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1. Background
One of the most classical topics in learning theory is online learning, wherein a learning algo-
rithm observes a stream of data points Xt from a space X , and for each time t ∈ N it makes
a prediction Ŷt ∈ {0, 1}, after which it observes the target label Yt ∈ {0, 1}. The prediction
Ŷt may depend on the past observations ((Xs, Ys), s < t) and Xt, but nothing else: that is,
Ŷt = ft(X1:(t−1), Y1:(t−1), Xt) for a (possibly randomized) function ft. The objective is to make
few mistakes: that is, few times t for which Ŷt 6= Yt. In particular, we are most interested in achiev-
ing a number of mistakes among {(Xt, Yt)}t≤T growing sublinearly in T : that is, o(T ) mistakes.
In various versions of this problem, the sequences X := {Xt}t∈N and Y := {Yt}t∈N can be either
deterministic or random, and either oblivious or adaptive. Here we focus on the special case where
Yt = f?(Xt) for a fixed unknown target concept f? : X → {0, 1}, and where the sequence X may
be random and is independent of any internal randomness in the learning algorithm ft.

Since it is certainly not possible to guarantee few mistakes for all pairs (X, f?), some restrictions
are necessary, and in this respect theories of online learning may be grouped into three categories:
(1) those which allow arbitrary sequences X but restrict the allowed target concepts f? (e.g., Lit-
tlestone, 1988), (2) those which restrict both X and f? (e.g., Haussler, Littlestone, and Warmuth,
1994), and (3) those which restrict the sequence X of points but allow arbitrary target concepts
f? (e.g., Stone, 1977). In particular, a classic result in category (1) is that there exists a learning
algorithm guaranteeing a bounded number of mistakes for every sequence X if and only if the set
of allowed target concepts f? has a finite Littlestone dimension (Littlestone, 1988) (see Ben-David,
Pál, and Shalev-Shwartz, 2009, for the definition of Littlestone dimension). The works falling in
category (2) vary widely in the types of restrictions they impose and the resulting guarantees that
are possible. In particular, note that by introducing restrictions on the (possibly random) sequence
X, we can, to some extent, express the classic theory of statistical learning. For instance, there
exist learning algorithms guaranteeing O(log(T )) mistakes (in expectation) for every X that is an
i.i.d. process on X when the set of allowed target concepts f? has finite VC dimension (Haussler,
Littlestone, and Warmuth, 1994). Other more-involved restrictions on the pair (X, f?) have also
been considered (e.g., Ryabko, 2006; Urner and Ben-David, 2013; Bousquet, Hanneke, Moran, van
Handel, and Yehudayoff, 2021).

The subject of our present discussion is category (3): that is, unrestricted target concepts f?,
but with restrictions on the sequence X. There has also been significant work in this category. As
a simple example, there exist learning algorithms guaranteeing o(T ) mistakes (almost surely) for
every target concept f? and every X that is an i.i.d. process on X (Stone, 1977; Devroye, Györfi,
and Lugosi, 1996; Hanneke, 2021; Hanneke, Kontorovich, Sabato, and Weiss, 2021) (see Remark 4
for relevant technical conditions on X ). Indeed, for X = Rd, this even holds (in expectation) for
the simple 1-nearest neighbor algorithm (Cover and Hart, 1967; Stone, 1977; Devroye, Györfi, and
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Lugosi, 1996). There is also an extensive literature considering relaxations of the i.i.d. assumption,
such as allowing X to be stationary ergodic (Morvai, Yakowitz, and Györfi, 1996; Györfi, Lugosi,
and Morvai, 1999; Györfi and Lugosi, 2002), or generally to satisfy a law of large numbers (Morvai,
Kulkarni, and Nobel, 1999; Steinwart, Hush, and Scovel, 2009), while maintaining this guarantee
of o(T ) mistakes (either in-expectation or almost surely).

The recent work of (Hanneke, 2021) unifies and weakens these various restrictions on X, aiming
(in part) to study the fundamental limits of this category. The following definition provides a formal
criterion for online learning in this setting.

Definition 1 For a (possibly random) sequence X = {Xt}t∈N, an online learning algorithm
ft : X t−1×{0, 1}t−1×X → {0, 1} (possibly randomized, independent of X) is weakly universally
consistent under X if, for every (measurable) f? : X → {0, 1},

E
[∑T

t=1 1[ft(X1:(t−1), f
?(X1:(t−1)), Xt) 6= f?(Xt)]

]
= o(T ),

and is strongly universally consistent under X if, for every (measurable) f? : X → {0, 1},∑T
t=1 1[ft(X1:(t−1), f

?(X1:(t−1)), Xt) 6= f?(Xt)] = o(T ) (a.s.).

Definition 2 For a (possibly random) sequence X, we say (weak/strong) universal online learning
is possible under X if there exists an online learning algorithm that is (weakly/strongly) universally
consistent under X.

It is clear that not every X admits universal online learning: for instance, for X = N, universal
online learning is not possible under X = {1, 2, 3, . . .}. Hence, to approach the goal of achieving the
fundamental limits of online learning in this setting, (Hanneke, 2021) introduces a style of reasoning
referred to as the optimist’s decision theory, described abstractly as follows.

The Optimist’s Decision Theory: Supposing we are tasked with achieving a given objective
O in some scenario, then already we have implicitly committed to the assumption that achieving
objective O is at least possible in that scenario: the optimist’s assumption. Since we must commit
to this assumption to even begin designing a strategy for achieving objective O, we may rely on
this assumption in our strategy for achieving the objective. We are then most interested in strategies
guaranteed to achieve objective O without any additional assumptions. Such a strategy is universal
in the most-general sense possible, since the optimist’s assumption is necessary. It will achieve
the objective O in all scenarios where it is possible to do so. Moreover, such strategies have the
satisfying property that, if ever they fail to achieve the objective, we may rest assured that no other
strategy could have succeeded, so that nothing was lost.

Based on the above reasoning, an online learning algorithm that is universally consistent for
every X that admits universal online learning is called optimistically universal:

Definition 3 An online learning algorithm is optimistically (weakly/strongly) universal if it is
(weakly/strongly) universally consistent under every X such that (weak/strong) universal online
learning is possible under X.

In this context, we present two fundamental questions about online learning, originally posed
in (Hanneke, 2021). The first asks whether there exists an optimistically universal online learning
algorithm, while the second asks whether there is a basic property of X that determines whether
universal online learning is possible, proposing a particular candidate condition for concreteness.
We now turn to these two questions in detail.
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2. Open Problem 1: Optimistically Universal Online Learning
The first open problem concerns the existence of optimistically universal online learning algorithms.

Open Problem 1 Does there exist an optimistically universal online learning algorithm? (in
either the weak or strong sense)

Prize: I am offering $5,000 USD for a solution to this problem (be it positive or negative). If the
weak/strong variants are solved in separate works, whichever is solved first will receive the prize.

Remark 4 (Remark on generality) The general setting considered in (Hanneke, 2021) allows
that X is any nonempty space equipped with a separable metrizable topology T , and the mea-
surable sets are specified by the Borel σ-algebra generated by T . However, I am willing to award
the prizes for any solution general enough to address the case X = Rd with the Euclidean topology.

Notes: The answer to Open Problem 1 is known to be positive in the special case of countable X ,
or for general X but with the restriction to deterministic sequences X (Hanneke, 2021). Indeed, as
discussed below, in both cases a simple memorization-based algorithm suffices. However, for un-
countable X and general (random) sequences X, there are simple cases where memorization fails:
for instance, X as any non-atomic i.i.d. process. Thus, the case that remains open concerns uncount-
able X and general (random) sequences X. Also note that it is conceivable that an optimistically
strongly universal online learning algorithm is not necessarily also optimistically weakly universal,
since the latter requires universal consistency under a strictly larger family of processes (see below).
Nevertheless, I conjecture that the answers to the weak/strong variants will be the same.

3. Open Problem 2: When Is Universal Online Learning Possible?
The second open problem concerns characterizing the family of random sequences X under which
universal online learning is possible. In addition to being intrinsically interesting, this would likely
also be an extremely helpful step toward resolving Open Problem 1. To make the problem concrete,
(Hanneke, 2021) proposes the following two conditions.

Definition 5
• Let Cw denote the family of all (possibly random) sequences X = {Xt}t∈N such that every disjoint
sequence {Ai}i∈N of measurable sets satisfies E[|{i ∈ N : X1:T ∩Ai 6= ∅}|] = o(T ).

• Let Cs denote the family of all (possibly random) sequences X = {Xt}t∈N such that every disjoint
sequence {Ai}i∈N of measurable sets satisfies |{i ∈ N : X1:T ∩Ai 6= ∅}| = o(T ) (a.s.).

We then have the following open problem.

Open Problem 2
• Is Cw equal to the set of all X such that weak universal online learning is possible under X?
• Is Cs equal to the set of all X such that strong universal online learning is possible under X?

Prize: I am offering $1,000 USD for a solution to either of these questions (be it positive or
negative). If the weak/strong variants are solved in separate works, whichever is solved first will
receive the prize. Additionally, I note that Remark 4 also applies to this problem.
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Notes: The work (Hanneke, 2021) establishes that X ∈ Cw or X ∈ Cs are necessary for weak or
strong, respectively, universal online learning to be possible under X. Moreover, in the special case
of countable X , or for general X but with the restriction to deterministic sequences X, (Hanneke,
2021) also shows that X ∈ Cw or X ∈ Cs are sufficient for weak or strong, respectively, universal
online learning to be possible under X. That is, both questions in Open Problem 2 have positive
answers for countable X , or for general X with the restriction to deterministic X. Indeed, it is an
easy exercise to verify that the simple memorization algorithm is weakly or strongly universally
consistent in these cases, when X ∈ Cw or X ∈ Cs, respectively. Thus, the case that remains open
in Open Problem 2 concerns whether X ∈ Cw or X ∈ Cs are sufficient conditions for weak or
strong, respectively, universal online learning to be possible under X for uncountable X and general
(random) sequences X. The route to proving such a result (positively) would be to construct an
online learning algorithm and show that it is weakly or strongly universally consistent under every
X in Cw or Cs, respectively. Note that, unlike Open Problem 1, an algorithm sufficient to positively
resolve Open Problem 2 may even depend on the distribution of X.

(Hanneke, 2021) also discusses relations between the sets involved in Open Problem 2. It is clear
that Cs ⊆ Cw. Also, for any X, if strong universal online learning is possible then weak universal
online learning must also be possible. However, supposing X is infinite, (Hanneke, 2021) gives an
example X in Cw \ Cs, so that the two sets are not equivalent. Moreover, (Hanneke, 2021) shows
that weak universal online learning is possible under this X, but strong universal online learning is
not possible under this X. Thus, the sets of (random) sequences X under which universal online
learning is possible in the weak and strong senses are not equal.

4. Connections to Related Settings
The work of (Hanneke, 2021) considers three learning settings: inductive, self-adaptive, and online.
The inductive setting is most-familiar to the statistical learning literature, where a learning algorithm
observes a finite training set and then produces a fixed hypothesis that is then used for all future
predictions. The self-adaptive setting differs only in that it allows the learner to update its hypothesis
based on the unlabeled data it has made predictions on so far. The interested reader is referred to that
work for the precise definitions. (Hanneke, 2021) proves that there do exist optimistically universal
self-adaptive learning algorithms, meaning that they are universally consistent for all X such that
universal self-adaptive learning is possible under X (both weak and strong). On the other hand,
(Hanneke, 2021) also proves that optimistically universal inductive learning is impossible (both
weak and strong). Moreover, (Hanneke, 2021) provides a concise characterization of the family
of all (possibly random) sequences X such that (weak/strong) universal (inductive/self-adaptive)
learning is possible under X.

That work also makes connections between self-adaptive learning and online learning, provid-
ing a technique to convert any self-adaptive learning algorithm into an online learning algorithm,
while preserving consistency. In particular, applying this conversion to the optimistically univer-
sal self-adaptive learning algorithm provides an online learning algorithm that is strongly univer-
sally consistent under every X under which universal self-adaptive learning is possible. However,
(Hanneke, 2021) also shows that for any infinite X , there exist sequences X (even deterministic)
for which universal online learning is possible but universal self-adaptive learning is not possible.
Thus, new techniques are needed to understand the sufficient conditions for universal online learning
(Open Problem 2), and to approach the question of optimistically universal online learning (Open
Problem 1).
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