
Proceedings of Machine Learning Research vol 134:1–43, 2021 34th Annual Conference on Learning Theory

Shape Matters: Understanding the Implicit Bias of the Noise
Covariance

Jeff Z. HaoChen JHAOCHEN@STANFORD.EDU
Stanford University

Colin Wei COLINWEI@STANFORD.EDU
Stanford University

Jason D. Lee JASONLEE@PRINCETON.EDU
Princeton University

Tengyu Ma TENGYUMA@STANFORD.EDU

Stanford University

Editors: Mikhail Belkin and Samory Kpotufe

Abstract
The noise in stochastic gradient descent (SGD) provides a crucial implicit regularization effect for
training overparameterized models. Prior theoretical work largely focuses on spherical Gaussian
noise, whereas empirical studies demonstrate the phenomenon that parameter-dependent noise —
induced by mini-batches or label perturbation — is far more effective than Gaussian noise. This
paper theoretically characterizes this phenomenon on a quadratically-parameterized model intro-
duced by Vaskevicius et al. and Woodworth et al. We show that in an over-parameterized setting,
SGD with label noise recovers the sparse ground-truth with an arbitrary initialization, whereas SGD
with Gaussian noise or gradient descent overfits to dense solutions with large norms. Our analysis
reveals that parameter-dependent noise introduces a bias towards local minima with smaller noise
variance, whereas spherical Gaussian noise does not.
Keywords: Implicit regularization, implicit bias, over-parameterization.

1. Introduction

One central mystery of deep artificial neural networks is their capability to generalize when having
far more learnable parameters than training examples Zhang et al. (2016). To add to the mystery,
deep nets can also obtain reasonable performance in the absence of any explicit regularization. This
has motivated recent work to study the regularization effect due to the optimization (rather than
objective function), also known as implicit bias or implicit regularization Gunasekar et al. (2017,
2018a,b); Soudry et al. (2018); Arora et al. (2019). The implicit bias is induced by and depends on
many factors, such as learning rate and batch size Smith et al. (2017); Goyal et al. (2017); Keskar
et al. (2016); Li et al. (2019b); Hoffer et al. (2017), initialization and momentum Sutskever et al.
(2013), adaptive stepsize Kingma and Ba (2014); Neyshabur et al. (2015); Wilson et al. (2017),
batch normalization Ioffe and Szegedy (2015) and dropout Srivastava et al. (2014).

Among these sources of implicit regularization, the SGD noise is believed to be a vital one (Le-
Cun et al., 2012; Keskar et al., 2016). Previous theoretical works (e.g., Li et al. (2019b)) have
studied the implicit regularization effect from the scale of the noise, which is directly influenced by
learning rate and batch size. However, people have empirically observed that the shape of the noise
also has a strong (if not stronger) implicit bias. For example, prior works show that mini-batch
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Figure 1: The effect of noise covariance in neural network and quadratically-parameterized
models. We demonstrate that label noise induces a stronger regularization effect than
Gaussian noise. In both real and synthetic data, adding label noise to large batch (or full
batch) SGD updates can recover small-batch generalization performance, whereas adding
Gaussian noise with optimally-tuned variance σ2 cannot. Left: Training and validation
errors on CIFAR100 for VGG19. Adding Gaussian noise to large batch updates gives
little improvement (around 2%), whereas adding label noise recovers the small-batch
baseline (around 15% improvement). Right: Training and validation error on a 100-
dimensional quadratically-parameterized model defined in Section 2. Similar to deep
models, label noise or mini-batch noise leads to better solutions than optimally-tuned
spherical Gaussian noise. Moreover, Gaussian noise causes the parameter to diverge
after sufficient mixing, as suggested by our negative result for Langevin dynamics (The-
orem 2). More details are in Section A.

noise or label noise (label smoothing) – noise in the parameter updates from the perturbation of
labels in training – is far more effective than adding spherical Gaussian noise (e.g., see (Shallue
et al., 2018, Section 4.6) and Szegedy et al. (2016); Wen et al. (2019)). We also confirm this phe-
nomenon in Figure 1 (left). Thus, understanding the implicit bias of the noise shape is crucial. Such
an understanding may also apply to distributed training because synthetically adding noise may help
generalization if parallelism reduces the amount of mini-batch noise (Shallue et al., 2018).

In this paper, we theoretically study the effect of the shape of the noise, demonstrating that it can
provably determine generalization performance at convergence. Our analysis is based on a nonlinear
quadratically-parameterized model introduced by (Woodworth et al., 2020; Vaskevicius et al., 2019),
which is rich enough to exhibit similar empirical phenomena as deep networks. Indeed, Figure 1
(right) empirically shows that SGD with mini-batch noise or label noise can generalize with arbitrary
initialization without explicit regularization, whereas GD or SGD with spherical Gaussian noise
cannot. We aim to analyze the implicit bias of label noise and Gaussian noise in the quadratically-
parametrized model and explain these empirical observations.

We choose to study label noise because it can replicate the regularization effects of minibatch
noise in both real and synthetic data (Figure 1), and has been used to regularize large-batch parallel
training (Shallue et al., 2018). Moreover, label noise is less sensitive to the initialization and the
optimization history than mini-batch noise, which makes it more amenable to theoretical analysis.
For example, in an extreme case, if we happen to reach or initialize at a solution that overfits the
data exactly, then mini-batch SGD will stay there forever because both the gradient and the noise
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vanish (Vaswani et al., 2019). In contrast, label noise will not accidentally vanish, so the analysis is
more tractable. Understanding label noise may lead to understanding mini-batch noise or replacing
it with other more robust choices.

In our setting, we prove that with a proper learning rate schedule, SGD with label noise recovers
a sparse ground-truth classifier and generalizes well, whereas SGD with spherical Gaussian noise
generalizes poorly. Concretely, SGD with label noise biases the parameter towards the low sparsity
regime and exactly recovers the sparse ground-truth, even when the initialization is arbitrarily large
(Theorem 1). In this same regime, noise-free gradient descent quickly overfits because it trains in
the NTK regime (Jacot et al., 2018; Chizat and Bach, 2018). Adding Gaussian noise is insufficient
to fix this, as this algorithm would end up sampling from a Gibbs distribution with infinite partition
function and fail to converge to the ground-truth (Theorem 2). In summary, with not too small learn-
ing rate or noise level, label noise suffices to bias the parameter towards sparse solutions without
relying on a small initialization, whereas Gaussian noise cannot.

Our analysis suggests that the fundamental difference between label or mini-batch noise and
Gaussian noise is that the former is parameter-dependent, and therefore introduces stronger biases
than the latter. The conceptual message highlighted by our analysis is that there are two possible
implicit biases induced by the noise: 1. prior work (Keskar et al., 2016) shows that by escaping
sharp local minima, noisy gradient descent biases the parameter towards more robust solutions (i.e,
solutions with low curvature, or “flat” minima), and 2. when the noise covariance varies across
the parameter space, there is another (potentially stronger) implicit bias effect toward parameters
where the noise covariance is smaller. Label or mini-batch noise benefits from both biases, whereas
Gaussian noise is independent of the parameter, so it benefits from the first bias but not the second.
For the quadratically-parameterized model, this first bias is not sufficient for finding solutions with
good generalization because there is a large set of overfitting global minima of the training loss with
reasonable curvature. In contrast, the covariance of label noise is proportional to the scale of the
parameter, inducing a much stronger bias towards low norm solutions which generalize well.

1.1. Additional Related Works

There has been a line of work empirically studying how noise influences generalization. Keskar
et al. (2016) argued that large batch training will converge to “sharp” local minima which do not
generalize well. Hoffer et al. (2017) argued that large batch size doesn’t hurt generalization much if
training goes on long enough and additional noise is added with a larger learning rate. Goyal et al.
(2017) and Shallue et al. (2018) showed large batch training with proper learning rate and additional
label noise can achieve similar generalization as small batch. Wei and Schwab (2019); Chaudhari
and Soatto (2018); Yaida (2018) (heuristically) suggested that SGD may encourage solutions with
smaller noise covariance. Martin and Mahoney (2018) used random matrix theory to analyze im-
plicit regularization effects of noises. The noise induced by dropout has been shown to change the
expected training objective, hence provides a regularization effect (Mianjy et al., 2018; Mianjy and
Arora, 2019; Wei et al., 2020; Arora et al., 2020). Wei et al. (2020) showed that there also exists an
implicit bias induced by dropout noise.

Several previous works have theoretically studied generalization bounds and training dynam-
ics of SGD with state-dependent noises. Hardt et al. (2015) derived stability-based generalization
bounds for mini-batch SGD based on training speed. Cheng et al. (2019) proved that SGD with
state-dependent noises has iterate distribution close to the corresponding continuous stochastic dif-
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ferential equation with the same noise covariance. Meng et al. (2020); Xie et al. (2020) showed that
SGD with state-dependent noises escapes local minimum faster than SGD with spherical Gaussian
noise .

Most closely related to our work, Blanc et al. (2019) and Zhu et al. (2019) also theoretically
studied implicit regularization effects that arise due to shape, rather than scale, of the noise. How-
ever, they only considered the local effect of the noise near some local minimum of the loss. In
contrast, our work analyzes the global effect of noise. For a more detailed comparison with (Blanc
et al., 2019), see Section 2.2.

Woodworth et al. (2020); Vaskevicius et al. (2019) analyze the effect of initialization for the
same model that we study, showing that large initialization trains in the NTK regime (shown to
generalize poorly (Wei et al., 2019; Ghorbani et al., 2019)) whereas small initialization does not. We
show that when the initialization is large, adding noise helps avoid the NTK regime (Li and Liang,
2018; Jacot et al., 2018; Du et al., 2018b; Woodworth et al., 2020) without explicit regularization.

Langevin dynamics or the closely-related stochastic gradient descent with spherical Gaussian
noise has been studied in previous theoretical works (Welling and Teh, 2011; Teh et al., 2016;
Raginsky et al., 2017; Zhang et al., 2017; Mou et al., 2017; Roberts et al., 1996; Ge et al., 2015;
Negrea et al., 2019; Neelakantan et al., 2015; Mou et al., 2018). In particular, Raginsky et al. (2017)
and Li et al. (2019a) provided generalization bounds for SGLD using algorithmic stability.

Several works have theoretically analyzed other types of implicit biases in simplified settings (Soudry
et al., 2018; Gunasekar et al., 2018b; Ji and Telgarsky, 2018a). Gunasekar et al. (2017) and Li et al.
(2017) showed that gradient descent finds low rank solutions in matrix completion. Gradient de-
scent has also been shown to maximize the margin in linear and homogeneous models (Soudry
et al., 2018; Ji and Telgarsky, 2018b; Nacson et al., 2018; Lyu and Li, 2019; Gunasekar et al.,
2018a; Nacson et al., 2019; Poggio et al., 2017). Du et al. (2018a) showed that gradient descent
implicitly balances the layers of deep homogeneous models. Other works showed that it may not
always be possible to characterize implicit biases in terms of norm (Arora et al., 2019; Razin and
Cohen, 2020). Gissin et al. (2019) showed that gradient descent dynamics exhibit different implicit
biases based on depth. Li et al. (2019b) studied the implicit regularization effect of a large initial
learning rate.

Recent works also suggest that explicit regularization may mitigate the lack of implicit regu-
larization, especially in noisy or imbalanced settings. For example, Wei and Ma (2019) show that
Lipschitz-ness regularization improves the performance in clean or noisy label setting when the
learning rate is sub-optimal. Cao et al. (2019) show that additional regularization improves the gen-
eralization performance of rare classes. Nakkiran et al. (2020) show that explicit regularization can
mitigate the double descent phenomenon in linear regression, which is caused by the fact that the
implicit regularization of gradient descent with zero initialization is insufficient for the regime when
the number of parameters is close to the number of datapoints.

2. Setup and Main Results

2.1. Setup and Backgrounds

Parameterization. We focus on the nonlinear model parametrization: fv(x) , 〈v�2, x〉, where
v ∈ Rd is the parameter of the model, x ∈ Rd is the data, and v�2 denotes the element-wise square
of v. Prior works (Woodworth et al., 2020; Vaskevicius et al., 2019; Li et al., 2017) have studied this
model because it is an interesting and informative simplification of nonlinear models. As SGD noise
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exhibits many of the same empirical behaviors in this simplified model as in deep networks,1 we
use this model as a testbed to develop a mathematical understanding of various sources of implicit
biases. As shown in Figure 1, both SGD with mini-batch noise and label noise generalize better
than GD or SGD with spherical Gaussian noise.

Data distribution assumptions and overparametrization. We assume that there exists a
ground-truth parameter v? ∈ Rd that generates the label y = 〈v?�2, x〉 given a data point x, which is
assumed to be generated fromN (0, Id×d). A datasetD =

{
(x(i), y(i))

}n
i=1

of n i.i.d data points are
generated from this distribution. The implicit bias is only needed in an over-parameterized regime,
and therefore we assume that n � d. To make the ground-truth vector information-theoretically
recoverable, we assume that the ground-truth vector v? is r-sparse. Here r is much smaller than d,
and casual readers can treat it as a constant. Because the element-wise square in the model parame-
terization is invariant to any sign flip, we assume v? is non-negative without loss of generality. For
simplicity, we also assume it only takes value in {0, 1}.2 We use S ⊂ [d] with |S| = r to denote the
support of v? throughout the paper.

We remark that we can recover v? by re-parameterizing u = v�2 and applying LASSO (Tib-
shirani, 1996) in the u-space when n ≥ Õ(r), which is minimax optimal (Raskutti et al., 2012).
However, the main goal of the paper, similar to several prior works (Woodworth et al., 2020; Vaske-
vicius et al., 2019; Li et al., 2017), is to prove that the implicit biases of non-convex optimization
can recover the ground truth without explicit regularization in the over-parameterized regime when
n = poly(r)� d.3 We also assume throughout the paper that n, d are larger than some sufficiently
large universal constant.

Loss function. We use the mean-squared loss denoted by `(i)(v) , 1
4

(
fv(x

(i))− y(i)
)2

for the
i-th example. The empirical loss is written as L(v) , 1

n

∑n
i=1 `

(i)(v).
Initialization. We use a large initialization of the form v[0] = τ · 1 where 1 denotes the all 1’s

vector, where we allow τ to be arbitrarily large (but polynomial in d).

Algorithm 1 Stochastic Gradient Descent with Label Noise

input: Number of iterations T , a sequence of step sizes η[0:T ], noise level δ, initialization v[0]

for t = 0 to T − 1 do
Sample index it ∼ [n] uniformly and add noise st ∼ {±δ} to y(it);
Let ˜̀(it)(v) = 1

4(fv(x
(it))− y(it) − st)2;

v[t+1] ← v[t] − η[t]∇˜̀(it)(v[t]) ; // update with label noise

end

SGD with label noise. We study SGD with label noise as shown in Algorithm 1. We sample an
example, add label noise sampled from {±δ} to the label, and apply the gradient update. Computing
the gradient, we obtain the update rule written explicitly as:

v[t+1] ← v[t] − η[t]
(

(v[t]�2 − v?�2)>x(it)
)
x(it) � v[t] + η[t]stx

(it) � v[t]. (1)

1. In contrast, the implicit bias of noise wouldn’t show up in a simpler linear regression model.
2. Our analysis can be straightforwardly extended to v? with other non-zero values.
3. We also remark that it’s common to obtain only sub-optimal sample complexity guarantees in the sparsity parameters

with non-convex optimization methods (Li et al., 2017; Ge et al., 2016; Vaskevicius et al., 2019; Chi et al., 2019) due
to technical limitations.
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Langevin dynamics/diffusion. We compare SGD with label noise to Langevin dynamics,
which adds spherical Gaussian noise to gradient descent (Neal et al., 2011):

v[t+1] ← v[t] − η∇L(v[t]) +
√

2η/λ · ξ, (2)

where the noise ξ ∼ N (0, Id×d) and λ > 0 controls the scale of noise. Langevin dynamics (LD)
or its more computationally-efficient variant, stochastic gradient Langevin dynamics (SGLD), is
known to converge to the Gibbs distribution µ(v) ∝ e−λL(v) under various settings with sufficiently
small learning rate (Roberts et al., 1996; Dalalyan, 2017; Bubeck et al., 2018; Raginsky et al., 2017).
In our negative result about Langevin dynamics/diffusion, we directly analyze the Gibbs distribution
in order to disentangle the convergence and the generalization. In our negative result about Langevin
dynamics/diffusion, we directly analyze the Gibbs distribution to disentangle the convergence and
the generalization.

Notations. Unless otherwise specified, we use O(·),Ω(·),Θ(·) to hide absolute multiplicative
factors and Õ(·), Θ̃(·), Ω̃(·) to hide poly-logarithmic factors in problem parameters such as d and
τ . For example, every occurrence of Õ(x) is a placeholder for a quantity f(x) that satisfies that for
some absolute constants c1, c2 > 0, ∀x, |f(x)| ≤ c1|x| · logc2(dτ).

2.2. Main Results

Our main result can be summarized by the following theorem, which suggests that stochastic gradi-
ent descent with label noise can converge to the ground truth despite a potentially large initialization.

Theorem 1 In the setting of Section 2.1, given a target error ε > 0. Suppose we have n ≥ Θ̃(r2)
samples. For any label noise level δ ≥ Θ̃(τ2d2), we run SGD with label noise (Algorithm 1) with
the following learning rate schedule:

1. learning rate η0 = Θ̃(1/δ) for T0 = Θ̃(1) iterations,
2. learning rate η1 = Θ̃(1/δ2) for T1 = Θ̃(1/η1) iterations,
3. learning rate η2 = Θ̃(ε2/δ2) for T2 = Θ̃(1/η2) iterations.

Then, with probability at least 0.9, the final iterate v[T ] at time T = T0 + T1 + T2 satisfies

‖v[T ] − v?‖∞ ≤ ε. (3)

Here Θ̃(·) omits poly-logarithmic dependencies on 1/ε, d and τ .

In other words, with arbitrarily large initialization scale τ , we can choose large label noise level and
the learning rate schedule so that SGD with label noise succeeds in recovering the ground truth.
In contrast, when τ is large, gradient flow without noise trains in the “kernel” regime as shown
by (Woodworth et al., 2020; Chizat and Bach, 2018). The solution in this kernel regime minimizes
the RKHS distance to initialization, and in our setting equates to finding a zero-error solution with
minimum ‖v�2 − v[0]�2‖2. Such a solution could be arbitrarily far away when initialization scale
τ is large and therefore have poor generalization. Figure 1 (right) confirms GD performs poorly
with large initialization whereas SGD with minibatch or label noise works. We outline the proof of
Theorem 1 in Section 3.

6



SHAPE MATTERS: UNDERSTANDING THE IMPLICIT BIAS OF THE NOISE COVARIANCE

Blanc et al. (2019) also study the implicit bias of the label noise. For our setting, their result
implies that when the iterate is near a global minimum for sufficient time, the iterates will locally
move to the direction that reduces the `2-norm of v by a small distance (that is larger than random
fluctuation). However, it does not imply the global convergence to a solution with good generaliza-
tion with large (or any) initialization, which is what we prove in Theorem 1.4 Moreover, our analysis
captures the effect of the large noise or large learning rate – we require the ratio between the noise
and the gradient, which is captured by the value ηδ2, to be sufficiently large. This is consistent with
the empirical observation that good generalization requires a sufficiently large learning rate or small
batch (Goyal et al., 2017).

On the other hand, the following negative result for Langevin dynamics demonstrates that
adding Gaussian noise fails to recover the ground truth even when v? = 0. This suggests that
spherical Gaussian noise does not induce a strong enough implicit bias towards low-norm solutions.

Theorem 2 Assume in addition to the setting in Section 2.1 that the ground truth v? = 0. When
n ≤ d/3, with probability at least 0.9 over the randomness of the data, for any λ > 0, the Gibbs
distribution is not well-defined because the partition function explodes:

∫
Rd
e−λL(v)dv =∞. (4)

As a consequence, Langevin diffusion does not converge to a proper stationary distribution.

Theorem 2 helps explain the behavior in Figure 1, where adding Gaussian noise generalizes
poorly for both synthetic and real data. In particular, in Figure 1 (right) adding Gaussian noise
causes the parameter to diverge for synthetic data, and Theorem 2 explains this observation. A
priori, the intuition regarding Langevin dynamics is as follows: as λ→ +∞, the Gibbs distribution
(if it exists) should concentrate on the manifold of global minima with zero loss. The measure on
the manifold of global minima should be decided by the geometry of L(·), and in particular, the
curvature around the global minimum. As λ → +∞, the mass should likely concentrate at the
flattest global minimum (according to some measure of flatness), which intuitively is v? = 0 in this
case.

However, our main intuition is that when n < d, even though the global minimum at v? is
the flattest, there are also many bad global minima with only slightly sharper curvatures. The vast
volume of bad global minima dominate the flatness of the global minimum at v? = 0 for any λ,5

and hence the partition function blows up and the Gibbs distribution doesn’t exist. An overview of
the proof of Theorem 2 can be found in Section 4, while the full proof is deferred to Section F.

3. Analysis Overview of SGD with Label Noise (Theorem 1)

3.1. Warm-up: Updates with Only Parameter-dependent Noise

Towards building intuition and tools for analyzing the parameter-dependent noise, in this subsection
we start by studying an extremely simplified random walk in one dimensional space. The random

4. It also appears difficult to generalize the local analysis directly to a global analysis because once the iterate leaves the
local minimum, all the local tools do not apply anymore, and it’s unclear whether the iterate will converge to a new
local minimum or getting stuck at some region.

5. In fact, one can show that if this phenomenon happens for some λ > 0, then it happens for all other λ.
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walk is purely driven by mean-zero noisy updates and does not involve any gradient updates:

v ← v + ηξ · v, where ξ ∼ {±1}. (5)

Indeed, attentive readers can verify that when dimension d = 1, sample size n = 1, and v? = 0,
equation (1) degenerates to the above random walk if we omit the gradient update term (second to
last term in equation (1)). We compare it with the standard Brownian motion (which is the analog
of gradient descent with spherical Gaussian noise under this extreme simplification)

v ← v + ηξ, where ξ ∼ N (0, 1). (6)

We initialize at v = 1. We observe that both random walks have mean-zero updates, so the
mean is preserved: E[v] = 1. The variances of the two random walks are also both growing because
any mean-zero update increases the variance. Moreover, the Brownian motion diverges because
it has a Gaussian marginal with variance growing linearly in t, and there is no limiting stationary
distribution.

However, the parameter-dependent random walk (5) has dramatically different behavior when
η < 1: the random variable v will eventually converge to v = 0 with high probability (though the
variance grows and the mean remains at 1.). This is because the variance of the noise depends on the
scale of v. The smaller v is, the smaller the noise variance is, and so the random walk tends to get
“trapped” around 0. This claim has the following informal but simple proof that does not strongly
rely on the exact form of the noise and can be extended to more general high-dimensional cases.

Consider an increasing concave potential function φ : R≥0 → R≥0 with φ′′ < 0 (e.g., φ(v) =√
v works). Note that when η < 1, the random variable v stays nonnegative. We can show that the

expected potential function decreases after any update

E[φ(v + ηξv)] ≈ E[φ(v) + φ′(v)ηξv + φ′′(v)η2ξ2v2] (by Taylor expansion)

= E[φ(v)] + E[φ′′(v)η2v2] < E[φ(v)] (by φ′′(v) < 0 and E[ξ] = 0.)

With more detailed analysis, we can formalize the Taylor expansion and control the decrease of the
potential function, and conclude that E [φ(v)] converges to zero. Then, by Markov’s inequality, with
high probability, φ(v) is tiny and so is v.6

From the 1-D case to the high-dimensional case. In one dimension, the bias is introduced
because of the varying scale of noise (i.e., the norm of the covariance). However, in the high
dimensional case, the shape of the covariance also matters. For example, if we generalize the
random walk (1) to high-dimensions by running d of the random walks in parallel, then we will
observe the same phenomenon, but the noise variances in different dimensions are not identical —
they depend on the current scales of the coordinates. (Precisely, the noise variance for dimension
k is η2v2

k.) However, suppose we instead add noise of the same variance to all dimensions. Even
if this variance depends on the norm of v (say, η2‖v‖22), the implicit bias will be diminished, as the
smaller coordinates will have relatively outsized noise and the larger coordinates will have relatively
insufficient noise.

Outline of the rest of the subsections. We will give a proof sketch of Theorem 1 that consists
of three stages. We first show in the initial stage of the training that label noise effectively decreases

6. The same proof strategy fails for the Brownian motion because v is not always nonnegative, and there is no concave
potential function over the real that can be bounded from below.
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the parameter on all dimensions, bringing the training from large initialization to a small initial-
ization regime, where better generalization is possible (Section 3.2). Then, we show that when the
parameter is decently small, with label noise and a decayed learning rate, the algorithm will in-
crease the magnitude of those dimensions in support set of v?, while keep decreasing the norm of
the rest of the dimensions(Section 3.3). Finally, with one more decay, the algorithm can recover the
ground truth(Section 3.4).

3.2. Stage 0: Label Noise with Large Learning Rate Reduces the Parameter Norm

We first analyze the initial phase where we use a relatively large learning rate. When the initializa-
tion is of a decent size, GD quickly overfits to a bad global minimum nearest to the initialization.
In contrast, we prove that SGD with label noise biases towards the small norm region, for a similar
reason as the random walk example with parameter-dependent noise in Section 3.1.

Theorem 3 In the setting of Theorem 1, recall that we initialize with v[0] = τ · 1. Assume n ≥
Θ(log d). Suppose we run SGD with label noise with noise level δ ≥ Θ̃(τ2d2) and learning rate
η0 ∈ [Θ̃(τ2d2/δ2), Θ̃(1/δ)] for T0 = Θ̃(1/(η2δ2)) iterations. Then, with probability at least 0.99
over the randomness of the algorithm,

‖v[T0]‖∞ ≤ 1/d . (7)

Moreover, the minimum entry of v[T0] is bounded below by exp(−Õ((ηδ)−1)).

We remark that our requirement of η being large is consistent with the empirical observation
that a large initial learning rate helps generalization Goyal et al. (2017); Li et al. (2019b). We
provide intuitions and a proof sketch of the theorem in the rest of the subsection and defer the
full proof to Section B . Our proof is based on the construction of a concave potential function Φ
similar to Section 3.1. We will show that, at every step, the noise has a second-order effect on the
potential function and decrease the potential function by a quantity on the order of η2δ2 (omitting
the d dependency).7 On the other hand, the gradient step may increase the potential by a quantity
at most on the order of η (omitting d dependency again). Therefore, when η2δ2 & η, we expect the
algorithm to decrease the potential and the parameter norm.

In particular, we define Φ(v) ,
∑d

k=1 φ(vk) =
∑d

k=1

√
vk. By the update rule 2.1, the update

for a coordinate k ∈ [d] can be written as

v
[t+1]
k ← v

[t]
k − ηstx

(it)
k v

[t]
k − η

[t]
(

(v[t]�2 − v?�2)>x(it)
)
x

(it)
k v

[t]
k , (8)

where st is sampled from {−δ, δ} and it is sampled from [n]. Let g(it)
k , ((v[t]�2−v?�2)>x(it))x

(it)
k

be the component coming from the stochastic gradient. Using the fact that φ(ab) = φ(a)φ(b) for
any a, b > 0, we can evaluate the potential function at time t+ 1,

E
[
φ(v

[t+1]
k )

]
= E

[
φ(v

[t]
k )φ(1− ηstx(it)

k − ηg(it)
k )

]
= φ(v

[t]
k )E

[
φ(1− ηstx(it)

k − ηg(it)
k )

]
. (9)

7. In general, any mean-zero noise has a second-order effect on any potential function. Therefore, when the noise level
is fixed, as η → 0, the effect of the noise diminishes. This is why a lower bound on the learning rate is necessary for
the noise to play a role.

9
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Here the expectation is over st and it. We perform Taylor-expansion on the term φ(1 − ηstx(it)
k −

ηg
(it)
k ) to deal with the non-linearity and use the fact that ηstx

(it)
k is mean-zero:

E
[
φ(1− ηstx(it)k − ηgitk )

]
≈ φ(1)− φ′(1)ηE

[
gitk
]

+
1

2
φ′′(1)E

[ (
ηstx

(it)
k − ηg(it)k

)2 ]
≤ φ(1)− φ′(1)ηE

[
gitk
]

+
1

2
φ′′(1)E

[ (
ηstx

(it)
k

)2 ]
≤ φ(1)− φ′(1)ηE

[
gitk
]
− Ω(η2δ2). (10)

In the second line we used φ′′(1) < 0 from the concavity and E[ηstx
(it)
k ] = 0, and the third line

uses the fact that st ∼ {±δ} and E[x
(it)
k

2
] ≈ 1 (by the data assumption). The rest of the proof

consists of bounding the second term in equation (10) from above to show the potential function is
contracting.

We first note for every it, it holds that |gitk | ≤ ‖v
[t]�2−v?�2‖1‖x(it)‖2∞ ≤ (‖v[t]‖22+r)‖x(it)‖2∞.

Furthermore, we can bound the `2 norm of v[t] with the following lemma:

Lemma 4 In the setting of Theorem 3, for some failure probability ρ > 0, let b0 , 6τd/ρ. Then,
with probability at least 1− ρ/3, we have that ‖v[t]‖2 ≤ b0 for any t ≤ T0.

Note that v[0] has `2 norm τ
√
d, and here we prove that the norm does not exceed τd with

high probability. At the first glance, the lemma appears to be mostly auxiliary, but we note that it
distinguishes label noise from Gaussian noise, which empirically causes the parameter to blow up
as shown in Figure 1. The formal proof is deferred to Section B.

By Lemma 4 and the bound on |gitk | in terms of ‖v[t]‖2, we have |gitk | ≤ (b20 + r)‖x(it)‖2∞ ≤
Õ(b20 + r) with b0 defined in Lemma 4 (up to logarithmic factors). Here we use again that each
entry of the data is from N (0, 1). Plugging these into equation (10) we obtain

E
[
φ(1− ηstx(it)

k − ηgitk )
]
≤ 1 + ηÕ(b20 + r)− Ω(η2δ2) < 1− Ω(η2δ2)

where in the last inequality we use the lower bound on η to conclude η2δ2 & ηÕ(b20 +r). Therefore,
summing equation (9) over all the dimensions shows that the potential function decreases exponen-
tially fast: E[Φ(v[t+1])] < (1 − Ω(η2δ2))Φ(v[t]). After T ≈ log(d)/(η2δ2) iterations, v[T ] will
already converge to a position such that E[Φ(v[T ])] .

√
1/d, which implies ‖v[T ]‖∞ . 1/d with

probability at least 1− ρ and finishes the proof.

3.3. Stage 1: Getting Closer to v? with Annealed Learning Rate

Theorem 3 shows that the noise decreases the∞-norm of v to 1/d. This means that `1 or `2-norm
of v is similar to or smaller than that of v? if r is constant, and we are in a small-norm region where
overfitting is less likely to happen. In the next stage, we anneal the learning rate to slightly reduce
the bias of the label noise and increase the contribution of the signal. Recall that v? is a sparse
vector with support S ⊂ [d]. The following theorem shows that, after annealing the learning rate
(from the order of 1/δ2 to 1/δ), SGD with label noise increases entries in vS and decreases entries
in vS̄ simultaneously, provided that the initialization has `∞-norm bounded by 1/d. (For simplicity
and self-containedness of the statement, we reset the time step to 0.)

10
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Theorem 5 In the setting of Section 2.1, given a target error bound ε1 > 0, we assume that
n ≥ Θ̃(r2 log2(1/ε1)). We run SGD with label noise (Algorithm 1) with an initialization v[0] whose
entries are all in [εmin, 1/d], where εmin ≥ exp(−Õ(1)). Let noise level δ ≥ Θ̃(log(1/ε1)) and
learning rate η = Θ̃(1/δ2), and number of iterations T = Θ̃(log(1/ε1)/η). Then, with probability
at least 0.99, after T iterations, we have

‖v[T ]
S − v

?
S‖∞ ≤ 0.1 and ‖v[T ]

S̄
− v?S̄‖1 ≤ ε1. (11)

We remark that even though the initialization is relatively small in this stage, the label noise still
helps alleviate the reliance on small initialization. Li et al. (2017); Vaskevicius et al. (2019) showed
that GD converges to the ground truth with sufficiently small initialization, which is required to be
smaller than target error ε1. In contrast, our result shows that with label noise, the initialization does
not need to depend on the target error, but only need to have an `∞-norm bound on the order of
1/d. In other words, v gets closer to v? on both S and S̄ in our case, whereas in Li et al. (2017);
Vaskevicius et al. (2019) the vS̄ grows slowly.

The proof of this theorem balances the contribution of the gradient against that of the noise on
S and S̄. On S, the gradient provides a stronger signal than label noise, whereas on S̄, the implicit
bias of the noise, similar to the effect in Section 3.2, outweighs the gradient and reduces the entries
to zero. The analysis is more involved than that of Theorem 3, and we defer the full proof to Section
C.

3.4. Stage 2: Convergence to the ground-truth v?

The conclusion of Theorem 5 still allows constant error in the support, namely, ‖vS − v?S‖∞ ≤ 0.1.
The following theorem shows that further annealing the learning rate will let the algorithm fully
converge to v? with any target error ε.

Theorem 6 [informal version of Theorem 18] Assume initialization v[0] satisfies ‖v[0]
S − v?S‖∞ ≤

0.1. Suppose we run SGD with label noise with any noise level δ ≥ 0 and small enough learning
rate η for T = Θ(1/η) iterations. Then, with high probability over the randomness of the algorithm
and data, there is ‖v[T ]

S − v?S‖∞ ≤ ‖v
[0]
S − v?S‖∞/10.

The formal version of Theorem 6 and its proof can be found in Section D.
Proof of Theorem 1. In Section E of Appendix, we combine Theorem 3, Theorem 5, and Theorem 18
to prove our main Theorem 1.

4. Analysis Overview of Langevin Dynamics (Theorem 2)

To prove Theorem 2, recall that we would like to show that
∫
Rd e

−λL(v) is infinite. Our approach
will be to change variables to u = v�2 and compute this integral over u. First, we note that all
such u must lie in the convex cone where each coordinate is positive. Second, we observe that the
loss L(u) is invariant in the affine space u+X⊥, where X⊥ is the orthogonal subspace to the data.

11
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Thus, for some fixed u′, we have∫
v>0

e−λL(v)dv >

∫
u>0,u∈u′+X⊥

e−λL(u′)|det
∂v

∂u
|du (12)

=
e−λL(u′)

2d

∫
u>0,u∈u′+X⊥

d∏
i=1

1
√
ui
du. (13)

Thus, the aim is to show that with high probability over the data, for any choice of u′, the integral∫
u>0,u∈u′+X⊥ | det ∂v∂u |du is infinite. To this end, we will perform another change of variables
u = u′ + Aũ where ũ ∈ Rd−n, and A = [a(1), . . . , a(d−n)] ∈ Rd×d−n is a specially constructed
matrix whose columns form an orthogonal basis for X⊥. We will select a(1) = µ where µ ∈ X⊥
and µ is positive in every dimension. The existence of such µ is guaranteed with high probability, as
shown in Section F. Now by construction ofA, we will always have u′+Aũ > 0 if ũ1 is sufficiently
large. Thus, there exists a convex cone {|ũi| ≤ cũ1,∀2 ≤ i ≤ d−n}, such that every ũ in this cone
satisfies u = u′ + Aũ > 0. Integrating (13) over this cone is similar to integrating a polynomial
with degree −d/2 for d− n times, and this integral can be shown to be infinite when d > 2n. The
full proof is in Section F.

5. Conclusion
In this work, we study the implicit bias effect induced by noise. For a quadratically-parameterized
model, we theoretically show that the parameter-dependent noise has a strong implicit bias, which
can help recover the sparse ground-truth from limited data. In comparison, our negative result shows
that such a bias cannot be induced by spherical Gaussian noise. Our result explains the empirical
observation that replacing mini-batch noise or label noise with Gaussian noise usually leads to
degradation in the generalization performance of deep models.

Acknowledgements

JZH acknowledges support from the Enlight Foundation Graduate Fellowship. CW acknowledges
support from an NSF Graduate Research Fellowship. JDL acknowledges support of the ARO under
MURI Award W911NF-11-1-0303, the Sloan Research Fellowship, and NSF CCF 2002272. TM
acknowledges support of Google Faculty Award. The work is also partially supported by SDSI and
SAIL at Stanford.

References

Dennis Amelunxen, Martin Lotz, Michael B McCoy, and Joel A Tropp. Living on the edge: Phase
transitions in convex programs with random data. Information and Inference: A Journal of the
IMA, 3(3):224–294, 2014.

Raman Arora, Peter Bartlett, Poorya Mianjy, and Nathan Srebro. Dropout: Explicit forms and
capacity control. arXiv preprint arXiv:2003.03397, 2020.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. In Advances in Neural Information Processing Systems, pages 7411–7422, 2019.

12



SHAPE MATTERS: UNDERSTANDING THE IMPLICIT BIAS OF THE NOISE COVARIANCE

Guy Blanc, Neha Gupta, Gregory Valiant, and Paul Valiant. Implicit regularization for deep neural
networks driven by an ornstein-uhlenbeck like process. arXiv preprint arXiv:1904.09080, 2019.
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Appendix A. Experimental Details

A.1. Experimental Details for the Quadratically-Parameterized Model

In the experiment of our quadratically-parameterized model, we use a 100-dimensional model with
n = 40 data randomly sampled from N (0, I100×100). We set the first 5 dimensions of the ground-
truth v? as 1, and the rest dimensions as 0. We always initialize with v[0] = 1. We use a constant
learning rate 0.01 for all the experiments except for label noise. For label noise, we start from 0.01
and then decay the learning rate by a factor of 10 after 1 × 105 and 2 × 105 iterations. For “full
batch” experiment, we run full batch gradient descent without noise. For “small batch” experiment,
in order to fully disentangle the effect of learning rate and mini-batch sgd noise (i.e., to avoid
implicit biases from large lr rather than noise), we add small batch noise to full gradient via the
following sampling method: for each iteration, we randomly sample two data i and j from [n], and
add δ(∇`(i)(v)−∇`(j)(v)) to the full gradient (we set δ = 1.0 in our experiment). For label noise,
we randomly sample i ∈ [n] and s ∈ {δ,−δ} (we set δ = 1.0 in our experiment), and add noise
∇˜̀(i)(v) − ∇`(i)(v) to full gradient, where ˜̀(i)(v) , 1

4(fv(x
(i)) − y(i) − s)2. For Gaussian noise

experiments, we add noise ξ ∼ N (0, σ2Id×d) to full gradient every iteration, where the values of
σ are shown in Figure 1. For experiments except for Gaussian noises, we train a total of 3 × 105

iterations. For a more generous comparison, we run all the Gaussian noise experiments for 4 times
longer (i.e., 1.2× 106 iterations) while plotting them in the same figure after scaling the x-axis by a
factor of 4. The test error is measured by the square of `2 distance between v�2 and v?�2, which is
the same as the expectation of loss on a freshly randomly sampled data. The trianing and test error
are plotted in Figure 1.

A.2. Experimental Details for Deep Neural Networks on CIFAR100

We train a VGG19 model (Simonyan and Zisserman, 2014) on CIFAR100, using a small and large
batch baseline. We also experiment with adding Gaussian noise to the parameters after every gradi-
ent update as well as adding label noise in the following manner: with some probability that depends
on the current iteration count, we replace the original label with a randomly chosen one.

To add additional mean-zero noise to the gradient which simulates the effect of label noise in the
regression setting, we compute a noisy gradient of the cross-entropy loss `ce with respect to model
output f(x) as follows:

∇̃f(x)`ce(f(x), y) = ∇f(x)`ce(f(x), y) + σlnz (14)

where z is a 100-dimensional vector (corresponding to each class) distributed according toN (0, I100×100),
and y is the (possibly flipped) label. We backpropagate using this noisy gradient when we compute
the gradient of loss w.r.t. parameters for the updates. After tuning, we choose the initial label-
flipping probability as 0.1, and reduce it by a factor of 0.5 every time the learning rate is annealed.
We choose σln such that σln

√
E[‖z‖22] = 0.1, and also decrease σln by a factor of 0.5 every time

the learning rate is annealed.
To add spherical Gaussian noise to the parameter every update, we simply set W ← W +

σz after every gradient update, where z is a mean-zero Gaussian whose coordinates are drawn
independently from N (0, 1). We tune this σ over the values shown in Figure 1.

We turn off weight decay and BatchNorm to isolate the regularization effects of just the noise
alone. Standard data augmentation is still present in our runs. Our small batch baseline uses a

19



HAOCHEN WEI LEE MA

batch size of 26, and our large batch baseline uses a batch size of 256. In runs where we add noise,
the batch size is always 256. For all runs, we use an initial learning rate of 0.004. We train for
410550 iterations (i.e., minibatches), annealing the learning rate by a factor of 0.1 at the 175950-th
and 293250-th iteration. Our models take around 20 hours to train on a single NVIDIA TitanXp
GPU when the batch size is 256. The final performance gap between label noise or small minibatch
training v.s. large batch or Gaussian noise is around 13% accuracy.

A.3. Additional Plots

Here we show empirical evidence that training with Gaussian noise fails to converge to a stationary
distribution. We train VGG19 network on CIFAR100, and plot the norm of model weight along the
training trajectory. As shown in Figure 2, the weigth norm of large batch (LB) and large batch with
label noise (LB+LN) both converge to some finite value, while the weight norm of large batch with
Gaussian noise (LB+GN) keeps increasing and fails to converge.
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Iteration 1e5
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Figure 2: The norm of model weight along training trajectory. We demonstrate that the model
weight fails to converge when training with Gaussian noise. In contrast, the weigth norm
converges for training with label noise or without noise.
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Appendix B. Proof of Theorem 3

In this section, we will first prove several lemmas on which the proof of Theorem 3 is built upon.
Then we will provide a proof of Theorem 3.

Definition 7 (b-bounded coupling) Let v[0], v[1], · · · , v[T ] be a trajectory of label noise gradient
descent with initialization v[0]. We call the following random sequence ṽ[t] a b-bounded coupling of
v[t]: starting from ṽ[0] = v[0], for each time t < T , if

∥∥ṽ[t]
∥∥

1
≤ b, we let ṽ[t+1] , v[t+1]; otherwise

if
∥∥ṽ[t]

∥∥
1
> b we don’t update, i.e., ṽ[t+1] , ṽ[t].

Lemma 8 In the setting of Theorem 3, assume
∥∥x(i)

∥∥
∞ ≤ bx for any i ∈ [n]. Let η ≤ ρ

6Tb2x(b20+r)
,

where b0 = 6τd
ρ . Let ṽ[t] be the b0-bounded coupling of v[t]. If ṽ[t] is always positive on each

dimension, then with probability at least 1− ρ
3 , there is∥∥∥ṽ[T ]
∥∥∥

1
≤ b0. (15)

Proof [Proof of Lemma 8] Recall the update at t-th iteration is:

v[t+1] = v[t] − η((v[t]�2 − v?�2)>x(it))x(it) � v[t] − ηstx(it) � v[t]. (16)

We first bound the increase of
∥∥ṽ[t]

∥∥
1

in expectation. When
∥∥ṽ[t]

∥∥
1
≤ b0, there is:

E
[
ṽ

[t+1]
k

]
= ṽ

[t]
k − ηE[((ṽ[t]�2 − v?�2)>x(i))xikṽ

[t]
k ] (17)

≤ ṽ[t]
k + η(

∥∥∥ṽ[t]�2
∥∥∥

1
+
∥∥∥v?�2

∥∥∥
1
)b2xṽ

[t]
k (18)

≤ ṽ[t]
k + η(b20 + r)b2xṽ

[t]
k (19)

where the first inequality is because we can separate the last term into v[t]�2
part and v?�2 part and

bound them with
∥∥∥v[t]�2

∥∥∥
1

and
∥∥v?�2

∥∥
1

respectively, the second inequality is by
∥∥v[t]

∥∥2

2
≤
∥∥v[t]

∥∥2

1

and sparsity of v?. So summing over all dimensions we have E
[∥∥ṽ[t+1]

∥∥
1

]
≤
∥∥ṽ[t]

∥∥
1

+ ηb0bx(b20 +

r). This bound is obviously also true when
∥∥ṽ[t]

∥∥
1
> b0, in which case ṽ[t+1] = ṽ[t].

We then bound the probability of
∥∥ṽ[T ]

∥∥
1

being too large:

Pr
(∥∥∥ṽ[T ]

∥∥∥
1
> b0

)
≤
E
[∥∥ṽ[T ]

∥∥
1

]
b0

(20)

≤τd+ Tηb0b
2
x(b20 + r)

b0
(21)

≤ρ
3
, (22)

where the first inequality is Markov Inequality, the second is by the previous equation, and the third
is by assumption of η and the definition of b0.

Proof [Proof of Lemma 4] Notice that when
∥∥ṽ[T ]

∥∥
1
≤ b0, there is v[T ] = ṽ[T ], Lemma 4 naturally

follows from Lemma 8.
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Definition 9 (b-bounded potential function) For a vector v that is positive on each dimension, we
define the b-bounded potential function Φ(v) as follows: if ‖v‖1 ≤ b, we let Φ(v) ,

∑d
k=1

√
vk;

otherwise Φ(v) , 0.

Lemma 10 In the setting of Theorem 3, let ε0 = 1/d. Assume
∥∥x(i)

∥∥
∞ ≤ bx for i ∈ [n] with

some bx > 0, Ei[(x
(i)
k )2] ≥ 2

3 for all k ∈ [d]. Let b0 = 6τd
ρ . Assume ηδbx + η(b20 + r)b2x ≤ 1

16 ,

ηδ2 ≥ 32(b20 + r)b2x and T = d 32
η2δ2

log(
ρ
√
ε0

3d
√
τ
)e. Let ṽ[t] be the b0-bounded coupling of v[t], and

Φ(·) is the b0-bounded potential function. If ṽ[t] is always positive on each dimension, then with
probability at least 1− ρ

3 , there is

Φ(ṽ[T ]) ≤
√
ε0. (23)

Proof [Proof of Lemma 10] We first show Φ(ṽ[t]) decreases exponentially in expectation. If
∥∥ṽ[t]

∥∥
1
≤

b0, we have:

E
[
Φ(ṽ[t+1])

]
≤

d∑
k=1

E
[√

ṽ
[t+1]
k

]
(24)

=

d∑
k=1

Est,it
[√

ṽ
[t]
k − ηstx

(it)
k ṽ

[t]
k − η((ṽ[t]�2 − v?�2)>x(it))x

(it)
k ṽ

[t]
k

]
(25)

≤
d∑

k=1

√
ṽ

[t]
k Est,it

[√
1 + ηstx

(it)
k + η(b20 + r)b2x

]
(26)

(27)

where the second inequality is because
∥∥ṽ[t]

∥∥2

2
=
∥∥ṽ[t]

∥∥2

1
≤ b20. Toward bounding the expectation,

we notice that by Taylor expansion theorem, there is for any general function g(x) =
√

1 + x, there
is

g(1 + x) ≤ g(1) + g′(1)x+
1

2
g′′(1)x2 +

M

6
|x|3, (28)

where M is upper bound on |g′′′(1 + x′)| for x′ in 0 to x, which is less than 3 if |x| ≤ 1
2 . So in our

theorem if ∆ , ηstx
(it)
k + η(b20 + r)b2x ∈ [−1

2 ,
1
2 ], we have√

1 + ηstx
(it)
k + η(b20 + r)b2x ≤ 1 +

1

2
∆− 1

8
∆2 +

1

2
|∆|3. (29)

Also since Est,it [∆] = η(b20 + r)b2x, Est,it [∆2] ≥ η2δ2Eit [(x
(it)
k )2] ≥ 2

3η
2δ2, we have when |∆| ≤

1
16 and ηδ2 ≥ 32(b20 + r)b2x, we have Est,it [

√
1 + ∆] ≤ 1− Est,it [1− 1

16∆2] ≤ 1− 1
32η

2δ2. So

E
[
Φ(ṽ[t+1])

]
≤ (1− 1

32
η2δ2)Φ(ṽ[t]). (30)

Also notice that when
∥∥ṽ[t]

∥∥
1
> b0, there is Φ(ṽ[t+1]) = Φ(ṽ[t]) = 0, so obviously we have

E[Φ(ṽ[t+1])] ≤ (1− 1
32η

2δ2)Φ(ṽ[t]) always true.
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Next we prove that Φ(ṽ[T ]) ≤ √ε0 with probability more than 1− ρ
2 . This is because:

Pr
(

Φ(ṽ[T ]) >
√
ε0

)
≤

E
[
Φ(ṽ[T ])

]
√
ε0

(31)

≤
(1− 1

32η
2δ2)Td

√
τ

√
ε0

(32)

≤ ρ

3
. (33)

where the first inequality if by Markov Inequaltiy, the second inequality is by the previous inequality,
and the last inequality is because T = d 32

η2δ2
log(3d

√
τ

ρ
√
ε0

)e.

Proof [Proof of Theorem 3] Let ρ = 0.01, ε0 = 1/d. By Lemma 25, and Lemma 26, when
n ≥ Θ(log d), with probability at least 1 − ρ

3 there is
∥∥x(i)

∥∥
∞ ≤ bx for all i ∈ [n] with some

bx = Θ(
√

log(nd)), and Ei[(x
(i)
k )2] ≥ 2

3 for all k ∈ [d].

Let b0 = 6τd
ρ . We try to define η and δ such that when T = d 32

η2δ2
log(3d

√
τ

ρ
√
ε0

)e, the assumptions

η ≤ ρ
6Tb2x(b20+r)

and ṽ[t] always being positive in Lemma 8 and assumptions ηδbx+η(b20+r)b2x ≤ 1
16

and ηδ2 ≥ 32(b20 + r)b2x in Lemma 10 are satisfied.

Assume δ ≥ 6×322b3x
(b20+r)
ρ log(3d

√
τ

ρ
√
ε0

), then we only need η ∈
[

6×32b2x
ρδ2

(b20 + r) log(3d
√
τ

ρ
√
ε0

), 1
32δbx

]
,

and then all the above assumptions are satisfied.
Let ṽ[t] be the b0-bounded coupling of v[t]. According to Lemma 10, we know with probability

at least 1 − ρ
3 , Φ(ṽ[T ]) ≤ √ε0, which means that either

∑d
k=1

√
ṽ

[T ]
k ≤ √ε0 or

∥∥ṽ[T ]
∥∥

1
> b0.

According to Lemma 8, we know with probability at most ρ3 ,
∥∥ṽ[T ]

∥∥
1
> b0. Combining these two

statements, we know with probability at least 1 − 2ρ
3 ,
∥∥ṽ[T ]

∥∥
1
≤ b0 and

∑d
k=1

√
ṽ

[T ]
k ≤ √ε0.

Notice that
∥∥ṽ[T ]

∥∥
1
≤ b0 implies v[T ] = ṽ[T ], while

∑d
k=1

√
ṽ

[T ]
k ≤ √ε0 implies ṽ[T ]

k ≤ ε0 for all
dimension k, so we’ve finished the proof for the upper bound.

We then give a lower bound for each dimension of ṽ[T ]. We can bound the decrease of any
dimension k at time t:

ṽ
[t+1]
k ≥ (1− ηδ − η(b20 + r))ṽ

[t]
k (34)

≥ (1− 2ηδ)ṽ
[t]
k . (35)

where the first inequality is by update rule and the second is because δ > (b20 + r). Putting in the
value of T , we have

ṽ
[T ]
k ≥ (1− 2ηδ)T τ (36)

> exp

(
−64

ηδ
log(

3d
√
τ

ρ
√
ε0

)

)
. (37)
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Appendix C. Proof of Theorem 5

In this section, we will first prove several lemmas on which the proof of Theorem 5 is built upon.
Then we will provide a proof of Theorem 5.

Definition 11 ((b, ε)-bounded coupling) Let v[0], v[1], · · · , v[T ] be a trajectory of label noise gra-
dient descent with initialization v[0]. Recall S ⊂ [d] is the support set of v?, we notate ṽ[t]

S a
r-dimensional vector composed with those dimensions in S of ṽ[t], and ṽ[t]

S̄
the other d − r dimen-

sions. We call the following random sequence ṽ[t] a (b, ε)-bounded coupling of v[t]: starting from
ṽ[0] = v[0], for each time t < T , if

∥∥∥ṽ[t]

S̄

∥∥∥
1
≤ ε and

∥∥∥ṽ[t]
S

∥∥∥
∞
≤ b, we let ṽ[t+1] , v[t+1]; otherwise

ṽ[t+1] , ṽ[t].

Lemma 12 In the setting of Theorem 5, let ρ , 1
100 , c1 , 1

10 , ε̃1 , 12
ρ ,Cx , maxj 6=k |Ei[x

(i)
j x

(i)
k ]|.

Assume
∥∥x(i)

∥∥
∞ ≤ bx for i ∈ [n] for some bx > 0, and Ei[(x

(i)
k )2] ≥ 2

3 for k ∈ [d]. Let ṽ[t] be

a (1 + c1, ε̃1)-bounded coupling of v[t]. Assume c21
8ηδ2b2x

≥ log 6rT 2

ρ , (ε̃21 + r)Cxb
2
x ≤ c1

20 and

δ ≥ bx(ε̃21 + r). Then, with probability at least 1− ρ
6 , there is

∥∥∥ṽ[T ]
S

∥∥∥
∞
≤ 1 + c1.

Proof [Proof of Lemma 12] For any fixed 1 ≤ t1 < t2 ≤ T and dimension k ∈ S, we consider
the event that ṽ[t1] ∈ [1 + c1

3 , 1 + c1
2 ], and at time t2 it is the first time in the trajectory such that

ṽ[t2] > 1 + c1. We first bound the probability of this event happens, i.e., the following quantity:

Pr
(
ṽ

[t2]
k > 1 + c1 ∧ ṽ[t1]

k ≤ 1 +
c1

2
∧ ṽ[t1:t2]

k ∈ [1 +
c1

3
, 1 + c1]

)
, (38)

where ṽ[t1:t2]
k ∈ [1 + c1

3 , 1 + c1] means that for all t such that t1 ≤ t < t2, there is 1 + c1
3 ≤ ṽ

[t]
k ≤

1 + c1.
Notice that when

∥∥∥ṽ[t]

S̄

∥∥∥
1
≤ ε̃1 and

∥∥∥ṽ[t]
S

∥∥∥
∞
≤ 1 + c1 and ṽ[t1:t+1]

k ∈ [1 + c1
3 , 1 + c1], there is

E[ṽ
[t+1]
k − 1] =Est,it

[(
1 + ηstx

it
k − η((ṽ[t]�2 − v?�2)>x(it))x

(it)
k

)
ṽ

[t]
k − 1

]
(39)

≤(ṽ
[t]
k − 1)− 2

3
ηṽ

[t]
k (ṽ

[t]
k + 1)(ṽ

[t]
k − 1) + η(ε̃21Cx + rCx)b2xṽ

[t]
k (40)

≤(1− η)(ṽ
[t]
k − 1). (41)

where the first inequality is because
∥∥∥ṽ[t]

S̄

∥∥∥2

2
≤ ε̃21 and Eit [(x

(i)
k )2] ≥ 1

2 , the second inequality is

because (ε̃21 + r)b2xCx ≤ c1
20 . Also, we can bound the variance of this martingale as

Var
[
ṽ

[t+1]
k − 1 | ṽ[t] − 1

]
= Var

[
ηstx

(it)
k ṽ

[t]
k

]
+ Var

[
η((ṽ[t]�2 − v?�2)>x(it))x

(it)
k ṽ

[t]
k

]
(42)

≤ (ηδbx(1 + c1))2 + η2(ε̃21 + r)2b4x(1 + c1)2 (43)

≤ 4η2δ2b2x, (44)

where the first inequality is because ηstx
(it)
k ṽ

[t]
k is mean-zero, the second inequality is by

∥∥x(i)
∥∥
∞ ≤

bx, the third inequality is by δ ≥ bx(ε̃21 + r).
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By Lemma 27, we have

Pr(ṽ
[t2]
k − 1 > c1) (45)

≤e
−c21

8η2δ2b2x
∑t2−t1−1
t=0 (1−η)2t (46)

≤e
−c21

8ηδ2b2x , (47)

where the first inequality is by Lemma 27, the second inequality is by taking the sum of denominator.
Finally, we finish the proof with a union bound. Since if

∥∥∥ṽ[T ]
S

∥∥∥
∞

> 1 + c1, the event in
Equation 38 has to happen for some k ∈ S and 1 ≤ t1 < t2 ≤ T , so we have

Pr
(∥∥∥ṽ[T ]

S

∥∥∥
∞
> 1 + c1

)
(48)

≤
∑
k∈S

∑
1≤t1<t2≤T

Pr
(
ṽ

[t2]
k > 1 + c1 ∧ ṽ[t1]

k ≤ 1 +
c1

2
∧ ṽ[t1:t2]

k ∈ [1 +
c1

3
, 1 + c1]

)
(49)

≤ rT 2e
−c21

8ηδ2b2x (50)

≤ ρ

6
, (51)

where the last inequality is by assumption.

Lemma 13 In the setting of Lemma 12, assume (ε̃21 + r)Cx ≤ ρ
12Tηb2x

. Then, with probability at

least 1− ρ
6 , there is

∥∥∥ṽ[T ]

S̄

∥∥∥
1
≤ ε̃1.

Proof [Proof of Lemma 13] We first bound the increase of
∥∥∥ṽ[t]

S̄

∥∥∥
1

in expectation. When
∥∥∥ṽ[t]

S

∥∥∥
∞
≤

1 + c1 and
∥∥∥ṽ[t]

S̄

∥∥∥
1
≤ ε̃1, for any k /∈ S, there is:

E
[
ṽ

[t+1]
k

]
= ṽ

[t]
k − ηEi

[
((ṽ[t]�2 − v?�2)>x(i))x

(i)
k ṽ

[t]
k

]
(52)

≤ ṽ[t]
k + η(ε̃21 + r)Cxb

2
xṽ

[t]
k . (53)

because we can bound the dimensions in S and those not in S respectively. So summing over all
dimensions not in S we have E

[∥∥∥ṽ[t+1]

S̄

∥∥∥
1

]
≤
∥∥∥ṽ[t]

S̄

∥∥∥
1

+ η(ε̃21 + r)Cxb
2
xε̃1. This bound is obviously

also true when
∥∥∥ṽ[t]

S

∥∥∥
∞
> 1 + c1 and

∥∥∥ṽ[t]

S̄

∥∥∥
1
> ε̃1.

We then bound the probability of
∥∥∥ṽ[T ]

S̄

∥∥∥
1

being too large:

Pr
(∥∥∥ṽ[T ]

S̄

∥∥∥
1
> ε̃1

)
≤
E
[∥∥∥ṽ[T ]

S̄

∥∥∥
1

]
ε̃1

(54)

≤1 + Tηε̃1(ε̃21 + r)Cxb
2
x

ε̃1
(55)

≤ρ
6
. (56)
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where the first inequality is Markov Inequality, the second is by
∥∥∥ṽ[0]

S̄

∥∥∥
1
≤ 1 since every dimension

is less than 1/d, the third inequality is because ε̃1 = 12
ρ and (ε̃21 + r)Cx ≤ ρ

12Tηb2x
.

Lemma 14 In the setting of Lemma 12, assume (ε̃21 + r)Cxb
2
x < c1

12 −
c21
4 , ηδ2 ≤ c1

8 , Tη ≥
16
c1

log 1
εmin

and T
δ2
≥ 29

c21
log 6r

ρ . Then, for any k ∈ S, with probability at least 1 − ρ
6r , either

maxt≤T ṽ
[t]
k ≥ 1− c1

2 , or
∥∥∥ṽ[T ]

S

∥∥∥
∞
> 1 + c1, or

∥∥∥ṽ[T ]

S̄

∥∥∥
1
> ε̃1.

Proof [Proof of Lemma 14] Fix k ∈ S. Let v̂[t] be the following coupling of ṽ[t]: starting from
v̂[0] = ṽ[0], for each time t < T , if

∥∥∥ṽ[t]

S̄

∥∥∥
1
≤ ε̃1 and

∥∥∥ṽ[t]
S

∥∥∥
∞
≤ 1 + c1 and ṽ[t]

k ≤ 1 − c1
2 , we

let v̂[t+1] , ṽ[t+1]; otherwise v̂[t+1] , (1 + c1
2 η)v̂[t]. Intuitively, whenever ṽ[t] exceeds the proper

range, we only times v̂[t] by 1 + c1
2 η afterwards, otherwise we let it be the same as ṽ[t].

We first show that −t log(1 + c1
2 η) + log v̂

[t]
k is a supermartingale, i.e., E[log v̂

[t+1]
k | v̂[t]] ≥

log(1 + c1
2 η) + log v̂

[t]
k . This is obviously true if

∥∥∥ṽ[t]

S̄

∥∥∥
1
> ε̃1 or

∥∥∥ṽ[t]
S

∥∥∥
∞
> 1 + c1 or ṽ[t]

k > 1− c1
2 .

Otherwise, there is

E[log v̂
[t+1]
k | v̂[t]] = E[log ṽ

[t+1]
k | ṽ[t]] (57)

= Est,it
[
log
(

1 + ηst − η(ṽ[t]�2 − v?�2)>x(it)x
(it)
k

)]
+ log ṽ

[t]
k (58)

≥ Est
[
log

(
1 + ηst +

2

3
η(1− (ṽ

[t]
k )2)− η(ε̃21 + r)Cxb

2
x

)]
+ log ṽ

[t]
k (59)

≥ log(1 +
c1

4
η) + log ṽ

[t]
k , (60)

where the first inequality is by the update rule, the second inequality is because (ε̃21 + r)Cxb
2
x <

c1
12 −

c21
4 and 4ηδ2 ≤ c1

2 and δ ≥ ε̃21 + r. So by Azuma inequality, we have

Pr
(
v̂

[T ]
k < 1− c1

2

)
(61)

≤e−
2(T log (1+

c1
4 η)+log εmin−log(1− c12 ))

2

T (2ηδ)2 (62)

≤e−
( 12T log (1+

c1
4 η))

2

2Tη2δ2 (63)

≤e−
Tc21
29δ2 (64)

≤ ρ

6r
. (65)

where the first inequality is because Azuma inequality and Var[log v̂
[t+1]
k | v̂[t]] ≤ (2ηδ)2, and the

second inequality is because T log(1 + c1
4 η) ≥ 2 log 1

εmin
which is true because Tη ≥ 16

c1
log 1

εmin
,

the third inequality is because log(1 + c1
4 η) ≥ c1

8 η, the last inequality is because T
δ2
≥ 29

c21
log 6r

ρ .
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Lemma 15 In the setting of Lemma 12, assume (ε̃21 + r)Cxb
2
x ≤ c1

20 and c21
8ηδ2

≥ log 6rT 2

ρ . Then,

for any k ∈ S, with probability at least 1− ρ
6r , either maxt<T ṽ

[t]
k < 1− c1

2 or ṽ[T ]
k ≥ 1− c1 .

Proof [Proof of Lemma 15] For any fixed 1 ≤ t1 < t2 ≤ T and dimension k ∈ S, we consider
the event that ṽ[t1] ∈ [1 − c1

2 , 1 −
c1
3 ], and at time t2 it is the first time in the trajectory such that

ṽ[t2] > 1 < c1. We first bound the probability of this event happens, i.e., the following quantity:

Pr
(
ṽ

[t2]
k < 1− c1 ∧ ṽ[t1]

k ≥ 1− c1

2
∧ ṽ[t1:t2]

k ∈ [1− c1, 1−
c1

3
]
)
, (66)

where ṽ[t1:t2]
k ∈ [1− c1, 1− c1

3 ] means that for all t such that t1 ≤ t < t2, there is 1− c1 ≤ ṽ
[t]
k ≤

1− c1
3 .

Notice that when
∥∥∥ṽ[t]

S̄

∥∥∥
1
≤ ε̃1 and

∥∥∥ṽ[t]
S

∥∥∥
∞
≤ 1 + c1 and ṽ[t1:t+1]

k ∈ [1− c1, 1− c1
3 ],

E[1− ṽ[t+1]
k ] =Est,it

[
1− (1 + ηstx

it
k − η(ṽ[t]�2 − v?�2)>x(it)x

(it)
k )ṽ

[t]
k

]
(67)

≤(1− ṽ[t]
k )− 2

3
ηṽ

[t]
k (ṽ

[t]
k + 1)(1− ṽ[t]

k ) + η(ε̃21 + r)Cxb
2
xṽ

[t]
k (68)

≤(1− η)(1− ṽ[t]
k ). (69)

where the first inequality is because
∥∥∥ṽ[t]

S̄

∥∥∥2

2
≤ ε̃21, the second inequality is because (ε̃21 + r)Cxb

2
x ≤

c1
20 . Also, we can bound the variance of this martingale as

Var
[
1− ṽ[t]

k | ṽ
[t]
k

]
≤ (2ηδ)2 . (70)

By Lemma 27, we have

Pr(1− ṽ[t2]
k > c1) (71)

≤e
−c21

8η2δ2
∑t2−t1−1
t=0 (1−η)2t (72)

≤e
−c21
8ηδ2 , (73)

where the first inequality is by Lemma 27, the second inequality is by taking the sum of denominator.
Finally, we finish the proof with a union bound. Since if maxt<T ṽ

[t]
k > 1− c1

2 but ṽ[T ]
k < 1−c1,

the event in Equation 66 has to happen for some 1 ≤ t1 < t2 ≤ T , so we have

Pr

(
max
t<T

ṽ
[t]
k > 1− c1

2
∧ ṽ[T ]

k < 1− c1

)
(74)

≤
∑

1≤t1<t2≤T
Pr
(
ṽ

[t2]
k < 1− c1 ∧ ṽ[t1]

k ≥ 1− c1

2
∧ ṽ[t1:t2]

k ∈ [1− c1, 1−
c1

3
]
)

(75)

≤T 2e
−c21
8ηδ2 (76)

≤ ρ

6r
. (77)
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Definition 16 ((b, ε)-bounded potential function) For a vector v that is positive on each dimension,
we define the (b, ε)-bounded potential function Φ(v) as follows: if ‖vS̄‖1 ≤ ε and ‖vS‖∞ ≤ b, we
let Φ(v) ,

∑
k/∈S
√
vk; otherwise Φ(v) , 0.

Lemma 17 In the setting of Lemma 12, assume 2
3ηδ

2 > 32(ε̃21+r)Cxb
2
x and Tη2δ2 ≥ 16 log

(
6
√
d

ρ
√
ε1

)
.

Then, with probability at least 1− ρ
6 , there is Φ(ṽ[T ]) ≤ √ε1.

Proof [Proof of Lemma 17] We first show Φ(ṽ[t]) decreases exponentially in expectation. For any
0 ≤ t ≤ T , if

∥∥∥ṽ[t]
S

∥∥∥
∞
≤ 1 + c1 and

∥∥∥ṽ[t]

S̄

∥∥∥
1
] ≤ ε̃1, we have:

E
[
Φ(ṽ[t+1])

]
≤
∑
k/∈S

E
[√

ṽ
[t+1]
k

]
(78)

=

d∑
k/∈S

Est,it
[√

ṽ
[t]
k + ηstx

it
k ṽ

[t]
k − η(ṽ[t]�2 − v?�2)>x(it)x

(it)
k ṽ

[t]
k

]
(79)

≤
∑
k/∈S

√
ṽ

[t]
k Est,it

[√
1 + ηstx

(it)
k + η(ε̃21 + r)Cxb2x

]
(80)

≤ (1− 1

16
η2δ2)Φ(ṽ[t]), (81)

where the second inequality is because
∥∥ṽ[t]

∥∥2

2
≤ ε̃21, the last inequality is by Taylor expansion

and 2
3ηδ

2 > 32(ε̃21 + r)Cxb
2
x. Also notice that when

∥∥∥ṽ[t]
S

∥∥∥
∞
> 1 + c1 or

∥∥∥ṽ[t]

S̄

∥∥∥
1
> ε̃1, there is

Φ(ṽ[t+1]) = p(ṽ[t]) = 0, so obviously we have E[Φ(ṽ[t+1])] ≤ (1− 1
16η

2δ2)Φ(ṽ[t]) always true.
Next we bound the probability of Φ(ṽ[T ]) ≤ √ε1:

Pr(Φ(ṽ[T ]) >
√
ε1) ≤ E[Φ(ṽ[T ])]

√
ε1

(82)

≤
(1− 1

16η
2δ2)T

√
d

√
ε1

(83)

≤ e−
1
16
Tη2δ2

√
d

√
ε1

(84)

≤ ρ

6
. (85)

where the first inequality if by Markov Inequaltiy, the second inequality is by the previous inequality
and initially Φ(v[0]) ≤

√
d, the third is by 1− x ≤ e−x for any x ∈ R, and the last inequality is by

Tη2δ2 ≥ 16 log
(

6
√
d

ρ
√
ε1

)
.

Proof [Proof of Theorem 5] Let ρ = 0.01, c1 = 0.1, ε̃1 , 12
ρ , Cx , maxj 6=k |Ei[x

(i)
j x

(i)
k ]|. Let

bx =
√

2 log 30d2

ρ = Θ̃(1). According to Lemma 25, when n ≤ d, there is with probability at least

1− ρ
15 we have

∥∥x(i)
∥∥
∞ ≤ bx for i ∈ [d].
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Assume δ be positive number such that 16
δ2

log 6
√
d

ρεmin
√
ε1
≤ 1 and δ ≥ bx(ε̃21 + r). (since εmin ≥

exp(−Õ(1)) this means δ ≥ Θ̃(r + log(1/ε1)) .) Let P =
c21

32δ2b2x log 5r
ρ

, Q = 2 log 1
P , η =

min{PQ ,
16
δ2
} = Θ̃( 1

δ2
), T = 16

η2δ2
log 6

√
d

ρεmin
√
ε1

= Θ̃(log(1/ε1)/η). Assume Cxb2x(ε̃21 + r) ≤

min
{
ηδ2

48 ,
ρ

12Tη

}
= Θ̃(ρ/ log(1/ε1)). (this means Cx ≤ Θ̃( ρ

r log(1/ε1)).)

We show the assumptions in the previous lemmas are all satisfied. The assumption c21
8ηδ2b2x

≥
log 6rT 2

ρ in Lemma 12 is satisfied by

c2
1

8ηδ2b2x
≥ log

6rT 2

ρ
(86)

⇐ c2
1

8ηδ2b2x
≥ log

6r

ρ
+ 4 log

1

η
(87)

⇐ η log
1

η
≤ c2

1

32δ2b2x log 6r
ρ

= P, (88)

where the first is by T ≤ 1
η2

, the second is by log 6r
ρ + 4 log 1

η ≤ 4 log 6r
ρ log 1

η , and the last line is
true because

η log
1

η
≤ P

Q
log

Q

P
(89)

= P (
logQ

Q
+

log 1/P

Q
) (90)

≤ P. (91)

The assumption δ ≥ bx(ε̃21 + r) in Lemma 12 is satisfied by definition of δ. The assumption
(ε̃21 + r)Cxb

2
x ≤ c1

20 in Lemma 12 is satisfied by

Cxb
2
x(ε̃21 + r) ≤ ηδ2

48
≤ c2

1

96
≤ c1

20
, (92)

where we use

ηδ2 ≤ δ2P

Q
≤ c2

1

2
. (93)

The assumption (ε̃21 + r)Cxb
2
x ≤

ρ
12Tη in Lemma 13 is satisfied by assumption of Cx.

The assumption T
δ2
≥ 29

c21
log 6r

ρ in Lemma 14 is satisfied by

T

δ2
≥ 16

η2δ4
log

6r

ρ
≥ 26

c4
1

log
6r

ρ
≥ 29

c2
1

log
6r

ρ
. (94)

The other two assumptions (ε̃21 + r)Cxb
2
x < c1

12 −
c21
4 and ηδ2 ≤ c1

8 in Lemma 14 follows from

Cxb
2
x(ε̃21 + r) < ηδ2

48 and ηδ2 ≤ c21
2 . The assumption Tη ≥ 16

c1
log 1

εmin
in Lemma 14 is satisfied by

the definition of T .
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The assumptions (ε̃21 + r)Cx ≤ c1
20 and c21

8ηδ2
≥ log 6rT 2

ρ in Lemma 15 are satisfied by the same

reason as that of Lemma 12. The assumption Tη2δ2 ≥ 16 log
(

6
√
d

ρ
√
ε1

)
in Lemma 17 is satisfied

by the definition of T , the assumption 2
3ηδ

2 > 32(ε̃21 + r)Cxb
2
x in Lemma 17 is satisfied by the

definition of Cx.
Since data are randomly fromN (0, I), with n ≥ Θ̃(( r log(1/ε1)

ρ )2) data, there is with probability

at least 1− ρ
18 there is Cxb2x(ε̃21 +r) ≤ min

{
ηδ2

48 ,
ρ

12Tη

}
= Θ̃(log(1/ε1)/η). Meanwhile, according

to Lemma 26, with n ≥ Θ̃(1) data with probability at least 1 − ρ
18 there is Ei[(x

(i)
k )2] ≥ 2

3 for all
k ∈ [d]. According to definition of bx, we know when n ≤ d, with probability at least 1 − ρ

18

there is also
∥∥x(i)

∥∥
∞ ≤ bx for all i ∈ [n]. In summary, with d ≥ n ≥ Θ̃(( r log(1/ε1)

ρ )2) data, with

probability at least 1 − ρ
6 there is Cxb2x(ε̃21 + r) ≤ min

{
ηδ2

48 ,
ρ

12Tη

}
and Ei[(x

(i)
k )2] ≥ 2

3 for all

k ∈ [d] and
∥∥x(i)

∥∥
∞ ≤ bx for all i ∈ [n].

Now we use these lemmas to finish the proof of the theorem. Let ṽ[t] be a (1 + c1, ε̃1)-bounded
coupling of v[t], we only need to prove with probability at least 1 − ρ, there is

∥∥∥ṽ[T ]
S − 1

∥∥∥
∞
≤ c1

and
∥∥∥ṽ[T ]

S̄

∥∥∥
1
≤ ε1, which follows from a union bound of the previous propositions. In particular,

Lemma 12 and Lemma 13 tell us that probability of
∥∥∥ṽ[T ]

S

∥∥∥
∞

> 1 + c1 or
∥∥∥ṽ[T ]

S̄

∥∥∥
1
> ε̃1 is at

most ρ
3 . Lemma 14 and Lemma 15 tell us for any k ∈ S, probability of ṽ[T ]

k < 1 − c1 and∥∥∥ṽ[T ]
S

∥∥∥
∞
≤ 1+c1 and

∥∥∥ṽ[T ]

S̄

∥∥∥
1
≤ ε̃1 is at most ρ

3r . Lemma 17 tells us the probability of
∥∥∥ṽ[T ]

S̄

∥∥∥
1
> ε1

and
∥∥∥ṽ[T ]

S

∥∥∥
∞
≤ 1 + c1 and

∥∥∥ṽ[T ]

S̄

∥∥∥
1
≤ ε̃1 is at most ρ

6 . Combining them together tells us that

probability of
∥∥∥ṽ[T ]

S − 1
∥∥∥
∞
> c1 or

∥∥∥ṽ[T ]

S̄

∥∥∥
1
> ε1 is at most ρ.
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Appendix D. Proof of Convergence to Ground Truth

The conclusion of Theorem 5 still allows constant error in the support, namely, ‖vS − v?S‖∞ ≤
1/10. The following theorem shows that further annealing the learning rate will let the algorithm
fully converge to v? with any target error. The end-to-end proof of the convergence to ground truth
can be found in the next section (Section E).

Theorem 18 Let s ≥ 2 be the index of the current round of bootstrapping. Let constant c0 = 1/10.
In the setting of Theorem 1, assume v[0] is an initial parameter satisfying ‖v[0]

S − v?S‖∞ ≤ cs−1 and
‖v[0]

S̄
−v?

S̄
‖1 ≤ εs−1, where 0 < εs−1 ≤ cs−1 ≤ c0. Given a failure rate ρ > 0. Assume n ≥ Θ̃(r2).

Suppose we run SGD with label noise with noise level δ ≥ 0 and learning rate η ≤ Θ̃(c2
s/(δ

2 + r2))
for T = log(4/c0)/η iterations. Then, with probability at least 1 − ρ over the randomness of the
algorithm and data, there is ‖v[T ]

S −v?S‖∞ ≤ cs , cs−1c0 and ‖v[T ]

S̄
−v?

S̄
‖1 ≤ εs , (4/c0)2cs−1εs−1.

Here Θ̃(·) omits poly logarithmic dependency on ρ.

In the rest of this section, we will first prove several lemmas on which the proof of Theorem 18
is built upon. Then we will provide a proof of Theorem 18.

Definition 19 ((b, ε)-to-v? coupling) Let v[0], v[1], · · · , v[T ] be a trajectory of label noise gradient
descent with initialization v[0]. Recall S ⊂ [d] is the support set of v?. We call the following
random sequence ṽ[t] a (b, ε)-to-v? coupling of v[t]: starting from ṽ[0] = v[0], for each time t < T ,
if
∥∥∥ṽ[t]

S̄

∥∥∥
1
≤ ε and

∥∥∥ṽ[t]
S − 1

∥∥∥
∞
≤ b, we let ṽ[t+1] , v[t+1]; otherwise ṽ[t+1] , ṽ[t].

Lemma 20 In the setting of Theorem 18, let Cx , maxj 6=k |Ei[x
(i)
j x

(i)
k ]|. Assume

∥∥x(i)
∥∥
∞ ≤ bx

for i ∈ [n] for some bx > 0, and Ei[(x
(i)
k )2] ≥ 2

3 for k ∈ [d]. Let ṽ[t] be a (2cs−1, εs)-to-v?

coupling of v[t]. Assume
c2s−1

2ηb2x(δ2+b2x(ε2s+r)
2)
≥ log 10rT 2

ρ and (ε2s + 4rcs−1)Cxb
2
x ≤

cs−1

10 . Then, with

probability at least 1− ρ
5 , there is

∥∥∥ṽ[T ]
S − 1

∥∥∥
∞
≤ 2cs−1.

Proof [Proof of Lemma 20] For any fixed 1 ≤ t1 < t2 ≤ T and dimension k ∈ S, we consider the
event that ṽ[t1] ∈ [1 + 2

3cs−1, 1 + cs−1], and at time t2 it is the first time in the trajectory such that
ṽ[t2] > 1 + 2cs−1. We first bound the probability of this event happens, i.e., the following quantity:

Pr

(
ṽ

[t2]
k − 1 > 2cs−1 ∧ ṽ[t1]

k − 1 ≤ cs−1 ∧ ṽ[t1:t2]
k ∈ [1 +

2

3
cs−1, 1 + 2cs−1]

)
, (95)

where ṽ[t1:t2]
k ∈ [1+ 2

3cs−1, 1+2cs−1] means that for all t such that t1 ≤ t < t2, there is 1+ 2
3cs−1 ≤

ṽ
[t]
k ≤ 1 + 2cs−1.

Notice that when
∥∥∥ṽ[t]

S̄

∥∥∥
1
≤ εs and

∥∥∥ṽ[t]
S − 1

∥∥∥
∞
≤ 2cs−1 and ṽ[t1:t+1]

k ∈ [1 + 2
3cs−1, 1 + 2cs−1],

there is

E[ṽ
[t+1]
k − 1] =Est,it

[
(1 + ηstx

it
k − η(ṽ[t]�2 − v?�2)>x(it)x

(it)
k )ṽ

[t]
k − 1

]
(96)

≤(ṽ
[t]
k − 1)− 2

3
ηṽ

[t]
k (ṽ

[t]
k + 1)(ṽ

[t]
k − 1) + η(ε2s + 4rcs−1)Cxb

2
xṽ

[t]
k (97)

≤(1− η)(ṽ
[t]
k − 1). (98)
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where the first inequality is because
∥∥∥ṽ[t]

S̄

∥∥∥2

2
≤ ε2s and properties of the data, the second inequality

is because (ε2s + 4rcs−1)b2xCx ≤
cs−1

10 . Also, we can bound the variance of this martingale as

Var
[
ṽ

[t+1]
k − 1 | ṽ[t] − 1

]
= Var

[
ηstx

(it)
k ṽ

[t]
k

]
+ Var

[
η((ṽ[t]�2 − v?�2)>x(it))x

(it)
k ṽ

[t]
k

]
(99)

≤ (ηδbx(1 + 2cs−1))2 + η2(ε2s + r)2b4x(1 + 2cs−1)2 (100)

≤ 4η2b2x(δ2 + b2x(ε2s + r)2), (101)

By Lemma 27, we have

Pr(ṽ
[t2]
k − 1 > 2cs−1 ∧ ṽ[t1]

k − 1 ≤ cs−1 ∧ ṽ[t1:t2]
k ∈ [1 +

2

3
cs−1, 1 + 2cs−1]) (102)

≤e
−c2s−1

2η2b2x(δ
2+b2x(ε

2
s+r)

2)
∑t2−t1−1
t=0 (1−η)2t (103)

≤e
−c2s−1

2ηb2x(δ
2+b2x(ε

2
s+r)

2) , (104)

where the first inequality is by Lemma 27, the second inequality is by taking the sum of denominator.
Similarly, we bound

Pr

(
1− ṽ[t2]

k > 2cs−1 ∧ 1− ṽ[t1]
k ≤ cs−1 ∧ ṽ[t1:t2]

k ∈ [1− 2cs−1, 1−
2

3
cs−1]

)
. (105)

Notice that when
∥∥∥ṽ[t]

S̄

∥∥∥
1
≤ εs and

∥∥∥ṽ[t]
S − 1

∥∥∥
∞
≤ 2cs−1 and ṽ[t1:t+1]

k ∈ [1 − 2cs−1, 1 − 2
3cs−1],

there is

E[1− ṽ[t+1]
k ] =Est,it

[
1− (1 + ηstx

it
k − η(ṽ[t]�2 − v?�2)>x(it))x

(it)
k )ṽ

[t]
k

]
(106)

≤(1− ṽ[t]
k )− 2

3
ηṽ

[t]
k (ṽ

[t]
k + 1)(1− ṽ[t]

k ) + η(ε2s + 4rcs−1)Cxb
2
xṽ

[t]
k (107)

≤(1− η)(1− ṽ[t]
k ). (108)

where the first inequality is because
∥∥∥ṽ[t]

S̄

∥∥∥2

2
≤ ε2s and the properties of data, the second inequality

is because (ε2s + 4rcs−1)Cxb
2
x ≤

cs−1

10 . So

Pr(1− ṽ[t2]
k > 2cs−1 ∧ 1− ṽ[t1]

k ≤ cs−1 ∧ ṽ[t1:t2]
k ∈ [1− 2cs−1, 1−

2

3
cs−1]) (109)

≤e
−c2s−1

2η2b2x(δ
2+b2x(ε

2
s+r)

2)
∑t2−t1−1
t=0 (1−η)2t (110)

≤e
−c2s−1

2ηb2x(δ
2+b2x(ε

2
s+r)

2) , (111)

where the first inequality is by Lemma 27, the second inequality is by taking the sum of denominator.
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Finally, we finish the proof with a union bound. Since if
∥∥∥ṽ[T ]

S − 1
∥∥∥
∞
> 2cs−1, either event in

Equation 95 or in Equation 105 has to happen for some k ∈ S and 1 ≤ t1 < t2 ≤ T , so we have

Pr
(∥∥∥ṽ[T ]

S − 1
∥∥∥
∞
> 2cs−1

)
(112)

≤
∑
k∈S

∑
1≤t1<t2≤T

Pr

(
ṽ

[t2]
k − 1 > 2cs−1 ∧ ṽ[t1]

k − 1 ≤ cs−1 ∧ ṽ[t1:t2]
k ∈ [1 +

2

3
cs−1, 1 + 2cs−1]

)
(113)

+
∑
k∈S

∑
1≤t1<t2≤T

Pr

(
1− ṽ[t2]

k > 2cs−1 ∧ 1− ṽ[t1]
k ≤ cs−1 ∧ ṽ[t1:t2]

k ∈ [1− 2cs−1, 1−
2

3
cs−1]

)
(114)

≤2rT 2e
−c2s−1

2ηb2x(δ
2+b2x(ε

2
s+r)

2) (115)

≤ρ
5
, (116)

where the first inequality is by union bound, the second inequality is by previous results, the third
inequality is by assumption of this lemma.

Lemma 21 In the setting of Lemma 20, assume (ε2s+4cs−1r)Cxb
2
x ≤ cs−1, εs > (1+ηcs−1)T εs−1

and ((1+ηcs−1)−T εs−εs−1)2

2Tη2b2x(δ2+b2x(ε2s+r)
2)ε2s
≥ log 5

ρ . Then, with probability at least 1− ρ
5 , there is

∥∥∥ṽ[T ]

S̄

∥∥∥
1
≤ εs.

Proof [Proof of Lemma 21] When
∥∥∥ṽ[t]

S − 1
∥∥∥
∞
≤ 2cs−1 and

∥∥∥ṽ[t]

S̄

∥∥∥
1
≤ εs, for any k /∈ S, there is:

E
[
ṽ

[t+1]
k

]
= ṽ

[t]
k − ηEit

[
((ṽ[t]�2 − v?�2)>x(it))x

(it)
k ṽ

[t]
k

]
(117)

≤ ṽ[t]
k + η(

∥∥∥∥ṽ[t]

S̄

�2
∥∥∥∥

1

+ 4cs−1r)Cxb
2
xṽ

[t]
k (118)

≤ ṽ[t]
k + η(ε2s + 4cs−1r)Cxb

2
xṽ

[t]
k (119)

≤ (1 + ηcs−1)ṽ
[t]
k . (120)

where the first inequality is because we can bound the dimensions in S and those not in S with∥∥∥∥ṽ[t]

S̄

�2
∥∥∥∥

1

Cxb
2
x and 4cs−1rCxb

2
x respectively, the second inequality is by

∥∥∥ṽ[t]

S̄

∥∥∥2

2
≤
∥∥∥ṽ[t]

S̄

∥∥∥2

1
, the

third is because (ε2s + 4cs−1r)Cxb
2
x ≤ cs−1. Summing over all k /∈ S we have E[

∥∥∥ṽ[t+1]

S̄

∥∥∥
1
] ≤

(1 + ηcs−1)
∥∥∥ṽ[t]

S̄

∥∥∥
1
. This bound is obviously also true when

∥∥∥ṽ[t]
S − 1

∥∥∥
∞
> 2cs−1 or

∥∥∥ṽ[t]

S̄

∥∥∥
1
> εs,

in which case ṽ[t+1] = ṽ[t].
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Therefore we know (1 + ηcs−1)−t
∥∥ṽ[t]

∥∥
1

is a supermartingale. Also notice |
∥∥∥ṽ[t+1]

S̄

∥∥∥
1
−

E[
∥∥∥ṽ[t+1]

S̄

∥∥∥
1
]| ≤ ηδεs, By Azuma Inequality,

Pr
(∥∥∥ṽ[T ]

S̄

∥∥∥
1
> εs

)
(121)

≤e−
((1+ηcs−1)

−T εs−εs−1)
2

2Tη2b2x(δ
2+b2x(ε

2
s+r)

2)ε2s , (122)

≤ρ
4
. (123)

here we are using εs > (1 + ηcs−1)T εs−1 by assumption and the last step is by assumption.

Lemma 22 In the setting of Lemma 20, assume (1 − η)T 2cs−1 <
cs
2 ,

c2s−1

2ηδ2
≥ log 5r

ρ , and (ε2s +

4cs−1r)Cxb
2
x ≤ cs

10 . Then, for any k ∈ S, with probability at least 1− ρ
5r , either mint≤T |ṽ[t]

k −1| ≥
cs
2 , or

∥∥∥ṽ[T ]
S − 1

∥∥∥
∞
> 2cs−1, or

∥∥∥ṽ[T ]

S̄

∥∥∥
1
> εs.

Proof [Proof of Lemma 22]
We first consider when ṽ[t]

k ∈ [1 + cs
2 , 1 + 2cs−1]. For some t < T2, if

∥∥∥ṽ[t]
S − 1

∥∥∥
∞
≤ cs−1 and∥∥∥ṽ[t]

S̄

∥∥∥
1
≤ εs, there is

E[ṽ
[t+1]
k − 1] (124)

=ṽ
[t]
k − ηEit [((ṽ

[t]�2 − v?�2)>x(it))x
(it)
k ]ṽ

[t]
k − 1 (125)

≤(ṽ
[t]
k − 1)− 2

3
ηṽ

[t]
k (ṽ

[t]
k + 1)(ṽ

[t]
k − 1) + η(ε2s + 4cs−1r)Cxb

2
xv

[t]
k (126)

≤(1− η)(v
[t]
k − 1). (127)

Here the first inequality is by assumption, the second inequality is because (ε2s + 4cs−1r)Cxb
2
x ≤

1
10cs and cs−1 ≤ 1

10 .

We define the event Et as
∥∥∥ṽ[t]

S − 1
∥∥∥
∞
> 2cs−1 or

∥∥∥ṽ[t]

S̄

∥∥∥
1
> εs. Since (1− η)T22cs−1 <

cs
2 by

assumption, if ṽ[0]
k ∈ [1 + cs

2 , 1 + 2cs−1], by Lemma 28 we know:

Pr

(
min
t≤T

ṽ
[t]
k > 1 +

cs
2
∧
∥∥∥ṽ[T ]

S − 1
∥∥∥
∞
≤ 2cs−1 ∧

∥∥∥ṽ[T ]

S̄

∥∥∥
1
≤ εs

)
(128)

≤ e−
( 1
2 cs(1−η)

−T−cs−1)
2

2ηb2x(δ
2+b2x(ε

2
s+r)

2) (129)

≤ e−
c2s−1

2ηb2x(δ
2+b2x(ε

2
s+r)

2) (130)

≤ ρ

5r
, (131)

where the second inequality is because of assumption.
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Similarly, when ṽ[0]
k ∈ [1− 2cs−1, 1− cs

2 ], there is

Pr

(
max
t≤T

ṽ
[t]
k < 1− cs

2
∧
∥∥∥ṽ[T2]

S − 1
∥∥∥
∞
≤ 2cs−1 ∧

∥∥∥ṽ[T ]

S̄

∥∥∥
1
≤ εs

)
(132)

≤ e−
c2s−1

2ηb2x(δ
2+b2x(ε

2
s+r)

2) (133)

≤ ρ

5r
. (134)

Since |ṽ[0]
k − 1| ≤ cs−1 by assumption of Theorem 18, by bounding the probability for ṽ[0]

k ∈
[1 + cs

2 , 1 + 2cs−1] and [1− 2cs−1, 1− cs
2 ] repectively we finished the proof.

Lemma 23 In the setting of Lemma 20, assume c2s
8ηb2x(δ2+b2x(ε2s+r)

2)
≥ log 5rT 2

ρ and (ε2s+2rcs)Cxb
2
x ≤

cs
20 . Then, for any dimension k ∈ S, with probability at most ρ

5r , there is mint≤T |ṽ[t]
k − 1| ≤ 1

2cs

and |ṽ[T ]
k − 1| > cs and

∥∥∥ṽ[T ]
S − 1

∥∥∥
∞
≤ 2cs−1 and

∥∥∥ṽ[T ]

S̄

∥∥∥
1
≤ εs.

Proof [Proof of Lemma 23] For any fixed 1 ≤ t1 < t2 ≤ T , we consider the event that ṽ[t1] ∈
[1 + 1

3cs, 1 + 1
2cs], and at time t2 it is the first time in the trajectory such that ṽ[t2] > 1 + cs. We first

bound the probability of this event happens, i.e., the following quantity:

Pr

(
ṽ

[t2]
k − 1 > cs ∧ ṽ[t1]

k − 1 ≤ 1

2
cs ∧ ṽ[t1:t2]

k ∈ [1 +
1

3
cs, 1 + cs]

)
. (135)

Notice that when
∥∥∥ṽ[t]

S̄

∥∥∥
1
≤ εs and

∥∥∥ṽ[t]
S − 1

∥∥∥
∞
≤ 2cs−1 and ṽ[t1:t+1]

k ∈ [1 + 1
3cs, 1 + cs], there

is

E[ṽ
[t+1]
k − 1] =Est,it

[
(1 + ηstx

it
k − ηEit [(ṽ

[t]�2 − v?�2)>x(it))x
(it)
k ])ṽ

[t]
k − 1

]
(136)

≤(ṽ
[t]
k − 1)− 2

3
ηṽ

[t]
k (ṽ

[t]
k + 1)(ṽ

[t]
k − 1) + η(ε2s + 2rcs)Cxb

2
xṽ

[t]
k (137)

≤(1− η)(ṽ
[t]
k − 1). (138)

where the first inequality is because
∥∥∥ṽ[t]

S̄

∥∥∥2

2
≤ ε2s, the second inequality is because (ε2s+2rcs)Cxb

2
x ≤

cs
20 . Also, we can bound the variance of this martingale as

Var
[
ṽ

[t+1]
k − 1 | ṽ[t] − 1

]
= Var

[
ηstx

(it)
k ṽ

[t]
k

]
+ Var

[
η((ṽ[t]�2 − v?�2)>x(it))x

(it)
k ṽ

[t]
k

]
(139)

≤ (ηδbx(1 + cs))
2 + η2(ε2s + r)2b4x(1 + cs)

2 (140)

≤ 4η2b2x(δ2 + b2x(ε2s + r)2), (141)

By Lemma 27, we have

Pr(ṽ
[t2]
k − 1 > cs ∧ ṽ[t1]

k − 1 ≤ 1

2
cs ∧ ṽ[t1:t2]

k ∈ [1 +
1

3
cs, 1 + cs]) (142)

≤e
−c2s

8η2b2x(δ
2+b2x(ε

2
s+r)

2)
∑T−1
t=0 (1−η)2t (143)

≤e
−c2s

8ηb2x(δ
2+b2x(ε

2
s+r)

2) (144)
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where the first inequality is by Lemma 27, the second inequality is by taking the sum of denominator.
Similarly, we bound

Pr(1− ṽ[t2]
k > cs ∧ 1− ṽ[t1]

k ≤ 1

2
cs ∧ ṽ[t1:t2]

k ∈ [1− cs, 1−
1

3
cs]) (145)

≤ e
−c2s

8ηb2x(δ
2+b2x(ε

2
s+r)

2) . (146)

Finally, we finish the proof with a union bound:

Pr

(
min
t≤T
|ṽ[t]
k − 1| ≤ 1

2
cs ∧ |ṽ[T ]

k − 1| > cs ∧
∥∥∥ṽ[T ]

S − 1
∥∥∥
∞
≤ 2cs−1 ∧

∥∥∥ṽ[T ]

S̄

∥∥∥
1
≤ εs

)
(147)

≤
∑

1≤t1<t2≤T
Pr(ṽ

[t2]
k − 1 > cs ∧ ṽ[t1]

k − 1 ≤ 1

2
cs ∧ ṽ[t1:t2]

k ∈ [1 +
1

3
cs, 1 + cs]) (148)

+
∑

1≤t1<t2≤T
Pr(1− ṽ[t2]

k > cs ∧ 1− ṽ[t1]
k ≤ 1

2
cs ∧ ṽ[t1:t2]

k ∈ [1− cs, 1−
1

3
cs]) (149)

≤ T 2e
−c2s

8ηb2x(δ
2+b2x(ε

2
s+r)

2) (150)

≤ ρ

5r
, (151)

where the first inequality is by union bound, the second inequality is by previous results, the third
inequality is by assumption of this lemma.

Proof [Proof of Theorem 18] Let Cx , maxj 6=k |Ei[x
(i)
j x

(i)
k ]|, bx =

√
2 log 30d2

ρ = Θ̃(1). Accord-

ing to Lemma 25, when n ≤ d, there is with probability at least 1 − ρ
15 we have

∥∥x(i)
∥∥
∞ ≤ bx for

i ∈ [d].
Set η small enough such that c2s

8ηb2x(δ2+b2x(ε2s+r)
2)
≥ log 10rT 2

ρ . Obviously we only need η ≤

Θ̃( c2s
δ2+r2

), where Θ̃(·) omits poly logarithmic dependency on d and ρ. Assume (ε2s+4cs−1r)Cxb
2
x ≤

cs
10 , which can be represented as Cx ≤ Θ̃(1

r ). Recall T = 1
η log 4

c0
, εs = e

2cs−1 log 4
c0 εs−1.

We first show that the additional assumptions in the previous lemmas are satisfied. There is

(1 + ηcs−1)T = (1 + ηcs−1)
1
η

log 4
c0 (152)

≤ ecs−1 log 4
c0 , P. (153)

The assumption εs > (1 + ηcs−1)T εs−1 in Lemma 21 is therefore satisfied by definition of εs. The
assumption ((1+ηcs−1)−T εs−εs−1)2

2Tη2b2x(δ2+b2x(ε2s+r)
2)ε2s
≥ log 5

ρ in Lemma 21 is satisfied because:

((1 + ηcs−1)−T εs − εs−1)2

2Tη2b2x(δ2 + b2x(ε2s + r)2)ε2s
≥ ε2s(P

−1 − P−2)2

2Tη2b2x(δ2 + b2x(ε2s + r)2)ε2s
(154)

≥ (P − 1)2

2Tη2b2x(δ2 + b2x(ε2s + r)2)
(155)

≥
c2
s−1

2ηb2x(δ2 + b2x(ε2s + r)2)
, (156)
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which is larger than log 5
ρ by the definition of η. The assumption (1− η)T 2cs−1 ≤ cs

2 in Lemma 22

is satisfied because (1− η)T 2cs−1 ≤ (1
e )

log 4
c0 2cs−1 = cs

2 . All the other assumptions in Lemma 20,
Lemma 21, Lemma 22and Lemma 23 naturally follows from the definition of η and the requirement
of Cx.

Since data are randomly from N (0, I), with n ≥ Θ̃(r2) data, there is with probability at least
1− ρ

15 there is (ε2s + 4cs−1r)Cxb
2
x ≤ cs

10 . Meanwhile, according to Lemma 26 with n ≥ Θ̃(1) data

with probability at least 1− ρ
15 there is Ei[(x

(i)
k )2] ≥ 2

3 for all k ∈ [d]. According to definition of bx,
we know when n ≤ d, with probability at least 1− ρ

15 there is also
∥∥x(i)

∥∥
∞ ≤ bx for all i ∈ [n]. In

summary, with d ≥ n ≥ Θ̃(r2) data, with probability at least 1− ρ
5 there is (ε2s+4cs−1r)Cxb

2
x ≤ cs

10

and Ei[(x
(i)
k )2] ≥ 2

3 for all k ∈ [d] and
∥∥x(i)

∥∥
∞ ≤ bx for all i ∈ [n].

Now we finish the proof with the above lemmas. Lemma 20 and Lemma 21 together tell us that
with probability at least 1 − 2ρ

5 , there is
∥∥∥ṽ[T ]

S − 1
∥∥∥
∞
≤ 2cs−1 and

∥∥∥ṽ[T ]

S̄

∥∥∥
1
≤ εs, in which case

there is also v[T ] = ṽ[T ] by the definition of ṽ[T ]. Lemma 22 and Lemma 23 together tell us the
probability of

∥∥∥ṽ[T ]
S − 1

∥∥∥
∞
≤ 2cs−1 and

∥∥∥ṽ[T ]

S̄

∥∥∥
1
≤ εs and

∥∥∥ṽ[T ]
S − 1

∥∥∥
∞
> cs is no more than 2ρ

5 .

So together we know with probability at least 1 − ρ, there is
∥∥∥v[T ]

S − 1
∥∥∥
∞
≤ cs and

∥∥∥v[T ]

S̄

∥∥∥
1
≤ εs.
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Appendix E. Proof of Theorem 1

Proof [Proof of Theorem 1] Starting from initialization τ · 1, by Theorem 3, running SGD with
label noise with noise level δ > Õ( τ

2d2

ρ3
) and η0 = Θ̃(1

δ ) for T0 = Θ̃(1) iterations gives us that

with probability at least 0.99, εmin ≤ v[T0]
k ≤ 1

d where εmin = exp(−Θ̃(1)). Now v[T0] satisfies the
initial condition of Theorem 5.

Recall the final target precision is ε, set ε1 = 1
403
ε. By Theorem 5, with n ≥ Θ̃(r2 log2(1/ε))

data, after running SGD with label noise with learning rate η1 = Θ̃( 1
δ2

) for T1 = Θ̃( log(1/ε)
η1

)
iterations, with probability at least 0.99, there is,∥∥∥v[T0+T1]

S − v?S
∥∥∥
∞
≤ c1 ,

1

10
, (157)

and ∥∥∥v[T0+T1]

S̄
− v?S̄

∥∥∥
1
≤ ε1. (158)

So we have v[T0+T1] satisfies the initial condition of Theorem 18.
Finally, set ρ = 0.01/dlog10(1/ε)e, and apply Theorem 18 for ns = dlog10(1/ε)e = Θ̃(1)

rounds. Since cs gets smaller by 1/10 for each round, the final cns satisfies 1
10ε ≤ cns ≤ ε. Since

the requirement of η for round s is η ≤ Θ̃( c2s
δ2+r2

), we can set η2 ≤ Θ̃( ε
2

δ2
) to satisfy all the rounds at

the same time. Set T2 be the total number of iterations in all of these rounds, obviously T2 = Θ̃( 1
η2

).

Notice that εs ≤ e
∑∞
s=2 2cs−1 log 4

c0 ε1 ≤ 403ε1 = ε, we have with probability at least 0.99,∥∥∥v[T0+T1+T2]
S − v?S

∥∥∥
∞
≤ c1 , ε, (159)

and ∥∥∥v[T0+T1+T2]

S̄
− v?S̄

∥∥∥
1
≤ ε. (160)

The total failure rate of above three stages is 0.03, so with probability at least 0.97, there is∥∥v[T0+T1+T2] − v?
∥∥
∞ ≤ ε, which finishes the proof.
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Appendix F. Proof of Theorem 2

Lemma 24 Assume n ≤ d
2 − 9

√
d. Let C ⊂ Rd be the convex cone where each coordinate is

positive, K be a random subspace of dimension d − n. Then with probability at least 0.999, there
is K ∩ C 6= {0}

Proof [Proof of Lemma 24] By Theorem 1 of Amelunxen et al. (2014), we only need to prove

δ(C) + δ(K) ≥ d+ 9
√
d, (161)

where δ(·) is the statistical dimension of a set. By equation (2.1) of Amelunxen et al. (2014), there
is

δ(K) = d− n. (162)

To calculate δ(C), we use Proposition 2.4 from Amelunxen et al. (2014),

δ(C) = E[‖ΠC(g)‖2], (163)

where g is a standard random vector, ΠC is projection of g to C, the expectation is over g. Since C
is the set of all points with element-wise positive coordinate, ΠC(g) is simply setting all the negative
dimension of g to 0 and keep the positive ones. Therefore,

δ(C) = E[‖ΠC(g)‖2] =
d

2
. (164)

Therefore we have

δ(C) + δ(K) =
3

2
d− n ≥ d+ 9

√
d. (165)

Proof [Proof of Theorem 2] LetX⊥ be the subspace that is orthogonal to the subspaceX spanned by
data. Since data is random, with probability 1 the random subspaceX is of n dimension. Therefore,
according to the previous lemma, with probability at least 0.999, there is X⊥ ∩ C 6= {0}, where C
is the coordinate-wise positive cone. Let µ ∈ X⊥ be such a vector such that µi > 0 for ∀i ∈ [d],
and we scale it such that ‖µ‖2 = 1. We can construct the following orthonormal matrix

A = [a1, · · · , ad] ∈ Rd×d, (166)

such that span{a1, · · · an} = X and an+1 = µ. Consider the following transformation

Aũ = u = v�2, (167)

since only the projection of u to the span of data influences L(v), we can write L(v) = L̃(ũ1:n) as
a function of the first n dimensions of ũ.
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We can lower bound the partition function with∫
v∈Rd

e−λL(v)dv ≥
∫
v>0

e−λL(v)dv (168)

=

∫
Aũ>0

e−λL̃(ũ1:n) det
∂v

∂u
det

∂u

∂ũ
dũ (169)

=
1

2d

∫
e−λL̃(ũ1:n)

(∫
Aũ>0

d∏
i=1

1
√
ui
dũn+1:d

)
dũ1:n. (170)

Here the inner loop is integrating over the last d − n dimensions of ũ in the set such that Aũ is
coordinate-wise positive. Now we prove that for each ũ1:n such that S = {ũn+1;d|Aũ > 0} is not
empty set, the inner loop integral is always +∞.

Fix ũ1:n, let ũ∗n+1:d be one possible solution such that u∗ = Aũ > 0. Define constant

c = min
i≤[1:d]

max
j∈[n+2:d]

an+1
i

(d− n− 1)|aji |
, (171)

we can define the following set

S′ = {ũn+1:d|ũn+1 ≥ ũ∗n+1 ∧ |ũj − ũ∗j | ≤ c(ũn+1 − ũ∗n+1), ∀j ∈ [n+ 2, d]} (172)

In other words, this is a convex cone where constraint of ũj is linear in ũn+1 for j ∈ [n+ 2 : d]. By
definition of c, it is easy to verify that S′ is a subset of S. Also, for every ũn+1:d ∈ S′, ui is upper
bounded by (

A

[
ũ1:n

ũn+1:d

])
i

= u∗i + an+1
i (ũn+1 − ũ∗n+1) +

d∑
j=n+2

aji (ũj − ũ
∗
j ) (173)

≤ u∗i + 2an+1
i (ũn+1 − ũ∗n+1). (174)

Here the inequality is because of the definition of c.
Let z = ũn+1 − ũ∗n+1 we have

∫
ũn+1:d∈S′

d∏
i=1

1
√
ui
dũn+1:d (175)

≥
∫
z≥0

(2cz)d−n−1
d∏
i=1

1√
u∗i + 2an+1

i z
dz (176)

= +∞. (177)

Here the last step is because n < d/2, so the integrand is essentially a polynomial of z with degree
larger than −1, so integrating it over all positive z has to be +∞. So we finish the proof that∫
v∈Rd e

−λL(v)dv = +∞.
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Appendix G. Extra Lemmas

Lemma 25 Suppose x(i) ∼ N (0, Id×d) where i ∈ [n] are random data. Then with probability at
least 1− ρ, for every i ∈ [n] there is

∥∥∥x(i)
∥∥∥
∞
≤

√
2 log

2nd

ρ
(178)

Proof By Gaussian tail bound, there is Pr
(
|x(i)
k | > bx

)
≤ 2e−

b2x
2 . So by union bound we have

Pr
(

maxi,k |x
(i)
k | > bx

)
≤ 2nde−

b2x
2 . Let bx =

√
2 log 2nd

ρ we finished the proof.

Lemma 26 Suppose x(i) ∼ N (0, Id×d) where i ∈ [n] are random data. Then when n > 24 log d
ρ ,

with probability at least 1− ρ, for every k ∈ [d] there is

Ei[x
(i)
k

2
] ≥ 2

3
. (179)

Proof Since Ex[xk
2] = 1, Ex[xk

4] = 3, by Hoeffding inequality we have

Pr

(
1

n

n∑
i=1

x
(i)
k

2
<

2

3

)
≤ e

−n
24 . (180)

Therefore, when n ≥ 24 log d
ρ , by union bound we finish the proof.

Lemma 27 Let c > 0, 1 > γ > 0 be real constants. LetA[0], A[1], · · · , A[T ], be a series of random
variables, such that given A[0], · · · , A[t] for some t < T with A[t] ∈ [ c3 , c], there is either A[t] =

A[t+1] = · · · = A[T ], or E[A[t+1]] ≤ (1 − γ)A[t] with variance Var[A[t+1] | A[0], · · · , A[t]] ≤ a.
Then there is

Pr
(
A[T ] > c ∧A[0] ≤ c

2
∧A[0:T ] ∈

[ c
3
, c
])
≤ e

−c2

2a
∑T−1
t=0 (1−γ)2t . (181)

where A[0:T ] ∈
[
c
3 , c
]

means for any 0 ≤ t < T , A[t] ∈
[
c
3 , c
]
.

Proof [Proof of Lemma 27] We only need to consider when A[0] ≤ c
2 . Let Â[t] be the following

coupling of A[t]: starting from Â[0] = A[0], for each time t < T , if A[t] = A[t+1] = · · · = A[T ]

or there is t′ ≤ t such that A[t′] /∈ [ c3 , c], we let Â[t+1] , (1 − γ)Â[t+1]; otherwise Â[t+1] =

A[t+1]. Intuitively, whenever A[t] stops updating or exceeds proper range, we only times Â[t] by
1 − γ afterwards, otherwise we let it be the same as A[t]. Notice that if the event in Equation 181
happens, there has to be Â[T ] = A[T ] (otherwise A[t] stops updating or exceeds range at some time,
contradicting the event). So we only need to bound Pr

(
Â[T ] > c

)
.
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We notice that (1 − γ)−tÂ[t] for t = 0 · · ·T is a supermartingale, i.e., given history there is
E[Â[t+1]|Â[t]] ≤ (1 − γ)Â[t]. This is obviously true when v̂[t+1] = (1 − γ)Â[t], and also true
otherwise by assumption of the lemma. So we have

Pr(Â[T ] > c) (182)

= Pr((1− γ)−T Â[T ] > (1− γ)−T c) (183)

≤e
−

2(c(1−γ)−T−Â[0])
2

∑T−1
t=0 (1−γ)−2ta (184)

≤e
− c2(1−γ)−2T

2
∑T−1
t=0 (1−γ)−2(t+1)a (185)

=e
− c2

2a
∑T−1
t=0 (1−γ)2t . (186)

where the first inequality is because of Azuma Inequality and Var
[
(1− γ)−t+1Â[t+1] | Â[t]

]
≤

(1− γ)−2(t+1)a. , the second inequality is because Â[0] ≤ c
2 . Since the event in Equation 181 only

happens when Â[T ] > c, we’ve finished the proof.

Lemma 28 Let 0 < c1 < c2 be real constants. Let A[0], A[1], · · · , A[T ], be a series of random
variables, such that given A[0], · · · , A[t] for some t < T with A[t] ∈ [c1, c2], there is either event
Et happens, or E[A[t+1]] ≤ (1− γ)A[t] with variance Var[A[t+1] | A[0], · · · , A[t]] ≤ a. Then when
A[0] ∈ [c1, c2] and (1− γ)T c2 < c1 there is

Pr

(
min
t≤T

A[t] > c1 ∧max
t≤T

A[t] ≤ c2 ∧ ¬E[0:T ]

)
≤ e
−

2(c1(1−γ)−T−A[0])
2

1
γ a . (187)

where ¬E[0:T ] means for any 0 ≤ t < T , Et doesn’t happen.

Proof [Proof of Lemma 28] Let Â[t] be the following coupling of A[t]: starting from Â[0] = A[0],
for each time t < T , if exists t′ ≤ tsuch that Et′ happens or A[t′] /∈ [c1, c2], we let Â[t+1] ,
(1 − γ)Â[t+1]; otherwise Â[t+1] = A[t+1]. Intuitively, whenever A[t] exceeds proper range, we
only times Â[t] by 1 − γ afterwards, otherwise we let it be the same as A[t]. Notice that if the
event in Equation 187 happens, there has to be Â[T ] = A[T ] (otherwise Et happens sometimes or
A[t] /∈ [c1, c2], contradicting the event). So we only need to bound Pr

(
Â[T ] > c1

)
.

We notice that (1 − γ)−tÂ[t] for t = 0 · · ·T is a supermartingale, i.e., given history there is
E[Â[t+1]|Â[t]] ≤ (1 − γ)Â[t]. This is obviously true when v̂[t+1] = (1 − γ)Â[t], and also true
otherwise by assumption of the lemma. So we have

Pr(Â[T ] > c1) (188)

= Pr((1− γ)−T Â[T ] > (1− γ)−T c1) (189)

≤e
−

2(c1(1−γ)−T−A[0])
2

∑T−1
t=0 (1−γ)−2ta (190)

≤e
−

2(c1(1−γ)−T−A[0])
2

1
γ a (191)
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where the first inequality is because of Azuma Inequality and Var
[
(1− γ)−t+1Â[t+1] | Â[t]

]
≤

(1−γ)−2(t+1)a and Â[0] ≤ c2 ≤ e
−

2(c1(1−γ)−T−c2)
2

∑T−1
t=0 (1−γ)−2ta . Since the event in Equation 187 only happens

when Â[T ] > c1, we’ve finished the proof.
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