ε. Putting together, we get the first polynomial
sample complexity for Pandora’s problem. The discretization argument and a more specialized
method that gives the optimal sample complexity are deferred to Appendix D.

Theorem 12 In the Pandora’s problem with n boxes whose rewards and costs are bounded in
[0, 1], the sample complexity is at most O

(
n3

ε3
log 1

δ

)
.

4. Strongly Monotone Problems

This section considers the sample complexity of a subset of problems which satisfy a structural
property called strong monotonicity, without any restrictions on the supports of the data domain.

Definition 13 (Stochastic Dominance) Suppose D and D̃ are two product distributions distribu-
tions over Rn, D stochastically dominates D̃ if for any i ∈ [n] and any t ∈ R, the CDFs of Di and
D̃i satisfy FDi(t) ≤ FD̃i(t).

Definition 14 (Strong Monotonicity) A problemH is strongly monotone if for any D, any D̃ that
is stochastically dominated by D, and the optimal hypothesis hD̃ of D̃: hD̃ (D) ≥ hD̃(D̃) =

OPT(D̃) .

The name is inherited from the context of single-parameter revenue maximization, where each
hypothesis h is a DSIC auction, v ∼ D is the value profile, and h(D) is the expected revenue of
the auction over the random realization of a value profile drawn from D. Then, the above inequality
states that running the optimal auction w.r.t. D̃, a.k.a., Myerson’s auction, on a distribution D that
stochastically dominates D̃, gets at least the optimal revenue w.r.t. the dominated distribution D̃.
This is precisely the notion of strong revenue monotonicity introduced by Devanur et al. (2016). The
naming is to make a distinction with the existing weaker notion of revenue monotonicity, which only
requires that optimal revenue w.r.t. D to be weakly larger than that w.r.t. D̃. We restate below the
weaker notion in the more general context in this paper.

Definition 15 (Weak Monotonicity) A problem H is weakly monotone if for any D, and any D̃
that is stochastically dominated by D: OPT

(
D
)
≥ OPT

(
D̃
)
.

10
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Finally, we remark that there is an even stronger notion of monotonicity which we call hypothesis-
wise monotonicity.

Definition 16 (Hypothesis-wise Monotonicity) A problem H is hypothesis-wise monotone if for
any D ∈ Rn, any D̃ ∈ Rn that is stochastically dominated by D, and any hypothesis h ∈ H:
h
(
D
)
≥ h

(
D̃
)
.

Clearly, hypothesis-wise monotonicity implies strong monotonicity, which in turns implies
weak monotonicity. Weak monotonicity is insufficient for deriving the improved sample complexity
bound with the techniques in this section. Hypothesis-wise monotonicity is too restrictive on the
other hand; in fact, it fails to hold on any example considered in this paper.

The rest of the section argues that (1) strong monotonicity leads to an improved sample com-
plexity bound, and (2) strong monotonicity holds in all but one examples considered in this paper,
improving or matching the state-of-the-art sample complexity bounds. We stress that we did not
make any simplifying assumption compared to previous works.

4.1. Sample Complexity Bounds for Strongly Monotone Problems

The main result for strongly monotone problems is the following improved sample complexity upper
bound. In particular, the bound is independent of the support size of the distributions and, in fact,
applies to continuous distributions.

Theorem 17 For any strongly monotone problem H, suppose the number of samples is at least
C · n

ε2
log
(
n
ε

)
log
(
n
εδ

)
, where C > 0 is a sufficiently large constant independent of the problemH.

Then, the PERM is an ε-additive approximation with probability at least 1− δ.
Remark: If the distributions are i.i.d., i.e., Di = D∗ for any i ∈ [n], it suffices to have the above
number of sample values from D∗ (rather than vectors from D). Given the samples from D∗, we
construct E∗ to be the uniform distribution over the samples and let E = E∗ × E∗ × · · · × E∗.

The above upper bound is identical to that in the special case of single-parameter revenue maxi-
mization by Guo et al. (2019); the proof is also similar. The contributions of this paper are two-folds.
First, we generalize it to arbitrary strongly monotone problems so that it can be further applied to
a broader scope of problems, including the prophet inequalities and the Pandora’s problem consid-
ered in this paper. Second, we show that the empirical maximizer itself achieves the optimal sample
complexity bound when the reward function is bounded in [0, 1]; in contrast, Guo et al. (2019) need
a regularized version of the empirical distributions called the dominated empirical distributions, and
uses the corresponding regularized maximizer.

The proof and the applications of Theorem 17 are deferred to Appendix B. We remark that the
above upper bound is tight up to a poly-logarithmic factor, due to an existing lower bound in the
special case of single-parameter revenue maximization.

Theorem 18 There is a strongly monotone problem H so that if the number of samples is less
than c · n

ε2
, where c > 0 is a sufficiently small constant, no algorithm gets an expected ε-additive

approximation.

Proof Let H be the set of DSIC single-item auctions with n bidders. Restrict the bidders’ valua-
tions to be bounded in [0, 1] so that the value/revenue of any hypothesis/auction h ∈ H on any value

11
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profile is bounded in [0, 1]. By Devanur et al. (2016), the single-item revenue maximization prob-
lem is strongly monotone. Further by Guo et al. (2019), the sample complexity of [0, 1]-bounded
valuations and ε-additive approximation is at least Ω( n

ε2
).

5. Future Directions and Other Related Works

Sample Complexity of Simple Auctions/Hypotheses. A branch of the literature of sample com-
plexity of auctions considers simpler auction formats such as the second-price auction with reserve
prices. Readers are referred to Balcan et al. (2018), Cai and Daskalakis (2017), and Morgenstern
and Roughgarden (2016) for some examples. We restate that the theories developed in this paper
are complementary to the existing ones; they are more suitable for problems with complex hypoth-
esis classes (on product distributions). Hence, this paper does not try to apply the theories to these
simpler families of auctions. That said, there are relatively few natural hypothesis classes whose
“degrees-of-freedom” are smaller than the data dimensions. Hence, for strongly monotone prob-
lems, the sample complexity bound in Theorem 17 is competitive. Finally, we leave as a future
question whether there are natural learning problems whose tight sample complexity bounds need
both complexity measures of the hypotheses and the independence of data dimensions.

Beyond Product Distributions. Although arbitrarily correlated distributions seem intractable, it
may be possible to generalize the theories in this paper to structured corrected distributions, which
we leave as another future direction. Concretely, if we can learn from samples an appropriate
representation of the data under which different dimensions are independent, we shall be able to
combine it with the theories in this paper to get generalization bounds. To this end, the vast literature
on principle component analysis (PCA) is related. See, e.g., Pearson (1901) and Jolliffe (2011).
Independently, Brustle et al. (2019) made progress on this direction showing how to learn multi-
item auctions when the value distribution is correlated yet admit special structures.

Classification Problems. We present a a preliminary result in Appendix E under a strong assump-
tion that the feature distributions are independent conditioned on any given label. To further extend
the theories in this paper to obtain useful generalization bounds for natural classification problems,
we need to relax the assumption of having product conditional feature distributions, which is related
to the last research direction. Moreover, although the algorithmic question of finding the optimal
hypothesis w.r.t. a product distribution is well-studied for optimization problems in the Bayesian
model, little is known about its counterpart for classification problems. In particular, it is unclear
whether finding the best hypothesis w.r.t. the product empirical distribution is harder or easier than
doing so w.r.t. the original notion of empirical distribution. On the one hand, the product empirical
distribution is more structured; on the other hand, its support size is exponential in general, while
the support size of the original empirical distribution is upper bounded by the number of samples.

Multi-parameter Auctions and Other Structural Properties. Multi-parameter revenue maxi-
mization is the only example in this paper that does not benefit from the improved sample com-
plexity bound in Theorem 17 because it is not strong monotonicity. In fact, Hart and Reny (2015)
showed that it is not even weakly monotone. Nonetheless, the hypotheses corresponding to multi-
parameter auctions are very different from those used in the proof of the lower bound (Theorem 7).
We consider it an interesting open question if there is another structural property (unrelated to the
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complexity measures of the hypotheses) which applies to multi-parameter revenue maximization
and, ideally, to a large family of problems, which lead to improved sample complexity bounds.
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Appendix A. Finite Domain

A.1. Convergence of Product Empirical Distribution: Proof of Lemma 6

We will reduce Lemma 6 to a vector concentration inequality. First:

1−H2(D,E) =

n∏
i=1

(
1−H2(Di, Ei)

)
(Lemma 3)

≥ 1−
n∑
i=1

H2(Di, Ei) .

Hence, it suffices to show that with probability at least 1− δ:
n∑
i=1

H2(Di, Ei) ≤ O
(
nk

N
log

1

δ

)
. (1)

By definition of Hellinger distance, for any 1 ≤ i ≤ n:

H2(Di, Ei) =
1

2

∑
t∈Ti

(√
fDi(t)−

√
fEi(t)

)2
=

1

2

∑
t∈Ti

(
fDi(t)− fEi(t)√
fDi(t) +

√
fEi(t)

)2

.

Next, we bound the right-hand-side by the following lemma, which can be viewed a smoothed
variant of the connection between the Hellinger distance and χ-square distance.
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Lemma 19 For any fD, fE ∈ [0, 1]:

(
fD − fE√
fD +

√
fE

)2

≤
(
fD − fE

)2
max

{
fD,

1
N log 1

δ

} +
1

N
log

1

δ
.

Proof If fE > 1
N log 1

δ or fD > 1
N log 1

δ , the left-hand-side is at most the first term on the right-
hand-side. Otherwise, the left-hand-side is at most max{fD, fE} ≤ 1

N log(1
δ ).

Sum Eqn. (1) over 1 ≤ i ≤ n, and apply Lemma 19 to the right-hand-side:

n∑
i=1

H2(Di, Ei) ≤
1

2

n∑
i=1

∑
t∈Ti

(
fDi(t)− fEi(t)

)2
max

{
fDi(t),

1
N log 1

δ

} +
nk

N
log

1

δ
.

Therefore, it suffices to show that with probability at least 1− δ:

n∑
i=1

∑
t∈Ti

(
fDi(t)− fEi(t)

)2
max

{
fDi(t),

1
N log 1

δ

} ≤ O(nk
N

log
1

δ

)
. (2)

To interpret the left-hand-side as the squared `2-norm of the sum of i.i.d. vectors, we associate
each sample sj ∼ D, 1 ≤ j ≤ N , with a

∑n
i=1 |Ti|-dimensional random vector Xj. Concretely, for

any j ∈ [N ], i ∈ [n] and for any t ∈ Ti:

Xjit =
1[sji = t]− fDi(t)√

max
{
fDi(t),

1
N log 1

δ

} . (3)

Then, Eqn. (2) can be restated as:

∥∥∥ 1

N

N∑
j=1

Xj

∥∥∥2

2
≤ O

(
nk

N
log

1

δ

)
or equivalently

∥∥∥ N∑
j=1

Xj

∥∥∥2

2
≤ O

(
Nnk log

1

δ

)
.

We establish the following properties of the random vectors.

Lemma 20 For any j ∈ [N ], the random vector Xj defined in Eqn. (3) satisfies: (1) E
[
Xj

]
= 0,

(2) E
[
‖Xj‖22

]
≤ nk, and (3) ‖Xj‖2 ≤

√
Nnk
log 1

δ

.

Proof The first property follows by definition. The second one is true because:

E
[
‖Xj‖22

]
≤

n∑
i=1

∑
t∈Ti

E
[
(1[sji = t]− fDi(t))2

]
fDi(t)

=

n∑
i=1

∑
t∈Ti

(1− fDi(t)) ≤ nk .

The last property follows by X2
ijk ≤ N/ log 1

δ . This is why we need the smoothed variant in
Lemma 19 instead of the original inequality between the Hellinger and χ-square distances.
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By Lemma 20, and Lemma 4 with σ2 = 320nk,M =
√
Nnk/ log 1

δ , and ∆ = 100
√
Nnk log 1

δ ,
we get

Pr

∣∣∣∣ ∥∥∥ N∑
j=1

Xj

∥∥∥
2
− E

[∥∥∥ N∑
j=1

Xj

∥∥∥
2

] ∣∣∣∣ > ∆

 ≤ 2 exp
(
− ∆2

2Nσ2

(
2− exp(

2M∆

Nσ2
)
))

≤ 2δ2.05 ,

so for 0 < δ < 1/2, with probability at least 1− δ:

∣∣∣∣ ∥∥∥ N∑
j=1

Xj

∥∥∥
2
− E

[∥∥∥ N∑
j=1

Xj

∥∥∥
2

] ∣∣∣∣ ≤ O(
√
Nnk log

1

δ

)
.

Finally, it remains to bound the expected `2-norm of
∑N

j=1 Xj:

E
[∥∥∥ N∑

j=1

Xj

∥∥∥
2

]2
≤ E

[∥∥∥ N∑
j=1

Xj

∥∥∥2

2

]
(Cauchy-Schwarz)

=
N∑
j=1

E
[∥∥Xj

∥∥2

2

]
(independence of Xj’s, and E

[
Xj

]
= 0 by Lemma 20)

≤ Nnk . (E
[
‖Xj‖22

]
≤ nk by Lemma 20)

A.2. Lower Bound for Finite-domain Problems: Proof of Theorem 7

For notation simplicity, we consider T = {0,±1, . . . ,±k} with support size 2k + 1. We first
define the hypothesis class H. Each hypothesis is specified by a binary nk-dimensional vector
v ∈ {±1}n×k. Specifically,H = {hv} where hv : Tn → [0, 1] is defined as

hv(t) := 1

[
∃i ∈ [n], j ∈ [k], t =

(
0, . . . , 0, vi,j · j

i’th
, 0, . . . , 0

)]
.

Next, we consider a family of distributions D = {Dv} that are also indexed by v. For each
dimension i of Dv, the probability density function is defined as the following:

fDv
i
(ti) =


1− 1

n , if ti = 0
1

2nk (1− ε), if ti = −vi,j · j for some j ∈ [k]
1

2nk (1 + ε), if ti = vi,j · j for some j ∈ [k]

Our plan is to show that any algorithm that gets a ε-approximation on all distributions in D must
take Ω(nk

ε2
) number of samples.

When the underlying distribution is Dv, the corresponding optimal hypothesis is hv. Intuitively,
in order to achieve a good approximation to hv, an algorithm has to specify a vector v′ close enough
to v based on the samples. We formalize the intuition by calculating the loss of choosing hv′ .
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Lemma 21 For all v,v′, we have

hv(Dv)− hv′(Dv) = Ω(
ε

nk
· d(v,v′)),

where d(v,v′) is the hamming distance between v and v′.

Proof For all v,v′, we have that

hv(Dv′) =

n∑
i=1

k∑
j=1

Prti∼Dv
i
[ti = v′i,j · j] ·

∏
`6=i

Prt`∼Dv
`
[t` = 0]

= (1− 1

n
)n−1

n∑
i=1

k∑
j=1

Prti∼Dv
i
[ti = v′i,j · j]

= (1− 1

n
)n−1

n∑
i=1

k∑
j=1

[
1[vi,j = v′i,j ] ·

1 + ε

2nk
+ 1[vi,j 6= v′i,j ] ·

1− ε
2nk

]
.

Next, we bound the lose of choosing hv′ by the hamming distance between v and v′.

hv(Dv)− hv′(Dv) = (1− 1

n
)n−1

n∑
i=1

k∑
j=1

1[vi,j 6= v′i,j ] ·
ε

nk
= Ω(

ε

nk
· d(v,v′))

Let s be the samples and A be any (randomized) algorithm that takes samples s as inputs and
outputs a vector A(s) ∈ {±1}n×k. The next lemma states that if two distributions differ in only
one dimension, then the total probability of A guessing wrongly for the two distributions is at least
Ω(1) if the number of samples is O(nk

ε2
).

Lemma 22 For any Dv̄ and Dv where Dv̄ and Dv only differ in one dimension (i, j), i.e., v̄i,j = 1,
vi,j = −1, and for any algorithm A, when N = O(nk

ε2
),

Prs∼(Dv̄)N [A(s)i,j 6= v̄i,j ] + Prs∼(Dv)N [A(s)i,j 6= vi,j ] ≥ Ω(1).

Proof Since the n dimensions of the distribution are independent, to guess the (i, j)-th dimension of
the underlying v, the only useful samples are those s with si = ±j, which happens with probability
1
nk . Thus, when the number of samples is O(nk

ε2
), with high probability, we have at most O( 1

ε2
)

number of useful samples. Note that these samples are either from

f̄(±j) =
1± ε

2
or f(±j) =

1∓ ε
2

.

whose total variation distance is Θ(ε), then if we only haveO( 1
ε2

) samples, with constant probability
we cannot distinguish distinguish whether the samples are from Dv̄ or Dv. In other words, for any
algorithmA,A(s)i,j must be inconsistent with the underlying distribution with constant probability,
which concludes the proof.
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To finish the proof, we consider the performance of A on a uniform distribution over all distri-
butions in D. Formally, let U be a uniform distribution on {±1}n×k, we have

Ev∼UEs∼(Dv)N [d(A(s),v)] =

n∑
i=1

k∑
j=1

Ev∼UEs∼(Dv)N [1(A(s)i,j 6= vi,j)]

=

n∑
i=1

k∑
j=1

Ev∼UPrs∼(Dv)N [A(s)i,j) 6= vi,j ]

=
1

2

n∑
i=1

k∑
j=1

(
Ev̄∼UPrs∼(Dv̄)N [A(s)i,j) 6= v̄i,j ]

+ Ev∼UPrs∼(Dv)N [A(s)i,j) 6= vi,j ]
)

≥ Ω(nk), (by Lemma 22)

where d(·, ·) denotes the hamming distance. By Lemma 21, this implies a Ω(ε) error of the output.
Therefore, there exists a distribution Dv that cannot be learned by A with O(ε) additive error.

Appendix B. Strong Monotonicity

B.1. Proof of Theorem 17

By the Bernstein inequality and union bound, we can relate the CDFs of underlying distribution D
and the empirical distribution E as follows.

Lemma 23 (e.g., Lemma 5 of Guo et al. (2019)) With probability at least 1− δ, we have that for
any i ∈ [n], and any ti ∈ [0, 1]:

∣∣FDi(ti)− FEi(ti)∣∣ ≤
√

2FDi(ti)
(
1− FDi(ti)

)
ln(2Nnδ−1)

N
+

ln(2Nnδ−1)

N
.

The rest of the subsection shows the stated additive approximation factor under the assumption
that the inequality in Lemma 23 holds.

We introduce two auxiliary distribution D̂ and Ď, where the former serves as an upper bound
of E and the latter as a lower bound. Concretely, for any i ∈ [n], define the CDF of D̂i as follows:

FD̂i

(
ti
)

=

1 ti = 1 ;

max

{
0, FDi(ti)−

√
2FDi (ti)(1−FDi (ti)) ln(2Nnδ−1)

N − ln(2Nnδ−1)
N

}
0 ≤ ti < 1 .

(4)
The case of ti = 1 is defined separately because its CDF must be 1 for any distribution with

support bounded in [0, 1]. The other cases are defined to be the smallest possible value of FEi
(
ti
)

according to Lemma 23 and the trivial lower bound of FEi
(
ti
)
≥ 0.
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Similarly, for any i ∈ [n], define the CDF of Ďi as follows:

FĎi
(
ti
)

=

0 ti = 0 ;

min

{
1, FDi(ti) +

√
2FDi (ti)(1−FDi (ti)) ln(2Nnδ−1)

N + ln(2Nnδ−1)
N

}
0 < ti ≤ 1 .

(5)
Then, the empirical distribution is sandwiched between the auxiliary distributions by definition.

Lemma 24 Assuming the inequality in Lemma 23, we have:

D̂ � E � Ď .

Therefore, we can lower bound the performance of the empirical maximizer, i.e., hE, on the
underlying distribution D through a sequence of inequalities below:

hE

(
D
)
≥ hE

(
D̂
)
− δ
(
D̂,D

)
(hE bounded in [0, 1], Lemma 1)

≥ hE

(
E
)
− δ
(
D̂,D

)
(strong monotonicity, D̂ � E)

= OPT
(
E
)
− δ
(
D̂,D

)
(definition of OPT

(
E
)
)

≥ OPT
(
Ď
)
− δ
(
D̂,D

)
(weak monotonicity, E � Ď)

≥ hD

(
Ď
)
− δ
(
D̂,D

)
(definition of OPT

(
Ď
)
)

≥ hD

(
D
)
− δ
(
Ď,D

)
− δ
(
D̂,D

)
(hD bounded in [0, 1], Lemma 1)

= OPT
(
D
)
− δ
(
Ď,D

)
− δ
(
D̂,D

)
. (definition of OPT

(
D
)
)

Therefore, it remains to show that with the number of samples stated in the theorem:

δ
(
Ď,D

)
≤ ε

2
, δ

(
D̂,D

)
≤ ε

2
. (6)

By Lemma 2, it suffices to upper bound the Hellinger distances, as in the following lemmas.

Lemma 25 For any distribution D and the corresponding D̂ defined in Eqn. (4), we have:

H2
(
D̂,D

)
≤ O

(
n

N
log

(
Nn

δ

)
log

(
N

log(Nnδ−1)

))
.

Lemma 26 For any distribution D and the corresponding Ď defined in Eqn. (5), we have:

H2
(
Ď,D

)
≤ O

(
n

N
log

(
Nn

δ

)
log

(
N

log(Nnδ−1)

))
.

The proofs of the above lemmas, which we include at the end of the subsection for completeness,
are analogous to the proof of a similar lemma w.r.t. Kullback-Leibler divergence by Guo et al.
(2019). The main difference is that the lemma by Guo et al. (2019) requires additional conditions
that lower bound the probability masses of the two endpoints of the support, while ours do not.

As corollaries of the lemma, with a number of samples stated in the lemma, we have:

H2
(
D̂,D

)
≤ ε2

8
, H2

(
Ď,D

)
≤ ε2

8
.
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Putting together with Lemma 2 proves Eqn. (6), which finishes the proof of Theorem 17.
Proof [Proof of Lemma 25 and Lemma 26] By symmetry, it suffices to prove one of them. Below
we prove Lemma 25.

For simplicity of notations in this proof, let Γ = ln(2Nnδ−1)
N be the coefficient that appears in

the definition of D̂, i.e., Eqn. (4). Further define:

g(y) = y −
√

2Γ · y(1− y)− Γ .

Then, Eqn. (4) can be written as:

FD̂i(t) =

{
1 t = 1 ;

max
{

0, g
(
FDi(t)

)}
0 ≤ t < 1 .

(7)

Further, the inequality in the lemma can be written as:

H2
(
D̂,D

)
≤ O

(
nΓ log

1

Γ

)
,

or equivalently:

1−H2
(
D̂,D

)
≥ 1−O

(
nΓ log

1

Γ

)
.

By Lemma 3, we have:

1−H2
(
D̂,D

)
=

n∏
i=1

(
1−H2

(
D̂i, Di

))
.

Hence, it suffices to show that for any i ∈ [n]:

1−H2
(
D̂i, Di

)
≥ 1−O

(
Γ log

1

Γ

)
,

or equivalently:

H2
(
D̂i, Di

)
≤ O

(
Γ log

1

Γ

)
.

By definition, the squared Hellinger distance is:

H2
(
D̂i, Di

)
=

1

2

∫
x∈[0,1]

(√
dFDi(x)−

√
dFD̂i(x)

)2

. (8)

We shall partition [0, 1] into three subsets based on how the CDF of D̂i is defined in Eqn. (7):
(a) the values whose FD̂i(t) = 0, (b) t = 1 whose FD̂i(t) = 1, and (c) the rest of the values whose
0 < FD̂i(t) < 1. Then, we account for their contributions to Eqn. (8) separately.
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Part (a). Consider the values whose CDF is 0 w.r.t. D̂i. To formally define this subset of values,
recall that g(y) = y −

√
2Γ · y(1− y)− Γ. Let F` ∈ [0, 1] be the unique solution for:

g(F`) = 0 .

The value of g(F`) is strictly less than 0 when F` = Γ, and is strictly greater than 0 when
F` = 4Γ. Hence, we have:

Γ < F` < 4Γ . (9)

Let ` be the minimum value whose CDF is at least F`, i.e.:

` = inf
{
x : FDi(t) ≥ F`

}
.

Then, for values in [0, `), we have FD̂i(t) = 0 and therefore:

1

2

∫
t∈[0,`)

(√
dFDi(t)−

√
dFD̂i(t)

)2

= lim
t→`−

1

2
FDi(t)

≤ 1

2
F` (definition of `)

< 2Γ . (Eqn. (9))

Part (b). For simplicity of notations, let f(1) = fDi(1) and f̂(1) = fD̂i(1) be the probability that
x = 1 in Di and D̂i respectively. We have:

f̂(1) = 1− lim
t→1−

FD̂i(t)

= 1− lim
t→1−

(
FDi(t)−

√
2Γ · FDi(t)

(
1− FDi(t)

)
− Γ

)
(Eqn. (7))

= f(1) +
√

2Γ · f(1)
(
1− f(1)

)
+ Γ .

As corollaries, we have:
f̂(1) ≥ max

{
f(1),Γ

}
,

and: (
f̂(1)− f(1)

)2
= Γ ·

(√
2f(1)

(
1− f(1)

)
+
√

Γ
)2

≤ Γ ·
(√

2f(1) +
√

Γ
)2

≤ Γ ·max
{
f(1),Γ

}
.

Using the above two inequalities, the contribution from x = 1 is at most:

1

2

(√
f(1)−

√
f̂(1)

)2
=

1

2

(
f̂(1)− f(1)

)2(√
f(1) +

√
f̂(1)

)2
≤
(
f̂(1)− f(1)

)2
2f̂(1)

≤ Γ

2
.
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Part (c). It remains to bound the contribution from values t ∈ [`, 1). By Eqn. (7) and the definition
of `, the CDF w.r.t. D̂i of any value in this range is defined by a continuous mapping:

FD̂i(t) = g
(
FDi(t)

)
.

Therefore, the CDFs w.r.t. Di and D̂i have the same set of discontinuities in this range, i.e.,
the same set of point masses. We will first bound the contribution of values in [`, 1) under the
assumption that both Di and D̂i are continuous in this range. Then, we will demonstrate how to
generalize the result to arbitrary distributions by handling the common point masses appropriately.

Under the assumption of continuity, the contribution to the Hellinger distance by this part is:

1

2

∫
t∈[`,1)

(√
dFDi(t)−

√
dFD̂i(t)

)2

=
1

2

∫
t∈[`,1)

(√ dFD̂i(t)

dFDi(t)
− 1

)2

dFDi(t)

=
1

2

∫
t∈[`,1)

(√
g′
(
FDi(t)

)
− 1

)2

dFDi(t) .

By the definition of g, we have:

g′(y) = 1 +
(2y − 1)

√
Γ√

2y
(
1− y

) .
Therefore, it suffices to upper bound the following integral:∫ 1

F`

(√
1 + (2y−1)

√
Γ√

2y(1−y)
− 1

)2

dy

We will bound it in [F`, 1− Γ) and [1− Γ, 1] separately. The former is at most:∫ 1−Γ

F`

(√
1 + (2y−1)

√
Γ√

2y
(

1−y
) − 1

)2

dy ≤
∫ 1−Γ

F`

(2y − 1)2Γ

2y
(
1− y

) dy (
∣∣√1 + x− 1

∣∣ ≤ ∣∣x∣∣)
≤
∫ 1−Γ

F`

Γ

2y
(
1− y

)dy (0 ≤ y ≤ 1)

=
Γ

2

(
ln

1− Γ

F`
+ ln

1− F`
Γ

)
≤ Γ

2

(
ln

1

F`
+ ln

1

Γ

)
< Γ ln

1

Γ
. (Eqn. (9)) .

For the latter, it is upper bounded by:∫ 1

1−Γ

(√
1 + (2y−1)

√
Γ√

2y
(

1−y
) − 1

)2

dy ≤
∫ 1

1−Γ

(2y−1)
√

Γ√
2y
(

1−y
)dy (

√
1 + x− 1 ≤

√
x for x > 0)

=
√

2(1− Γ)Γ

≤
√

2Γ .
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Combining the upper bounds of the integrals over the two intervals, the contribution from part
(c) under the assumption of continuity is at most O

(
Γ log 1

Γ

)
.

Finally, consider any point mass t∗ in the two distributions Di and D̂i. Let ȳ = FDi(t
∗) and

y = limt→t∗− FDi(t). Then, the probability mass of t∗ w.r.t. Di is ȳ − y, and that w.r.t. D̂i is
g(ȳ)− g(y). Hence, the contribution of t∗ to the Hellinger distance is:

1

2

(√
ȳ − y −

√
g(ȳ)− g(y)

)2

=
1

2

(√
g(ȳ)− g(y)

ȳ − y
− 1

)2(
ȳ − y

)
=

1

2

(√
1

ȳ − y

∫ ȳ

y
g′(y)dy − 1

)2(
ȳ − y

)
≤ 1

2

∫ ȳ

y

(√
g′(y)− 1

)2

dy .

The last inequality follows by the convexity of (
√
x − 1)2 and Jensen’s inequality. The RHS

is precisely the contribution by values with CDF in (y, ȳ] in the continuous case. Therefore, by
applying this argument to all point masses, we reduce the problem to the continuous case.

B.2. Applications of Theorem 17

Single-parameter Revenue Maximization. As we have discussed at the beginning of the section,
strong monotonicity corresponds to strong revenue monotonicity in the context of single-parameter
revenue maximization, which is shown by Devanur et al. (2016). In particular, for single-item
auction, it follows from Theorem 17 that Õ(nε−2) samples are sufficient for getting an ε-additive
approximation when the bidders’ valuations are bounded in [0, 1], matching the optimal bound by
Guo et al. (2019). The main difference compared with Guo et al. (2019) lies in that we achieve
the optimal upper bound using the empirical maximizer, which corresponds to Myerson’s optimal
auction w.r.t. the empirical distributions, while Guo et al. (2019) needs to apply appropriate regu-
larization to the empirical distribution and uses the corresponding regularized empirical Myerson’s
auction.

Theorem 27 In a single-item auction with n bidders whose values are bounded in [0, 1], suppose
the number of samples is at least C · n

ε2
log
(
n
ε

)
log
(
n
εδ

)
for some sufficiently large constant C > 0.

Then, the empirical Myerson’s auction is an ε-additive approximation with probability at least 1−δ.

Prophet Inequality. In the context of prophet inequality, each hypothesis corresponds to a se-
quence of thresholds, one for each round, such that the algorithm accepts the first reward that is
greater than or equal to the corresponding threshold. We show that this problem satisfies strong
monotonicity; the proof is deferred to Appendix C.3.

Lemma 28 The problem of prophet inequality is strongly monotone.

As a corollary of Lemma 28, Theorem 17, and the fact that the optimal thresholds achieve at
least one half of the expected max reward (e.g., Samuel-Cahn (1984)),7 we get an Õ

(
nε−2

)
sample

complexity upper bound.

7. In fact, is it known that an appropriate fixed threshold can achieve at least one half of the expected max.
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Theorem 29 For any instance of prophet inequality in which the rewards are bounded in [0, 1],
suppose the number of samples is at least: C · n

ε2
log
(
n
ε

)
log
(
n
εδ

)
for some sufficiently large con-

stant C > 0. Then, the expected reward by the empirically optimal thresholds is an ε-additive
approximation compared to the optimal thresholds and thus, is at least half of the expected max
reward minus ε.

Prophet Inequality for i.i.d. Rewards. If the rewards are i.i.d., Correa et al. (2017) prove an
improved prophet inequality that achieves at least a 0.745 factor of the expected max reward. The
strong monotonicity of prophet inequality for i.i.d. rewards follows as a special case of Lemma 28.
Therefore, we get the same Õ

(
nε−2

)
sample complexity upper bound, matching the lower bound

by Correa et al. (2019).

Theorem 30 For any instance of prophet inequality with i.i.d. rewards bounded in [0, 1], suppose
the number of sample rewards (rather than reward vectors) is at least C · n

ε2
log
(
n
ε

)
log
(
n
εδ

)
for

some sufficiently large constant C > 0. Then, the expected reward by the empirically optimal
thresholds is an ε-additive approximation compared to the optimal thresholds and thus, is at least a
0.745 factor of the expected max reward minus ε.

As mentioned in Section 1, the setting of Correa et al. (2019) is different from ours in that they
consider unbounded distributions and multiplicative approximation. Indeed, we focus on bounded-
support distributions and additive approximation in the main text of the paper in order to develop a
generalization theory that requires minimum knowledge of the structure of the problems. Nonethe-
less, Appendix C.4 demonstrates how to combine the techniques in this paper and the special struc-
tures of the prophet inequality with i.i.d. rewards to get the same Õ(nε−2) sample complexity upper
bound in the setting of Correa et al. (2019), addressing an open problem therein.8

Pandora’s Problem. An algorithm for the Pandora’s problem is a mapping from the history of
observed rewards to either one of the unopened boxes, or the decision to stop and take the best
observed reward. Since the former has exponentially many possibilities even after discretization,
the naı̈ve upper bound on the size of the hypothesis class is doubly exponential. Nonetheless, we
show that the problem is strongly monotone, highlighting that strong monotonicity is a structural
property without any obvious connection to the complexity/simplicity of the hypothesis class. The
proof is deferred to Appendix D.3.

Lemma 31 Pandora’s problem is strongly monotone.

Recall that in Section 2 we use the simple treatment of defining the value of a hypothesis to be
the value of the corresponding algorithm plus n and then scaled by 1

n+1 to normalize its range to be
[0, 1]. Therefore, to get an ε-additive approximation in Pandora’s problem, we need a ε

n+1 -additive
approximation w.r.t. H. As a corollary of Lemma 31 and Theorem 17, we get an Õ(n3ε−2) sample
complexity bound. See Appendix D.4 for an analysis tailored for Pandora’s problem to get the
following optimal bound.

Theorem 32 For any instance of Pandora’s problem in which the rewards are bounded in [0, 1],
suppose the number of samples is at least C · n

ε2
log2

(
1
ε

)
log
(
n
ε

)
log
(
n
εδ

)
for some sufficiently large

8. It is explicitly stated as an open question in the talk at EC 2019.

26



GENERALIZING COMPLEX HYPOTHESES ON PRODUCT DISTRIBUTIONS

constantC > 0. Then, we can learn an ε-additive approximate algorithm from the samples. Further,
to learn such an algorithm, the number of samples must be at least: c · n

ε2
for some sufficiently small

constant c > 0.

Appendix C. Missing Proofs about Prophet Inequality

C.1. Optimal Hypothesis

An optimal strategy of prophet inequality when D has bounded support, denote as SD, is called
backward induction, where we recursively compute the optimal reward for items appear behind i
and set the thresholds θi for item i. The algorithm for setting the strategy is as follows:

θn ← 0 OPT(Dn) = Etn∼Dn [tn] for i from n− 1 to 1 do
θi ← OPT(D≥i+1) OPT(D≥i) = Eti≥θi [ti] + Pr[ti < θi]OPT(D≥i+1)

end
// online strategy
i← 1 while i ≤ n do

if ti ≥ θi then
Accept ti and stop

else
i← i+ 1 // observe the next reward

end
if i=n then

Accept tn and stop // if no item has been accepted, accept the last one
end

end
Algorithm 1: Optimal Strategy for Prophet Inequality in Bounded-support Case

One particular note for this strategy is that the thresholds for the last n − i + 1 dimension of
D is independent of the arrivals there are before ti. Therefore, in further discussion we can abuse
h≥i(D) to denote the expected reward of running the last n − i + 1 dimension of an backward
induction strategy S on D≥i =

∏n
j=iDj .

C.2. Discretization and Sample Complexity: Proof of Theorem 11

Let Dε/2 be the discretized version of D obtained from rounding the values of each marginal distri-
bution Di down to the nearest multiples of ε. For all type t ∼ D, define its downward discretization

tε/2 = b2t

ε
c · ε

2
,

also, for the optimal strategy SD define a coupling optimal strategy S′D for tε/2 ∼ Dε/2: First
re-sample

r ∼
n∏
i=1

Di(t | t ∈ [(ti)ε/2, (ti)ε/2 +
ε

2
)) ,

then perform the original SD on t′ = tε/2 + r and return the accepted item. We introduce the
re-sample step because t′ and t ∼ D have the same distribution. Hence at any step i ∈ [n], the
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probability that S′D accepts tε/2 ∼ Dε/2 equals to that of SD accepts t ∼ D. We further show that
the expected reward of the coupling optimal strategy is an ε-additive approximation of the original
one:

Lemma 33 Under the above definition, we have

ES′D(hS′D(Dε/2)) ≥ hSD
(D)− ε

2
.

Proof

ES′D(hS′D(Dε/2)) =

∫
t∈[0,1]n

Pr(t′ = t) · hS′D(t)dt

≤
∫

t∈[0,1]n
fD(t) ·

⌊
2hS′D(t)

ε

⌋
· ε

2
dt

≤
∫

t∈[0,1]n
fD(t) · hSD

(t)dt− ε

2

= hSD
(D)− ε

2

Now we go to the proof of Theorem 11. Let Eε/2 be the distribution obtained from rounding
down the values of each dimension of E to the nearest supports of ε

2 . We want to show that, when
N ≥ C · n

ε3
log( nεδ ), hSEε/2

will become the near-optimal hypothesis of D.

Since Eε/2 is also the empirical distribution of Dε/2, and has finite support with size 1
ε/2 in each

dimension, a corollary of Theorem 5 shows that when N ≥ C · n
ε3

log( nεδ ),

hSDε/2
(Dε/2)− hSEε/2

(Dε/2) ≤ ε

2
(10)

Then

hSD
(D) ≤ ES′D(hS′D(Dε/2)) +

ε

2
( Lemma 33)

≤ hSDε/2
(Dε/2) +

ε

2
(Optimality of SDε/2

)

≤ hSEε/2
(Dε/2) + ε (From (10))

It remains to show hSEε/2
(Dε/2) approximates hSEε/2

(D), i.e. the actual expected reward from
the learned hypothesis. We elaborate it as follows:

Lemma 34
hSEε/2

(Dε/2) ≤ hSEε/2
(D) .

Proof Suppose Eε/2 is specified by thresholds θ = (θ1, · · · , θn). We can assume without loss of
generality that each θi is the multiple of ε

2 , since rounding the thresholds up does not affect the
behavior of the strategy on Eε/2.
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Therefore, for any type t and its downward discretization tε/2, SEε/2 accepts t at the ith step if
and only if SEε/2 accepts tε/2 at the ith step. This gives that

hSEε/2
(D) =

∫
t∈[0,1]n

fD(t)hSEε/2
(t)dt

≥
∫

t∈[0,1]n
fD(t)hSEε/2

(tε/2)dt

=

∫
t∈[0,1]n

fDε/2
(t)hSEε/2

(tε/2)dt

= hSEε/2
(Dε/2) .

With this lemma in hand, we can complete the proof of Theorem 11.

C.3. Strong Monotonicity: Proof of Lemma 28

From now on, we abuse h≥i(D) to denote the expected revenue of running the last n − i + 1 di-
mension of SD̃≥i

on D≥i. We want to show by backward induction on i that ∀ product distributions

D, D̃ such that D � D̃, the expected reward of performing SD̃ on the last n− i+ 1 dimension of
D is at least that of performing SD̃ on the last n− i+ 1 dimension of D̃, i.e.

h≥i(D≥i) ≥ h≥i(D̃≥i) .

Base case: When i = n, there is only one item with value tn, and SD̃≥n
accepts it with

probability 1 and obtains the reward tn. Therefore, we have

h≥n(D) = EDn [tn] =

∫ ∞
t=0

qDn(t)dt

≥
∫ ∞
t=0

qD̃n(t)dt (Dn � D̃n)

= ED̃n [tn] = h≥n(D̃) .

Inductive step: Assume the induction hypothesis holds for all j > i, i.e. ∀j > i h≥j(D) ≥
h≥j(D̃). Then since h≥i(D) satisfies the following recursion:

h≥i(D) = PrDi [ti ≥ θi] · EDi [ti | ti ≥ θi] + PrDi [ti < θi] · h≥i+1(D)

where the first term on the right-hand-side is the expected reward when the ith item is accepted,
while the second one is the expected reward when the strategy accepts subsequent item. A similar
recursion holds for h≥i(D̃):

h≥i(D̃) = PrDi [ti ≥ θi] · EDi [ti | ti ≥ θi] + PrDi [ti < θi] · h≥i+1(D)
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We then compare the first and the second term of h≥i(D) and h≥i(D̃) respectively.

h≥i(D)

=PrDi [ti ≥ θi] · EDi [ti | ti ≥ θi] + PrDi [ti < θi] · h≥i+1(D)

≥PrDi [ti ≥ θi] · ED̃i [ti | ti ≥ θi] + (1−PrDi [ti ≥ θi]) · h≥i+1(D̃)

=PrD̃i [ti ≥ θi] · ED̃i [ti | ti ≥ θi] + (PrDi [ti ≥ θi]−PrD̃i [ti ≥ θi]) · ED̃i [ti | ti ≥ θi]

+ (1−PrDi [ti ≥ θi]) · h≥i+1(D̃) (11)

where the first inequality comes from Di � D̃i and the induction hypothesis. Furthermore, from
the optimality of SD̃ on D̃,we must have

ED̃i [ti | ti ≥ θi] ≥ h≥i+1(D̃) ,

Otherwise SD̃ could discard ti unconditionally and achieve higher expected revenue. Therefore,

(11) ≥ PrD̃i [ti ≥ θi] · ED̃i [ti | ti ≥ θi] + (PrDi [ti ≥ θi]−PrD̃i [ti ≥ θi]) · h≥i+1(D̃)

+ (1−PrDi [ti ≥ θi]) · h≥i+1(D̃)

= PrD̃i [ti ≥ θi] · ED̃i [ti | ti ≥ θi] + PrD̃i [ti < θi] · h≥i+1(D̃)

= h≥i(D̃) .

C.4. Prophet Inequality with i.i.d. Unbounded Rewards

In Correa et al. (2019), an ε-approximately optimal strategy for known distribution in the unbounded
support and i.i.d. case has been introduced. Denote the strategy for distributionD asRD. We restate
the algorithm to generate RD is as follows:

Solve differential equation y′ = y(log(y)− 1)− (β − 1) and y(0) = 1
where β ≈ 1/0.745 for i from 1 to n do

εi ← 1− y(i/n)1/(n−1)

end
// online strategy i← 1 while i ≤ n do

if εi < ε
n then

εi ← 0 // Skip when acceptance probability < ε
n

end
if qDi(ti) ≤ εi then

Accept ti and stop
else

i← i+ 1
end

end
Algorithm 2: Approximately Optimal Strategy for Unbounded Support Case

In the following discussion, we will show a new sample complexity bound of achieving ε-
multiplicative approximation in the unbounded optimal stopping game.
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Lemma 35 For arbitrary distributionD, the sample complexity required for Algorithm 2 is at most
Õ( n

ε2
).

The algorithm is to run the strategyR on a dominated empirical distribution Ẽ, which is defined
below:

FẼ(x) = min{1, FE(x)−
√

2FE(x)(1− FE(x)) ln(2Nnδ−1)

N
− 4 ln(2Nnδ−1)

N
} .

In Lemma 5 of Guo et al. (2019), it is shown that with high probability D � Ẽ via a standard
concentration bound.

In the following discussion, denote the stopping time of running strategyR on input t as τ(R, t)

Lemma 36 With high probability over samples for the algorithm,

hRD
(D)− hRẼ

(D) < Prt∼Dn [τ(RẼ, t) < τ(RD, t)] · OPT(D) .

Proof
Since D � Ẽ with high probability, ∀t ∈ [n] the value threshold in RẼ is lower than that of

RD, i.e.
FẼ((FD)−1(1− εt)) > FD((FD)−1(1− εt)) ,

Therefore, fix an input value configuration t, τ(RẼ, t) ≤ τ(RD, t), and the only case where the
revenue obtained from RẼ is smaller than that from RD should be τ(RẼ, t) < τ(RD, t).

Now it suffices to show that

E[hRD
(D)− hRẼ

(D) | τ(RẼ, t) < τ(RD, t)] = O(OPT(D)) .

For all t ∈ [n], define At as the set of input such that RẼ accepts at time t but RD does not accept:
Then we can rewrite the above conditioned expected difference of revenue as follows:

E[hRD
(D)− hRẼ

(D) | τ(RẼ, t) < τ(RD, t)]

= E[hRD
(D)− hRẼ

(D) | t ∈ ∪n−1
t=1 At]

≤ E[hRD
(D) | t ∈ ∪n−1

t=1 At] (hRẼ
(D) > 0)

= max
t∈[n−1]

E[hRD
(D) | t ∈ At]

= max
t∈[n−1]

E[hRD
(D) | RD does not accept before t]

≤ OPT(D)

Lemma 37 When m ≥ Õ(nε−2), with high probability over samples for the algorithm,

Prt∼Dn [τ(RẼ, t) < τ(RD, t)] < O(ε) .
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Proof

Prt∼Dn [τ(RẼ, t) < τ(RD, t)] (12)

≤Prt∼Dn [t ∈
n−1∑
t=1

At]

≤
n−1∑
t=1

Prt∼Dn [εt ≤ qẼ(Xi) ≤ εt +

√
8εt(1− εt) ln(2Nnδ−1)

N
+

7 ln(2Nnδ−1)

N
]

≤
n−1∑
t=1

(

√
8εt(1− εt) ln(2Nnδ−1)

N
+

7 ln(2Nnδ−1)

N
) (13)

=

n−1∑
t=1

√
8εt(1− εt) ln(2Nnδ−1)

N
+O(ε2) , (14)

the second inequality is also shown in Lemma 7 of Guo et al. (2019) to be hold with high probability.
Recall from Algorithm 2 that εt = 1−y( tn)1/(n−1). Now we bound (14) for y( tn) < 1

n or y( tn) > 1
n :

Case 1: y( tn) ≥ 1
n . In this case,

εt = 1− y
1

n−1 ≤ 1− e
log y
n−1 ≤ 1− e−

logn
n−1 ≤ log n

n
,

Therefore when m ≥ nε−2 log n∑
y( t
n

)≥ 1
n

√
εt(1− εt) ln(2Nnδ−1)

N
≤ n ·

√
log n/n · 1 · ln(2Nnδ−1)

N
= O(ε) .

Case 2: y( tn) < 1
n . Since y(x) ∈ [0, 1] when x ∈ [0, 1], we have ∀x ∈ [0, 1],

y′(x) = y(log y − 1)− (β − 1) ≤ −(β − 1) ≤ −0.3414

Therefore
|{t ∈ [n− 1], s.t. y(

t

n
) <

1

n
}| ≤ 1

n
· 1

0.3414
· n ≤ 3 ,

and when N ≥ nε−2 log n,∑
y( t
n

)< 1
n

√
εt(1− εt) ln(2Nnδ−1)

N
≤ 3 ·

√
εt(1− εt)

N
ln(2Nnδ−1) = O(

ε√
n

) .

Combining the two cases, we have

Prt∼Dn [τ(RẼ, t) < τ(RD, t)]

≤ 4
∑

y( t
n

)< 1
n

√
εt(1− εt) ln(2Nnδ−1)

N
+ 4

∑
y( t
n

)≥ 1
n

√
εt(1− εt) ln(2Nnδ−1)

N
+O(ε2)

= O(ε) .
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i← 1 while i ≤ n do
Open the ith box and set Ui ← maxj≤i tj if Ui ≥ σi then

Accept Ui and stop // accept the highest opened box so far
else

i← i+ 1
end

end
if i=n then

Accept Un and stop // if no item has been accepted, accept the box with highest reward
end

Algorithm 3: Frequency Number Computation

Appendix D. Missing Proofs about Pandora’s Problem

D.1. Optimal Hypothesis

Optimal strategy of Pandora’s problem An optimal strategy SD for D, introduced by Weitzman
(1979), opens the boxes sequentially according to its reservation value σi, the threshold of the
maximum realized values below which opening the i + 1th box will give rise to a higher expected
reward. A formal definition of σi is as follows:

σi
def
= inf

σ
(Eti∼Di [(ti − σ)+] = ci) .

we assume without loss of generality that the reserve value is non-increasing with the index of each
box, i.e. σ1 ≥ σ2 ≥ σn.

Also, for convenience we use Ui to denote the maximum value among the first i boxes:

Ui
def
= max

j≤i
tj ,

and let U0
def
= 0.

We restate the optimal strategy SD in Weitzman (1979) as Algorithm 3:

D.2. Discretization and Sample Complexity: Proof of Theorem 12

The proof of Theorem 12 is almost the same as that of Theorem 11. We include it here only for
completeness.

Let Dε/2 be the discretized version of D obtained from rounding the values of each marginal
distribution Di down to the nearest multiples of ε/2. Also, for all type t ∼ D, let tε/2 be its
downward discretization to the multiples of ε/2. For the optimal strategy SD define a coupling
optimal strategy S′D for discretized type tε/2: First re-sample

r ∼
n∏
i=1

Di(t | t ∈ [(ti)ε/2, (ti)ε/2 +
ε

2
)) ,

then perform the original SD on t′ = tε/2 + r and return the accepted item. It is easy to see that
after the re-sample step t′ has the same distribution as t ∼ D. Hence at any step i ∈ [n] and for any
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j ∈ [i], the probability that S′D accepts the jth box of tε/2 ∼ Dε/2 equals to that of SD accepts the
jth box of t ∼ D. We further show that the expected reward of the coupling optimal strategy is an
ε-additive approximation of the original one:

Lemma 38 Under the above definition, we have

ES′D(hS′D(Dε/2)) ≥ hSD
(D)− ε

2
.

Proof Same as the proof of Lemma 33.

Now we go to the proof of Theorem 12. Let Eε/2 be the distribution obtained from rounding
down the values of each dimension of E to the nearest supports of ε

2 . We want to show that, when
N ≥ C · n3

ε3
log( nεδ ), hSEε/2

will become the near-optimal hypothesis of D.

Since Eε/2 is also the empirical distribution of Dε/2, and has finite support with size 1
ε/2 in each

dimension. Because the value value is bounded in [−n, 1], a corollary of Theorem 5 shows that
when N ≥ C · n3

ε3
log( nεδ ) for a large enough constant C,

hSDε/2
(Dε/2) + n

n+ 1
−
hSEε/2

(Dε/2) + n

n+ 1
≤ ε

2(n+ 1)
(15)

Then

hSD
(D) ≤ ES′D(hS′D(Dε/2)) +

ε

2
( Lemma 38)

≤ hSDε/2
(Dε/2) +

ε

2
(Optimality of SDε/2

)

≤ hSEε/2
(Dε/2) + ε ( (15))

It remains to show hSEε/2
(Dε/2) approximates hSEε/2

(D), i.e. the actual expected reward from
the learned hypothesis. We elaborate it as follows:

Lemma 39
hSEε/2

(Dε/2) ≤ hSEε/2
(D) .

Proof Same as the proof of Lemma 34.

With this lemma in hand, we can complete the proof of Theorem 12.

D.3. Strong Monotonicity: Proof of Lemma 31

It suffices to show that for any D � D̃,

hSD̃
(D) ≥ hSD̃

(D̃) .

Lemma 40 For any H ≤ σi+1,

hSD̃
(D̃|Ui = H) ≤ σi+1 −

i∑
j=1

cj
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Proof Since SD̃ is the optimal strategy, hSD̃
(D̃|Ui = H) is monotone in H , so it is only necessary

to show the case when Ui = H = σi+1. But in this case, simply choosing the largest among first i
boxes would give a revenue of σi+1 −

∑i
j=1 cj , so

hSD̃
(D̃|Ui = σi+1) ≤ σi+1 −

i∑
j=1

cj

is true due to the optimality of the mechanism.

We will use backward induction from n to 0 to prove the following statement.

Lemma 41 For any 0 ≤ i ≤ n and any u′i ≤ ui ≤ σi+1,

hSD̃
(D̃|Ui = ui) > hSD̃

(D̃|Ui = u′i) .

Proof This holds trivially when i = n. In the following discussion, assume i < n and the lemma
holds for i+ 1.

If Ui ≤ σi+1, the mechanism will choose to open the next box. In this case, because Di+1 �
˜Di+1, it suffices to show that for any ti+1 ≥ t′i+1,

hSD̃
(D|Ui = ui, Xi+1 = ti+1) ≥ hSD̃

(D̃|Ui = u′i, Xi+1 = t′i+1) .

So it is enough to show that for any ui+1 ≥ u′i+1,

hSD̃
(D|Ui+1 = ui+1) ≥ hSD̃

(D̃|Ui+1 = u′i+1) .

We will consider three cases. In the first case, ui+1 ≥ u′i+1 > σi+2. Then

hSD̃
(D) = ui+1 −

i∑
j=1

ci ≥ u′i+1 −
i∑

j=1

cj = hSD̃
(D̃) .

In the second case, ui+1 > σi+2 ≥ u′i+1, then we can apply Lemma 40 and have

hSD̃
(D̃) ≤ σi+2 −

i+1∑
j=1

ci < ui+1 −
i+1∑
j=1

ck = hSD̃
(D)

In third case, σi+2 ≥ ui+1 ≥ u′i+1, the inequality follows directly from induction assumption.

D.4. Tight Bounds: Proof of Theorem 32

D.4.1. UPPER BOUND

We start by recalling the main obstacle for getting an Õ
(
n
ε2

)
sample complexity upper bound as a

direct corollary of Theorem 17. In Pandora’s problem, an algorithm may pay a cost up to 1 to open
each box and thus, the range of the realized objective is [−n, 1] instead of [0, 1]. In the main text, we
use a simple hypothesis class H, which has a hypothesis hA for each algorithm A, normalizing its
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value to be in [0, 1] by letting it be the realized objective of A plus n and scaled by 1
n+1 . Therefore,

to get an ε-additive approximation in Pandora’s problem, we need a ε
n+1 -additive approximation

w.r.t. the general learning problem H. Therefore, applying Theorem 17 to this hypothesis class H
gives only an Õ

(
n3

ε2

)
sample complexity bound.

Although the objective could be as small as −n in the worst cases, intuitively the chance of
getting such a bad objective shall be negligible if the algorithm is reasonable w.r.t. the underlying
distribution. Indeed, we will reason that it is without loss of generality to consider algorithms that
stop whenever the cost exceeds log 1

ε . As a result, we avoid scaling the value of the hypotheses by
a n+ 1 factor.

In particular, we consider the following notion of rational algorithms w.r.t. a given distribution.

Definition 42 (Rational Algorithms) For any distribution D and any cost vector c, an algorithm
A for the Pandora’s problem is rational w.r.t. D and c if whenever A opens a box i, the expected
increase in the best observed reward is greater than or equal to the cost ci.

The next lemma follows by the definition of the optimal algorithm.

Lemma 43 Suppose A is the optimal algorithm w.r.t. a distribution D̃ and a cost vector c. Then,
A is rational w.r.t. any distribution D that stochastically dominates (including D̃ itself), and c.

We will need a standard Bernstein type concentration bound for submartingales.

Lemma 44 Let S0, S1 · · · , Sn be a submartingale with respect to filtration F0,F1, · · · ,Fk. Sup-
pose S0 = 0, |Si − Si−1| ≤M ,

∑n
i=1 E[(Si − Si−1)2|Fi−1] ≤ L, then for any positive ∆,

Pr[Sn < −∆] ≤ exp

(
∆2

2L+ (2/3)M∆

)
.

Lemma 45 Suppose an algorithm A is rational w.r.t. a distribution D and a cost vector c. Then,
the probability that A pays a cost more than Ω

(
log 1

ε

)
is at most ε.

Proof For 1 ≤ i ≤ n, let Xi be objective after round i; if the algorithm stops before round i, let
Xi = Xi−1. Let X0 = 0. Then, by that A is rational, we have:

E
[
Xi|X1, X2, . . . , Xi−1

]
≥ Xi−1 .

That is, Xi’s form a discrete-time submartingale.
We have −1 ≤ Xi − Xi−1 ≤ 1 by definition. Further, for any round 1 ≤ i ≤ n, Xi −

Xi−1 is upper bounded by the increment in the best observed reward in the round. Therefore,∑
i:Xi≥Xi−1

(Xi−Xi−1) is at most the best observed reward at the end, which is upper bounded by
1. Hence, we have:
n∑
i=1

E
[
(Xi −Xi−1)2

]
≤

n∑
i=1

E
[∣∣Xi −Xi−1

∣∣] (−1 ≤ Xi −Xi−1 ≤ 1)

= E
[ n∑
i=1

(Xi−1 −Xi) + 2
∑

i:Xi≥Xi−1

(Xi −Xi−1)

]

= −E
[
Xn

]
+ 2 · E

[ ∑
i:Xi≥Xi−1

(Xi −Xi−1)

]
≤ 2 . (

∑
i:Xi≥Xi−1

(Xi −Xi−1) ≤ 1)
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Since the cost is at most −Xn by definition, it suffices to upper bound the probability that
Xn ≤ −Ω

(
log 1

ε

)
. Then, the lemma follows by Bernstein’s inequality for submartingales.

In the following arguments, consider a hypothesis class H, which has a hypothesis for any
algorithm A such that its value equals the objective of A, without scaling. Further, fixed the cost
vector c, let hD be the hypothesis that corresponds to the optimal algorithm for D and c. Finally, let
h̄D be the hypothesis that corresponds to a truncated version of the optimal algorithm for D, which
stops whenever the cost exceeds Ω

(
log 1

ε

)
.

Lemma 46 Fixed any cost vector c. For any D � D̃, the truncated version of optimal algorithm
w.r.t. D̃ gets an expected value greater than or equal to that of the untruncated version minus ε:

h̄D̃

(
D
)
≥ hD̃

(
D
)
− ε .

Proof By Lemma 43, hD̃ is rational w.r.t. D and c. Hence, by Lemma 45, the probability that
the truncated version h̄D̃ and the original version hD̃ give different outcomes is at most ε. Finally,
whenever they are different, hD̃ gets at most 1 extra reward in subsequent rounds. Putting together
proves the lemma.

We now prove the stated sample complexity upper bound.
Proof [Proof of Theorem 32 (Upper Bound)] We show that the truncated version of PERM gets
the stated sample complexity bound. We prove an O(ε)-additive approximation with the under-
standing that changing ε by a constant factor does not affect the stated sample complexity bound
asymptotically.

It follows from a sequence of inequalities below, similar to those in Section 4:

h̄E

(
D
)
≥ h̄E

(
D̂
)
−O

(
log 1

ε

)
· δ
(
D̂,D

)
(h̄E bounded in [−O

(
log 1

ε

)
, 1])

≥ hE

(
D̂
)
− ε−O

(
log 1

ε

)
· δ
(
D̂,D

)
(Lemma 46)

≥ hE

(
E
)
− ε−O

(
log 1

ε

)
· δ
(
D̂,D

)
(strong monotonicity, D̂ � E)

= OPT
(
E
)
− ε−O

(
log 1

ε

)
· δ
(
D̂,D

)
(definition of OPT

(
E
)
)

≥ OPT
(
Ď
)
− ε−O

(
log 1

ε

)
· δ
(
D̂,D

)
(weak monotonicity, E � Ď)

≥ h̄D

(
Ď
)
− ε−O

(
log 1

ε

)
· δ
(
D̂,D

)
(definition of OPT

(
Ď
)
)

≥ h̄D

(
D
)
− ε−O

(
log 1

ε

)
·
(
δ
(
D̂,D

)
+ δ
(
Ď,D

))
(h̄D bounded in [−O

(
log 1

ε

)
, 1])

≥ hD

(
D
)
− 2ε−O

(
log 1

ε

)
·
(
δ
(
D̂,D

)
+ δ
(
Ď,D

))
(Lemma 46)

= OPT
(
D
)
− 2ε−O

(
log 1

ε

)
·
(
δ
(
D̂,D

)
+ δ
(
Ď,D

))
. (definition of OPT

(
D
)
)

By Lemma 2, Lemma 25 and Lemma 26, we get an O(ε)-additive approximation.

D.4.2. LOWER BOUND

Consider n boxes with cost 1
n each. Consider 2n potential instances, in which the reward distribution

of each box is either D+ or D−, defined by the following probability mass functions respectively:

fD+(x) =

{
1+ε
n x = 1 ;

1− 1+ε
n x = 0 .

fD−(x) =

{
1−ε
n x = 1 ;

1− 1−ε
n x = 0 .
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We will refer to each of these 2n instances by the distribution D, since the cost vector c is fixed.
The next lemma follows by the above definition and and simple calculations which we omit.

Lemma 47 The squared Hellinger distance between D+ and D− is bounded by:

H2
(
D+, D−

)
= O

(
n

ε2

)
.

To distinguish the algorithm for Pandora’s problem and the learning algorithm, we will refer to
the former as a hypothesis.

Since the rewards are either 0 or 1, any hypothesis is characterized by an ordered subsequence
i1, i2, . . . , ik of the boxes such that it opens the boxes one by one until it gets a reward 1; if all k
rewards are 0, it stops and leaves the remaining n − k boxes unopened. The optimal hypothesis
chooses a box into the subsequence if and only if its distribution equals D+ (order is irrelevant
since they are identical). Therefore, for any instance D defined above, any hypothesis h, and any
box 1 ≤ i ≤ n, we say that h makes a mistake on box i w.r.t. D if either Di = D+ but i isn’t
in the subsequence chosen by h, or Di = D− but i is in the subsequence. We simply say that the
algorithm makes a mistake on box i w.r.t D if it selects a hypothesis that makes such a mistake.
Whether a given learning algorithm makes a mistake might be a random event if it is randomized.

In the rest of the argument, we first argue that the additive approximation error scales linearly
with number of mistakes made by the chosen hypothesis. Then, we argue through a sequence of
lemmas that for any algorithm that takes less than c · n

ε2
samples for some sufficiently small constant

c > 0, there is an instance D for which it picks a hypothesis that makes Ω
(
n
)

mistakes with at least
constant probability.

Lemma 48 For any instance D, if a hypothesis h makes k mistakes, then we have:

h
(
D
)
≤ OPT

(
D
)
− Ω

(
kε

n

)
.

Proof Suppose the instance have n+ and n− boxes with reward distributions equal to D+ and D−

respectively. Further suppose h makes k+ and k− mistakes on the two types of boxes. Hence, h
includes n+ − k+ boxes with distributions equal to D+ and k− boxes with distributions equal to
D− in its subsequence.

The expected reward minus cost for opening a box with distribution D+ is ε
n ; opening a box

with distribution D− gives − ε
n . Further, the probability of opening the i-th box in the sequence is

equal to the probability that the first i− 1 rewards are all 0.
Hence, the optimal is:

OPT
(
D
)

=
ε

n

(
1 +

(
1− 1 + ε

n

)
+ · · ·+

(
1− 1 + ε

n

)n+−1)
.

The expected value of the hypothesis is at most (when it opens the n+ − k+ boxes with reward
distributions equal to D+ first):

h
(
D
)
≤ ε

n

( n+−k+∑
i=1

(
1− 1 + ε

n

)i−1

−
(

1− 1 + ε

n

)n+−k+ k−∑
i=1

(
1− 1− ε

n

)i−1)
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Therefore, we have:

OPT
(
D
)
− h
(
D
)
≥ ε

n

(
1− 1 + ε

n

)n+−k+( k+∑
i=1

(
1− 1 + ε

n

)i−1

+
k−∑
i=1

(
1− 1− ε

n

)i−1)

≥ ε

n

( k+∑
i=1

(
1− 1 + ε

n

)n
+

k−∑
i=1

(
1− 1 + ε

n

)n)

=
εk

n

(
1− 1 + ε

n

)n

≥ εk

n
exp

(
− 2− 2ε

)
.

The last inequality is due to 1− x > e−2x for 0 < x < 1
2 .

Lemma 49 For any algorithm A, any box 1 ≤ i ≤ n, and any two neighboring instances D+ and
D− that differ only in the i-th coordinate, we have:

Pr
[
A makes a mistake on box i w.r.t. D+

]
+ Pr

[
A makes a mistake on box i w.r.t. D−

]
≥ Ω(1) .

Proof By definition, any hypothesis h makes a mistake on box i w.r.t. either D+ or D−. Let H+

andH− denote the two subsets of hypotheses respectively. On the one hand, we have:

Pr
[
A picks h ∈ H+ given samples from D+

]
+Pr

[
A picks h ∈ H− given samples from D+

]
= 1 .

On the other hand, with less than c · n
ε2

samples for some sufficiently constant c > 0, and by
Lemma 47, we have:

Pr
[
A picks h ∈ H− given samples from D+

]
≥Pr

[
A picks h ∈ H− given samples from D−

]
−O(1) ,

for a sufficiently small constant inside the big-O notation. Putting together proves the lemma.

As a direct corollary, we have the following via a simple counting argument.

Lemma 50 There is an instance D for which the algorithm makes Ω(n) mistakes in expectation.

Proof By Lemma 49, if D is chosen from the 2n possible instances uniformly at random, the
algorithm makes a mistake on each box i with constant probability. So the lemma follows.

Proof [Proof of Theorem 32 (Lower Bound)] Consider the instance in Lemma 50. Suppose the
algorithm makes αn mistakes in expectation where α > 0 is a constant. Then, by a standard
probability argument, the probability that it makes at least αn

2 mistakes is at least 1
2 . Hence, by

Lemma 48, the expected additive error is at least Ω(ε).
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Appendix E. Classification Problems: A Preliminary Discussion

In classification problems, there is a special data dimension which corresponds to the labels; the
rest of the data dimensions correspond to the features. In particular, it is crucial that the labels are
correlated with the features. Therefore, the assumption of independent data dimensions fail to hold.
Nevertheless, below we present a straightforward extension of Theorem 5 under the assumption
that the distribution of features conditioned on any given label is a product distribution. Although
this preliminary result still relies on too strong an assumption to be useful in natural classification
problems, we hope that it will serve as a stepping stone for follow-up works. See Section 5 for some
related research directions.

The rest of the section follows the notations in classification problems and denotes each data
point as a feature-label pair (x, y), where x is the feature vector and y is the label. We assume that
there are ` labels [`] = {1, 2, . . . , `}. Let T =

∏n
i=1 Ti denote an n-dimensional feature domain.

Hence, the data domain under the model in Section 2 is T× [`]. Let DY denote the distribution of
labels. Further, for any label y ∈ [`], let DX|y denote a product distribution of features conditioned
on having label y. For simplicity of notation, let DX denote the collection of conditional product
feature distributions, and write D = DX ◦ DY be the joint distribution of feature-label pairs. By
definition, the probability mass function of the joint distribution is:

fD(x, y) = fDY (y) · fDX|y(x) . (16)

We say that such a distribution has product conditional feature distributions.

Generalized Product Empirical Distribution. We now generalize the definition of product em-
pirical distribution to classification problems that have product conditional feature distributions. Let
the empirical distribution of labels EY be the uniform distribution over sample labels. Further, for
any label y ∈ [`], let EX|y be the product empirical distribution w.r.t. the samples with label y.
Concretely, for any i ∈ [n], let the i-th coordinate of EX|y be a uniform distribution over the i-th
coordinate of the samples with label y. As before, let EX denote the collection of product empirical
feature distributions conditioned on the labels. Finally, let E = EX ◦ EY .

By definition, the probability mass function of the joint distribution is:

fE(x, y) = fEY (y) · fEX|y(x) . (17)

Finally, we define the product empirical risk minimizer (PERM) to be the best hypothesis w.r.t.
E. Here, note that we seek to minimize the objective.

Theorem 51 Let D = DX ◦DY be any distribution with product conditional feature distributions,
over T× [`] such that |Ti| ≤ k for any 1 ≤ i ≤ n. For a sufficiently large constant C > 0, suppose
the number of samples is at least:

C · nk`
ε2

log

(
`

δ

)
Then, with probability at least 1− δ, for any h : T× [`] 7→ [0, 1], we have:∣∣h(D)− h(E)

∣∣ ≤ ε .
In particular, the PERM is an ε-additive approximation.
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Proof Similar to the proof of Theorem 5, we rely on Lemma 1. It suffices to show that:

δ(D,E) ≤ ε .

To do so, we first decompose it into two parts, the error due to the estimation of the label
distribution, and that due to the conditional feature distributions. By Eqn. (16) and Eqn. (17):

δ(D,E) =
1

2

∑
y∈[`]

∑
x∈T

∣∣fDY (y) · fDX|y(x)− fEy(y) · fEX|y(x)
∣∣

≤ 1

2

∑
y∈[`]

∑
x∈T

(∣∣fDy(y)− fEy(y)
∣∣ · fDX|y(x) + fEy(y) ·

∣∣fDX|y(x)− fEX|y(x)
∣∣)

= δ(Dy, Ey) +
∑
y∈[`]

fEy(y) · δ(DX|y,EX|y) .

By Lemma 6 and the stated number of samples, the squared Hellinger distance between the
label distributions Dy and Ey is less than ε2

8 . Further by the relation between the total variation and
Hellinger distances, i.e., Lemma 2, we get that the first term on the RHS above is at most ε2 .

It remains to bound the second term, i.e., the error due to the estimation of the conditional feature
distributions. Fix any label y ∈ [`]. By definition, the number of samples with label y is fEY (y)N .
Therefore, by Lemma 6 and the stated number of samples, the squared Hellinger distance between
the feature distributions conditioned on y is at most:

H2(DX|y,EX|y) ≤
ε2

8`fEY (y)
.

Further by Lemma 2, their total variation distance is at most:

δ(DX|y,EX|y) ≤
ε

2
· 1√

`fEY (y)
.

Hence, the second term is at most:

∑
y∈[`]

fEY (y) · δ(DX|y,EX|y) ≤
∑
y∈[`]

ε

2
·
√
fEY (y)

`

≤ ε

2
.

The second inequality follows by
∑

y∈[`] fEY (y) = 1 and the Cauchy-Schwartz inequality.
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