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Abstract
This paper presents multi-armed bandit (MAB) algorithms that work well in adversarial environ-
ments and that offer improved performance by exploiting inherent structures in such environments,
as stochastic generative models, as well as small variations in loss vectors. The fundamental aim
of this work is to overcome the limitation of worst-case analyses in MAB contexts. There can
be found two basic approaches achieving this purpose: best-of-both-worlds algorithms that work
well for both stochastic and adversarial settings, and data-dependent regret bounds that work well
depending on certain difficulty indicators w.r.g. loss sequences. One remarkable study w.r.t. the
best-of-both-worlds approach deals with the Tsallis-INF algorithm (Zimmert and Seldin, 2021),
which achieves nearly optimal regret bounds up to small constants in both settings, though such
bounds have remained unproven for a special case of a stochastic setting with multiple optimal
arms.

This paper offers two particular contributions: (i) We show that the Tsallis-INF algorithm
enjoys a regret bound of a logarithmic order in the number of rounds for stochastic environments,
even if the best arm is not unique. (ii) We provide a new algorithm with a new hybrid regret bound
that implies logarithmic regret in the stochastic regime and multiple data-dependent regret bounds
in the adversarial regime, including bounds dependent on cumulative loss, total variation, and loss-
sequence path-length. Both our proposed algorithm and the Tsallis-INF algorithm are based on a
follow-the-regularized-leader (FTRL) framework with a time-varying regularizer. The analyses in
this paper rely on skewed Bregman divergence, which provides simple expressions of regret bounds
for FTRL with a time-varying regularizer.
Keywords: multi-armed bandit, Tsallis-INF, optimistic follow the regularized leader, best-of-both-
worlds, path-length regret bound

1. Introduction

This paper considers the multi-armed bandit (MAB) problem in which a player is given a set of
actions [K] = {1, 2, . . . ,K}, sequentially chooses actions it ∈ [K], and then observes loss `tit ∈
[0, 1] at each time step t ∈ [T ], where `t = (`t1, `

t
2, . . . , `

t
K)> ∈ [0, 1]K is the loss vector, of which

i-th element represents the loss for choosing the i-th action in the t-th round. The goal of the player
is to minimize regret RT , defined as

RTi∗ = E

[
T∑
t=1

`tit −
T∑
t=1

`ti∗

]
, RT = max

i∗∈[K]
RTi∗ (1)

where E[·] refers to the expectation taken w.r.t. the loss sequence `t and algorithms’ internal ran-
domness.1

1. RT defined here is also called pseudo-regret or expected regret in some literature.
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Studies on MAB can generally be divided into two categories: those for stochastic settings
and those for adversarial settings. In a stochastic setting, loss `t is assumed to follow an unknown
distribution i.i.d. for all t, i.e., the environment is assumed to be time-invariant. There are algorithms
achieving O

(∑
i:∆i>0

log T
∆i

)
-regret for this setting, where ∆i stands for the suboptimality gap of

the i-th action (Lai and Robbins, 1985; Auer et al., 2002a). In an adversarial setting, no generative
models for `t are assumed but `t may behave adversarially against the player. For this setting, the
tight regret bound is Θ(

√
KT ) (Audibert and Bubeck, 2009; Auer et al., 2002b).

Though the adversarial model captures broader problem settings, the worst-case optimality in
the adversarial regime (i.e., O(

√
KT )-regret) does not necessarily imply practical advantages over

other algorithms in many applications, as, essentially, “worst-case” scenarios are quite rare. For
example, if the environment is time-invariant, i.e., if losses follow i.i.d. distributions, O(

√
KT )-

regret will not be as good as the O(
∑

i∆i>0
log T
∆i

)-regret achieved by stochastic MAB algorithms.
On the other hand, many stochastic MAB algorithms may perform poorly in the adversarial setting.

Two types of approaches have been studied for the purpose of overcoming the limitations of
worst-case optimality. One is to design best-of-both-worlds algorithms (Zimmert and Seldin, 2021;
Jin and Luo, 2020; Seldin and Lugosi, 2017; Seldin and Slivkins, 2014; Bubeck and Slivkins, 2012;
Auer and Chiang, 2016; Zimmert et al., 2019; Jin and Luo, 2020; Mourtada and Gaı̈ffas, 2019) that
work (nearly) optimally both for the stochastic setting and for the adversarial counterpart. The other
is to develop adversarial MAB algorithms with data-dependent regret bounds (Hazan and Kale,
2011; Allenberg et al., 2006; Bubeck et al., 2019; Wei and Luo, 2018; Lee et al., 2020; Wei et al.,
2020), which show improved performance for environments with some “benign” properties, e.g.,
little variation in the loss sequence or small cumulative loss.

One remarkable study w.r.t. the best-of-both-worlds approach deals with the Tsallis-INF algo-
rithm (Zimmert and Seldin, 2021). This algorithm has optimal regret bounds up to small constant
factors in stochastic settings as well as in adversarial settings, which hold anytime, i.e., are valid for
unknown time horizons. Even more surprisingly, this algorithm works well for mixed environments
of stochastic and adversarial models. More precisely, the algorithm enjoys regret bounds for an ad-

versarial regime with a self-bounding constraint, which implies, e.g., anO
(∑

i 6=i∗
log T
∆i

+
√
T ′
∑

i 6=i∗
log T
∆i

)
-

regret bound in a stochastic setting with T ′-rounds of adversarial corruptions. One remaining issue
regarding this algorithm is the regret bound for a stochastic setting in which the optimal arm is not
unique. In such cases with multiple optimal arms, it has remained unproven whether or not the
algorithm has O(log T )-regret bounds, while empirical evaluation suggests O(log T )-regret.

Designing algorithms with data-dependent regret bounds is another approach to overcoming the
limitations of the worst-case analysis, one for which performance may improve depending on the
difficulty indicators of loss sequences. Examples of difficulty indicators include the following:

• Cumulative loss for optimal arm: Li∗ =
∑T

t=1 `
t
i∗ = mini∈[K]

∑T
t=1 `

t
i.

• Total variation in losses: Q∞ =
∑T

t=1 ‖`t− ¯̀‖2∞, Q2 =
∑T

t=1 ‖`t− ¯̀‖22, Qi∗ =
∑T

t=1(`ti∗−
¯̀∗
i )

2, where ¯̀= 1
T

∑T
t=1 `

t.

• Path length of losses: V∞ =
∑T−1

t=1 ‖`t − `t+1‖∞, V1 =
∑T−1

t=1 ‖`t − `t+1‖1

As shown in Table 1, there are existing algorithms with regret bounds that depend on a diffi-
culty indicator rather than on T . Note that the above examples Li∗ , Q∞, V∞ are at most T , and
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Table 1: Regret bounds for multi-armed bandit. ∆i is the suboptimality gap defined in Section 2.
∆∗ = mini∈[K]\{i∗}∆i. Contributions of this work are highlighted with gray boxes .

Algorithm Regime Regret Param. free?

BROAD, Option I Adv. O(
√
KQi∗ log T ) Require Qi∗

(Wei and Luo, 2018)

BROAD, Option II Sto. O
(
K log T

∆∗

)
Yes

(Wei and Luo, 2018) Adv. O(
√
KLi∗ log T )

(Bubeck et al., 2018) Adv. O
(√
Q2 logK

)
Require Q2

(Bubeck et al., 2019) Adv. O
(√
KV∞ log T

)
Require V∞

Exp3++ Sto. O
(∑

i:∆i>0
(log T )2

∆i

)
Yes

(Seldin and Lugosi, 2017) Adv. O(
√
KT logK)

Tsallis-INF Sto. O
(∑

i 6=i∗
log T
∆i

)
Yes

(Zimmert and Seldin, 2021) O
(∑

i:∆i>0
log T
∆i

)
Adv. O(

√
KT )

Algorithm 1 (This work) Sto. O
(∑

i 6=i∗
log T
∆i

)
Yes

Adv. O
(√
KLi∗ log T

)
O
(√
KQ∞ log T

)
O
(√
KV1 log T

)

therefore, e.g., O(
√
KQi∗ log T )-regret bounds imply an O(

√
KT log T )-bound. Some of the ex-

isting algorithms in Table 1 rely on prior knowledge of a difficulty indicator. For example, the
O(
√
KV∞ log T )-regret algorithm (Bubeck et al., 2019) requires a constant-factor approximation

of V∞ as an input parameter.

1.1. Contributions of this work

The contributions of this work are two-fold: First, we show that the Tsallis-INF algorithm has an
O
(∑

i:∆i>0
log T
∆i

)
-regret bound in the stochastic setting, even when there are multiple optimal

arms. This resolves an open question posed in the literature by Zimmert and Seldin (2021). Second,
we propose an algorithm (Algorithm 1) that achieves best-of-both-worlds and has multiple data-
dependent regret bounds simultaneously. The regret bounds achieved by Algorithm 1 are shown in
Table 1.

One main contribution in this paper is proof of the fact that the Tsallis-INF algorithm has an
O(log T )-regret bound in the stochastic setting, even when there are multiple optimal arms. A more
specific claim can be stated as follows:
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Definition 1 (Adversarial regime with a self-bounding constraint (Zimmert and Seldin, 2021))
If the regret for any algorithm satisfies

RT ≥
∑
i∈[K]

∆i ·
T∑
t=1

Prob
[
it = i

]
− C (2)

for some C ≥ 0, T and ∆ ∈ [0, 1]K , we say that the environment is in an adversarial regime with a
(∆, C, T ) self-bounding constraint.

Theorem 2 Suppose that (2) holds with ∆ satisfying ∆i > 0 for all i ∈ V , where V ( [K] is an
arbitrary nonempty set of actions. Suppose that there exists D ≥ 0 such that

E

[
T∑
t=1

max
i∈[K]\V

Et
[
`ti − `ti∗

]]
≤ D, (3)

where Et[·] represents the conditional expectation given the history ht = {(`j , ij)}t−1
j=1. The regret

for the Tsallis-INF with IW estimators (Zimmert and Seldin, 2021) will then be bounded as

RTi∗ ≤ O

(∑
i∈V

log T

∆i
+

√
C
∑
i∈V

log T

∆i
+D +K

)
. (4)

This theorem captures stochastic settings with multiple optimal arms. In fact, in a stochastic setting
with suboptimality gap ∆ ∈ R≥0, (2) and (3) hold with C = D = 0, for V = {i ∈ [K] | ∆i > 0}.
Note that, as shown in (Zimmert and Seldin, 2021), the problem instances with (2) include stochastic
settings, as well as the stochastic bandits with adversarial corruptions (Lykouris et al., 2018).

To prove Theorem 2, this paper introduces new techniques for analyzing FTRL with a time-
varying regularizer. A core tool in the analysis is skewed Bregman divergence, which is defined with
two different regularizers, in contrast to standard Bregman divergence, which is defined with a single
regularizer. This tool helps with a refined insight into the FTRL with a time-varying regularizer and
is especially powerful for analyzing a kind of dynamic regret (Zinkevich, 2003) that plays a central
role in the proof of Theorem 2.

Another contribution of this work is to develop a new algorithm (Algorithm 1) that achieves
best-of-both-worlds and has multiple data-dependent regret bounds. Our proposed algorithm enjoys
the following regret bounds:

Theorem 3 If it are chosen by Algorithm 1, for any i∗ ∈ [K], the regret is bounded as

RT = O

 ∑
i∈[K]\i∗

√√√√log T ·
T∑
t=1

Prob [it = i] +K log T

 . (5)

Simultaneously, for arbitrary sequence {ut}Tt=1 ⊆ [0, 1]K ,2 the regret is bounded as

RT = O


√√√√K log T ·E

[
T∑
t=1

(
`tit − u

t
it

)2
+
T−1∑
t=1

‖ut − ut+1‖1

]
+K log T

 . (6)

2. The algorithm does not require {ut} as an input. In an analysis, we can choose {ut} arbitrarily, which may depend
on `t and it.
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From the bound of (5), we obtain an O(log T ) regret bound in the stochastic regime. Indeed, in
the adversarial regime with a self-bounding constraint given in Definition 1, we have the following
regret bound:

Corollary 4 (Regret bound in the adversarial regime with a self-bounding constraint) Suppose
that there exist i∗ ∈ [K] and ∆ ∈ [0, 1]K satisfying ∆i > 0 for all i ∈ [K] \ {i∗} for which (2)
holds. Then, the regret for Algorithm 1 is bounded as

RTi∗ = O

 ∑
i∈[K]\{i∗}

log T

∆i
+

√√√√C
∑

i∈[K]\{i∗}

log T

∆i

 . (7)

In contrast to Theorem 2, Corollary 4 requires the assumption that there exists a unique optimal arm
i∗, i.e., ∆i > 0 for all i ∈ [K] \ {i∗}.

As (6) holds for arbitrary sequence {ut}, from some specific choices of {ut}, we have the
following data-dependent regret bounds:

Corollary 5 (Data-dependent regret bound in the adversarial regime) For any {`t} ⊆ [0, 1]K ,
and for any i∗ ∈ [K] and ¯̀∈ [0, 1], the regret for Algorithm 1 is bounded as

RT = O


√√√√K log T ·min

{
T∑
t=1

`ti∗ ,
T∑
t=1

(
`tit − ¯̀

it
)2
,
T−1∑
t=1

‖`t − `t+1‖1

}
+K log T

 . (8)

Note that the algorithm is parameter-free, i.e., does not require any prior knowledge regarding {`t}
except for the assumption of boundedness: `t ∈ [0, 1]K .

Remark 6 Though Algorithm 1 requires the time horizon T as an input, we can avoid this re-
quirement, i.e., we can obtain an anytime regret bound with just an additional constant factor, by
modifying the algorithm. Details regarding this can be found in Section 5.3.

Remark 7 (On constant factors hidden within O(·) notation) The constant factors in the regret
bounds for the Tsallis-INF shown in this paper (Thoerem 2) are not as small as those presented in
(Zimmert and Seldin, 2021). For our proposed algorithm, constant factors hidden within O(·) nota-
tions in Thoerem 3 and Corollaries 4 and 5 are stated in the proofs of them given in Subsection 5.2.
We believe that a more sophisticated analysis would improve the constant factors in regret bounds
given in Theorems 2, 3 and Corollaries 4, 5.

The data-dependent regret bounds of the proposed algorithm are not necessarily better than
existing ones. For example, the variation dependent bound of O(

√
KQ∞ log T ) of Algorithm 1

is not superior to an O(
√
KQi∗ log T )-bound in (Wei and Luo, 2018) or an O(

√
Q2 log T )-bound

by (Bubeck et al., 2018). Similarly, an O(
√
KV1 log T )-bound of Algorithm 1 is not always better

than the regret bounds of O(
√
KV∞ log T ) and O

(
K1/3

√
V

2/3
1 T 1/3 log T

)
shown by Bubeck

et al. (2019). On the other hand, the proposed algorithm has the advantage of being parameter-free
and enjoys several different data-dependent bounds simultaneously.
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The proposed algorithm is based on the follow-the-regularized-leader (FTRL) framework with
a time-varying regularizer, similarly to Tsallis-INF (Zimmert and Seldin, 2021). Unlike Tsallis-
INF, which employs Tsallis entropy, the proposed algorithm uses a log-barrier regularizer. A time-
varying log-barrier regularizer has been used in an MAB context in a study by Wei and Luo (2018).
One difference between our work and theirs is that their algorithms are based on an online mirror de-
scent (OMD) framework. Though OMD coincides with FTRL in a special case of a (time-invariant)
fixed regularizer (McMahan, 2011, 2010), they offer different output if a time-varying regularizer
is used. By combining an FTRL approach and a novel update rule for the regularizer, the proposed
algorithm achieves an O

(∑
i 6=i∗

log T
∆i

)
-regret bound in a stochastic setting, as shown in Table 1.

This is an improvement over an O
(
K log T

∆∗

)
bound by (Wei and Luo, 2018), which depends only

on the smallest suboptimality gap ∆∗ = mini∈[K]\{i∗}∆i.
One benefit of using a log-barrier rather than Tsallis entropy is that an optimistic online learning

framework (Rakhlin and Sridharan, 2013a,b) can be used effectively,3 as it was in (Wei and Luo,
2018). In this optimistic online learning framework, the algorithm is given (or maintains with a
certain strategy) hint vectors mt before choosing an action. We can see that the better that hints
approximate true losses the more that regret improves. This paper shows that a surprisingly simple
update rule for hints mt leads to the data-dependent regret bounds in (6) and (8).

1.2. Related work

For MAB contexts, there can be found a variety of approaches to designing best-of-both-worlds
algorithms. The pioneering work by Bubeck and Slivkins (2012); Auer and Chiang (2016) adopts
the approach of selecting an appropriate mode by determining whether the environment is i.i.d. or
not. Seldin and Slivkins (2014) and Seldin and Lugosi (2017) consider modifying the well-known
adversarial MAB algorithm EXP3 (Auer et al., 2002b) so that it achieves improved regret bounds
in stochastic settings. The approach adopted in Wei and Luo (2018); Zimmert and Seldin (2021);
Pogodin and Lattimore (2020) is the most relevant to this paper. These studies lead to improved
regret bounds for stochastic settings on the basis of a lower bound for the regret, such as in (2),
referred to as self-bounding constraints.

Data-dependent regret bounds are defined with many different difficulty indicators. Auer et al.
(2002b) have presented anO(

√
GmaxK logK)-regret bound for the adversarial MAB problem with

rewords (maximization problem), where Gmax represents the total return of the best action. Allen-
berg et al. (2006) have provided an MAB algorithm with a regret bound depending on cumulative
loss Li∗ rather than on T . Hazan and Kale (2011) proposed an algorithm with a regret bound de-
pending on the total variation Q2 of the loss sequences, which can be applied to linear bandits, a
general model including MAB. This regret bound was improved by Bubeck et al. (2018), in which
O(
√
Q2 logK)-regret was achieved as shown in Table 1. For general linear bandits, an algorithm

by Ito et al. (2020) achieves a cumulative-loss-dependent regret bound and a variation-dependent
regret bound simultaneously. The sparsity of loss vectors (Kwon and Perchet, 2016; Bubeck et al.,
2018) is an example of difficulty indicators that are not well addressed in this paper.

For the purpose of achieving hybrid regret bounds, one may consider combining multiple ban-
dit algorithms. Such approaches have been studied for a wide range of bandit problems, e.g., by

3. Although we here consider algorithms using Tsallis entropy and an optimistic online learning framework, it is cur-
rently unclear to the authors if such an approach in MAB offers non-trivial results, e.g., the data-dependent regret
bounds in Table 1.
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Agarwal et al. (2017); Pacchiano et al. (2020); Arora et al. (2021). These studies, however, do not
seem to directly offer hybrid regret bound as in Corollary 5, due to the overhead incurred when
merging multiple bandit algorithms. Challenges in combining bandit algorithms are well discussed
in (Agarwal et al., 2017).

2. Problem Setting

In each time step t, the player chooses it ∈ [K] and then observes the losses `t
ti

, where the loss
vector `t = (`t1, `

t
2, . . . , `

t
K)> ∈ [0, 1]K is chosen by the environment and is assumed to be bounded

in [0, 1]K . The goal of the player is to minimize the regret defined in (1).
In an adversarial setting, the environment chooses an `t depending on the history ht = {(`j , ij)}t−1

j=1

of losses and actions selected up to the (t−1)-th round. An adversarial regime with a self-bounding
constraint (Zimmert and Seldin, 2021) is defined with parameters ∆ ∈ RK≥0, C ≥ 0 and T . In this
regime, the losses may be chosen in an adversarial way, but the regret is required to satisfy the
condition of (2). This regime includes a stochastic setting, in which `t are assumed to follow prob-
ability distributions with fixed means µ ∈ [0, 1]K , i.e., Et[`t] = µ holds for all t ∈ [T ]. Indeed, if
we set ∆i = µi − µi∗ , where i∗ ∈ arg mini∈[K] µi, (2) holds with C = 0. As shown in (Zimmert
and Seldin, 2021), this regime includes a stochastic setting with adversarial corruptions (Lykouris
et al., 2018), in which an adversary creates an amount of corruption of at most C in a stochastic
environment with a suboptimality gap ∆. For this setting, we can easily confirm that (3) holds with
D = C. See, e.g., Section 5.1 of (Zimmert and Seldin, 2021) for more details.

3. (Optimistic) Follow the Regularized Leader

In this section, we introduce an online linear optimization framework. For it, we formulate al-
gorithms referred to as (optimistic) follow the regularized leader algorithms, and provide regret
analyses for them. The regret bounds in this section are used in the analysis of Algorithm 1 in
Section 5 and Tsallis-INF in section 4.

In the online linear optimization, the player is given a bounded convex action set Ω ⊆ Rd before
the game start. In each round t, the player is given a hint vector mt ∈ Rd, which is a prediction of
a cost vector, and then chooses an action xt ∈ Ω. The player then observes the cost vector ct ∈ Rd
and suffers a loss of

〈
ct, xt

〉
.

Follow the regularized leader (FTRL) and optimistic follow the regularized leader (OFTRL)
methods are defined with regularization functions ψt : D → Rd, convex functions of the Legendre
type (Cesa-Bianchi and Lugosi, 2006; Rockafellar, 1970). We assume here that Ω is an affine subset
ofD, i.e, Ω can be expressed as Ω = {x ∈ D | Ax = b} for a matrixA ∈ Rk×d and a vector b ∈ Rk.
Define Ψt : Rd → Ω by

Ψt(L) = arg min
x∈Ω

{
〈L, x〉+ ψt(x)

}
. (9)

The player’s actions given by FTRL and OFTRL, denoted by zt and z̃t, can be expressed as follows:

zt = Ψt

 t−1∑
j=1

cj

 , z̃t = Ψt

 t−1∑
j=1

cj +mt

 . (10)
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To analyze regret bounds for FTRL and OFTRL, we define skewed Bregman divergenceDs,t(x, y)
for x ∈ D and y ∈ int(D) as

Ds,t(x, y) = ψs(x)− ψt(y)−
〈
∇ψt(y), x− y

〉
. (11)

We denoteDt(x, y) = Dt,t(x, y), which is the standard Bregman divergence associated with ψt. As
can clearly be seen, the skewed Bregman divergence can be expressed as Ds,t(x, y) = Dt(x, y) +
ψs(x) − ψt(x). Note that the values of skewed Bregman divergence are not always nonnegative
while those with the standard Bregman divergence are always nonnegative. The regret for FTRL
and OFTRL can be bounded as follows:

Proposition 8 Suppose that zt and z̃t are given by (10). For any u ∈ Ω, we have
T∑
t=1

〈
ct, zt − u

〉
≤ D1(u, z1) +

T∑
t=1

Dt,t+1(zt, zt+1) + ψT+1(u)− ψ1(u), (12)

T∑
t=1

〈
ct, z̃t − u

〉
≤ D1(u, z1) +

T∑
t=1

Dt,t+1(z̃t, zt+1) + ψT+1(u)− ψ1(u). (13)

Let Ω∗ be an affine subspace of Ω and define ut = arg minx∈Ω∗ D
t(x, zt) for all t. We then have

T∑
t=1

〈
ct, zt − ut

〉
≤ D1(u1, z1) +

T∑
t=1

(
Dt,t+1(zt, zt+1)−Dt,t+1(ut, ut+1)

)
. (14)

All proofs omitted for convenience here can be found in the appendix. The bounds in Proposition 8
can be derived via standard analysis techniques for FTRL. Note that (12) follows immediately from
the inequality of Exercise 28.12 in the book by Lattimore and Szepesvári (2020) and the assump-
tion that each ψt is a Legendre function. The difference between OMD and FTRL can be seen in
Exercises 28.11 and 28.12 in this literature (Lattimore and Szepesvári, 2020). Further, Amir et al.
(2020) have pointed out that FTRL is strictly superior to OMD in the problem of prediction with
corrupted expert advice, a full-information online decision problem in the adversarial regime with
a self-bounding constraint.

4. Refined Analysis of Tsallis-INF

The purpose of this section is to prove Theorem 2. The Tsallis-INF algorithm (with IW estimators)
(Zimmert and Seldin, 2021) is given as FTRL with ψt(p) and ˆ̀t defined as follows:

ψt(p) = −2γt
K∑
i=1

√
pi, ˆ̀t =

`tit

ptit
χit , pt = Ψt

 t−1∑
j=1

ˆ̀j

 = arg min
p∈∆n


〈
t−1∑
j=1

ˆ̀j , p

〉
+ ψt(p)

 ,

(15)

where γt =
√
t. Let V ( [K] be an arbitrary nonempty subset of [K]. Denote U = [K] \ V . Our

analysis uses qt ∈ ∆U = {p ∈ ∆K | pi = 0 (i ∈ V )} defined as follows:

qt = arg min
p∈∆U


〈
t−1∑
j=1

ˆ̀j , p

〉
+ ψt(p)

 = arg min
p∈∆U

Dt(p, pt). (16)

From the assumption of (3), the regret can be bounded with qt as follows:
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Lemma 9 Suppose `t satisfies (3) and qt is defined as (16). The regret is then bounded as RTi∗ ≤
E
[∑T

t=1

〈
ˆ̀t, pt − qt

〉]
+D.

This lemma can be shown via −E[
∑T

t=1 `
t
i∗ ] ≤ −E[

∑T
t=1

〈
`t, qt

〉
] + D, which follows from (3)

and qt ∈ ∆U , and that ˆ̀t is an unbiased estimator of `t. Further, from (14) in Proposition 8,∑T
t=1

〈
ˆ̀t, pt − qt

〉
can be bounded as

T∑
t=1

〈
ˆ̀t, pt − qt

〉
≤ D1(q1, p1) +

T∑
t=1

(
Dt,t+1(pt, pt+1)−Dt,t+1

U (qt, qt+1)
)
, (17)

where Dt,t+1
U denotes the skewed Bregman divergence associated with ψtU (p) = −2γt

∑
i∈U
√
pi.

From (17), we will show

E
[〈

ˆ̀t, pt − qt
〉]

= O

(
T∑
t=1

1√
t

∑
i∈V

√
pti +K

)
, (18)

which leads to Theorem 2 via an argument similar to that by Zimmert and Seldin (2021). We
can show (18) on the basis of the intuition that the terms regarding optimal arms i ∈ U will be
canceled out in (17). We can show that each term in (17) is bounded as E[Dt,t+1(pt, pt+1)] =
O( 1√

t

∑K
i=1

√
pti) and E[Dt,t+1

U (qt, qt+1)] = O( 1√
t

∑
i∈U

√
qti) for sufficiently large t, where U

is the set of optimal arms (which follows from Lemma 19 in the appendix). As we have qti ≥ pti
for i ∈ U from their definitions, we may expect that the terms regarding optimal arms i ∈ U are
canceled out, which leads to (18). To prove this rigorously, we need more precise evaluations for
Dt,t+1(pt, pt+1) and Dt,t+1

U (qt, qt+1), details of which are given in the appendix. Consequently, we
can show that each term in (17) can be bounded as follows:

Lemma 10 Suppose that t ≥ 4K holds. We then have Dt,t+1(pt, pt+1) − Dt,t+1
U (qt, qt+1) ≤

1√
t

(
1[it∈V ]√

pt
it

+
2·1[it∈U ]·pt

it

∑
i∈V (pti)

3/2∑
i∈U (pti)

3/2
∑K

i=1(pti)
3/2

+ 2
∑

i∈V

√
pt+1
i

)
+

√
|U |

t3/2 .

Combining this lemma with Et

[
1[it∈V ]√

pt
it

]
=
∑

i∈V
√
pti and Et

[
1[it∈U ]·pt

it

∑
i∈V (pti)

3
2∑

i∈U (pti)
3
2
∑K

i=1(pti)
3
2

]
≤
√∑

i∈V p
t
i

(Lemma 23 in the appendix), we obtain E
[
Dt,t+1(pt, pt+1)−Dt,t+1

U (qt, qt+1)
]
≤ 5√

t
E
[∑

i∈V
√
pti

]
+

√
K

t3/2 for t ≥ 4K. For t < 4K, we use E
[
Dt,t+1(pt, pt+1)−Dt,t+1

U (qt, qt+1)
]
≤ 2

√
K√
t

(Lemma 24

in the appendix). Hence, by combining these inequalities, Lemma 9, 10 and (17), we have RTi∗ ≤∑T
t=1

5√
t
E
[∑

i∈V
√
pti

]
+ 10K + D . From this and (2), via an argument similar to that in the

proof of Theorem 1 in (Zimmert and Seldin, 2021), we obtain the regret bound of Theorem 2. The
complete proof of Theorem 2 can be found in the appendix.

5. MAB Algorithm based on OFTRL with Adaptive Log-Barrier Regularizer

In this section, we provide an MAB algorithm that achieves the regret bound of Theorem 3.

9
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5.1. Algorithm description

In the proposed algorithm, we maintain distributions pt ∈ ∆K := {p ∈ [0, 1]K | ‖p‖1 = 1}
with OFTRL and pick it from pt in each round. Similarly to (Wei and Luo, 2018), from the bandit
feedback `tit for the chosen action it, we construct an unbiased estimator ˆ̀t of `t as follows:

ˆ̀t = mt +
`tit −m

t
it

ptit
χit , (19)

where mt ∈ [0, 1]K represents any hint vectors fixed before it is chosen, and χi ∈ {0, 1}K repre-
sents the indicator vector of i ∈ [K].

The distribution pt is computed with OFTRL with ct = ˆ̀t. LetD = RK>0 and defineψt : D → R
by

ψt(p) = −
K∑
i=1

γti log(pi) (20)

where γti ≥ 2 is defined later so that γ1
i = 2 and γt+1

i ≥ γti for all i ∈ [K] and t. Define
Ω = ∆K ∩ D = {p ∈ RK>0 |

∑K
i=1 pi = 1}. Using the unbiased estimators ˆ̀t defined as (19), we

set pt with OFTRL as follows:

pt ∈ arg min
p∈Ω


〈
t−1∑
j=1

ˆ̀j +mt, p

〉
+ ψt(p)

 = Ψt

 t−1∑
j=1

ˆ̀j +mt

 . (21)

In the proposed algorithm, γt is updated as follows:

γ1
i = 2, γt+1

i = γti +
B · νti
2γti

, where νti = (`tit −m
t
it)

2 ·

{ (
1− pti

)2 if i = it(
pti
)2 if i 6= it

, (22)

where B ∈ (0, 1] is a parameter. In (22), the values of νti are defined so that a certain term of
(skewed) Bregman divergences associated with ψt and ψt+1 can be bounded by

∑K
i=1

(pi`i)
2

γti
, as

shown in Lemma 25 in the appendix. The values of γti are defined so that γti ≤
√
B
∑t−1

j=1 ν
j
i + 2

holds as shown in Lemma 26. Note that γti defined by γti =
√
B
∑t−1

j=1 ν
j
i + 2 works as well as

those defined by (22), which can be seen from the proof of Lemma 26. We update mt as follows:

m1
i =

1

2
, mt+1

i =

{
(1− η)mt

i + η`ti if i = it

mt
i if i 6= it

, (23)

where η ∈ [0, 1] is a parameter. Note that setting η = 0, i.e., setting mt
i = 1/2 for all t ∈ [T ] and

i ∈ [K], leads to an unbiased estimator ˆ̀
t that is close to reduced-variance (RV) loss estimators in

the Tsallis-INF algorithm (Zimmert and Seldin, 2021), though they are not exactly the same. As
we will mention in Remark 15 (5) in Theorem 3 and Corollary 4 hold even if mt are chosen in a
different way than in (23), as long as mt ∈ [0, 1]K . We show that the regret bounds in Theorem 3
are achieved for the parameter setting of B = (log T )−1 and η = 1/4. The proposed algorithm can
be summarized in Algorithm 1.

10
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Algorithm 1 OFTRL with adaptive log-barrier regularization
Require: The number K of actions, time horizon T .

1: Initialize η = 1
4 , B = (log T )−1, γ1 = 2 · 1 ∈ RK and m1 = 1

2 · 1 ∈ RK .
2: for t = 1, 2, . . . , T do
3: Compute pt defined by (20) and (21).
4: Choose it according to pt, i.e., so that Prob[it = i] = pti, and get feedback of `tit .
5: Compute ˆ̀t by (19) as an unbiased estimator of `t.
6: Update γt and mt as in (22) and (23), respectively.
7: end for

5.2. Regret analysis

To demonstrate Theorem 3, we start with the following proposition:

Proposition 11 Suppose that pt and it are chosen by (20), (21) and (22) with arbitrary mt ∈

[0, 1]K andB ∈ (0, 1]. We then haveRT ≤
(

2√
B

+
√
B log K

ε

)
E

[∑K
i=1

√∑T
t=1 ν

t
i

]
+2K log K

ε +

εT for any ε ∈ (0, 1] and T .

Proof We here provide a proof sketch. A complete proof can be found in the appendix. Set p∗ by
p∗ = (1− ε) · χi∗ + ε

K · 1. Since ˆ̀t is an unbiased estimator, as shown in (Wei and Luo, 2018), we

have RTi∗ ≤ E
[∑T

t=1

〈
ˆ̀t, pt − p∗

〉]
+ εT . From (13) in Proposition 8, for rt := Ψt

(∑t−1
j=1

ˆ̀j
)

,

we can bound the term of
∑T

t=1

〈
ˆ̀t, pt − p∗

〉
as follows:

T∑
t=1

〈
ˆ̀t, pt − p∗

〉
≤

T∑
t=1

Dt,t+1(pt, rt+1) +D1(p∗, r1) + ψT+1(p∗)− ψ1(p∗). (24)

As we have Dt,t+1(pt, rt+1) ≤
∑K

i=1
νti
γti

(see Lemma 25 in the appendix), the first term of (24)

can be bounded as
∑T

t=1D
t,t+1(pt, rt+1) ≤

∑K
i=1

∑T
t=1

νti
γti

= 2
B

∑K
i=1

(
γT+1
i − γ1

i

)
, where the

equality follows from the update rule of γti given in (22). The remaining part of (24) can be bounded
as D1(p∗, p1) +ψT+1(p∗)−ψ1(p∗) = ψT+1(p∗)−ψ1(r1)−

〈
∇ψ1(r1), p∗ − r1

〉
≤ ψT+1(p∗) ≤

−
∑K

i=1 γ
T+1
i log(p∗i ) ≤ log K

ε

∑K
i=1 γ

T+1
i , where the first inequality holds since ψ1(r1) ≥ 0 and

∇ψ1(r1) = −2K · 1 follow from the definition of ψt in (20) and γ1
i = 2. Combining the above

inequalities with (24), we have
∑T

t=1

〈
ˆ̀t, pt − p∗

〉
≤
∑K

i=1

(
2
B

(
γT+1
i − γ1

i

)
+ γT+1

i log K
ε

)
.

From the definition (22) of γti , we can show γti ≤
√
B
∑t−1

j=1 ν
j
i + 2 in induction in t. We hence

have
∑T

t=1

〈
ˆ̀t, pt − p∗

〉
≤
(

2√
B

+
√
B log K

ε

)∑K
i=1

√∑T
t=1 ν

t
i + 2K log K

ε . By combining this

with RT ≤ E
[∑T

t=1

〈
ˆ̀t, pt − p∗

〉]
+ εT , we obtain the regret bound in Proposition 11.

The term of
∑K

i=1

√∑T
t=1 ν

t
i in Proposition 11 can be bounded as follows.

Lemma 12 If νti is defined as in (22), we have E

[∑K
i=1

√∑T
t=1 ν

t
i

]
≤ 2

∑
i 6=i∗

√
E
[∑T

t=1 p
t
i

]
and

∑K
i=1

√∑T
t=1 ν

t
i ≤

√
2K

∑T
t=1(`tit −m

t
it)

2.

11



ITO

These can be shown via simple calculation. By combining the first part of this lemma and Propo-
sition 11, we can obtain (5) in Theorem 3. The other part, (6), comes from the second part of
Lemma 12, Proposition 11, and the following:

Proposition 13 Suppose mt is updated by (23) with η ∈ (0, 1
2). It will then hold for any sequence

{ut}Tt=1 ⊆ [0, 1]K that
∑T

t=1(`tit−m
t
it)

2 ≤ 1
1−2η

∑T
t=1(`tit−u

t
it)

2+ 2
η(1−2η)

(
K
8 +

∑T−1
t=1 ‖ut − ut+1‖1

)
.

Remark 14 The update rule of mt in (23) can be seen as a gradient descent method for the con-
vex objective f t(m) = (`tit − mit)

2. Hence, we may apply tracking-regret analysis, e.g., that
by Herbster and Warmuth (2001); Cesa-Bianchi and Lugosi (2006). For example, Theorem 11.4 in
(Cesa-Bianchi and Lugosi, 2006) with p = q = 2 implies that

∑T
t=1(`tit−m

t
it)

2 ≤ 1
1−2η

∑T
t=1(`tit−

utit)
2 + 2

η(1−2η)

(
K
2 +
√
K
∑T−1

t=1 ‖ut − ut+1‖2
)

. Proposition 13 can be regarded as a variant of
this.

Proof of Theorem 3 We setB = (log T )−1, η = 1/4 as in Algorithm 1, and set ε = K/T . By com-

bining Proposition 11 and the first part of Lemma 12 we obtainRT ≤ 6
√

log T
∑

i 6=i∗

√
E
[∑T

t=1 p
t
i

]
+

3K log T , which means that (5) holds. Similarly, from Proposition 11, the second part of Lemma 12,

and Proposition 13, we haveRT ≤ 6

√
K log T ·E

[∑T
t=1(`tit − u

t
it)

2 +K + 8
∑T−1

t=1 ‖ut − ut+1‖1
]
+

3K log T for arbitrary {ut}Tt=1 ⊆ [0, 1]K , which means that (6) holds. �
Using Theorem 3, we can demonstrate Corollaries 4 and 5 as follows:

Proof of Corollary 4 From (5) and (2), for any λ > 0, we have RTi∗ = (1 + λ)RTi∗ − λRTi∗ ≤

(1 + λ) ·
(

6
∑

i 6=i∗

√
log T ·E

[∑T
t=1 p

t
i

]
+ 3K log T

)
− λ ·

(∑
i 6=i∗ ∆iE

[∑T
t=1 p

t
i

]
− C

)
≤∑

i 6=i∗

(
6(1 + λ)

√
log T ·E

[∑T
t=1 p

t
i

]
− λ ·∆iE

[∑T
t=1 p

t
i

])
+ 3(1 + λ) · K log T + λC ≤

9(1+λ)2

λ

∑
i 6=i∗

log T
∆i

+ 3(1 + λ)K log T + λC, where the last inequality follows from the fact that

2bx−ax2 ≤ b2

a holds for any b, x ∈ R and a > 0. Similarly to the proof of Theorem 1 in (Zimmert

and Seldin, 2021), by choosing λ =

(
1 + C+3K log T

9
∑

i 6=i∗
log T
∆i

)− 1
2

, we obtain

RT ≤ 36
∑

i∈[K]\{i∗}

log T

∆i
+ 6

√√√√ ∑
i∈[K]\{i∗}

(C + 3K log T ) log T

∆i
+ 3K log T

= O

 ∑
i∈[K]\{i∗}

log T

∆i
+

√√√√C
∑

i∈[K]\{i∗}

log T

∆i

 ,

where the equality follows from 1
∆i
≥ 1 for i ∈ [K] \ i∗. �

Remark 15 As can be seen in the proofs, Corollary 4 and (5) in Theorem 3 are still valid even
when mt is chosen in a different way than in (23). More precisely, we can obtain the gap-dependent
regret bound in Corollary 4 as long as mt ∈ [0, 1]K and mt are independent of it given pt. In

12
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addition, if we choose mt
i = 1

2 for all t ∈ [T ] and i ∈ [N ], the constant factor in the gap-dependent
regret bound will be improved. Indeed, as we have E[νti ] ≤ 1

4 E[pti(1 − pti)] for mt = 1
2 · 1, we

obtain RT ≤ 9
∑

i∈[K]\{i∗}
log T
∆i

+ 3
√∑

i∈[K]\{i∗}
(C+3K log T ) log T

∆i
+ 3K log T via an argument

similar to that in the proof of Corollary 4. In this case, however, we do not have the bounds in
Corollary 5.

Proof of Corollary 5 From (6) with ut = 0 for all t, we haveRTi∗ ≤ 6

√
K log T ·E

[∑T
t=1(`tit)

2
]
+

9K log T ≤ 6

√
K log T ·E

[∑T
t=1 `

t
it

]
+ 9K log T ≤ 6

√
K log T ·

(
RTi∗ + E

[∑T
t=1 `

t
i∗

])
+

9K log T , where the second inequality follows from `ti ∈ [0, 1], and the last inequality follows from
the definition (1) of RTi∗ . As R ≤ a

√
R+ L + b implies R ≤ a

√
L + a2 + 2b for a, b, L ≥ 0 (see

Lemma 27 in the appendix), we have RTi∗ ≤ 6

√
K log T ·E

[∑T
t=1 `

t
i∗

]
+ 54K log T . Similarly,

RT ≤ 6

√
K log T ·E

[∑T
t=1(`tit − ¯̀

it)2
]

+ 9K log T follows from (6) with ut = ¯̀(fixed for all t)

and RT ≤ 6

√
K log T ·E

[
8
∑T−1

t=1 ‖`t − `t+1‖1
]

+ 9K log T follows from (6) with ut = `t. �

5.3. Extension to problems with unknown time horizons

Though the time horizon T is assumed to be given in Algorithm 1, we can eliminate this assump-
tion, i.e., we can obtain an anytime regret bound as in Theorem 3, by modifying the algorithm. One
approach is to apply the doubling trick w.r.t. log T (not w.r.t. T ). For example, consider dividing all
the rounds into segments {Tk}k∈N so that N = ∪k∈NTk, where Tk = {Sk + 1, Sk + 2, . . . , Sk +Tk}
with Tk = 22k and Sk =

∑k−1
j=1 Tj . The meta-algorithm for unknown horizons starts by applying

Algorithm 1 with T = T1. Whenever the round reaches t = Sk + 1 for some k, the meta-algorithm
restarts Algorithm 1 with T = Tk. When restarting, we refresh all parameters except for mt. For
any T ′ (unknown time horizon), we denote T ′ = [T ′] ∩ T and define k(T ′) to be the integer k
such that T ′ ∈ Tk. We then have, RT

′ ≤
∑k(T ′)

k=1

(
3
∑K

i=1

√
log Tk

∑
t∈T ′k

νti + 6K log Tk

)
≤

3
∑K

i=1

√∑k(T ′)
k=1 log Tk

√∑k(T ′)
k=1

∑
t∈T ′k

νti + 6K
∑k(T ′)

k=1 log Tk, where the second inequality fol-

lows from the Cauchy-Schwarz inequality. As log Tk can be expressed as log Tk = 2k log 2 from the
definition of Tk, we have

∑k(T ′)
k=1 log Tk = log 2

∑k(T ′)
k=1 2k ≤ log 2 · 2k(T ′)+1 = 4 log Tk(T ′)−1 ≤

4 log T ′, where the last inequality follows from T ′ ≥ Sk(T ′) ≥ Tk(T ′)−1. Hence, the meta-algorithm

can achieve RT
′ ≤ 6

∑K
i=1

√
log T ′

∑T
t=1 ν

t
i + 24K log T ′ for any T ′. This, combined with Lem-

mas 12 and 13, implies that the regret bound stated in (3) can be achieved anytime, without prior
knowledge regarding the time horizon.

6. Conclusion

In this work, we have presented a newly developed MAB algorithm (Algorithm 1) that achieves
best-of-both-worlds and multiple data-dependent regret bounds. Further, we have proved that the
Tsallis-INF algorithm has a logarithmic regret bound for stochastic environments, even when there

13
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are multiple optimal arms. One area for future work is to clarify if Algorithm 1 has a logarithmic
regret for a stochastic regime with multiple optimal arms, similarly to that found in the Tsallis-INF
algorithm. Investigating constant factors in the regret bounds would be an important area for future
work as well.
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Sébastien Bubeck, Michael Cohen, and Yuanzhi Li. Sparsity, variance and curvature in multi-armed
bandits. In Algorithmic Learning Theory, pages 111–127, 2018.
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Appendix A. Proof of Proposition 8

To prove Proposition 8, we introduce a lemma for single-round regret:

Lemma 16 Suppose that zt and z̃t are given by (10). For any u ∈ Ω, we have〈
ct, zt − u

〉
= Dt,t+1(zt, zt+1) +Dt(u, zt)−Dt,t+1(u, zt+1), (25)〈

ct, z̃t − u
〉

= Dt,t+1(z̃t, zt+1)−Dt(z̃t, zt) +Dt(u, zt)−Dt,t+1(u, zt+1). (26)

Proof Remember that Ω ⊆ D can be expressed as Ω = {x ∈ D | Ax = b} for a matrix A and
vector b. From the assumptions on ψt and the first-order necessary conditions for the optimization
problem of arg minz∈Ω(〈L, z〉+ ψt(z)), for z∗ = Ψt(L), there exists v ∈ Rk such that

L+∇ψt(z∗) = A>v. (27)

Hence, from (10), there exists v ∈ Rk such that
t−1∑
j=1

cj +∇ψt(zt)−
t∑

j=1

cj −∇ψt+1(zt+1) = ∇ψt(zt)−∇ψt+1(zt+1)− ct = A>v. (28)

Hence, we have〈
ct, zt − u

〉
=
〈
∇ψt(zt)−∇ψt+1(zt+1)−A>v, zt − u

〉
=
〈
∇ψt(zt)−∇ψt+1(zt+1), zt − u

〉
−
〈
v,A(zt − u)

〉
=
〈
∇ψt(zt)−∇ψt+1(zt+1), zt − u

〉
, (29)
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where the last equality follows from zt, u ∈ Ω, which implies Azt = Au = b. On the other hand,
from the definition (20) of Ds,t, the right-hand side of (25) can be expressed as

Dt,t+1(zt, zt+1) +Dt(u, zt)−Dt,t+1(u, zt+1)

= −
〈
∇ψt+1(zt+1), zt − zt+1

〉
−
〈
∇ψt(zt), u− zt

〉
+
〈
∇ψt+1(zt+1), u− zt+1

〉
=
〈
∇ψt(zt)−∇ψt+1(zt+1), zt − u

〉
,

which, combined with (29), implies that (25) holds. Similarly, we have〈
ct, z̃t − u

〉
=
〈
∇ψt(zt)−∇ψt+1(zt+1), z̃t − u

〉
as well as

Dt,t+1(z̃t, zt+1)−Dt(z̃t, zt) +Dt(u, zt)−Dt,t+1(u, zt+1)

= −
〈
∇ψt+1(zt+1), z̃t − zt+1

〉
+
〈
∇ψt(zt), z̃t − zt

〉
−
〈
∇ψt(zt), u− zt

〉
+
〈
∇ψt+1(zt+1), u− zt+1

〉
=
〈
∇ψt(zt)−∇ψt+1(zt+1), z̃t − u

〉
,

which lead to (26).

Lemma 17 For any t, t′ ∈ N and L,L′ ∈ Rd, denote z = Ψt(L), z′ = Ψt′(L′). We then have

−
〈
L′ − L, z′ − z

〉
= Dt,t′(z, z′) +Dt′,t(z′, z). (30)

Proof In a similar way to (29), we can see that

−
〈
L′ − L, z′ − z

〉
=
〈
∇ψt′(z′)−∇ψt(z), z′ − z

〉
.

On the other hand, from the definition (20) of Ds,t, the right-hand side of (30) is expressed as

Dt,t′(z, z′) +Dt′,t(z′, z)

= φt(z)− φt′(z′)−
〈
∇ψt′(z′), z − z′

〉
+ φt

′
(z′)− φt(z)−

〈
∇ψt(z), z′ − z

〉
=
〈
∇ψt′(z′)−∇ψt(z), z′ − z

〉
.

The above two equalities lead to (30).

Lemma 18 Let t, t′ be any natural numbers and let Ω′ ⊆ Ω be an affine subset of Ω such that
Ω′ ∩ int(D) 6= ∅. We then have

Dt,t′(x, y) = Dt,t′(x, πt
′

Ω′(y)) +Dt′(πt
′

Ω′(y), y), where πt
′

Ω′(y) = arg min
ω∈Ω′

Dt′(ω, y). (31)

Proof This lemma immediately follows from Dt,t′(x, y) = ψt(x) − ψt′(x) + Dt′(x, y) and from
the fact that the generalized Pythagorean inequality holds with equality for the standard Bregman
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projection on a hyperplane (see, e.g., Lemma 11.3 and Exercise 11.2 in the book by (Cesa-Bianchi
and Lugosi, 2006)).

Proof of Proposition 8 By taking the summation of (25) for t ∈ [T ], we obtain

T∑
t=1

〈
ct, zt − u

〉
=

T∑
t=1

(
Dt,t+1(zt, zt+1) +Dt(u, zt)−Dt,t+1(u, zt+1)

)
= D1(u, z1) +

T∑
t=1

(
Dt,t+1(zt, zt+1) +Dt+1(u, zt+1)−Dt,t+1(u, zt+1)

)
−DT+1(u, zT+1)

≤ D1(u, z1) +
T∑
t=1

(
Dt,t+1(zt, zt+1) +Dt+1(u, zt+1)−Dt,t+1(u, zt+1)

)
= D1(u, z1) +

T∑
t=1

(
Dt,t+1(zt, zt+1) + ψt+1(u)− ψt(u)

)
= D1(u, z1) +

T∑
t=1

Dt,t+1(zt, zt+1) + ψT+1(u)− ψ1(u),

where the inequality follows from DT+1(u, zT+1) ≥ 0. Hence, (12) holds. Similarly, by taking the
summation of (26) for t ∈ [T ], we obtain

T∑
t=1

〈
ct, z̃t − u

〉
=

T∑
t=1

(
Dt,t+1(z̃t, zt+1)−Dt(z̃t, zt) +Dt(u, zt)−Dt,t+1(u, zt+1)

)
≤ D1(u, z1) +

T∑
t=1

(
Dt,t+1(z̃t, zt+1)−Dt(z̃t, zt) + ψt+1(u)− ψt(u)

)
≤ D1(u, z1) +

T∑
t=1

Dt,t+1(z̃t, zt+1) + ψT+1(u)− ψ1(u),

where the first inequality follows from DT+1(u, zT+1) ≥ 0 and the second inequality follows from
Dt(z̃t, zt) ≥ 0. Hence, (13) holds. The inequality of (14) can be shown as follows:

T∑
t=1

〈
ct, zt − ut

〉
=

T∑
t=1

(
Dt,t+1(zt, zt+1) +Dt(ut, zt)−Dt,t+1(ut, zt+1)

)
≤ D1(u1, z1) +

T∑
t=1

(
Dt,t+1(zt, zt+1) +Dt+1(ut+1, zt+1)−Dt,t+1(ut, zt+1)

)
= D1(u1, z1) +

T∑
t=1

(
Dt,t+1(zt, zt+1)−Dt,t+1(ut, ut+1)

)
,

where the first equality follows from (25) and the second equality follows from Lemma 18. �
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Appendix B. Proof of Lemma 9

From the assumption of (3), and since qt ∈ ∆U , we have

E

[
T∑
t=1

〈
`t, qt

〉
−

T∑
t=1

`ti∗

]
≤ E

[
T∑
t=1

max
i∈U

Et
[
`ti − `ti∗

]]
≤ D. (32)

Hence, we have

RTi∗ = E

[
T∑
t=1

`tit −
T∑
t=1

`ti∗

]
= E

[
T∑
t=1

`tit −
T∑
t=1

〈
`t, qt

〉
+

T∑
t=1

〈
`t, qt

〉
−

T∑
t=1

`ti∗

]

≤ E

[
T∑
t=1

`tit −
T∑
t=1

〈
`t, qt

〉]
+D = E

[
T∑
t=1

〈
ˆ̀t, pt − qt

〉]
+D.

where the inequality follows from (32) and the last equality follows from the definition of ˆ̀t in (15)
and that Et

[
ˆ̀t
]

= `t.

Appendix C. Proof of Lemma 10

In this section, for any vector x = (x1, x2, . . . , xK) ∈ RK and for any subset U ⊆ [K] we denote
xU = (xi)i∈U ∈ RU . We start with the following lemma for evaluating the skewed Bregman
divergence given by (15):

Lemma 19 Suppose that ψt is defined by (15). For p ∈ RK>0 and ` ∈ RK such that
√
pi`i
γt ≥ −1

2

holds for all i ∈ [K], let q ∈ RK>0 be a vector such that

∇ψt+1(q) = ∇ψt(p)− `. (33)

We then have

Dt,t+1(p, q) = γt
K∑
i=1

√
pi · g

(√
pi`i

γt

)
+

(γt+1)2 − (γt)2

γt+1

K∑
i=1

√
qi, (34)

where g(x) is defined as g(x) = x2

1+x . Consequently, we have

Dt,t+1(p, q) ≤ 1

γt

K∑
i=1

(1 + 1[`i < 0]) · (pi)3/2 · (`i)2 +
(γt+1)2 − (γt)2

γt+1

K∑
i=1

√
qi. (35)

Proof As∇ψt(p) = −γt
(

1√
p
i

)K
i=1

from the definition of ψt in (15), (33) implies that

−γt+1 1
√
qi

= −γt 1
√
pi
− `i (36)

for all i ∈ [K]. From this, we have

g

(√
pi`i

γt

)
=

(
√
pi`i)

2

(γt)2
· 1

1 +
√
pi`i
γt

=
(
√
pi`i)

2

(γt)2

γt
√
qi

γt+1√pi
=

√
piqi

γtγt+1
(`i)

2. (37)
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From the definition (11) of Dt,t+1, we have

Dt,t+1(p, q) =
K∑
i=1

(
−2γt

√
pi + 2γt+1√qi + γt+1 1

√
qi

(pi − qi)
)

=

K∑
i=1

(
−2γt

√
pi + γt+1√qi + γt+1 pi√

qi

)

=
1

γt+1

K∑
i=1

pi
√
qi

(
−2γtγt+1 1

√
piqi

+ (γt+1)2 1

pi
+ (γt+1)2 1

qi

)

=
1

γt+1

K∑
i=1

pi
√
qi

((
γt+1

√
qi
− γt
√
pi

)2

+
(γt+1)2 − (γt)2

pi

)

=
1

γt+1

K∑
i=1

pi
√
qi(`i)

2 +
(γt+1)2 − (γt)2

γt+1

K∑
i=1

√
qi

= γt
K∑
i=1

√
pig

(√
pi`i

γt

)
+

(γt+1)2 − (γt)2

γt+1

K∑
i=1

√
qi.

Note that we can use this lemma to evaluateDt(p, q) as well, by substituting γt+1 = γt. In addition,
the value of Dt,t+1

U (p, q) can be expressed in a similar form, i.e., if∇ψt+1
U (q) = ∇ψtU (p)− `U then

Dt,t+1
U (p, q) = γt

∑
i∈U

√
pi · g

(√
pi`i

γt

)
+

(γt+1)2 − (γt)2

γt+1

∑
i∈U

√
qi (38)

for any U ∈ [K].
We define p̄t+1 ∈ RU>0 as

p̄t+1 = arg min
p∈RU

>0,
∑

i∈U pi=‖pt‖U
Dt+1
U (p, pt+1

U ), (39)

where we denote ‖pt‖U =
∑

i∈U p
t
i . From the definition of p̄t+1, there exists α ∈ R such that

∇ψt+1
U (p̄t+1) = ∇ψtU (pt)− ˆ̀t

U + α · 1. (40)

Further, for β < mini∈[K]

{
γt√
pti

}
, we define pt+1(β) ∈ RK>0 to be the vector satisfying

∇ψt+1(pt+1(β)) = ∇ψt(pt)− ˆ̀t + β · 1. (41)

From the definition of pt and pt+1, there exists β∗ such that pt+1(β∗) = pt+1. In addition, for any
β, we have

pt+1 = arg min
p∈∆K

Dt+1(p, pt+1(β)), (42)

p̄t+1 = arg min
p∈RU

>0,
∑

i∈U pi=‖pt‖U
Dt+1
U (p, pt+1(β)). (43)

We then have
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Lemma 20 For any β, we have

Dt,t+1(pt, pt+1)−Dt,t+1
U (qt, qt+1) ≤ Dt,t+1

V (pt, pt+1(β)) +Dt+1
U (p̄t+1, pt+1(β)). (44)

Proof From Lemma 18, (42), and the fact that pt ∈ ∆K , we have

Dt,t+1(pt, pt+1) = Dt,t+1(pt, pt+1(β))−Dt+1(pt+1, pt+1(β)) ≤ Dt,t+1(pt, pt+1(β)). (45)

Similarly, from Lemma 18 and (43), we have

Dt,t+1
U (pt, pt+1(β)) = Dt,t+1

U (pt, p̄t+1) +Dt+1
U (p̄t+1, pt+1(β)) (46)

Combining the above two inequalities, we obtain

Dt,t+1(pt, pt+1)−Dt,t+1
U (qt, qt+1) ≤ Dt,t+1(pt, pt+1(β))−Dt,t+1

U (qt, qt+1)

= Dt,t+1
U (pt, pt+1(β)) +Dt,t+1

V (pt, pt+1(β))−Dt,t+1
U (qt, qt+1)

= Dt,t+1
U (pt, p̄t+1)−Dt,t+1

U (qt, qt+1) +Dt,t+1
V (pt, pt+1(β)) +Dt+1

U (p̄t+1, pt+1(β)). (47)

In the following, we show Dt,t+1
U (pt, p̄t+1) ≤ Dt,t+1

U (qt, qt+1). From the definition of qt, there
exists ξ ∈ R such that

∇ψt+1
U (qt+1) = ∇ψtU (qt)− ˆ̀t

U + ξ · 1. (48)

From Lemma 18 and (43) with β = ξ, we have

Dt,t+1
U (pt, p̄t+1) = Dt,t+1

U (pt, pt+1(ξ))−Dt+1
U (p̄t+1, pt+1(ξ)) ≤ Dt,t+1

U (pt, pt+1(ξ)). (49)

From (41), pt+1(ξ) satisfies

∇ψt+1
U (pt+1(ξ)) = ∇ψtU (p̄t)− ˆ̀t

U + ξ · 1. (50)

As pti ≤ qti holds for any i ∈ U , and the value of (34) is monotone-increasing w.r.t. p for any fixed
`, from Lemma 9, (48) and (50), we have Dt,t+1

U (pt, pt+1(ξ)) ≤ Dt,t+1
U (qt, qt+1). Combining this

with (49) and (47), we obtain (44).

Lemma 21 The value of α defined in (40) is bounded as

α ≤
∑

i∈U (pti)
3/2 ˆ̀t

i∑
i∈U (pti)

3/2
≤

1[it ∈ U ]
√
ptit∑

i∈U (pti)
3/2

, (51)

−α ≤
√
t+ 1

2t

∑
i∈U p̄

t+1
i∑

i∈U (p̄t+1
i )3/2

≤
√
t+ 1

2t

|U |√
p̄t+1
j

(52)

for any j ∈ U .
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Proof From (40), for any i ∈ U , we have

−
√
t+ 1√
p̄t+1
i

= −
√
t√
pti
− ˆ̀t

i + α (53)

which implies that

p̄t+1
i

t+ 1
=

1( √
t√
pti

+ ˆ̀t
i − α

)2 ≥
pti
t
− 2

(
pti
t

) 3
2

· (ˆ̀t
i − α), (54)

where the inequality follows from the fact that the function 1/x2 is convex in x ∈ R>0, and that its
derivative is −2/x3. From (54) and

∑
i∈U p̄

t+1
i =

∑
i∈U p

t
i (this follows from (39)), we have

α ≤
∑

i∈U (pti)
3/2 ˆ̀t

i∑
i∈U (pti)

3/2
=

1[it ∈ U ]`tit

√
ptit∑

i∈U (pti)
3/2

≤
1[it ∈ U ]

√
ptit∑

i∈U (pti)
3/2

, (55)

where the equality follows from the definition of ˆ̀t in (15) Similarly, from (53), we have

pti
t

=
1( √

t+1√
p̄t+1
i

− ˆ̀t
i + α

)2 ≥
p̄t+1
i

t+ 1
− 2

(
p̄t+1
i

t+ 1

) 3
2

· (−ˆ̀t
i + α), (56)

which implies

−α ≤ 1

2
∑

t∈U

(
p̄t+1
i
t+1

) 3
2

·

(
1

t

∑
i∈U

pti −
1

t+ 1

∑
i∈U

p̄t+1
i

)
=

√
t+ 1

2t

∑
i∈U p̄

t+1
i∑

i∈U (p̄t+1
i )3/2

≤
√
t+ 1

2t
·

|U |p̄t+1
i∗∑

i∈U
(
p̄t+1
i

) 3
2

≤
√
t+ 1

2t
·
|U |p̄t+1

i∗(
p̄t+1
i∗
) 3

2

=

√
t+ 1

2t
· |U |√

p̄t+1
i∗

≤
√
t+ 1

2t
· |U |√

p̄t+1
j

where we set i∗ ∈ arg maxi∈U p̄
t+1
i . Hence, we obtain (52).

Lemma 22 Suppose that p̄t+1 is given by (39) for t ≥ 4. We then have

∑
i∈U

(p̄t+1
i )3/2 ≤

√
2

(
1 +

1

t

)3/2∑
i∈U

(pti)
3/2 ≤ 2 ·

∑
i∈U

(pti)
3/2. (57)

Proof Suppose α ≤ 0. Then, from (53), we have
√
t+ 1√
p̄t+1
i

=

√
t√
pti

+ ˆ̀t
i − α ≥

√
t√
pti
, (58)
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which implies p̄t+1 ≤ t+1
t p

t
i. Hence, (57) holds in the case of α ≤ 0. We next consider the case of

α ≥ 0. For all i ∈ U \ {it}, we have
√
t+1√
p̄t+1
i

≤
√
t√
pti

, therefore p̄t+1
i
t+1 ≥

pti
t . We define rti =

pti∑
i∈U p

t
i

and r̄t+1
i = t

t+1 ·
p̄t+1
i∑
i∈U p

t
i
. Then r̄t+1

i ≥ rti for i ∈ U \ {it} and
∑

i∈U r̄
t+1
i ≤

∑
i∈U r

t
i = 1. We

have ∑
i∈U (p̄t+1

i )3/2∑
i∈U (pti)

3/2
=

(
1 +

1

t

)3/2 ∑
i∈U (r̄t+1

i )3/2∑
i∈U (rti)

3/2
. (59)

The maximum of
∑

i∈U (r̄t+1
i )3/2∑

i∈U (rti)
3/2 subject to rti , r̄

t+1
i ≥ 0 for i ∈ U , r̄t+1

i ≥ rti for i ∈ U \ {it} and∑
i∈U r̄

t+1
i ≤

∑
i∈U r

t
i = 1 is at most

√
2, which follows from Lemma 28. Hence, from (59), we

have
∑

i∈U (p̄t+1
i )3/2∑

i∈U (pti)
3/2 =

√
2
(
1 + 1

t

)3/2, which implies (57).

In the following, we set

β = max

{
0,

∑
i∈U (pti)

3/2∑K
i=1(pti)

3/2
α

}
. (60)

Then, it follows from (51) that

β ≤
1[it ∈ U ]

√
ptit∑K

i=1(pti)
3/2
≤
√
K ≤

√
t

2
(61)

under the assumption of t ≥ 4K, which implies that
√
t+ 1√
pt+1
i (β)

=

√
t√
pti

+ ˆ̀t
i − β ≥

√
t√
pti
− β ≥

√
t

2
√
pti
. (62)

Hence, we have √
pt+1
i (β) ≤ 2

√
t+ 1

t

√
pti (63)

for all i ∈ [K]. We are now ready to prove Lemma 10.

Proof of Lemma 10 We consider evaluating the right-hand side of (44) using Lemma 19. From
(40) and (41), pt, pt+1(β) and p̄t+1 satisfies

∇ψt+1
V (pt+1(β)) = ∇ψtV (pt)− ˆ̀t

V + β · 1, (64)

∇ψt+1
U (pt+1(β)) = ∇ψt+1

U (p̄t+1)− (α− β) · 1. (65)

We use Lemma 19 with ` = ˆ̀t
V − β · 1 and ` = (α − β) · 1 to bound the right-hand side of (44).

We can confirm that the assumption of
√
pi`i
γt ≥ −1/2 in Lemma 19 is satisfied as ˆ̀t

i ≥ 0 and β is
bounded as in (61).
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Suppose that it ∈ V . We then have α ≤ 0 from (51) and β = 0 from (60). Hence, from (64),
(65) and Lemma 19, we have

Dt,t+1
V (pt, pt+1(β)) ≤ 1√

t

∑
i∈V

(pti)
3/2(ˆ̀t

i)
2 +

1√
t+ 1

∑
i∈V

√
pt+1
i (β)

≤ 1√
t

 1√
ptit

+ 2
∑
i∈V

√
pti

 , (66)

Dt+1
U (p̄t+1, pt+1(β)) ≤ 2√

t

∑
i∈U

(p̄t+1
i )3/2 · 1[α < 0] · (α)2, (67)

where the second inequality follows from (62). On the other hand, if it ∈ U , we have α − β ≥ 0,
β ≥ 0, and Lemma 19 with (64) and (65) implies the following:

Dt,t+1
V (pt, pt+1(β)) ≤ 2√

t

∑
i∈V

(pti)
3/2 · (β)2 +

1√
t+ 1

∑
i∈V

√
pt+1
i (β)

≤ 2√
t

∑
i∈V

(pti)
3/2 · (β)2 +

2√
t

∑
i∈V

√
pti, (68)

Dt+1
U (p̄t+1, pt+1(β)) ≤ 1√

t

∑
i∈U

(p̄t+1
i )3/2

(
1[α > 0] · (α− β)2 + 2 · 1[α < 0] · (α)2

)
≤ 2√

t

(
1[α > 0] · (α− β)2 ·

∑
i∈U

(pti)
3/2 + 1[α < 0] · (α)2 ·

∑
i∈U

(p̄t+1
i )3/2

)
,

(69)

where the second inequality follows from (62) and the last inequality follows from (57). We can
show the first inequality above by applying Lemma 19 with ` = −β · 1. More precisely, as the
condition it ∈ U implies ˆ̀t

V = 0, from (64), we can apply Lemma 19 with ` = −β · 1. Similarly,
we obtain the third inequality by applying Lemma 19 with ` = (α − β) · 1. Combining (68), (66),
(69) and (67), we obtain

Dt,t+1
V (pt, pt+1(β)) +Dt+1

U (p̄t+1, pt+1(β)) ≤ 1√
t

2
∑
i∈V

√
pt+1
i + 1[it ∈ V ]

1√
ptit

 (70)

+
2√
t

(
1[α > 0]

(
(β)2

∑
i∈V

(pti)
3/2 + (α− β)2

∑
i∈U

(pti)
3/2

)
+ 1[α < 0](α)2

∑
i∈U

(p̄t+1
i )3/2

)
.

From (51) and (60), we have

1[α > 0]

(
(β)2

∑
i∈V

(pti)
3/2 + (α− β)2

∑
i∈U

(pti)
3/2

)

= 1[α > 0] · (α)2∑K
i=1(pti)

3/2
·
∑
i∈V

(pti)
3/2 ·

∑
i∈U

(pti)
3/2 ≤

1[it ∈ U ] · ptit ·
∑

i∈V (pti)
3/2∑K

i=1(pti)
3/2 ·

∑
i∈U (pti)

3/2
, (71)

24



MULTI-ARMED BANDIT ALGORITHMS WITH HYBRID DATA-DEPENDENT REGRET BOUNDS

where the equality follows from (60) and the inequality follows from (51).
From (52), we have

1[α < 0] · (α)2 ·
∑
i∈U

(p̄t+1
i )3/2 ≤ t+ 1

4t2

∑
i∈U

(p̄t+1
i )3/2

( ∑
i∈U p̄

t+1
i∑

i∈U (p̄t+1
i )3/2

)2

=
t+ 1

4t2
·
(∑

i∈U p̄
t+1
i

)2∑
i∈U (p̄t+1

i )3/2
=
t+ 1

4t2
·

√∑
i∈U p̄

t+1
i∑

i∈U

(
p̄t+1
i∑

j∈U p̄
t+1
j

)3/2
≤ (t+ 1)

√
U

4t2
, (72)

where the first inequality follows from (52) and the last inequality follows from
∑

i∈U p̄
t+1
i ≤ 1 and∑

i∈U

(
p̄t+1
i∑

j∈U p̄
t+1
j

)3/2

≥ 1√
|U |

. Combining (70), (71) and (72), we obtain the bound of Lemma 10.

�

Appendix D. Proof of Theorem 2

Lemma 23 We have

Et

[
1[it ∈ U ] · ptit ·

∑
i∈V (pti)

3
2∑

i∈U (pti)
3
2
∑K

i=1(pti)
3
2

]
≤
√∑

i∈V
pti. (73)

Proof As we have Et
[
1[it ∈ U ] · ptit

]
=
∑

i∈U (pti)
2, we have

Et

[
1[it ∈ U ] · ptit

∑
i∈V (pti)

3
2∑

i∈U (pti)
3
2
∑K

i=1(pti)
3
2

]
=

∑
i∈U (pti)

2
∑

i∈V (pti)
3
2∑

i∈U (pti)
3
2
∑K

i=1(pti)
3
2

≤
∑

i∈U (pti)
2
∑

i∈V (pti)
3
2∑

i∈U (pti)
3
2 · 3

1
3 ·
(

3
2

) 2
3

(∑
i∈U (pti)

3
2

) 1
3
(∑

i∈V (pti)
3
2

) 2
3

=
2

2
3
∑

i∈U (pti)
2
(∑

i∈V (pti)
3
2

) 1
3

3
(∑

i∈U (pti)
3
2

) 4
3

≤

(∑
i∈V

(pti)
3
2

) 1
3

≤
√∑

i∈V
pti

where the first inequality follows from 1
3a+ 2

3b ≥ a
1
3 b

2
3 for a, b ≥ 0, the second inequality follows

from ‖x‖2 ≤ ‖x‖ 3
2
, and the last inequality follows from

∑
i∈V (pti)

3
2 ≤

(∑
i∈V p

t
i

) 3
2 .

Lemma 24 Suppose that pt and qt are defined by (15) and (16). For any t ≥ 1, we have

E
[
Dt,t+1(pt, pt+1)−Dt,t+1

U (qt, qt+1)
]
≤ 2

√
K√
t
. (74)
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Proof As we have ψt+1
U (p) ≤ ψtU (p) for any U and p from the definition of ψtU , we have

Dt,t+1
U (qt, qt+1) = Dt+1

U (qt, qt+1) + ψtU (qt)− ψt+1
U (qt) ≥ 0. (75)

From (45) with β = 0, we have

Dt,t+1(pt, pt+1) ≤ Dt,t+1(pt, pt+1(0)), (76)

where pt+1(0) is define by (41) with β = 0. From Lemma 19 with ` = ˆ̀t, we have

Dt,t+1(pt, pt+1(0)) ≤ 1√
t

K∑
i=1

(pti)
3/2(ˆ̀t

i)
2 +

1√
t+ 1

K∑
i=1

√
pt+1
i (0)

≤ 1√
t

1√
ptit

+
1√
t

K∑
i=1

√
pti.

where the second inequality follows from the definition of ˆ̀t in (15) and from (62) with β = 0. By
taking the expectation w.r.t. it, we obtain

E
[
Dt,t+1(pt, pt+1(0))

]
≤ 2√

t

K∑
i=1

√
pti ≤ 2

√
K√
t
. (77)

By combining (75), (76) and (77), we obtain (74).

From Lemmas 10, 23 and 24, we have

T∑
t=1

E
[
Dt,t+1(pt, pt+1)−Dt,t+1

U (qt, qt+1)
]

=
4K∑
t=1

E
[
Dt,t+1(pt, pt+1)−Dt,t+1

U (qt, qt+1)
]

+
T∑

t=4K+1

E
[
Dt,t+1(pt, pt+1)−Dt,t+1

U (qt, qt+1)
]

≤ 2
4K∑
t=1

√
K√
t

+

T∑
t=4K+1

(
5√
t

∑
i∈V

√
E [pti] +

√
K

t3/2

)

≤ 4
√
K ·

4K∑
t=1

(√
t−
√
t− 1

)
+

T∑
t=4K+1

(
5√
t

∑
i∈V

√
E [pti]

)
+

√
K

2

T∑
t=4K+1

(
1√
t− 1

− 1√
t

)

≤ 9K +
T∑
t=1

(
5√
t

∑
i∈V

√
E [pti]

)

Combining this with Lemma 9, (17), and D1(q1, p1) ≤ K we have

RTi∗ ≤
T∑
t=1

(
5√
t

∑
i∈V

√
E [pti]

)
+ 10K +D. (78)
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From this and (2), it holds for any λ > 0 that

RTi∗ = (1 + λ)RTi∗ − λRTi∗

≤ (1− λ) ·

(
T∑
t=1

(
5√
t

∑
i∈V

√
E [pti]

)
+ 10K +D

)
− λ ·

(
T∑
t=1

∑
i∈V

∆iE
[
pti
]
− C

)

=
T∑
t=1

∑
i∈V

(
5(1 + λ)√

t

√
E [pti]− λ ·∆iE

[
pti
])

+ (1 + λ) · (K +D) + λC

≤ 25(1 + λ)2

4λ

T∑
t=1

1

t

∑
i∈V

1

∆i
+ (1 + λ) · (K +D) + λC

≤ 25(1 + λ)2 log(T + 1)

4λ

∑
i∈V

1

∆i
+ (1 + λ) · (K +D) + λC.

By choosing λ = min

{
1,

5
√

log(T+1)
∑

i∈V
1

∆i√
C

}
, we have

RTi∗ ≤ 25 log(T + 1)
∑
i∈V

1

∆i
+ 10

√
C log(T + 1)

∑
i∈V

1

∆i
+ 2(K +D), (79)

which proves Theorem 2. �

Appendix E. Proof of Proposition 11

Set p∗ by p∗ = (1− ε) · χi∗ + ε
K · 1. As ˆ̀t is an unbiased estimator, the regret can be expressed as

RTi∗ = E

[
T∑
t=1

(
`tit − `

t
i∗
)]

= E

[
T∑
t=1

(〈
`t, pt − p∗

〉)
+

T∑
t=1

(〈
`t, p∗ − χi∗

〉)]

= E

[
T∑
t=1

〈
ˆ̀t, pt − p∗

〉
+ ε

T∑
t=1

〈
`t,

1

K
1− χi∗

〉]
≤ E

[
T∑
t=1

〈
ˆ̀t, pt − p∗

〉]
+ εT. (80)

Define rt by rt = Ψt
(∑t−1

j=1
ˆ̀j
)

. From (13) in Proposition 8, we have

T∑
t=1

〈
ˆ̀t, pt − p∗

〉
≤ D1(p∗, p1) +

T∑
t=1

Dt,t+1(pt, rt+1) + ψT+1(p∗)− ψ1(p∗). (81)

The value of Dt,t+1(pt, rt+1) can be bounded via the following lemma:

Lemma 25 Suppose ψt is defined by (20) and γt+1
i ≥ γti for all i ∈ [K]. Suppose that p, q ∈ Ω

are expressed as p = Ψt(L), q = Ψt+1(L + `) by L, ` ∈ RK such that |pi`i
γti
| ≤ 1

2 for all i ∈ [K].
We then have

Dt,t+1(p, q) ≤
K∑
i=1

γti · g
(
pi`i
γti

)
≤

K∑
i=1

(
(pi`i)

2

2γti
+
|pi`i|3

(γti )
2

)
≤

K∑
i=1

(pi`i)
2

γti
(82)

where g(x) is defined as g(x) = − log(x+ 1) + x.
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Proof From Lemma 17, we have

Dt,t+1(p, q) = 〈`, p− q〉 −Dt+1,t(q, p) = 〈`, p− q〉 −Dt(q, p)− ψt+1(q) + ψt(q)

≤ 〈`, p− q〉 −Dt(q, p), (83)

where the first equality follows from Lemma 17, the second equality follows from the definition
(11) of the skewed Bregman divergence, and tha inequality follows from the definition of ψt in (20)
and the assumption of γt+1

i ≥ γti . Consider the following maximum value:

max
q∈RK

>0

{f(q)} , where f(q) = 〈`, p− q〉 −Dt(q, p). (84)

As the function f(q) is concave in q ∈ RK>0 for any fixed p, the maximum is attained by q∗ satisfying

∇f(q∗) = −`−∇ψt(q∗) +∇ψt(p) = 0. (85)

A vector q∗ ∈ RK>0 satisfying (85) indeed exists under the condition of |pi`i
γti
| ≤ 1

2 . As ∇ψt(p) =(
−γti
pi

)K
i=1

, (85) implies

`ipi
γti

=
pi
γti
·
(
γti
q∗i
− γti
pi

)
=
pi
q∗i
− 1. (86)

For this q∗, we have

f(q∗) = 〈`, p− q∗〉 −Dt(q∗, p) =
〈
∇ψt(q∗)−∇ψt(p), p− q∗

〉
−Dt(q∗, p)

= ψt(p)− ψt(q∗)−
〈
∇ψt(q∗), p− q∗

〉
=

K∑
i=1

γti ·
(
− log

pi
q∗i

+
pi − q∗i
q∗i

)

=

K∑
i=1

γti ·
(
− log

(
1 +

`ipi
γti

)
+
`ipi
γti

)
=

K∑
i=1

γti · g
(
`ipi
γti

)
, (87)

which means that the first inequality in (82) holds. The other inequality in (82) follows from the
definition of g(x) = − log(x+1)+x and the assumption of |pi`i

γti
| ≤ 1

2 . In fact, as we have g(0) = 0,

g′(0) = 0 and g′′(x) = 1
(1+x)2 ≤ 1 + 6|x| for x ≥ −1

2 , we have g(x) ≤ x2

2 + |x|3 = x2(1
2 + |x|).

Hence, for x ∈ [−1
2 ,

1
2 ], we have g(x) ≤ x2(1

2 + |x|) ≤ x2. Combining these with (87), we obtain
(82).

From the definition of the algorithm, pt and rt+1 can be expressed as pt = Ψt+1(L) and rt+1 =
Ψt+1(L + `) where L =

∑t−1
j=1

ˆ̀j + mt and ` = ˆ̀t − mt + α1 for any α ∈ R. We choose
α = −(`tit − mt

it) in the following. Then ` is expressed as ` = (`tit − mt
it)(

1
pt
it
χit − 1). As

|p
t
i`i
γti
| ≤ 1

2 follows from the conditions that `tit ,m
t
it ∈ [0, 1] and γti ≥ 2, we can apply Lemma 25 to

pt and rt+1 to obtain

Dt,t+1(pt, rt+1) ≤
K∑
i=1

(pti`i)
2

γti
= (`tit −m

t
it)

2

(1− ptit)
2

γtit
+

∑
i∈[K]\{it}

(pti)
2

γti

 ≤ K∑
i=1

νti
γti
,
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where νti is defined in (22). From this and the definition of γti in (22), we have

T∑
t=1

Dt,t+1(pt, rt+1) ≤
K∑
i=1

T∑
t=1

νti
γti

=
K∑
i=1

T∑
t=1

2

B

(
γt+1
i − γti

)
=

2

B

K∑
i=1

(
γT+1
i − γ1

i

)
. (88)

Further, we have

D1(p∗, r1) + ψT+1(p∗)− ψ1(p∗) = ψT+1(p∗)− ψ1(r1)−
〈
∇ψ1(r1), p∗ − r1

〉
≤ ψT+1(p∗) = −

K∑
i=1

γT+1
i log(p∗i ) ≤ log

K

ε

K∑
i=1

γT+1
i , (89)

where the first equality follows from the definition (11) of the Bregman divergence, the first in-
equality follows from ψ1(r1) ≥ 0 and that r1 = 1

K · 1 implies
〈
∇1ψ1(r1), p∗ − r1

〉
= −2K ·〈

1, p∗ − r1
〉

= 0, and the last inequality follows from p∗i ≥ ε
K for all i ∈ [K]. Combining (81),

(88) and (89), we obtain

T∑
t=1

〈
ˆ̀t, pt − p∗

〉
≤

K∑
i=1

(
2

B

(
γT+1
i − γ1

i

)
+ log

K

ε
γT+1
i

)
. (90)

We can bound this using νti via the following lemma:

Lemma 26 Suppose that γti is defined as in (22) with νti ∈ [0, 1] and B ∈ [0, 1]. We then have

γti ≤

√√√√B

t−1∑
j=1

νji + 2 (91)

for all t ≥ 1.

Proof We show this lemma by induction in t. For t = 1, (91) holds as γ1
i = 2. Suppose (91) holds

for a fixed t. Denote γ̄ti =
√
B
∑t−1

j=1 ν
j
i + 2. We then have

γ̄t+1
i − γ̄ti =

√√√√B

t∑
j=1

νji −

√√√√B

t−1∑
j=1

νji =
Bνti√

B
∑t

j=1 ν
j
i +

√
B
∑t−1

j=1 ν
j
i

≥ Bνti

2
√
B
∑t−1

j=1 ν
j
i + 1

≥ Bνti
2γ̄ti

,

where the first inequality follows from Bνti ∈ [0, 1] and
√
x+ 1 ≤

√
x + 1 for x ≥ 0. From this,

we have

γ̄t+1
i ≥ γ̄ti +

Bνti
2γ̄ti
≥ γti +

Bνti
2γti

= γt+1
i ,

where the second inequality follows from the inductive hypothesis of γti ≤ γ̄ti and the fact that
x + c/x is monotone increasing in x >

√
c, for any fixed c ≥ 0. Hence, by induction in t, (91) is

shown for all t ≥ 1.
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Combining this lemma, (90) and γ1
i = 2, we have

T∑
t=1

〈
ˆ̀t, pt − p∗

〉
≤
(

2

B
+ log

K

ε

) K∑
i=1

√√√√B
T∑
t=1

νti + 2K log
K

ε

=

(
2√
B

+
√
B log

K

ε

) K∑
i=1

√√√√ T∑
t=1

νti + 2K log
K

ε
.

By combining this and (80), we obtain the regret bound in Proposition 11.

Appendix F. Proof of Lemma 12

From Jensen’s inequality, for any i ∈ [K], we have

E


√√√√ T∑

t=1

νti

 ≤
√√√√E

[
T∑
t=1

νti

]
≤

√√√√E

[
T∑
t=1

pti(1− pti)

]
≤

√√√√E

[
T∑
t=1

pti

]
,

where the second inequality follows from the definition of νti in (22). Further, for i = i∗, we have

E


√√√√ T∑

t=1

νti∗

 ≤
√√√√E

[
T∑
t=1

pti∗(1− pti∗)

]
≤

√√√√√E

 T∑
t=1

∑
i 6=i∗

pti

 ≤∑
i 6=i∗

√√√√E

[
T∑
t=1

pti

]

Combining these two inequalities, we obtain

E

 K∑
i=1

√√√√ T∑
t=1

νti∗

 ≤ 2
∑
i 6=i∗

√√√√ T∑
t=1

E [pti],

which means that the first part of Lemma 12 holds. The second part can be shown as follows:

K∑
i=1

√√√√ T∑
t=1

νti ≤

√√√√K
T∑
t=1

K∑
i=1

νti =

√√√√√K
T∑
t=1

(`tit −m
t
it)

2

(1− ptit)2 +
∑
i 6=it

(pti)
2


≤

√√√√2K

T∑
t=1

(`tit −m
t
it)

2,

where the first inequality follows from the Cauchy-Schwarz inequality, and the equality follows
from the definition of νti in (22). This means that the second part of Lemma 12 holds.
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Appendix G. Proof of Proposition 13

For any {ut}Tt=1 ⊆ [0, 1]K , from (23), we have

(`tit −m
t
it)

2 − (`tit − u
t
it)

2 ≤ 2(`tit −m
t
it)(u

t
it −m

t
it)

= 2(`tit −m
t
it)(m

t+1
it −m

t
it) + 2(`tit −m

t
it)(u

t
it −m

t+1
it )

= 2η(`tit −m
t
it)

2 +
2

η
(mt+1

it −m
t
it)(u

t
it −m

t+1
it )

≤ 2η(`tit −m
t
it)

2 +
1

η
((utit −m

t
it)

2 − (utit −m
t+1
it )2)

= 2η(`tit −m
t
it)

2 +
1

η
(‖ut −mt‖22 − ‖ut −mt+1‖22),

where the inequalities follows from y2 − x2 = 2y(y − x) − (x − y)2 ≤ 2y(y − x) that holds
for any x, y ∈ R, and the last inequality holds since (23) implies (uti −mt

i)
2 = (uti −m

t+1
i )2 for

i ∈ [K] \ {it}. Hence, we have

(`tit −m
t
it)

2 ≤ 1

1− 2η

(
(`tit − u

t
it)

2 +
1

η
(‖ut −mt‖22 − ‖ut −mt+1‖22)

)
. (92)

Taking the summation for t ∈ [T ] and by telescoping, we obtain

T∑
t=1

(`tit −m
t
it)

2

≤ 1

1− 2η

T∑
t=1

(`tit − u
t
it)

2 +
1

η(1− 2η)

(
‖u1 −m1‖22 +

T−1∑
t=1

(‖ut+1 −mt+1‖22 − ‖ut −mt+1‖22)

)

≤ 1

1− 2η

T∑
t=1

(`tit − u
t
it)

2 +
1

η(1− 2η)

(
K

4
+ 2

T−1∑
t=1

(ut+1 −mt+1)>(ut+1 − ut)

)

≤ 1

1− 2η

T∑
t=1

(`tit − u
t
it)

2 +
1

η(1− 2η)

(
K

4
+ 2

T−1∑
t=1

‖ut+1 − ut‖1

)
,

where the second inequality follows from m1 = 1
21 and the convexity of x 7→ ‖x‖22, and the last

inequality follows from ‖ut+1 −mt+1‖∞ ≤ 1.

Appendix H. Other Lemmas

Lemma 27 Suppose that R ≥ 0 satisfies R ≤ a
√
R+ L + b for a, b, L ≥ 0. We then have

R ≤ a
√
L+ a2 + 2b.

Proof We assume R − b ≥ 0 because the condition of R − b < 0 immediately implies R ≤
a
√
L+ a2 + 2b. From this and the assumption of R ≤ a

√
R+ L+ b, we have

0 ≥ (R− b)2 − (a
√
R+ L)2 = R2 − 2bR+ b2 − a2(R+ L) = R2 − (2b+ a2)R+ b2 − a2L.
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By solving this quadratic inequation in R, we obtain

R ≤ 1

2

(
2b+ a2 +

√
(2b+ a2)2 + 4(a2L− b2)

)
≤ 1

2

(
2b+ a2 +

√
(2b+ a2)2 +

√
4(a2L− b2)

)
≤ 2b+ a2 + a

√
L,

which completes the proof.

Lemma 28 Suppose that p, q ∈ ∆K satisfy qK ≤ pK and qi ≥ pi for all i ∈ [K]\{K} = [K−1].
We then have ∑K

i=1 q
3/2
i∑K

i=1 p
3/2
i

≤
√

2. (93)

Proof Define g by g(p) =
∑K

i=1 p
3/2
i . The left-hand side of (93) can be expressed as g(q)

g(p) . We
consider minimizing g(p) subject to the constraints for fixed q. As g is a convex function, from the
first-order optimality condition, we have the following: Case (i): if qK ≥ maxi∈[K−1] qi, the mini-

mum of g(p) is attained by p = q, which means g(q)
g(p) ≤ 1. Case (ii): if qK < maxi∈[K−1] qi, there

exists c ∈ [qK ,maxi∈[K−1] qi] such that the minimum of g(p) is attained when pK = max{qK , c}
and pi = min{qi, c} for all i ∈ [K − 1]. For such p, denote W = {i ∈ [K] : pi = c} and
W ′ = {i ∈ [K − 1] : pi = c} = W \ {K}. As we have pi = qi for i ∈ [K] \W and g(q)

g(p) ≥ 1,

we have g(q)
g(p) =

∑
i∈W q

3/2
i +

∑
i∈[K]\W p

3/2
i

|W |c3/2+
∑

i∈[K]\W p
3/2
i

≤
∑

i∈W q
3/2
i

|W |c3/2 =: h(q). Noting that c =
∑

i∈W qi/|W |,

qK ≤ c, and qi ≥ c for i ∈ W ′, we can show that h(q) is maximized when |W | = 2 and qK = 0,
and then h(q) =

√
2. Consequently, we have g(q)

g(p) ≤
√

2, which means that (93) holds.
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