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Abstract
We introduce a simple and efficient algorithm for stochastic linear bandits with finitely many ac-
tions that is asymptotically optimal and (nearly) worst-case optimal in finite time. The approach is
based on the frequentist information-directed sampling (IDS) framework, with a surrogate for the
information gain that is informed by the optimization problem that defines the asymptotic lower
bound. Our analysis sheds light on how IDS balances the trade-off between regret and information
and uncovers a surprising connection between the recently proposed primal-dual methods and the
IDS algorithm. We demonstrate empirically that IDS is competitive with UCB in finite-time, and
can be significantly better in the asymptotic regime.

1. Introduction

The stochastic linear bandit problem is an iterative game between a learner and an environment
played over n rounds. In each round t, the learner chooses an action (or arm) xt from a finite
set of actions X ⊂ Rd and observes a noisy reward yt = ⟨xt, θ∗⟩ + ϵt where θ∗ ∈ Rd is an
unknown parameter vector and ϵt is zero-mean noise. The learner’s goal is to maximize the expected
cumulative reward or, equivalently, to minimize the expected regret, which is defined by

Rn(π, θ
∗) = E

[
max
x∈X

n∑
t=1

⟨x− xt, θ∗⟩
]
, (1)

where π is the policy mapping sequences of action/reward pairs to distributions over actions in X
and the expectation is over the randomness in the policy and the rewards. Unlike in the multi-armed
bandit setting, the linear structure allows the learner to estimate the reward of an action without
directly observing it. In particular, the learner might play an action that it knows to be suboptimal
in order to most efficiently identify the optimal action.

The worst-case regret Rn(π) = supθ∈MRn(π, θ) measures the performance of a policy on an
adversarially chosen parameter θ in a class of modelsM. On the other hand, for a fixed instance θ∗,
an algorithm can perform much better than the worst-case regret Rn(π) suggests, and achieving the
optimal instance-dependent regret Rn(π, θ∗) is therefore of significant interest. On a large horizon,
the optimal instance-dependent regret, or asymptotic regret, is characterized by a convex program,
that optimizes the allocated proportion of plays to each action to minimize the regret, subject to the
constraint that the policy gathers enough information to infer the best action (Graves and Lai, 1997).
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The optimal worst-case regret rate (up to logarithmic factors) is achieved by various algorithms,
including adaptations of the upper confidence bound (UCB) algorithm (Auer, 2003; Dani et al.,
2008; Abbasi-Yadkori et al., 2011) and the information-directed sampling (IDS) approach (Russo
and Van Roy, 2014; Kirschner and Krause, 2018). A conservative version of Thompson sampling is
suboptimal by a factor of

√
d and logarithmic factors (Agrawal and Goyal, 2013). On the other hand,

achieving optimal asymptotic regret has proven to be more challenging. Lattimore and Szepesvári
(2017) showed that algorithms based on optimism or Thompson sampling are not asymptotically
optimal in the linear setting. They propose an approach based on the explore-then-commit frame-
work that computes an estimate of the optimal allocation and updates the allocation to match the
predicted target. Combes et al. (2017) follow a similar plan for the structured bandit setting, which
includes the linear setting as a special case. This idea was subsequently extended to the contextual
setting by Hao et al. (2019). Unfortunately these algorithms are not at all practical and do not enjoy
reasonable minimax regret. More recently, Jun and Zhang (2020) refined this technique in the struc-
tured setting with a finite model class to avoid forced exploration and the knowledge of the horizon.
Similarly, Van Parys and Golrezaei (2020) use a dual formulation of the lower bound to devise an
algorithm that achieves the optimal asymptotic regret up to a constant, and avoids re-solving for
the predicted optimal allocation at every round. Degenne et al. (2020) take a different approach
and translate the Lagrangian of the lower bound into a fictitious two-player game, where the saddle
point corresponds to the asymptotic regret. Using tools from online convex optimization (Hazan
et al., 2016; Orabona, 2019), this leads to a family of asymptotically optimal algorithms, which in-
crementally update the allocation in each round based on primal-dual updates on the Lagrangian of
the lower bound. Another primal-dual method is by Tirinzoni et al. (2020), which unlike previous
methods is both worst-case and asymptotically optimal and also applies to the contextual case. We
explain how IDS relates to primal-dual methods in Section 2.3. Finally, Wagenmaker et al. (2020)
combine optimal experimental design with a phased elimination-style algorithm to derive finite-time
guarantees that scale with the Gaussian width of the action set.

Contributions Our main contribution is new conceptual insights into information-directed sam-
pling (IDS). We show that with an appropriate choice of the information gain, IDS performs primal-
dual updates on the Lagrangian of the lower bound. The proposed version of IDS for the linear ban-
dit setting is (nearly) worst-case optimal in finite time, satisfies an explicit gap-dependent logarith-
mic regret bound and is asymptotically optimal. All regret bounds are on frequentist expected regret
and our analysis is relatively simple, avoiding all but one high-probability bound. The asymptotic
analysis uncovers a connection between IDS and recently proposed primal-dual methods (Degenne
et al., 2020; Tirinzoni et al., 2020). Moreover, our choice of information gain function approximates
the variance based information gain proposed by (Russo and Van Roy, 2014) in the Bayesian setting.

Notation The real numbers are R and R≥0 denotes the positive orthant. The standard Euclidean
norm is ∥ · ∥ and the Euclidean inner product is ⟨·, ·⟩. The Euclidean basis in Rm is e1, . . . , em. The
identity matrix in Rd×d is 1d. The diameter of a set X ⊂ Rd is diam(X ) = supx,y∈X ∥x− y∥. For
a positive (semi-)definite, symmetric matrix A ∈ Rd×d and a vector v ∈ Rd, the associated matrix
(semi-)norm is ∥v∥2A = ⟨v,Av⟩. P(X ) is the set of probability measures on a finite set X . Where
convenient, we use vector notation, including inner products to denote evaluation of functions F ∈
RX , for example F (x) = ⟨ex, F ⟩. Functions F ∈ RX are extended linearly to distributions µ ∈
P(X ) to denote the expectation F (µ) = ⟨µ, F ⟩ = ∑

x∈X f(x)µ(x). In this context, we also use
ex for the Dirac measure on x ∈ X . The reader may refer to Appendix A for a summary of notation.
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1.1. Setting

Let X ⊂ Rd be a finite set of k actions. We assume that X spans Rd and diam(X ) ≤ 1. De-
note by θ∗ ∈ M an unknown parameter vector, where M ⊂ Rd is a known convex polytope
with diam(M) ≤ 1. In each round t = 1, . . . , n, the learner chooses a distribution µt over X .
Then xt is sampled from µt and the learner observes the reward yt = ⟨xt, θ⟩ + ϵt where ϵt is
sampled independently from a Gaussian with zero mean and unit variance. All our upper bounds
hold without modification for conditionally 1-subgaussian noise. The objective is to minimize the
expected cumulative regret Rn = Rn(π, θ

∗) defined in Eq. (1), where π = (µt)
n
t=1 is the policy

chosen by the learner. The dependency of the regret on θ∗ and π is mostly omitted when there is no
ambiguity. The expectation conditioned on previous observations is Es[ · ] = E[ · |(xl, yl)s−1

l=1 ]. In
line with all previous work focusing on the asymptotic setting, we assume that the optimal action
x∗ = x∗(θ∗) = argmaxx∈X ⟨x, θ∗⟩ is unique. Eliminating this assumption is left as a delicate
and possibly non-trivial challenge for the future. The sub-optimality gap of an action x ∈ X is
∆(x) = ⟨x∗ − x, θ∗⟩ and ∆min = minx̸=x∗ ∆(x) denotes the smallest non-zero gap. For actions
x, z ∈ X , we denote byHzx = {ν ∈ M : ⟨x− z, ν⟩ ≥ 0} the (convex) set of parameters where the
reward of x is at least the reward of z. The set of alternative parameters is C∗ = ∪x ̸=x∗Hx

∗
x .

Asymptotic Lower Bound For an allocation α ∈ RX
≥0 over actions we define the associated co-

variance matrix V (α) =
∑

x∈X α(x)xx
⊤. Let c∗ be the solution to the following convex program,

c∗ ≜ inf
α∈RX

≥0

∑
x∈X

α(x)⟨x∗ − x, θ∗⟩ s.t. min
ν∈C∗

1
2∥ν − θ∗∥2V (α) ≥ 1 . (2)

The optimization minimizes the regret over (unbounded) allocations α that collect sufficient statis-
tical evidence to reject all parameters ν ∈ C∗ for which an action x ̸= x∗ is optimal. Note that for
a fixed ν ∈ Rd, the constraints are linear in the allocation, ∥ν − θ∥2V (α) =

∑
x∈X α(x)⟨ν − θ, x⟩2.

The next lemma is a well-known result, which relates the asymptotic regret to the solution of (2). A
policy π is called consistent if for all θ ∈ M and p > 0 it holds that Rn(θ, π) = o(np). Assuming
consistency is required to rule out policies that are defined to always play a fixed action x∗, which
incurs zero regret when x∗ is indeed optimal, but linear regret on other instances.

Theorem 1 (Graves and Lai (1997); Combes et al. (2017)) Any consistent algorithm π for the lin-
ear bandit setting with Gaussian noise has regret Rn(θ∗, π) at least

lim inf
n→∞

Rn(θ
∗, π)

log(n)
≥ c∗(θ∗) .

2. Asymptotically Optimal Information-Directed Sampling

The information-directed sampling (IDS) principle was introduced by Russo and Van Roy (2014)
in the Bayesian setting. Our work is based on the frequentist version of this approach, developed
by Kirschner and Krause (2018). The central idea is to compute a distribution over the actions that
optimizes the following trade-off between a gap estimate ∆̂s(x) and an information gain Is(x),
defined at step s ≥ 1 for each x ∈ X :

µs = argmin
µ∈P(X )

{
Ψs(µ) ≜

∆̂s(µ)
2

Is(µ)

}
. (3)
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Algorithm 1: Asymptotically Optimal Information-Directed Sampling

1 s← 1
2 for t = 1, 2, 3, . . . do
3 Vs ←

∑s−1
i=1 xix

⊤
i + 1d

4 θ̂s ← V −1
s

∑s−1
i=1 xiyi // least squares estimate

5 x̂s ← argmaxx∈X ⟨x, θ̂s⟩ // empirically best action

6 βs,1/δ ← (
√
2 log δ−1 + log det(Vs) + 1)2

7 ∆̂s(x)←
(
maxz∈X ⟨z, θ̂s⟩+ β

1/2
s,s2
∥z∥V −1

s

)
− ⟨x, θ̂s⟩ // gap estimates

8 ν̂s(z)← argmin
ν∈Hx̂s

z
∥ν − θ̂s∥2Vs // see Eq. (10)

9 ms ← minz ̸=x̂s
1
2∥ν̂s(z)− θ̂s∥2Vs

10 ηs ← minl≤sm
−1/2
l log(k)

11 qs(z)← exp(−ηs∥ν̂s(z)− θ̂s∥2Vs)
12 Is(x)← 1

2

∑
z ̸=x̂s qs(z)

(
|⟨ν̂s(z)− θ̂s, x⟩|+ β

1/2
s,s2
∥x∥V −1

s

)2
// information gain†

13 if ms ≥ 1
2βs,t log(t) then

14 Choose x̂s // exploitation (disregard data)

15 else
16 µs ← argminµ∈P(X )

∆̂s(µ)2

Is(µ)
// IDS distribution

17 Sample xs ∼ µs, observe ys = ⟨xs, θ∗⟩+ ϵs
18 s← s+ 1 // exploration step counter

† For the analysis, we normalize the q-weights, but this is not necessary to compute the IDS distribution.

Intuitively, this objective requires to sample actions that have either small regret or large information
gain. The information ratio Ψt is a convex function of the distribution (Russo and Van Roy, 2014,
Prop. 6) and can be minimized efficiently as we explain below. In exploration rounds, indexed by
s, IDS samples the action xs from the IDS distribution µs. Otherwise, in exploitation rounds, x∗ is
identified with high probability, and the algorithm plays the action it believes to be optimal, denoted
by x̂s (where s is the index of the last exploration round). The interaction with the environment,
described in Algorithm 1, is over rounds t = 1, . . . , n on a horizon n, which is unknown a priori.
Exploration rounds are counted separately by s, inducing an implicit mapping s 7→ ts ≤ t. The
number of exploration rounds up to time t is st. We refer to s and t as local and global time
respectively, and to sn as the effective horizon. The convention is that an s-index refers to the local
time quantities, whereas a t-index refers to global time quantities. For example, the action chosen
in exploration round s at global time ts is xs and the observed reward is ys. Similarly, an action xs
at local time s has a global time correspondence xt = xts .

Gap Estimates All estimated quantities are defined using data collected in exploration rounds,
whereas observation data from exploitation rounds is discarded. To justify this choice intuitively,
note that with high probability, in exploration rounds the algorithm samples the optimal action x∗,
thereby accumulating exponentially more data points on the optimal actions compared to suboptimal
actions. Ignoring data from exploitation rounds leads to a much more balanced data set.
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Let θ̂s ≜ V −1
s

∑s−1
i=1 xiyi be the regularized least squares estimator with covariance matrix

Vs ≜
∑s−1

i=1 xix
⊤
i +1d, computed with data (x1, y1), . . . , (xs−1, ys−1). The empirically best action

is x̂s ≜ argmaxx∈X ⟨x, θ̂s⟩. We assume that the learner has a concentration coefficient βs,1/δ that
satisfies

P[∃ s ≥ 1 with ∥θ̂s − θ∗∥2Vs ≥ βs,1/δ] ≤ δ . (4)

For concreteness, we use the choice derived by Abbasi-Yadkori et al. (2011), which is

β
1/2
s,1/δ ≜

√
2 log δ−1 + log det(Vs) + 1 . (5)

The reader might worry about the log determinant term, which is known to create an asymptoti-
cally suboptimal dependence on the dimension, and can be improved with a different choice of the
confidence coefficient (Lattimore and Szepesvári, 2017). Since βs,1/δ = 2 log 1

δ + O(d log(s)),
we circumvent this shortcoming by limiting the amount of data the algorithm collects to sn =
O
(
poly(log(n)

)
, which implies βsn,1/δ = 2 log 1

δ +O(d log log(n)). We also exploit this property
for other steps in the analysis, but it is unclear whether or not it is essential.

For all z ̸= x̂s, let ν̂s(z) = argmin
ν∈Hx̂s

z
∥ν − θ̂s∥2Vs be the closest parameter to θ̂s in Vs-norm

for which z is better than x̂s. This is a strongly convex objective over the convex set Hx̂sz , hence
ν̂s(z) can be computed efficiently. In practice, we can drop the constraints on the parameter set
(i.e. setM = Rd), in which case ν̂s(z) can be computed in closed form, see (10) below. Exploitation
rounds are defined by the exploitation condition,

ms ≜ 1
2 min
x ̸=x̂s

∥ν̂s(x)− θ̂s∥2Vs ≥ 1
2βs,t log(t) , (E)

which guarantees that with confidence level βs,t log(t) there exists no plausible alternative parameter
ν ̸= θ̂s, such that an action x ̸= x̂s is optimal for ν. At local time s, the gap estimate is

∆̂s(x) ≜ max
z∈X
⟨z − x, θ̂s⟩+ β

1/2
s,s2
∥z∥V −1

s
.

Note that we use a different confidence level in the definition of the gap estimate, and in fact the
only explicit dependence on the global time t is in the exploitation condition. The gap estimate is
an upper bound on the true gap, provided θ̂s is well concentrated, i.e. ∥θ̂s − θ∗∥2Vs ≤ βs,s2 ,

∆(x) ≤ max
y∈X
⟨y, θ̂s⟩+ β

1/2
s,s2
∥y∥V −1

s
− (⟨x, θ̂s⟩ − β1/2s,s2

∥x∥V −1
s

) ≤ 2∆̂s(x) . (6)

The first inequality follows from the definition of the confidence scores, and the second inequality
uses ∆̂s(x) ≥ β1/2s,s2

∥x∥V −1
s

. The gap estimate of the empirically best action x̂s is δs ≜ ∆̂s(x̂s).
Importantly, the gap estimate can be written as ∆̂s(x) = ⟨x̂s − x, θ̂s⟩ + δs, and therefore we also
refer to δs as the estimation error. The UCB action is xUCB

s ≜ argmaxx∈X ⟨x, θ̂s⟩+ β
1/2
s,s2
∥x∥V −1

s
.

Information Gain Recall that ν̂s(z) = argmin
ν∈Hx̂s

z
∥ν− θ̂s∥2Vs is the closest alternative param-

eter to θ̂s in Vs-norm for which x̂s is not optimal. The information gain is set to

Is(x) ≜
1

2

∑
z ̸=x̂s

qs(z)
(
|⟨ν̂s(z)− θ̂s, x⟩|+ β

1/2
s,s2
∥x∥V −1

s

)2
, (7)
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where the mixing distribution qs ∈ P(X ) is defined so that

qs(z) ∝
{
0 if z = x̂s

exp
(
−ηs

2 ∥ν̂s(z)− θ̂s∥2Vs
)

otherwise .
(8)

The learning rate is ηs ≜ minl≤sm
−1/2
l log(k), where ms ≜ 1

2 minz ̸=x̂s ∥ν̂s(z) − θ̂s∥2Vs . The
weights qs can be interpreted as a soft-min approximation of the minimum constraint value where
the learning rate controls the lower order term (Lemma 22),

ms ≤ 1

2

∑
z ̸=x̂s

qs(z)∥ν̂s(z)− θ̂s∥2Vs ≤ ms +
log(k)

ηs
. (9)

Computational Complexity There are three kinds of operations in the algorithm. First, using
elementary matrix operations, we can update V −1

s , det(Vs) and θ̂s incrementally, and note that the
s-index terms only need to be updated after exploration rounds. It can be checked that O(kd2sn)
operations are needed over all n rounds to compute this part. Second, the IDS distribution (3) is
defined as a minimizer of the convex objective Ψs(µ) and always admits a solution supported on
two actions (Russo and Van Roy, 2014), see Lemma 7. Hence, we can obtain the IDS distribution by
computing the optimal trade-off between allO(k2) pairs of actions (Lemma 8). A closer inspection
of the regret bounds reveals that it always suffices to optimize the trade-off between the greedy ac-
tion x̂s and some other (informative) action, which reduces the computational complexity to O(k).
Third, the optimization problem that defines the alternative parameters ν̂s(z) is a quadratic program
with d variables and linear constraints ⟨ν̂s(z), z − x̂s⟩ ≥ 0 and ν̂s(z) ∈ M. Such optimization
problems can be solved efficiently in practice and in O(ld3) time in the worst case for model sets
M with l constraints. Note, the analysis suggests that we can tolerate an additive numerical error on
the information gain of orderO(s−2). In practice, we can drop the constraints onM, in which case

ν̂s(z) = θ̂s − ⟨θ̂s,x̂s−z⟩
∥x̂s−z∥2

V −1
s

V −1
s (x̂s − z) . (10)

With these improvements, the overall computation complexity is O(n + kd2sn) over n rounds,
where the linear term comes from checking whether to explore or exploit. This can be improved,
by simply computing after each exploration round when the next exploration round will occur.

2.1. Regret Bounds

The regret bounds for Algorithm 1 come in three flavours. In Theorem 2, we show a (nearly) optimal
worst-case regret bound of Rn ≤ O(d

√
n log(n)). Second, using a gap-dependent bound on the in-

formation ratio, in Theorem 3 we show a gap-dependent regret bound ofRn ≤ O
(
d3∆−1

min log(n)
2
)
.

Besides universal constants, the O-notation in the bound only depends on the norm of action fea-
tures and the parameter. Last, in Theorem 5 we show that the proposed algorithm is asymptotically
optimal, that is Rn ≤ c∗ log(n)+ o(log(n)). In contrast to the previous bound, here the lower order
terms depend exponentially on problem-dependent quantities such as ∆−1

min.

Theorem 2 (Worst-case regret) The regret of Algorithm 1 is bounded by

Rn ≤ O
(
d
√
n log(n)

)
.
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The result matches the best known bound for LinUCB and is optimal up to the logarithmic factor
when k is (exponentially) large. On the other hand, when k is small, our bound is worse than basic
elimination algorithms that achieve Rn ≤ O(

√
log(k)dn) (Lattimore and Szepesvari, 2019, §23).

Proof Define βs = ∥θ̂s − θ∗∥2Vs and let Bs = 1(βs ≤ βs,s2). By Lemma 20 and (6), we have

E[Rn] ≤ 2E

[
sn∑
s=1

∆̂s(xs)Bs

]
+O(log log(n)) ,

where the O-notation only hides a bound on the largest gap, ∆̂(xs) ≤ 1. Similar to the standard
IDS analysis (Russo and Van Roy, 2014), we bound the expected regret,

E

[
sn∑
s=1

∆̂s(xs)Bs

]
= E

[
sn∑
s=1

√
Ψs(µs)Is(µs)Bs

]
≤

√√√√E

[
sn∑
s=1

Ψs(µs)Bs

]
E

[
sn∑
s=1

Is(xs)Bs

]
,

where the equality follows from the tower rule E[∆̂s(xs)Bs] = E[Es[∆̂s(xs)Bs]] = E[∆̂s(µs)Bs]
and the definition of the information ratio. The second inequality follows from Cauchy-Schwarz
and another application of the tower rule. To complete the proof, we show that Ψs(µs) ≤ 2 and
bound the total information gain, γn =

∑sn
s=1 Is(xs) ≤ O(d2 log(n)2). Since µs is chosen by IDS

to minimize Ψs,

Ψs(µs) = min
µ∈P(X )

Ψs(µ) ≤
∆̂s(x

UCB
s )2

Is(xUCB
s )

≤ 2 . (11)

The last inequality follows from the fact that ∆̂s(x
UCB
s ) = β

1/2
s,s2
∥xUCB

s ∥V −1
s

and bounding

Is(x
UCB
s ) =

1

2

∑
z ̸=x̂s

qs(z)
(
|⟨ν̂s(z)− θ̂s, xUCB

s ⟩|+ β
1/2
s,s2
∥xUCB

s ∥Vs−1

)2 ≥ 1
2βs,s2∥xUCB

s ∥2
V −1
s
,

where we used the definition of qs as a distribution supported on X \ {x̂s}. Finally, Lemma 12
provides a worst-case bound on the total information gain, γn ≤ O

(
d2 log(n)2

)
, which is a di-

rect consequence of the elliptic potential bound (Lemma 18) and the soft-min inequality (9). We
conclude Rn ≤ O

(
d
√
n log(n)

)
.

Our next result is an instance-dependent logarithmic regret bound. The proof follows along the
same lines as the worst-case regret bound, but replaces the worst-case bound on the information
ratio with an instance-dependent bound. Interestingly, our bound is attained by a distribution with a
close resemblance with Thompson sampling.

Theorem 3 (Gap-dependent regret) The regret of Algorithm 1 is bounded by

Rn ≤ O
(
∆−1

mind
3 log(n)2

)
.

Besides universal constants, the O-notation in the theorem statement hides only the constants re-
quired for boundedness of X andM. The proof makes use of the following lemma, which shows
an instance-dependent bound on the information ratio. Recall that δs = ∆̂s(x̂s) is the gap estimate
of the empirically best action, and ∆̂s(x) = δs + ⟨x̂s − x, θ̂s⟩.

7
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Lemma 4 At any local time s with βs,s2 ≥ βs ≜ ∥θ̂s − θ∗∥2Vs , the optimal information ratio is
bounded as follows,

min
µ∈P(X )

Ψ(µ) ≤ 4δs(8d+ 9)

∆min
.

Proof Let a ≥ 2 be a constant to be chosen later. If 2aδs ≥ ∆min, then minµ∈P(X )Ψs(µ) ≤ 4aδs
∆min

by (11). Hence we may assume 2aδs ≤ ∆min in the following. By (6), for all s with βs ≤ βs,s2

and x ̸= x∗, it holds that ∆min ≤ 2∆̂s(x), so in particular x̂s = x∗. Define µ̃ = 1
2ex̂s + 1

2qs
to be the uniform mixture1 of qs and a Dirac at x̂s. Let ∆̄s(x) = ⟨θ̂s, x̂s − x⟩ and note that
∆̄(µ̃) ≥ (a− 1)δs ≥ δs by the assumption a ≥ 2. Therefore, by Lemma 8,

Ψs(µs) ≤ min
p∈[0,1]

(1− p)δs + p∆̂s(µ̃)

pIs(µ̃)
≤ 4δ∆̄s(µ̃)

Is(µ̃)
. (12)

Note that we can bound the information gain Is(µ̃) as follows,

Is(µ̃) ≥ 1

2

∑
x∈X

µ̃(x)
∑
z ̸=x̂s

qs(z)⟨ν̂s(z)− θ̂s, x⟩2 = 1
2

∑
z ̸=x̂s

qs(z) min
ν∈Hx̂s

z

∥ν − θ̂s∥2V (µ̃) .

On the other hand, we can bound the gap ∆̄s(x) = ⟨θ̂s, x̂s − x⟩,

⟨θ̂s, x̂s − x⟩ = min
ν:⟨ν,x−x̂s⟩≥0

∥ν − θ̂s∥V (µ̃)∥x̂s − x∥V (µ̃)−1 ≤ min
ν∈Hx̂s

x

∥ν − θ̂s∥V (µ̃)∥x̂s − x∥V (µ̃)−1 .

Combining the last two displays with the definition of µ̃, the fact that x̂s = x∗ and Cauchy-Schwarz,

∆̄s(µ̃)
2 ≤ 1

4

∑
x ̸=x̂

qs(x) min
ν∈Cx
∥ν − θ̂s∥2V (µ̃)

∑
x ̸=x̂

qs(x)∥x̂s − x∥2V (µ̃)−1

≤ (1 + d)
∑
x ̸=x̂

qs(x) min
ν∈Hx̂s

x

∥ν − θ̂s∥2V (µ̃) ≤ 2(1 + d)Is(µ̃) .

The second last step uses
∑

x ̸=x̂s qs(x)∥x∥2V (µ̃)−1 ≤ 2
∑

x ̸=x̂s qs(x)∥x∥2V (qs)−1 = 2d and ∥x̂s∥2V (µ̃)−1 ≤
2. Next, for x ̸= x̂s,

∆̄s(x) = ∆̂s(x)− δs ≥
1

2
∆min − δs ≥

1

2

(
1− 1

a

)
∆min .

Hence, by the definition of µ̃ we have ∆̄s(µ̃) ≥ 1
4(1− 1/a)∆min and using (12),

Ψs(µs) ≤
4δs∆̄s(µ̃)

Is(µ̃)
=

4δs∆̄s(µ̃)
2

∆̄s(µ̃)Is(µ̃)
≤ 32δs(1 + d)

∆min

(
1− 1

a

) .
The claim follows with a = 8(1 + d) + 1.

1By a concentration of measure argument (Appendix D), the weights qs(x) approximate the posterior probability of
an action x being preferred over x̂s by the Bayesian model with Gaussian prior and likelihood. As such, the distribution
µ̃ resembles the top-two Thompson sampling approach proposed by Russo (2020).
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Proof of Theorem 3 Recall that Bs = 1(βs ≤ βs,s2) with βs = ∥θ̂s − θ∗∥2Vs . As before, by
Lemma 20 and using that ∆(xs)Bs ≤ 2∆̂s(xs)Bs,

Rn ≤ 2E

[
sn∑
s=1

∆̂s(xs)Bs

]
+O(log log(n)) .

Let γn =
∑sn

s=1 Is(xs) be the cumulative information gain. Using Cauchy-Schwarz and the instance-
dependent bound on the information ratio from Lemma 4,

E

[
sn∑
s=1

∆̂s(xs)Bs

]2
≤ E

[
sn∑
s=1

Ψs(µs)Bs

]
E

[
sn∑
s=1

Is(xs)Bs

]
≤ E

[
sn∑
s=1

O
(
δsdBs
∆min

)]
E [γn] .

Further bounding δs ≤ ∆̂s(xs) on the right-hand side and re-arranging yields

E

[
sn∑
s=1

∆̂s(xs)Bs

]
≤ O

(
d∆−1

min

)
E [γn] .

The worst-case total information gain is at most E[γn] ≤ O
(
d2 log(n)2

)
according to Lemma 12,

and the claim follows. We remark that the bound can be improved by bounding the term E[log(sn)]
(which appears in the upper bound on γn) more carefully with the help of Lemma 21.

Our next result shows that the proposed version of IDS is asymptotically optimal. The key in-
sight is a connection between information-directed sampling and a primal-dual approach based on
online learning to solve the convex program that defines the lower bound. Conceptually, the con-
nection is explained best with an oracle analysis, which sets aside the statistical estimation process
and highlights the key steps (Appendix C). In particular, Lemma 11 shows that in the asymptotic
regime, the information ratio satisfies Ψs(µs) ≤ 4δs

(
c∗+O(β1/2s m

−1/2
s +δs)

)
. Further, Lemma 14

improves the bound on the total information gain to γn =
∑sn

s=1 Is(xs) ≤ log(n) + o(log(n)).
Lastly, Lemma 21 shows that IDS samples informative actions with large enough probability that
E[log(sn)] ≤ O(log log(n)), which is important to bound lower-order terms in our analysis.

Theorem 5 (Asymptotic regret) Algorithm 1 is asymptotically optimal,

lim
n→∞

Rn
log(n)

= c∗ ,

where c∗ is the solution to the lower bound (2) and we assume that ∥x∗∥ > 0.

We sketch the proof below and defer the complete proof to Appendix B.4. The assumption ∥x∗∥ > 0
is used in Lemma 21 to show that there are not too many exploration steps, which follows from lower
bounding the exploration probability. On the other hand, when ∥x∗∥ = 0, the geometry of the lower
bound changes, because the optimal action provides no information. Whether the assumption is
necessary for Algorithm 1 remains to be determined. As a remedy, we can also replace the gap
estimates with thresholded gaps ∆̂+

s (x) = ⟨x̂s − x, θ̂s⟩+ δ+s , where δ+s = max(δs, 1/
√
s). Lower

bounding the gaps this way ensures that an exploratory action is sampled with probability at least
1/
√
s in each exploration round. We believe that with a thresholded gap estimate, the statement of

9
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Theorem 5 holds without restrictions and Theorems 2 and 3 remain valid. Since it is unclear if the
assumptions is required and for simplicity of the proofs, we work with the assumption ∥x∗∥ > 0.
Proof (Sketch) The first step is to improve the bound on the information ratio in the asymptotic
regime. Recall that βs = ∥θ̂s − θ∗∥2Vs and ms =

1
2 minz ̸=x∗ ∥ν̂s(z)− θ̂s∥2Vs . Then by Lemma 11,

Ψs(µs) ≤ 4δs
(
c∗ +O(β1/2s m−1/2

s + δs)
)
,

for β1/2s m
−1/2
s → 0 and δs → 0. Not surprisingly, the proof bounds the information ratio using a

sampling distribution informed from the lower bound (2). Details are given in Appendix B.2.
Second, we improve the bound on the total information gain γn =

∑sn
s=1 Is(xs). The key insight

is to interpret the information gain as the loss of an online learning algorithm. We adapt the standard
regret proof for the exponential weights algorithm Orabona (2019), to bound the total information
gain relative to the minimum constraint (Lemma 14). Informally, the result states that

E[γn] ≤ E
[
min
x̸=x̂sn

∥ν̂sn(x)− θ̂sn∥2Vsn +O(log(n)1/2 log(sn))
]
.

Exploration rounds are defined by condition (E) to ensure that the minimum remains small,

min
z ̸=x̂sn

∥ν̂sn(z)− θ̂sn∥2Vsn ≤ βsn,n logn ≤ 2 log(n log(n)) +O(d log(sn)) .

This result improves upon the worst-case bound on the information gain (Lemma 12), as long as the
number of exploration rounds sn is not too large.

Third, the proof hinges on Lemma 21, which shows that E[log(sn)] ≤ O(log log(n)). Intu-
itively, IDS samples informative actions with large enough probability to ensure that in expectation,
there is only a logarithmic number of exploration rounds, while the exploration probability is small
enough to bound the worst-case regret.

In the remaining proof sketch we only discuss the case where Ψs(µs) ≤ 4δs(c
∗ + o(1)) and

E[γn] ≤ log(n)+o(log(n)) holds (the actual proof requires to also bound the regret in early rounds,
when the asymptotic statements do not hold). Asymptotically, the mean gap estimate ∆̄s(x) ≜
⟨xs − x, θ̂s⟩ is a good estimate of the actual regret. Therefore, we get

Rn ≤ E
[ sn∑
t=1

∆̄s(xs)

]
+ o(log(n))

Next using that 4ab ≤ (a+ b)2 and Cauchy-Schwarz combined with a few applications of the tower
rule, we get

E
[ sn∑
s=1

∆̄s(xs)

]
= E

[ sn∑
s=1

∆̄s(µs)

]
≤ 1

4
E
[ sn∑
s=1

δs

]−1

E
[ sn∑
s=1

∆̂s(µs)

]2
≤ 1

4
E
[ sn∑
s=1

δs

]−1

E
[ sn∑
s=1

Ψs(µs)

]
E
[ sn∑
s=1

Is(xs)

]
.

The bound on the information ratio yields

1

4
E
[ sn∑
s=1

δs

]−1

E
[ sn∑
s=1

Ψs(µs)

]
≤ 1

4
E
[ sn∑
s=1

δs

]−1

E
[ sn∑
s=1

4δs(c
∗ + o(1))

]
≤ c∗ + o(1) .

Combined with the bound on the information gain, asymptotic optimality follows.

10



ASYMPTOTICALLY OPTIMAL INFORMATION-DIRECTED SAMPLING

2.2. Alternative Definitions of the Information Gain

Our definition of the information gain ensures that Is(x) ≈ 1
2

∑
z ̸=x̂s qs(z)⟨ν̂s(z)− θ̂s, x⟩2 asymp-

totically. In finite time, however, the mean estimates can be inaccurate. Therefore, we add an
optimistic term in the definition of the information gain (7), which is an essential ingredient in the
proof of Theorem 2. At the same time, the optimistic term corresponds to an information gain which
was analyzed in earlier work (Kirschner and Krause, 2018; Kirschner et al., 2020). Since this choice
is motivated from a worst-case perspective, empirically it sometimes leads to over-exploration in the
finite-time regime. A closer inspection of the worst-case regret proof (in particular, Eq. 11) reveals
that the optimistic term is only needed for the UCB action. This motivates the following definition:

IH-UCB
s (x) =

1

2

∑
z ̸=x̂s

qs(z)
(
|⟨ν̂s(z)− θ̂s, x⟩|+ 1(x = xUCB

s )β
1/2
s,s2
∥x∥V −1

s

)2
. (13)

With a few additional steps in the proof of Lemma 11 and Theorem 5, the resulting algorithm is
shown to satisfy the same regret bounds as presented in Theorems 2, 3 and 5. Since the proofs are
very similar, we omit the details. We compare both information gain functions in our experiments.
Another variant is to set the alternative parameters to

ν̃s(x) = argmin
ν∈Cx

∥ν − θ̂s∥2Vs , where Cx = {ν ∈M : max
z∈X
⟨ν, z − x⟩ = 0} .

Note that Cx is the set of parameters where x is optimal and is sometimes called the cell of x. Let
q̃(z) ∝ exp(−η∥ν̃s(z)− θ̂s∥2Vs) and define

ICs (x) ≜
1

2

∑
z ̸=x̂s

q̃s(z)
(
|⟨ν̃s(z)− θ̂s, x⟩|+ β

1/2
s,s2
∥x∥V −1

s

)2
. (14)

Note that all bounds that we obtain hold true for IDS defined with ICs as well, by replacing Hx̂sx
with Cx in the proof. The key insight is that C∗ = ∪x ̸=x∗Cx = ∪x ̸=x∗Hx

∗
x , hence the change is

simply a different decomposition of the set of alternative parameters C∗ into convex regions. One
might expect faster convergence from the fact that q̃s is more concentrated, but empirically we find
little difference compared to Is. On the other hand, for unconstrained parameter sets M, we can
compute ν̂s(z) in closed form (Eq. 10), whereas ν̃s(z) can only be computed by solving a positive
definite quadratic program with k linear constraints for each action z ̸= x̂s. Interestingly, however,
the information gain (14) relates to the Bayesian mutual information Is(ys;x∗|xs = x). The argu-
ment uses concentration of measure to show that q̃s(x) approximates the posterior probability that
an action x ̸= x∗ is optimal in the Bayesian model. We refer to Appendix D for details.

2.3. Information-Directed Sampling as a Primal-Dual Approach

Lemma 9 shows that the IDS distribution µs is supported on actions x that minimize the function

gs(x) = ∆̂s(x)−
Ψs(µs)

2∆̂s(µs)
Is(x)

n→∞≈ ∆̂s(x)− c∗Is(x) .

The approximation holds because asymptotically, Ψs(µs) ≈ 4c∗δs and ∆̂s(µs) ≈ 2δs. The weight
c∗ appears from normalizing the Lagrange multipliers as discussed in Appendix C. Therefore, the
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Figure 1: Top: Worst-case regret on randomly drawn action sets. Bottom: Counter-example prob-
lem from Lattimore and Szepesvári (2017). Early stages are shown in linear scale, asymp-
totics in log scale. Results are averaged over 100 repetitions and the confidence region
shows 2×standard error.

IDS distribution can be understood as a type of best-response on the primal-dual game defined by
the Lagrangian of the lower bound, where the dual variables correspond to the q-weights of the
information gain. Note that the best response on gs is not unique, and IDS chooses a particular,
randomized trade-off, which is imposed by the IDS objective (3).

The first work which exploits the primal-dual formulation for regret minimization is by De-
genne et al. (2020). In our notation, their algorithm corresponds to choosing the action with the
best information-regret trade-off zs = argminx∈X ∆̂s(x)/Is(x). IDS instead asymptotically ran-
domizes between x∗ and zs, which allows it to maintain the worst-case regret bound. Another more
recent primal-dual approach is the SOLID algorithm by Tirinzoni et al. (2020). This approach uses
a different Lagrangian, which is defined by keeping the minimum over C∗ in (2). Accordingly,
the dual variable is one-dimensional, but the constraints appear non-smooth. SOLID is defined by
alternating (optimistic) sub-gradient steps on the allocation and the dual variable. This leads to a
randomized strategy over actions with exponential weights that are only updated when an explo-
ration condition is satisfied.

3. Experiments

We compare IDS with LINUCB (Abbasi-Yadkori et al., 2011) and SOLID (Tirinzoni et al., 2020),
the latter being our closest competitor. Note that SOLID was shown to outperform OAM (Hao et al.,
2019) and LINTS in a variety of settings. To the best of our knowledge, SOLID is the current
state-of-the-art for asymptotically optimal algorithms.

12
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To enable a fair comparison, we use the same confidence coefficient βt,1/δ (4) for all algorithms.
We also run the same experiment with the (tighter) confidence coefficient derived by Tirinzoni et al.
(2020), but we found no significant difference in the results, see Appendix E. For SOLID, we use
the default hyper-parameters suggested by Tirinzoni et al. (2020, Appendix K). Finally, as recom-
mended by the authors, we implement a variant of the SOLID algorithm, which is (heuristically)
optimized for better performance in finite time and does not reset the sampling vector ωt at the
beginning of each phase. We display that improved version as SOLID++.

IDS is implemented as in Algorithm 1 with the computational improvements described at the
end of Section 2. In particular, we use an unconstrained parameter set (M = Rd), which allows
us to compute the parameter ν̂s(x) in closed form. We further compute the IDS distribution ran-
domizing only between x̂t and one other action (Lemma 9) to reduce the per-round computational
complexity from O(k2) to O(k). All variants of IDS used in the experiments satisfy the theoretical
guarantees presented in this paper with minor proof modifications. We also compare to IDS-IH-UCB

defined with information gain (13). In Appendix E, we present further empirical evidence, includ-
ing a benchmark with Thompson Sampling and Bayesian IDS, a comparison of information gain
functions, and an evaluation of the tuning sensitivity of the βs and ηs parameters.

Average performance on random problems. For each repetition, we sample an action set with
6 actions drawn uniformly from the unit sphere. We set d = 2 and the variance of the noise to
σ2 = 0.1, which is chosen so that the asymptotic regime is observed after fewer rounds relative to
σ2 = 1. The results are shown in the first row of Figure 1. We display the average over 100 runs and
95% confidence intervals. All policies except for SOLID have comparable averaged performances,
but the latter is not designed to optimize for worst-case regret in principle. IDS-IH-UCB is similar to
LINUCB, followed by IDS-IH.

Figure 2: The ‘end of optimism’ example.

The End of Optimism? This example of a 2-
dimensional linear bandit dates back to Soare
et al. (2014, Appendix A), and was used by
Lattimore and Szepesvári (2017) to show that
algorithms based on optimism and Thompson
sampling are not asymptotically optimal in the
linear setting. There are three arms x1 = (1, 0),
x2 = (1 − ϵ, 2ϵ) and x3 = (0, 1) with a tuning
variable ϵ > 0. The true parameter is θ = (1, 0)
which makes action x1 optimal. The situa-
tion is illustrated in Figure 2. The colored re-
gions C1, C2 and C3 are the corresponding cells,
i.e. the subset of parameters in R2 for which
x1, x2 or x3 is optimal respectively. When the
confidence ellipsoid Et = {θ : ∥θ − θ̂t∥2Vt ≤
c log(n)} for the least squares estimator θ̂t is
contained in the cell C1, the learner has identi-
fied the best action with high probability.

Algorithms based on optimism and Thompson sampling quickly rule out the suboptimal arm
x3 and just play either x1 or x2. The twist is that the third arm is still informative for determining
a∗, and in fact an asymptotically optimal algorithm plays only on {x1, x3}. To see why, note that

13



KIRSCHNER LATTIMORE VERNADE SZEPESVÁRI

any no-regret learner plays x∗ = x1 a lot, therefore the parameter is well-estimated along the
direction x1. It remains to shrink the confidence ellipsoid approximately along the direction x3,
which means increasing the Vt-norm of x3. Choosing arm x2 incurs a small cost ϵ, but the increase
of the confidence ellipsoid in direction x3 is only small, ⟨x3, (Vt+1 − Vt)x3⟩ = ⟨x3, x2⟩2 = ϵ2. On
the other hand, choosing x3 implies a higher regret cost of 1, but the confidence set is increased by 1
along direction x3, which allows to identify the optimal action at a much smaller cost. An optimistic
algorithm has an asymptotic regret that scales with Rn ≈ log(n)/ϵ, while for an optimal algorithm,
Rn ≈ 1 · log(n). In fact, for some small ϵ, the lower bound constant (2) is c∗ = 64 and does not
depend on ϵ, so optimistic algorithms cannot be asymptotically optimal.

For the experiments, we use noise variance σ2 = 0.1, and ϵ = 0.01, which is sufficiently large
to reach the asymptotic regime within n = 106 rounds, and small enough to highlight the difference
between UCB and IDS. Results in this setting are shown in the bottom row of Figure 1. As expected,
LINUCB’s asymptotics show a suboptimal log-slope, but it is surprisingly followed by SOLID++.
Despite our attempts, we are presently not able to provide a good explanation for this result and
it might require a more involved analysis of the SOLID++ heuristic. However, both versions of
IDS and the theoretical SOLID reach the optimal asymptotic around t = 105 (104 for SOLID) and
significantly outperform LINUCB on that problem. An interesting observation is that IDS-IUCB

s

performs better in finite time, whereas IDS-Is reaches the asymptotic regime earlier.

4. Conclusion

We introduced a simple and efficient algorithm for linear bandits that is (nearly) worst-case optimal
and matches the asymptotic lower bound exactly. Note that the algorithm is essentially hyper-
parameter free with the usual boundedness assumptions. Nonetheless, the confidence parameter
βs,1/δ and the learning rate ηs used in the definition of Is provide some tuning knobs to improve
performance in practice.

Our theoretical results still rely on some restrictive assumptions, such as the boundedness re-
quirement for the parameter set, uniqueness of x∗ and ∥x∗∥ > 0 for the asymptotic regret, and the
need to discard data in exploitation rounds. Also, the dependence on d and k is sub-optimal in some
regimes, in particular for the worst-case regret bound and small k. On the upside, our analysis is
relatively simple, and raises the hope that there exists a really simple proof. Finding an information
gain which preserves the guarantees and telescopes more easily could be a first step towards this end.

Finally, it appears likely that our framework generalizes in several directions. The contextual
case is already covered in previous work on asymptotic algorithms (Hao et al., 2019; Tirinzoni
et al., 2020). We point out that IDS can be defined to optimize the marginals of the joint distribution
between context and action (Kirschner et al., 2020). Decoupling the reward from the observation
features leads to the linear partial monitoring framework, where IDS is known to achieve the optimal
worst-case rate in all possible games (Kirschner et al., 2020). The structured bandit setting and
information gain functions for a non-Gaussian likelihood are yet other promising directions.
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Appendix A. Notation

Linear Bandit Setting
d feature dimension
X ⊂ Rd, action (feature) set
M ⊂ Rd, parameter set
θ∗ ∈ M, unknown, true parameter
k ≜ |X |, number of actions
x∗ ≜ argmaxx∈X ⟨x, θ∗⟩, best action

∆(x) ≜ ⟨x∗ − x, θ∗⟩, suboptimality gap
Cx ≜ {ν ∈M : ⟨x, ν⟩ ≥ maxy∈X ⟨y, ν⟩}, cell of action x
Hx∗x ≜ {ν ∈M : ⟨x, ν⟩ ≥ ⟨x∗, ν⟩}
n ≜ horizon
Rn ≜

∑n
t=1⟨x∗ − xt, θ∗⟩, regret

sn ≜ effective horizon / exploration step counter
c∗ ≜ asymptotic regret, see (2)
α∗ ≜ asymptotically optimal allocation
xs ≜ xts action choice at local time s
ys ≜ ⟨xs, θ∗⟩+ ϵs, observation with (sub-)Gaussian noise ϵs

Least-Squares Estimate
V (α) ≜

∑
x∈X α(x)xx

⊤, covariance matrix for allocation α
Vs ≜

∑s
i=1 xix

⊤
i + 1d, (regularized) empirical covariance matrix

θ̂s ≜ V −1
s

∑s
i=1 xiyi, least squares estimate

βs,1/δ ≜
(√

2 log 1
δ + log detVs + 1

)2
concentration coefficient

x̂s ≜ argmaxx∈X ⟨x, θ̂s⟩, empirically best action for the estimate θ̂s
xUCB
s ≜ argmaxx∈X ⟨x, θ̂s⟩+ β

1/2
s,s2
∥x∥V −1

s
, UCB action

ν̂s(x) ≜ argminν∈Cx ∥ν − θ̂s∥2Vs , alternative parameter in Cx
ms ≜ 1

2 minx ̸=x̂s ∥ν̂s(x)− θ̂s∥2Vs , minimum constraint value

Information-Directed Sampling

∆̂s(x) ≜ δs + ⟨x̂s − x, θ̂s⟩ gap estimate with estimation error δs
Is(x) ≜ information gain
γn ≜

∑sn
s=1 Is(xs), total information gain

Ψs(µ) ≜ ∆̂s(µ)2

Is(µ)
, information ratio

µs ≜ argminµ∈P(X )Ψs(µ), IDS distribution

17
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Appendix B. Additional Proofs and Technical Lemmas

B.1. Properties of the IDS Distribution

The results in this section are mostly known or refine previous results. We start with a lemma by
Kirschner et al. (2020, Lemma 5), which shows that IDS plays close to greedy.

Lemma 6 (Almost greedy) The IDS distribution is almost greedy, ∆̂s(µs) ≤ 2δs.

The next result is by Russo and Van Roy (2014, Proposition 6).

Lemma 7 (Convexity & support on two actions) The information ratio as a function of the dis-
tribution, µ 7→ Ψs(µ) is convex. Further, the IDS distribution µs = argminµΨs(µ) can always be
chosen with a support of at most two actions.

In light of this lemma, the IDS distribution can be understood and computed by optimizing the in-
formation ratio between pairs of actions. We provide a closed-form solution for the IDS distribution
over two actions in the next lemma.

Lemma 8 Let 0 < ∆1 ≤ ∆2 denote the gaps of two actions and 0 ≤ I1, I2 the corresponding
information gain. Define the ratio

Ψ(p) =
((1− p)∆1 + p∆2)

2

(1− p)I1 + pI2
.

Then the optimal trade-off probability p∗ = argmin0≤p≤1Ψ(p) is

p∗ =

{
0 if I1 ≥ I2
clip[0,1]

(
∆1

∆2−∆1
− 2I1

I2−I1

)
else,

where we use the convention that ∆1/0 =∞ and clip[0,1](a) = max(min(a, 1), 0).

Proof The case I1 ≥ I2 is immediate, because p > 0 increases the numerator and decreases the
denominator. Hence we can assume I1 < I2. Recall that Ψ(p) is convex on the domain [0, 1]
(Lemma 7). The derivative is

Ψ′(p) = −
(
∆1 + p(∆2 −∆1)

)(
∆1(I2 − I1)− (∆2 −∆1)(2I1 + p(I2 − I1))

)
(I1 + p(I2 − I1))2

.

Note that (∆2 − ∆1) ≥ 0 and (I2 − I1) > 0. Solving for the first order condition Ψ′(p) = 0
gives p = ∆1

∆2−∆1
− 2I1

I2−I1 . We can also read off that p < 0 implies Ψ′(0) > 0, and p > 1 implies
Ψ′(1) < 0. Hence clipping p to [0, 1] leads to the correct solution.

The next lemma characterizes the support of the IDS distribution.

Lemma 9 (IDS support) Let Ψ∗
s = minµΨs(µ) and define

gs(x) = ∆̂s(x)−
Ψ∗
s

2∆̂s(µs)
Is(x) .

For any x ∈ supp(µs), it holds gs(x) = minz ̸=X gs(z), and further gs(x) = gs(µ) =
1
2∆̂s(µs).
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Proof The proof is similar to the proof of (Russo and Van Roy, 2014, Proposition 6). It is easy to
see that the solution sets to the following objectives are equal:

min
µ

∆̂s(µ)
2

Is(µ)
and min

µ

{
S(µ) = ∆̂s(µ)

2 −Ψ∗
sIs(µ)

}
,

where Ψ∗
s = minµ

∆̂s(µ)2

Is(µ)
is the optimal information ratio. Thinking of µs as a vector in Rk, we

compute the gradient of S(µ) at µs,

∇µS(µ)|µ=µs = 2∆̂s∆̂s(µs)−Ψ∗
sIs = hs ∈ Rk

It must be that for each x ∈ supp(µs), hs(x) = minx hs(x). Suppose otherwise, that the optimal
solution is supported on some x and there exists a z ̸= x with hs(x) > hs(z). Then (ex−ez)⊤hs >
0, hence moving probability mass from x to z would decrease the objective. In other words, the IDS
distribution must be minimizing hs,

hs(µs) = min
µ
hs(µ) .

Now, simply dividing hs by 2∆̂(µs) and taking expectation over the support of the IDS distribution
yields the second claim.

B.2. Bounds on the Information Ratio

For the asymptotic bound on the information ratio, we define α∗ ∈ (R≥0 ∪ {∞})k as the solution
to the lower bound (2), which is obtained as the appropriate limit. Further, let α̃∗ = α∗

1(x ̸= x∗)
be the optimal allocation on the sub-optimal actions, which is always finite.

Lemma 10 (Truncated optimal allocation) Let α∗
λ(x) = α̃∗ + λ1(x = x∗) be the optimal allo-

cation truncated on x∗ such that α∗
λ(x

∗) = λ. There exists a constant C(θ,X ) depending only on
the instance and the action set, such that for all ν ∈ C∗,

1
2∥ν − θ∗∥2V (α∗

λ)
≥ 1− 2C(θ,X )∥α̃∥1λ−1 .

Proof Assume 2C(θ,X )∥α̃∥1 ≤ λ, otherwise the claim is immediate. Let α̃∗(x) = α∗
1(x ̸= x∗)

be the optimal allocation on sub-optimal actions. We have

1
2∥ν − θ∗∥2V (α∗

λ)
= 1

2∥ν − θ∗∥2V (α̃∗) +
λ
2 ⟨ν − θ∗, x∗⟩2 .

If λ⟨ν − θ∗, x∗⟩2 ≥ 2 the claim follows. Hence we may assume ⟨ν − θ∗, x∗⟩2 ≤ 2λ−1. In other
words, ν is in a (2/λ)1/2-neighbourhood of the affine subspace, which is defined by x∗ and offset
θ∗. Now we fix any x ̸= x∗, such that ν ∈ Hx∗x and define H∗

x = Hx∗x ∩ {ν : ⟨ν − θ∗, x∗⟩ = 0}
as the intersection of the affine subspace with Hx∗x . This is the set of parameters in Hx∗x , which
is indistinguishable from observations of x∗. By definition, ν∗ ∈ H∗

x satisfies ⟨ν∗ − θ∗, x∗⟩ = 0,
hence by definition of the optimal allocation,

1
2∥ν∗ − θ∗∥2V (α̃∗) =

1
2∥ν∗ − θ∗∥2V (α∗) ≥ 1 .
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We expect the same holds approximately for ν with ⟨ν − θ∗, x∗⟩2 ≤ 2λ−1. Lemma 23 with an
appropriate shift of the parameter space and λmax(V (α̃∗)) ≤ ∥α̃∗∥1 imply

min
ν∗∈H∗

x

∥ν − ν∗∥2V (α̃∗) ≤ C(θ,X )∥α̃∗∥1⟨ν − θ∗, x∗⟩2 ≤ 2λ−1C(θ,X )∥α̃∥1 ≤ 1 ,

where the last inequality is our case assumption. Considering that ∥ν∗−θ∗∥V (α∗) ≥ ∥ν−ν∗∥V (α̃∗),
we further get

1
2∥ν − θ∗∥2V (α∗

λ)
= 1

2∥ν − θ∗∥2V (α̃∗) +
λ
2 ⟨ν − θ∗, x∗⟩2

≥ 1
2(∥ν∗ − θ∗∥V (α̃∗) − ∥ν − ν∗∥V (α̃∗))

2 + λ
2 ⟨ν − θ∗, x∗⟩2 .

The case ∥ν∗ − θ∗∥V (α̃∗) ≥ 2 is again immediate, so we may assume
√
2 ≤ ∥ν∗ − θ∗∥V (α̃∗) ≤ 2,

which leaves us with

1
2∥ν − θ∗∥2V (α∗

λ)
≥ 1

2∥ν∗ − θ∗∥2V (α̃∗) − ∥ν − ν∗∥V (α̃∗)∥ν∗ − θ∗∥V (α̃∗) +
λ
2 ⟨ν − θ∗, x∗⟩2

≥ 1− 2∥ν − ν∗∥V (α̃∗) +
λ
2 ⟨ν − θ∗, x∗⟩2

(i)

≥ 1− 2(C(θ,X )∥α̃∥1⟨ν − θ∗, x∗⟩2)1/2 + λ
2 ⟨ν − θ∗, x∗⟩2

(ii)

≥ 1− 2C(θ,X )∥α̃∥1λ−1 .

For (i) we choose ν∗ with ∥ν − ν∗∥2V (α̃∗) ≤ C(θ,X )∥α̃∥1⟨ν − θ∗, x∗⟩2 and for (ii) we minimize
over ⟨ν − θ∗, x∗⟩. This completes the proof.

Lemma 11 (Asymptotic information ratio) Recall that βs = ∥θ̂s−θ∗∥2Vs andms =
1
2 minz ̸=x∗ ∥ν̂s(z)−

θ̂s∥2Vs . Assume that 4βs ≤ ms and βs ≤ βs,s2 . Then,

Ψs(µs) ≤ 4δs
(
c∗ +O(β1/2s m−1/2

s + δs)
)
,

for β1/2s m
−1/2
s → 0 and δs → 0.

Proof First note that the assumption ms ≥ 4βs implies x̂s = x∗ by Lemma 19. Introduce the
shorthand ∆̄s(x) = ⟨θ̂s, x̂s − x⟩ for the estimated mean gap and let µ̃ ∈ P(X ) be a distribution
with 2δs ≤ ∆̂(µ̃) = δs + ∆̄s(µ̃). Then, by Lemma 8,

min
µ∈P(X )

Ψs(µ) ≤ min
0≤p≤1

(
(1− p)∆̂s(x

∗) + p∆̂(µ̃)
)2

pIs(µ̃)
=

4δs(∆̂s(µ̃)− δs)
Is(µ̃)

=
4δs∆̄s(µ̃)

Is(µ̃)
.

Note that the last ratio is invariant in constant rescaling µ̃, so we may plug in non-normalized
allocations. Recall that α̃∗ is the optimal allocation over suboptimal actions, as defined at the
beginning of Appendix B.2. We let α∗

λ = α̃∗ + λ1(x = x∗) be the truncated optimal allocation and
µ̃λ = α∗

λ/(∥α̃∗∥1 + λ) be the corresponding normalized distribution. With Lemma 19 , we get

∆(µ̃λ)− ∆̄s(µ̃λ) ≤ ∥θ̂s − θ∗∥Vs max
x ̸=x∗

∥x∗ − x∥V −1
s
≤ β

1/2
s

(2ms)1/2 − β1/2s

≤ 2β
1/2
s

m
1/2
s

.
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The last inequality simplifies the expression with 4βs ≤ ms. Note that ∆(µ̃λ) =
c∗

∥α̃∗∥1+λ . Hence,
to satisfy δs ≤ ∆̄s(µ̃λ), it is sufficient to satisfy the constraint,

δs ≤
c∗

∥α̃∗∥1 + λ
− 2β

1/2
s

m
1/2
s

.

At equality, we get

λ =
c∗

δs +
2β

1/2
s

m
1/2
s

− ∥α̃∗∥1 .

Note that as δs → 0 andms →∞, we get λ→∞ as expected. Next we compute the approximation
errors. Using again Lemma 19,

∆̄(α∗
λ) = ∆(α̃∗) +

∑
x ̸=x∗

α̃∗(x)⟨θ̂s − θ∗, x∗ − x⟩

≤ c∗ + ∥α̃∗∥1β1/2s

(2ms)1/2 + β
1/2
s

≤ c∗ + 2∥α̃∗∥1β1/2s m−1/2
s .

To bound the approximation error of Is(α∗
λ), note that βs = ∥θ̂s − θ∗∥2Vs ≤ βs,s2 implies

Is(α
∗
λ) =

1
2

∑
z∈X

α∗
λ(z)

∑
x ̸=x∗

qs(x)
(
|⟨ν̂s(x)− θ̂s, z⟩|+ β

1/2
s,s2
∥z∥V −1

s

)2
≥ 1

2

∑
z∈X

α∗
λ(z)

∑
x ̸=x∗

qs(x)⟨ν̂s(x)− θ∗, z⟩2

= 1
2

∑
x ̸=x∗

qs(x)∥ν̂s(x)− θ∗∥2V (α∗
λ)

≥ 1− 2C(X , θ)∥α̃∗∥1λ−1 .

The last step is by Lemma 10. Finally, the proof is completed by using c∗+A
1−B ≤ c∗ + A + c∗B,

which yields

Ψs(µs) ≤
4δs∆̄s(α

∗
λ)

Is(α∗
λ)

≤ 4δs
(
c∗ + 2∥α̃∗∥1β1/2s m−1/2

s + 2c∗C(X , θ)∥α̃∗∥1λ−1
)
.

Since λ−1 = O
(
c∗−1

(
δs + 2β

1/2
s m

−1/2
s

))
for β1/2s m

−1/2
s → 0 and δs → 0, we get

Ψs(µs) ≤ 4δs
(
c∗ +O(β1/2s m−1/2

s + δs)
)
.
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B.3. Bounds on the Information Gain

We start by proving a worst-case bound on the total information gain γn =
∑sn

s=1 Is(xs).

Lemma 12 (Total information gain) For any sequence x1, . . . , xn, the total information gain
γn =

∑sn
s=1 Is(xs) is bounded as follows,

γn ≤ 2
(
βsn,n log(n) + β

1/2
sn,n log(n) + βsn,s2n

)
d log(sn) ≤ O

(
d2 log(n)2

)
.

Proof Note that

γn =

sn∑
s=1

Is(xs) =
1
2

sn∑
s=1

( ∑
x ̸=x̂s

qs(x)|⟨ν̂s(x)− θ̂s, xs⟩|+ β
1/2
s,s2
∥xs∥V −1

s

)2

≤
sn∑
s=1

∑
x ̸=x̂s

qs(x)⟨ν̂s(x)− θ̂s, xs⟩2 + βs,s2∥xs∥2V −1
s

(i)

≤
sn∑
s=1

∑
x ̸=x̂s

qs(x)
(
∥ν̂s(x)− θ̂s∥2Vs + βs,s2

)
∥xs∥2V −1

s

(ii)

≤
sn∑
s=1

(
min
x ̸=x̂s

∥ν̂s(x)− θ̂s∥2Vs +
2 log(k)

ηs
+ βs,s2

)
∥xs∥2V −1

s

(iii)

≤
(
βsn,n log(n) + β

1/2
sn,n log(n) + βsn,s2n

) sn∑
s=1

∥xs∥2V −1
s

(iv)

≤ 2
(
βsn,n log(n) + β

1/2
sn,n log(n) + βsn,s2n

)
d log(sn)

Step (i) uses Cauchy-Schwarz, (ii) the soft-min bound for the q-weights (see Lemma 22). For (iii)
we used that ms =

1
2 minx ̸=x̂s ∥ν̂s(x) − θ̂s∥2Vs ≤

1
2βsn,n log(n) holds in all exploration rounds and

the choice ηs = minl≤sm
−1/2
l log(k) and lastly, (iv) bounds the elliptic potential (Lemma 18).

Considering that βs,1/δ = 2 log 1
δ +O(d log s) completes the proof.

Lemma 13 (Constant information gain) Assume that x̂s = x∗ and 2δs ≤ ∆̂s(x) for all x ̸= x̂s.
If zs ̸= x∗ is contained in the support of the IDS distribution, supp(µs), then the information gain
of zs is at least a constant,

Is(zs) ≥
∆2

min

8(8d+ 9)
.

Proof Note that by zs ∈ supp(µs) and Lemma 9,

Is(zs) =

(
∆̂s(zs)−

∆̂s(µs)

2

)
2∆̂s(µs)

Ψs
≥
(
∆̂s(zs)− δs

) 2δs
Ψs
≥ ∆̂s(zs)δs

Ψs
.
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We first used that δs ≤ ∆̂s(µ) ≤ 2δs (Lemma 6) and then the assumption that 2δs ≤ ∆̂s(zs).
Further, 2∆̂s(zs) ≥ ∆min, and by Lemma 4,

Ψs(µs) ≤
4δs(8d+ 9)

∆min
.

Combining the inequalities yields the result.

Lemma 14 Let q∗s(z) ∝ exp(−ηs∥ν̂s(z) − θ̂s∥2Vs) be mixing weights defined on X \ x∗ (also
when x̂s ̸= x∗), where ν̂s(z) = argminν∈Hx∗

z
∥ν − θ̂s∥2Vs for all z ̸= x∗. Define ls(qs) =∑

z ̸=x∗ q
∗
s(z)⟨ν̂s(z)− θs⟩2 and let Js = 1(242ηsβs∥xs∥2V −1

s
≤ 1;βs∥xs∥2V −1

s
≤ 1). Then

E
[∑sn

s=1 Jsls(q
∗
s)−minx̸=x∗ ∥ν̂sn(x)− θ̂sn∥2Vsn

]
≤ O

(
log(n)1/2E[log(sn)2]

)
.

Proof The statement is a regret bound for the exponential weights learner that defines the q∗s -
weights, excluding steps where Js = 0. The difference to standard online learning bounds is that the
cumulative loss Ls(x) = 1

2∥ν̂s(x)− θ̂s∥2Vs , which defines the mixing weights and the baseline, does
not exactly equal the sum of instantaneous loss

∑sn
s=1 ls(x). For the analysis we make use of well-

known connections between the exponential weights algorithm and the mirror descent framework,
in particular the follow the regularized leader (FTRL) algorithm (Shalev-Shwartz and Singer, 2007).
To this end, let ψ(q) =

∑
x ̸=x∗ q(x) log(q(x)) be the entropy function defined for q ∈P(X \ x̂s).

For learning rate η > 0, we define

ψη(q) =
1

η

(
ψ(q)− min

q′∈P(X\x∗)
ψ(q′)

)
.

We denote ψs = ψηs . The choice of mixing weights q∗s can be equivalently written as

q∗s = argmin
q∈P(X\x∗)

Ls(q) + ψs(q) .

Denote Λn =
∑sn

s=1 Jsls(q
∗
s) − minx ̸=x∗ ∥ν̂sn(x) − θ̂sn∥2Vsn . The following inequality is easily

verified by telescoping (c.f. Lemma 7.1 Orabona, 2019),

Λn ≤ −
1

ηsn
min
q′

ψ(q′) +
sn∑
s=1

(
[Ls + Jsls + ψs](qs)− [Ls+1 + ψs+1](qs+1)

)
.

For the first term, we immediately get − 1
ηs

minq′ ψ(q
′) ≤ log(k)

ηsn
. The second term is often referred

to as stability term. We first address steps swhere Js = 1. Define q̃s+1 = argminq∈P(X\x∗)[Ls+1+
ψs](q) ∝ exp(−ηsLs+1). Using that the learning rate is decreasing, we get

[Ls + ls + ψs](qs)− [Ls+1 + ψs+1](qs+1)

≤ [Ls+1 + ψs](qs)− [Ls+1 + ψs](q̃s+1) + [Ls + ls − Ls+1](qs) . (15)
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Note that Ls+1 exhibits an intricate dependence on the outcome ys, whereas all other quantities
appearing in the last display are Fs-predictable. Using that q̃s+1 is a minimizer of Ls+1 + ψs and
the definition of the Bregman divergence Dψ(p∥q) = ψ(p)− ψ(q)− ⟨∇ψ(q), p− q⟩, we find

[Ls+1 + ψs](q
∗
s)− [Ls+1 + ψs](q̃s+1) =

1

ηs
Dψs(q

∗
s , q̃s+1) =

1

ηs

∑
x ̸=x∗

q∗s(x) log
q∗s(x)
q̃s+1(x)

Using that log(x) ≤ x− 1 for all x > 0, we find∑
x ̸=x∗

q∗s log
q∗s
q̃s+1

= ηs[Ls+1 − Ls](q∗s) + log

( ∑
x ̸=x∗

q∗s exp
(
− ηs(Ls+1 − Ls)

))
≤ −1 + ηs[Ls+1 − Ls](q∗s) +

∑
x̸=x∗

q∗s exp
(
− ηs(Ls+1 − Ls))

=
∑
x ̸=x∗

q∗s(x)
∞∑
i=2

(−ηs(Ls+1 − Ls))i
i!

A technical calculation which directly bounds the moments of the subgaussian noise under the
conditional expectation E[·|Fs] with the condition Js = 1, is summarized in Lemma 17. This
yields

sn∑
s=1

JsE

[
[Ls+1 + ψs](q

∗
s)− [Ls+1 + ψs](q̃s+1)

∣∣∣∣∣Fs
]

≤
sn∑
s=1

Js
ηs

∑
x ̸=x∗

q∗s(x)E

[ ∞∑
i=2

(−ηs(Ls+1(x)− Ls(x)))i
i!

∣∣∣∣∣Fs
]

≤
sn∑
s=1

∑
x ̸=x∗

q∗s(x)O
(
ηs
(
βs∥xs∥2V −1

s
+ ∥ν̂s(x)− θ̂s∥2Vs∥xs∥2V −1

s

))
≤ O

(
log(n)1/2 log(sn)

2
)

The last step makes use of Lemma 22, ηsms ≤ β
1/2
sn,n logn ≤ O(log(n)1/2 + log(sn)

1/2) and
Lemma 22. Going back to (15), still for the case where Js = 1, it remains to bound the shift term
Ss = Ls + ls − Ls+1. We have

E[Ss(q∗s)|Fs]
(i)

≤ 2∥xs∥2V −1
s

(∑
x ̸=x∗ qs∥ν̂s(x)− θ̂s∥Vsβ

1/2
s + βs + 1

)
(ii)

≤ 2∥xs∥2V −1
s

(√∑
x ̸=x∗ qs∥ν̂s(x)− θ̂s∥2Vsβ

1/2
s + βs + 1

)
(iii)

≤ 2∥xs∥2V −1
s

((
(ms + log(k)/ηs)βs

)1/2
+ βs + 1

)
Here, (i) follows from the Lemma 15, Cauchy-Schwarz and taking the expectation; (ii) is Jensen’s
inequality and (iii) is the softmin inequality (Lemma 22). Hence, using that ms ≤ βsn,n log(n) ≤
O(log(n) + log(sn)) and the elliptic potential lemma (Lemma 18), we find

sn∑
s=1

E[Ss(x)|Fs] ≤ O
(
log(sn)

2 log(n)1/2
)
.
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Lastly, we address (15) for the case Js = 0, which then reads

[Ls + ψs](qs)− [Ls+1 + ψs+1](qs+1) ≤ [Ls − Ls+1](qs+1) . (16)

We can reuse Lemma 16 to find

Es[[Ls − Ls+1](x)] ≤ O
(
βs∥xs∥2V −1

s
+ |⟨ν̂s − θ̂s, xs⟩|+ ⟨ν̂s − θ̂s, xs⟩2

)
≤ O

(
βs∥xs∥2V −1

s
+ 1)

)
Using that when Js = 0 we have 1 ≤ βs∥xs∥2Vs , or 1 ≤ 242ηsβs∥xs∥2V −1

s
, we can sum up these

terms to
sn∑
s=1

Es[Ls − Ls+1](x) ≤
sn∑
s=1

O(βs∥xs∥2V −1
s

) ≤ O(log(sn)2)

The claim follows.

Lemma 15 Let Ls(x) = ∥ν̂s(x)− θ̂s∥2Vs defined for x ̸= x∗ and assume that ⟨ν − θ∗, x⟩ ≤ 1 for
all ν ∈M and x ∈ X . Then

[Ls + ls − Ls+1](x) ≤ 2⟨ν̂s(x)− θ̂s, xs⟩
ϵs + ⟨xs, θ∗ − θ̂s⟩
1 + ∥xs∥2V −1

s

+ 2∥xs∥2V −1
s

(1 + βs)

Proof For the proof we adopt the notation ωs(x) = ν̂s(x)− θ̂s.
Ls + ls − Ls+1 = ∥ωs∥2Vs+1

− ∥ωs+1∥2Vs+1

= ∥ωs∥2Vs+1
− ∥ωs + ωs+1 − ωs∥2Vs+1

= 2⟨ωs − ωs+1, Vs+1ωs⟩ − ∥ωs+1 − ωs∥2Vs+1

= 2⟨ωs − ωs+1, Vsωs⟩︸ ︷︷ ︸
(A)

+2⟨ωs − ωs+1, xs⟩⟨xs, ωs⟩ − ∥ωs+1 − ωs∥2Vs+1︸ ︷︷ ︸
(B)

To avoid clutter, the dependence on x is implicit below. Note that because ν̂s is a projection of θ̂s
Vs-norm onto the convex setHx∗x , we have ⟨ν̂s − ν̂s+1, Vs(ν̂s − θ̂s)⟩ ≤ 0. Therefore

(A) ≤ 2⟨θ̂s+1 − θ̂s, Vs(ν̂s − θ̂s)⟩ = 2⟨ν̂s − θ̂s, xs⟩
ϵs + ⟨xs, θ∗ − θ̂s⟩
1 + ∥xs∥2V −1

s

The equality follows from Lemma 24. Next, we derive an upper bound to the term (B).

(B) ≤ 2⟨ωs − ωs+1, xs⟩⟨xs, ωs⟩ − ∥ωs+1 − ωs∥2Vs+1

≤ 2∥ωs − ωs+1∥Vs∥xs∥V −1
s
⟨xs, ωs⟩ − ∥ωs+1 − ωs∥2Vs+1

≤ 2∥ωs − ωs+1∥Vs+1∥xs∥V −1
s
⟨xs, ωs⟩ − ∥ωs+1 − ωs∥2Vs+1

≤ ∥xs∥2V −1
s
⟨xs, ωs⟩2 ≤ 2∥xs∥2V −1

s
(1 + βs)

We used Cauchy-Schwarz and ∥ · ∥2Vs ≤ ∥ · ∥2Vs+1
in the first and second inequality. Then we use

2ab−b2 ≤ a2, and in the last step boundedness, |⟨ωs(x), xs⟩| ≤ ⟨ν̂s(x)−θ∗, xs⟩|+β1/2s ∥xs∥V −1
s
≤

1 + β
1/2
s . The claim follows from combining the bounds.

25



KIRSCHNER LATTIMORE VERNADE SZEPESVÁRI

Lemma 16 Let Ls(x) = ∥ν̂s(x)− θ̂s∥2Vs defined for x ̸= x∗ and assume that ⟨ν − θ∗, x⟩ ≤ 1 for
all ν ∈M and x ∈ X . Then

|[Ls − Ls+1](x)| ≤ 4|ϵ|2∥xs∥2V −1
s

+ 2|⟨ν̂s − θ̂s, xs⟩||ϵs|+ 8βs∥xs∥2V −1
s

+ ⟨ν̂s − θ̂s, xs⟩2

Proof For one direction, we can reuse Lemma 15,

[Ls − Ls+1](x) ≤ [Ls + ls − Ls+1](x)

≤ 2|ϵs||⟨ν̂s(x)− θ̂s, xs⟩|+ 2∥xs∥V −1
s
β1/2s + 2∥xs∥2V −1

s
(1 + βs) .

For the other direction, we have

[Ls+1 − Ls](x) = ∥ν̂s+1 − θ̂s+1∥2Vs+1
− ∥ν̂s − θ̂s∥2Vs

≤ ∥ν̂s − θ̂s+1∥2Vs+1
− ∥ν̂s − θ̂s∥2Vs

= ∥ν̂s − θ̂s + V −1
s xsus∥2Vs+1

− ∥ν̂s − θ̂s∥2Vs ,

where for the last step we denote us = ϵs+⟨xs,θ∗−θ̂s⟩
1+∥xs∥2

V −1
s

and use Lemma 24. Further unwrapping the

square gives

∥ν̂s − θ̂s − V −1
s xsus∥2Vs+1

− ∥ν̂s − θ̂s∥2Vs
= ∥ν̂s − θ̂s − V −1

s xsus∥2Vs + ⟨ν̂s − θ̂s − V −1
s xsus, xs⟩2 − ∥ν̂s − θ̂s∥2Vs

= −2⟨ν̂s − θ̂s, xs⟩us + u2s∥xs∥2V −1
s

+ ⟨ν̂s − θ̂s, xs⟩2 − 2⟨ν̂s − θ̂s, xs⟩∥xs∥2V −1
s

+ ∥xs∥4V −1
s
u2s

≤ −2⟨ν̂s − θ̂s, xs⟩us(1 + ∥xs∥2V −1
s

) + 2u2s∥xs∥2V −1
s

+ ⟨ν̂s − θ̂s, xs⟩2

≤ 2|⟨ν̂s − θ̂s, xs⟩|(|ϵs + β1/2s ∥xs∥V −1
s

) + 4(|ϵ|2 + βs∥xs∥2V −1
s

)∥xs∥2V −1
s

+ ⟨ν̂s − θ̂s, xs⟩2

≤ 2|⟨ν̂s − θ̂s, xs⟩||ϵs|+ 2β1/2s ∥xs∥V −1
s

+ 4|ϵ|2∥xs∥2V −1
s

+ 6βs∥xs∥2V −1
s

+ ⟨ν̂s − θ̂s, xs⟩2

Combining both directions yields the claim.

Lemma 17 Let s such that 242ηsβs∥xs∥2V −1
s
≤ 1 and βs∥xs∥2V −1

s
≤ 1. Then

E

[ ∞∑
i=2

|ηs(Ls+1(x)− Ls(x))|i
i!

∣∣∣∣∣Fs
]
≤ O

(
η2s
(
βs∥xs∥2V −1

s
+ ∥ν̂s(x)− θ̂s∥2Vs∥xs∥2V −1

s

))
.

Proof

|(Ls+1(x)− Ls(x))|i|
≤
(
4|ϵ|2∥xs∥2V −1

s
+ 2|⟨ν̂s − θ̂s, xs⟩||ϵs|+ 8βs∥xs∥2V −1

s
+ ⟨ν̂s − θ̂s, xs⟩2

)i
≤
(
12|ϵ|2∥xs∥2V −1

s

)i
+
(
6|⟨ν̂s − θ̂s, xs⟩||ϵs|

)i
+
(
24βs∥xs∥2V −1

s
+ 3⟨ν̂s − θ̂s, xs⟩2

)i
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For the last step we used that for a, b, c,≥ 0, (a+ b+ c)i ≤ (3a)i+(3b)i+(3c)i. Further note that
for the σ-subgaussian noise ϵs, it holds that for all i ∈ N, E[|ϵ|i] ≤ (2σ2)i/2iΓ(i/2) ≤ (2σ2)ii! and
E[|ϵ|2i] ≤ (2σ2)i2i! (c.f. Lemma 1.4, Rigollet, 2015). Hence we get

Es
[ |ηs(Ls+1(x)− Ls(x))|i

i!

]
≤ Es

[
(12ηs|ϵ|2∥xs∥2V −1

s
)i

i!

]
+ Es

[
(6ηs|⟨ν̂s − θ̂s, xs⟩||ϵs|)i

i!

]

+
(24ηsβs∥xs∥2V −1

s
+ 3ηs⟨ν̂s − θ̂s, xs⟩2)i

i!

We address each term individually, also using that 242ηsβs∥xs∥2V −1
s
≤ 1.

Es

[
(12ηs|ϵ|2∥xs∥2V −1

s
)i

i!

]
≤ (24ηsσ

2∥xs∥2V −1
s

)i

≤ (24ηsσ
2∥xs∥2V −1

s
)2 · 2−i+2

Es

[
(6ηs|⟨ν̂s − θ̂s, xs⟩||ϵs|)i

i!

]
≤ (12ηs|⟨ν̂s − θ̂s, xs⟩|σ2)i

≤ (12ηs|⟨ν̂s − θ̂s, xs⟩|σ2)2 · 2−i+2

(24ηsβs∥xs∥2V −1
s

+ 3ηs⟨ν̂s − θ̂s, xs⟩2)i

i!
≤ (24ηsβs∥xs∥2V −1

s
+ 3ηs⟨ν̂s − θ̂s, xs⟩2)i−2 2

i−2

i!

Summing over i = 2, . . . ,∞ gives

∞∑
i=2

Es
[ |ηs(Ls+1(x)− Ls(x))|i

i!

]
≤ O

((
ηs∥xs∥2V −1

s

)2
+
(
ηs|⟨ν̂s − θ̂s, xs⟩|

)2
+
(
ηsβs∥xs∥2V −1

s
+ ηs⟨ν̂s − θ̂s, xs⟩2

)2)
≤ O

(
η2s
(
βs∥xs∥2V −1

s
+ ∥ν̂s(x)− θ̂s∥2Vs∥xs∥2V −1

s

))
For the last step we summarize the terms using also that for Js = 1, we have βs∥xs∥2V −1

s
≤ 1.

B.4. Asymptotic Regret: Proof of Theorem 5

Proof of Theorem 5 As before, we let βs = ∥θ̂s−θ∗∥2Vs andBs = 1(βs ≤ βs,s2). With Lemma 20
we get

E[Rn] ≤ E
[∑sn

s=1∆(xs)Bs

]
+O

(
log log(n)

)
Recall that ms = 1

2 minx ̸=x̂s ∥ν̂s(x) − θ̂s∥2Vs . Let λ be a trade-off parameter, which in hindsight
is chosen as λ = log(n)−2/3 ≤ 1

4 for n large enough. We decompose the exploration rounds into
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three disjoint sets, which capture different regimes as βs,s2/ms → 0 and δs → 0:

S1 =
{
s ∈ [sn] :

βs,s2

ms
> λ, βs ≤ βs,s2

}
S2 =

{
s ∈ [sn] :

βs,s2

ms
≤ λ, δ2s16 >

βs,s2

ms
, βs ≤ βs,s2

}
S3 =

{
s ∈ [sn] :

δ2s
16 ≤

βs,s2

ms
≤ λ, βs ≤ βs,s2

}
In particular, we can write

E
[∑sn

s=1∆(xs)Bs

]
= E

[∑
s∈S1

∆(xs)
]
+ E

[∑
s∈S2

∆(xs)
]
+ E

[∑
s∈S3

∆(xs)
]
.

We address the three terms in order.

Sum over S1: Cauchy-Schwarz and a few applications of the tower rule as before show that

E
[∑

s∈S1
∆̂(xs)

]2 ≤ E
[∑

s∈S1
Ψs

]
E
[∑

s∈S1
Is(xs)

]
.

To bound the information-ratio, the definition of S1 implies the conditions of Lemma 4, which
combined with δs ≤ ∆̂s(xs) yields∑

s∈S1

E
[
Ψs

]
≤ O

(
d

∆min

) ∑
s∈S1

E
[
∆̂s(xs)

]
.

The total information gain on S1 is bounded using the same steps as in the proof of Lemma 12,∑
s∈S1

Is(xs) ≤
∑
s∈S1

(
ms +

log(k)
ηs

+ βs,s2
)
∥xs∥2V −1

s

(i)

≤
∑
s∈S1

(
βs,s2(λ

−1 + 1) + log(k)
ηs

)
∥xs∥2V −1

s

(ii)

≤ O
(
λ−1d2 log(sn)

2 + d3/2 log(n)1/2 log(sn)
)
,

where (i) follows becausems < βs,s2λ
−1 for s ∈ S1 and (ii) from the elliptic potential (Lemma 18)

and using that log(k)η−1
s ≤ β

1/2
sn,n log(n). Combining and rearranging the last three displays and

using ∆(xs)Bs ≤ 2∆̂s(xs)Bs with Bs = 1 for s ∈ S1 yields

E

[ ∑
s∈S1

∆(xs)

]
≤ O

(
λ−1∆−1

mind
3E[log(sn)2] + ∆−1

mind
5/2 log(n)1/2E[log(sn)]

)
.

Sum over S2: First note that βs ≤ βs,s2 < ms implies x̂s = x̂UCB = x∗. For any x ∈ X ,

β
−1/2
s,s2

δs − ∥x∥V −1
s

(i)
= ∥x∗∥V −1

s
− ∥x∥V −1

s

(ii)

≤ ∥x∗ − x∥V −1
s

(iii)

≤ 1

(2ms)1/2 − β1/2s

(iv)

≤ 2

m
1/2
s

(v)
<

δs

2β
1/2
s,s2

, (17)
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where (i) follows because x̂s = xUCB
s = x∗, implying that δs = β

1/2
s,s2
∥x∗∥V −1

s
. (ii) follows from

the triangle inequality, (iii) from Lemma 19 and (iv) because βs ≤ ms/4. Finally, (v) holds since
δ2s/16 > βs,s2/ms. With x = xs and rearranging yields δs ≤ 2β

1/2
s,s2
∥xs∥V −1

s
and hence

∑
s∈S2

E[∆̂s(xs)] =
∑
s∈S2

E[∆̂s(µs)]
(i)

≤ 2
∑
s∈S2

E[δs] ≤ 4
∑
s∈S2

E[β1/2
s,s2
∥xs∥V −1

s
] ,

where (i) uses ∆̂s(µs) ≤ 2δs (Lemma 6). From here, we can apply Cauchy-Schwarz in a similiar
manner as before, to get

E

[ ∑
s∈S2

β
1/2
s,s2
∥xs∥V −1

s

]2
≤ E

[ ∑
s∈S2

β
1/2
s,s2

m−1/2
s

]
E

[ ∑
s∈S2

m1/2
s β

1/2
s,s2
∥xs∥2V −1

s

]

≤ E

[ ∑
s∈S2

∆̂s(xs)

]
O
(
d2 log(n)1/2E[log(sn)2]

)
.

For the last inequality, we used that 4β1/2
s,s2

m
−1/2
s ≤ δs ≤ ∆̂s(xs), the elliptic potential (Lemma

18) and ms ≤ βsn,n log(n) ≤ O(log(n) + d log(sn)). Hence, combining the last two displays and
∆s(xs) ≤ 2∆̂s(xs), we get

E

[ ∑
s∈S2

∆(xs)

]
≤ O

(
d2 log(n)1/2E[log(sn)2]

)
.

Sum over S3: Denote ∆̄s(x) = ⟨θ̂s, x̂s − x⟩. Note that x̂s = x∗ continues to hold, and hence

E
[∑

s∈S3
∆(xs)

]
≤ E

[∑
s∈S3

∆̄s(xs)
]
+ E

[∑
s∈S3

β
1/2
s ∥x∗ − xs∥V −1

s

]
. (18)

For the second sum, note that by Lemma 13 the information gain of xs ̸= x∗ is lower bounded by a
constant, Is(xs) ≥ Ω

(
∆2

min
d

)
. As in (17), Lemma 19 implies

β1/2s ∥x∗ − xs∥V −1
s
≤ 2β1/2s m−1/2

s 1(xs ̸= x∗) ≤ O
(
λ1/2d∆−2

minIs(xs)
)
.

Summing the last display inside the expectation and using Lemma 12 yields

E
[∑

s∈S3
β
1/2
s ∥x∗ − xs∥V −1

s

]
≤ O

(
λ1/2d log(n)E[log(sn)]

)
.

For the first sum in (18), we use 4ab ≤ (a + b)2 and Cauchy-Schwarz combined with a few appli-
cations of the towering rule, to get

E
[ ∑
s∈S3

∆̄s(µs)

]
≤ 1

4
E
[ ∑
s∈S3

δs

]−1

E
[ ∑
s∈S3

∆̂s(µs)

]2
≤ 1

4
E
[ ∑
s∈S3

δs

]−1

E
[ ∑
s∈S3

Ψs(µs)

]
E
[ ∑
s∈S3

Is(xs)

]
(19)
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Lemma 11 bounds the information ratio, Ψs(µs) ≤ 4δs(c
∗+O(δs+β1/2s m

−1/2
s ) ≤ 4δs(c

∗+O(λ)),
making use of δs/4 ≤ β1/2s,s2

m
−1/2
s ≤ λ1/2. In particular,

1

4
E
[ ∑
s∈S3

δs

]−1

E
[ ∑
s∈S3

Ψs(µs)

]
≤ c∗ +O(λ1/2)

To bound the information gain on S3, denote ls(qs) =
∑

x ̸=x∗ qs(x)⟨ν̂s(x) − θ̂s, xs⟩2. Note that
since x̂s = x∗ on S3, ls(qs) = Is(xs). Further, let Js = 1(242ηsβs∥xs∥2V −1

s
≤ 1;βs∥xs∥2V −1

s
≤ 1).

It is easy to verify that for small enough λ, Js = 1 for all s ∈ S3. Hence, by Lemma 14 and
ms ≤ log(n) + log log(n) +O(d log(sn)),

E
[ ∑
s∈S3

Is(xs)

]
= E

[ ∑
s∈S3

ls(qs)

]
≤ E

[ sn∑
s=1

Jsls(qs)

]
≤ log(n) +O

(
log(n)1/2E[log(sn)2]

)
Combing the bounds on the information ratio and the information gain, we get

E
[ ∑
s∈S3

∆̄s(µs)

]
≤
(
c∗ +O(λ1/2)

)(
log(n) +O(log(n)1/2E[log(sn)2])

)
Hence we conclude

E

[ ∑
s∈S3

∆(s)

]
≤ c∗ log(n) +O

(
λ1/2 log(n)

)
.

Finally, with Lemma 21, we get that E[log(sn)b] ≤ O(log log(n)). Therefore, with λ = log(n)−2/3

all terms except for c∗ log(n) are of lower order and the claim follows.

B.5. Technical Lemmas

Lemma 18 (Elliptic potential lemma) Assume that ∥xs∥2V −1
s
≤ 1 and ∥xs∥2 ≤ 1. Then

sn∑
s=1

∥xs∥2V −1
s
≤ 2 log det(Vsn) ≤ 2d log

(
sn + d

d

)

A proof can be found in (Abbasi-Yadkori et al., 2011, Lemma 11). Note that by diam(X ) ≤ 1 and
the choice V0 = 1d, the assumptions of the lemma are always satisfied for our setting.

Lemma 19 Let βs = ∥θ̂s − θ∗∥2Vs and ms =
1
2 minx ̸=x̂s ∥ν̂(x) − θ̂s∥2Vs . Assume that βs < 2ms

and maxx∈X ∆(x) ≤ 1. Then x̂s = x∗ and further, for all x ∈ X ,(
(2ms)

1/2 − β1/2s

)
∥x∗ − x∥V −1

s
≤ 1 .
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Proof Since ms =
1
2 minx ̸=x̂s minν∈Cx ∥ν − θ̂s∥2Vs , the assumption that βs = ∥θ̂s − θ∗∥2Vs < 2ms

implies that θ∗ ∈ Cx̂s , and therefore x̂s = x∗. Further, for any x ∈ X ,

0 = min
ν:∥ν−θ̂s∥2Vs≤2ms

⟨ν, x∗ − x⟩ = ⟨θ̂, x∗ − x⟩ − (2ms)
1/2∥x∗ − x∥V −1

s

≤ ⟨θ∗, x∗ − x⟩+ (∥θ̂s − θ∗∥Vs − (2ms)
1/2)∥x∗ − x∥V −1

s
.

Using ∆(x) = ⟨θ∗, x∗ − x⟩ ≤ 1 and rearranging completes the proof.

Lemma 20 Let βs = ∥θ̂s− θ∗∥2Vs and define the indicator Bs = 1(βs,s2 ≥ βs) for rounds s where
the confidence bounds at level βs,s2 are valid. Assume that maxx∈X ∆(x) ≤ 1. Then

Rn ≤ E

[
sn∑
s=1

∆s(xs)Bs

]
+O

(
log log(n)

)
.

Proof Naturally, the regret decomposes into exploration and exploitation rounds. When βs > βs,s2
(in exploration rounds, indexed by local time s) or βst > βst,t log t (in exploitation rounds, indexed
by global time t), the parameter estimate is too inaccurate to bound the regret, and we simply bound
∆(x) ≤ 1. On the other hand, in exploitation rounds where βst ≤ βst,t log t, by the definition of an
exploitation round, it holds that mst ≥ βst,t log t ≥ βst and by Lemma 19 this implies that x̂s = x∗

and the regret vanishes. Hence,

Rn =
n∑
t=1

∆(xt) ≤
sn∑
s=1

∆(xs)Bs +

sn∑
s=1

1(βs,s2 < βs) +
n∑
t=1

1(βst,t log t < βst)

Note that by (4), we have P[βs,s2 < βs] ≤ 1/s2 and P[βst,t log t < βst ] <
1

t log t . Hence, in
expectation we get

E[Rn] ≤ E

[
sn∑
s=1

∆(xs)Bs +

sn∑
s=1

1

s2
+

n∑
t=1

1

t log t

]

≤ E

[
sn∑
s=1

∆(xs)Bs

]
+O(log log(n)) .

Lemma 21 Assume that ∥x∗∥2 > 0. Then the number of exploration steps sn in Algorithm 1 is
bounded in expectation,

E[s1/2n ] ≤ O
(
d2∆−1

min log(n)
2∥x∗∥−1

2

)
.

In particular, for any b ≥ 1, we have E[log(sn)b] ≤ O(log log(n)).
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Proof By Theorem 3,

E

[
sn∑
s=1

δs

]
≤ E

[
sn∑
s=1

∆̂s(xs)

]
≤ O

(
d2∆−1

min∥x∗∥−1
2 log(n)2

)
.

We can assume that 2δs < ∆min, since there can be at most O
(
d2∆−2

min log(n)
2
)

steps where this
condition is not satisfied. In particular, the assumption implies that x∗ = x̂s, since for all x ̸= x∗,
2∆̂s(x) ≥ ∆min. Therefore,

δs = max
z∈X
⟨z − x∗, θ̂s⟩+ β

1/2
s,s2
∥z∥V −1

s
≥ β1/2

s,s2
∥x∗∥V −1

s
≥ ∥x∗∥2s−1/2 .

The last inequality follows from since λmax(Vs) ≤ s. Hence further

E

[
sn∑
s=1

δs

]
≥ ∥x∗∥(s1/2n −O

(
d∆−1

min log(n)
1
)
) .

This proves the first claim. For the second part, note that log(s)b is concave for s ≥ exp(b − 1).
Hence

E[log(sn)b] = 2bE[log(s1/2n )b] ≤ 2bE[log
(
max(s1/2n , exp(b− 1))

)b
]

≤ 2b log(E[s1/2n ] + exp(b− 1))

≤ O(log log(n))

Lemma 22 (Softmin approximation) A1, . . . Ak ≥ 0 be a sequence of positive numbers and
a = mini∈[k]Ai. Let qi(x) ∝ exp(−ηAi) be exponential mixing weights with η > 0. Then

∑
i∈[k]

qiAi ≤ a+
log(k)

η
.

Further, the mixing weights qi are bounded as follows,

1

k
exp (−η(Ai − a)) ≤ qi ≤ exp (−η(Ai − a)) .

Proof Let ψ∗
η(A) =

1
η log

(∑
i∈[k] exp(ηAi))

)
be the Fenchel conjugate of the normalized entropy

function. A direct calculation confirms that

q = ∇Aψ∗
η(−A) .

By convexity of ψ∗
η ,∑

i

qiAi = ⟨∇ψ∗
η(−A), A⟩ ≤ ψ∗

η(0)− ψ∗
η(−A) ≤ 1

η log(k) + min
i
Ai .
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The last inequality follows from

ψ∗
η(−A) = η−1 log

(∑
i

exp(−ηAi)
)
≥ η−1 log

(
exp(−ηmin

i
Ai)
)
= −min

i
Ai .

For the bound on the mixing weights, note that the claim is equivalent to the following bound on
the normalization constant,

exp(−ηa) ≤
∑
i

exp(−ηAi) ≤ k exp(−ηa) .

Lemma 23 (Convex Polytopes) Let K be a convex polytope. For unit vector η ∈ Rd, let K0 =
{x ∈ K : ⟨x, η⟩ = 0} be the intersection of k with a (d − 1)-dimensional hyperplane, which is
assumed to be non-empty. Then there exists a constant c > 0 such that for all z ∈ K,

min
x∈K0

∥x− z∥2 ≤ c⟨z, η⟩ .

Proof Let A = {x ∈ K : ⟨x, η⟩ ≥ 0}, which is also a convex polytope. We first show there exists
a c > 0 such that for all z ∈ A,

min
x∈K0

∥x− z∥2 ≤ c⟨z, η⟩ . (20)

The result follows by making a symmetric argument for {x ∈ K : ⟨x, η⟩ ≤ 0}. To establish (20),
let V ⊂ Rd be the vertices of A, which is a finite set. Define h : A \K0 → R by

h(z) = max
x∈K0

⟨η, z − x⟩
∥z − x∥ .

Clearly, 1/c ≜ minv∈V :⟨v,η⟩>0 h(v) > 0. Hence, the mapping φ : V → K0 such that φ(v) = v for

v ∈ K0 andφ(v) = argmaxx∈K0

⟨η,v−x⟩
∥v−x∥ satisfies ∥v − φ(v)∥2 ≤ c⟨η, v−φ(v)⟩. Given any z ∈ A,

let α be a probability distribution on V such that z =
∑

v∈V α(v)v and let x =
∑

v∈V α(v)φ(v) ∈
K0. Then,

∥z − x∥2 =
∥∥∥∥∥∑
v∈V

α(v)v −
∑
v∈V

α(v)φ(v)

∥∥∥∥∥
2

≤
∑
v∈V

α(v) ∥v − φ(v)∥2

≤ c
∑
v∈V

α(v)⟨η, v − φ(v)⟩

= c⟨η, z⟩ .
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Lemma 24 The one-step update to the least-squares estimator with data ys = ⟨xs, θ∗⟩+ ϵs is

θ̂s+1 − θ̂s = V −1
s xs

(
ϵs + x⊤s (θ

∗ − θ̂s)
1 + ∥xs∥2V −1

s

)
.

Proof The difference can be computed with the Sherman-Morrison-Woodbury formula,

θ̂s+1 − θ̂s = V −1
s+1

s∑
i=1

xiyi − θ̂s

= V −1
s

s−1∑
i=1

xiyi + V −1
s xsys −

V −1
s xsx

⊤
s V

−1
s

1 + ∥xs∥2V −1
s

s∑
i=1

xiyi − θ̂s

= V −1
s xsys −

V −1
s xs∥xs∥2V −1

s
ys

1 + ∥xs∥2V −1
s

− V −1
s xsx

⊤
s θ̂s

1 + ∥xs∥2V −1
s

= V −1
s xs

(
ys −

∥xs∥2V −1
s
ys

1 + ∥xs∥2V −1
s

− x⊤s θ̂s
1 + ∥xs∥2V −1

s

)

= V −1
s xs

(
ys − x⊤s θ̂s

1 + ∥xs∥2V −1
s

)

= V −1
s xs

(
ϵs + x⊤s (θ

∗ − θ̂s)
1 + ∥xs∥2V −1

s

)
.

Appendix C. Information-Directed Sampling as a Primal-Dual Method

This section serves as self-contained exposition to establish the link between information-directed
sampling and primal-dual approaches used to solve the lower bound (2). Note that in this section,
quantities such as ∆̂t, δt and It are re-defined independently of the main text.

For simplicity, for the remainder of this section we fix finitely many alternative parameters
ν1, . . . , νl ∈ M for which x∗(ν) ̸= x∗(θ∗). Define constraint vectors hj ∈ RX as hj(x) =
1
2⟨νj − θ∗, x⟩2 for each x ∈ X and j = 1, . . . , l. Our boundedness assumptions imply ∥hj∥2 ≤ 1.
With this notation, the lower bound (2) can be written as a linear covering program,

c∗ = inf
α∈Rk

≥0

∑
x∈X

α(x)⟨x∗ − x, θ∗⟩ s.t. ∀j = 1, . . . , l, hj(α) ≥ 1 . (21)

It is immediate from the assumption that X spans Rd that the program is feasible. Further, there is
no cost for playing the optimal action x∗ since the corresponding gap is zero, ∆(x∗) = 0. Following
the terminology of Jun and Zhang (2020), we refer to a constraint hj with hj(x∗) > 0 as docile.
Such constraints are trivially satisfied by letting α(x∗) → ∞, while the regret from allocating x∗

remains zero in the limit. To simplify our exposition further, here we assume that there are no docile
constraints, i.e. hj(x∗) = 0 holds for all j = 1, . . . , l.
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The objective of this section is to derive sequential strategies to solve (21) in the oracle setting,
where the exact cost and constraint vectors are known. Thereby, we set aside all complications
that arise in the statistical setting. Specifically, we seek to incrementally determine a sequence of
distributions µ1, . . . µn ∈P(X ) over actions, which define a cumulative allocation αn =

∑n
t=1 µt.

We say an allocation is asymptotically optimal at rate βn if

lim
n→∞

∆(αn)

βn
= c∗, and ∀j = 1, . . . , l, lim

n→∞
hj(αn)

βn
≥ 1 . (22)

The lower bound suggests a choice which satisfies limn→∞ βn = log(n).

Online Convex Optimization We review an approach due to Garg and Koenemann (2007); Arora
et al. (2012), which solves covering LPs – such as the oracle lower bound – using online convex op-
timization (OCO). The same idea has recently inspired bandit algorithms for best arm identification
(Degenne et al., 2019) and regret minimization (Degenne et al., 2020). The approach sets up a
fictitious two-player game that converges to the saddle point of the Lagrangian,

max
λ≥Rl

≥0

min
α∈Rk

≥0

L(α, λ) = ∆(α)−
l∑

j=1

λj(hj(α)− 1)

 .

It is easy to verify that strong duality holds, and we can interchange the maximum and minimum.
Note that the dual variables are on an unbounded space, but it turns out that we can normalize them.
The KKT conditions are

∆(x)−
l∑

j=1

λjhj(x) = 0 (stationarity)

λj(hj(α)− 1) = 0 (complementary slackness)

Combining both, we find that c∗ =
∑l

j=1 λj . This implies that the optimal cost c∗ normalizes the
dual variables qj = λj/c

∗. The normalized Lagrangian is

L(α, q) = ∆(α)− c∗
l∑

j=1

qj(hj(α)− 1) , (23)

where q ∈ P([l]) is a distribution over the constraints. Recall that the allocation αn =
∑n

t=1 µt
is chosen sequentially. In each iteration of the game, the first player, or q-learner, chooses a distri-
bution qt ∈ P([l]) over the constraints. Then, the response of the second player is a distribution
µt ∈ P(X ) over actions, which defines the allocation αn =

∑n
t=1 µt. The loss of the q-learner is

defined by the second player’s response µt,

lt(q) =
l∑

j=1

qt(j)hj(µt) , (24)

which is linear in the dual variable qt. The loss sequence defines the q-learner regret Λn (not to be
confused with Rn), which is

Λn =
n∑
t=1

lt(qt)− min
q∈P([l])

n∑
t=1

lt(q) . (25)
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For concreteness, we choose the exponential weights learner (Vovk, 1990; Littlestone and Warmuth,
1994),

qt(j) ∝ exp

(
−ηt

t−1∑
s=1

lt(j)

)
with learning rate ηt. Standard regret bounds for online convex optimization guarantee Λn ≤
O(√n) for suitably chosen learning rate schedules. More refined techniques lead to first-order
regret bounds, which scale with the best loss in hindsight Λn ≤ O(

√
mini

∑n
t=1 lt(i)), see for

example (Cesa-Bianchi et al., 2005). Given the choice qt of the q-learner, we define the combined
constraint It =

∑l
j=1 qt(j)hj . The policy response is defined as

µt = ext , where xt =

{
argminx∈X\x∗

∆(x)
It(x)

if minj α
⊤
t−1hj < βn

xt = ex∗ else.
(26)

The second case corresponds to exploitation, which happens as soon as the constraints are satisfied:

min
j
h⊤j αt−1 = min

j

∑
x

αt−1(x)⟨νj − θ∗, x⟩2 ≥ βn .

Note that x∗ is the only action which does not incur cost. On the contrary, when minj hj(αt) <
βn, the policy allocates on the suboptimal action xt ̸= x∗ with the best cost/constraint ratio,
minx ̸=x∗ ∆(x)/It(x). Since there are no docile constraints, we have It(x∗) = 0 and µt = ext
corresponds to the optimal allocation for the rescaled linear program with the single combined con-
straint It =

∑l
j=1 qt(j)hj ,

min
α∈RX

≥0

∆(α) s.t. It(α) ≥ It(xt) .

Rescaling the optimal solution α∗ to the original covering program (21), we obtain an upper bound
to the cost of choosing µt = ext ,

∆(µt) ≤ ∆(It(µt)α
∗) = c∗It(µt) .

Since It(µt) = lt(qt), we can make use of the regret bound for the q-learner,
n∑
t=1

It(µt) =
n∑
t=1

lt(qt) ≤ min
j
α⊤
n hj + Λn ≤ βn +O

(
β1/2n

)
. (27)

For the last inequality, we used that minj α
⊤
n hj ≤ βn + 1 is guaranteed by the definition (26) and

boundedness, It(x) ≤ 1. Further, we assume a first-order regret bound Λn ≤ O(β1/2n ) for the
q-learner. From here, we easily bound the regret Rn of the allocation αn,

Rn = ⟨αn,∆⟩ =
n∑
t=1

∆(µt) ≤ c∗
n∑
t=1

It(xt) ≤ c∗βn +O
(
c∗β1/2n

)
.

With some care, this approach can be translated to a bandit algorithm, by replacing all unknown
quantities with statistical estimates, see Degenne et al. (2020). The formulation presented here dif-
fers from previous work in that it avoids a re-parametrization of the allocation, and the argument to
bound the regret is more direct. We are now in the position to establish a link between information-
directed sampling and the two-payer minimax game setup.
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Oracle Information-Directed Sampling For reasons that become apparent soon, we refer to the
combined constraints It =

∑l
j=1 qt(j)hj ∈ RX

≥0 as the information gain, where qt is the output of
the same q-learner as before. We also introduce a positive error term δt > 0 that is added to the
gaps, to obtain approximate gaps ∆̂t(x) = ∆(x) + δt. This choice anticipates the definition for
the gap estimate, which we use later in the bandit setting. Moreover, δt > 0 avoids a degenerate
regret-information trade-off and allows us to treat all actions in a unified manner.

Information-directed sampling approaches the regret minimization problem by sampling actions
from a distribution that minimizes the information ratio,

µt = argmin
µ∈P(X )

{
Ψt(µ) =

∆̂t(µ)
2

It(µ)

}
.

We follow this strategy as long as minj hj(αt) < βn. Once the constraints are satisfied, we resort to
playing the optimal action x∗ as before. This allows to bound the q-learner regret Λn, and therefore
the total information gain as in (27). We make the assumption that the estimation gap δt is small
compared to the minimum gap ∆min = minx ̸=x∗ ∆(x),

2δt ≤ min
x ̸=x∗

∆̂t(x) (28)

or equivalently, δt ≤ ∆min. At first sight, the IDS distribution does not relate to the previous
analysis, since the ratio appears with the cost squared. However, a closer inspection reveals a strong
connection, which is summarized in the following lemma.

Lemma 25 Let µt = argminµ∈P(X )
∆̂t(µ)2

It(µ)
be the IDS distribution. If 2δt ≤ minx ̸=x∗ ∆̂t(x) and

It(x
∗) = 0, then µt = (1 − pt)ex∗ + ptezt with alternative action zt = argminz∈X

∆(z)
It(z)

and

trade-off probability pt = δt
∆̂t(zt)−δt

= δt
∆(zt)

.

Proof Let ψ(p) = ((1−p)∆̂t(µt)+pδt)2

(1−p)It(µt) be the ratio obtained from shifting probability mass to x∗. By
definition of the IDS distribution, we must have

0 ≤ d

dp
ψ(p)|p=0 =

2∆̂t(µt)δt − ∆̂t(µt)
2

It(µt)
.

Re-arranging shows that ∆̂t(µt) ≤ 2δt. The IDS distribution can always be chosen with a support
of at most two actions, which is a result by Russo and Van Roy (2014, Proposition 6). With the
condition 2δt ≤ minx ̸=x∗ ∆̂t(x), it therefore suffices to optimize over distributions µ(p, z) = (1−
p)ex∗ + pez . A simple calculation reveals that argminp∈[0,1]Ψt(µ(p, z)) =

δt
∆̂t(z)−δt

, and

min
µ

Ψt(µ) = min
z ̸=x∗

min
p∈[0,1]

Ψ(µ(p, z)) = min
z ̸=x∗

4δt(∆̂t(z)− δt)
It(z)

.

Therefore the alternative action is zt = argminz ̸=x∗
{

∆̂t(z)−δt
It(z)

= ∆(z)
It(z)

}
.

The lemma shows that supp(µt) = {x∗, zt} and the alternative action zt ̸= x∗ minimizes the
same cost-to-constraint ratio as before. Hence, almost the same argument implies a regret bound
Rn ≤ c∗βn +O(c∗β1/2n ).
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Unlike the approach presented before, the distribution µt allocates mass to the zero-cost action,
even before the constraint threshold βn is reached. Importantly, the randomization also allows to
bound the regret in a worst-case manner. In the statistical setting, we expect that the estimation error
roughly decreases at a rate δt ≈ t−1/2. With the trade-off probability pt = δt

∆(zt)
the expected cost

per round is ∆(µt) = δt. In other words, we get a finite-time, problem-independent bound on the
regret Rn,

Rn = ∆(αn) ≤
n∑
t=1

δt ≤ O(
√
n) .

Lastly, we link our analysis to the standard Cauchy-Schwarz argument that appears in all previ-
ous regret bounds for IDS (c.f. Russo and Van Roy (2014); Kirschner and Krause (2018)). A direct
calculation using the trade-off probability pt reveals that the expected approximate cost of the IDS
distribution is exactly two times the actual cost and equals the estimation gap,

1

2
∆̂t(µt) = δt = ∆(µt) .

Note that exact equality only holds because we have It(x∗) = 0 (no docile constraints). We continue
to bound the regret with the Cauchy-Schwarz inequality and using the definition of the information
ratio Ψt =

∆̂t(µt)2

It(µt)
,

Rn =
n∑
t=1

∆(µt) =
1

2

n∑
t=1

∆̂t(µt) ≤
1

2

√√√√ n∑
t=1

Ψt

n∑
t=1

It(µt) .

Let α̃∗ = α∗
1(x ̸= x∗) be the optimal allocation (21) restricted to suboptimal actions. Note that

by definition and the fact that we excluded docile constraints, It(α̃∗) ≥ 1 and ∆(α̃∗) = c∗. Define
a distribution µ(p) = (1 − p)ex∗ + pα̃∗/∥α̃∗∥1, which randomizes between the best action and
optimal allocation with trade-off probability p. A simple calculation reveals that,

Ψt = min
µ

∆̂t(µ)
2

It(µ)
≤ min

p

∆̂t(µ(p))
2

It(µ(p))
≤ 4δt∆(α∗)

It(α̃∗)
≤ 4c∗δt .

We combine the inequality and the regret bound for the q-learner to get

Rn =
n∑
t=1

∆(µt) ≤
1

2

√√√√ n∑
t=1

4c∗δt
(
βn +O(β1/2n )

)
.

Squaring both sides, using again that δt = ∆(µt) and solving for the regret yields the desired
bound,

Rn =

n∑
t=1

∆(µt) ≤ c∗βn +O(c∗β1/2n ) .
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Appendix D. Approximating Mutual Information

The information gain function that was primarily analyzed in the Bayesian framework by Russo and
Van Roy (2014) is the mutual information

IMI
t (x) = It(yt;x∗|xt = x) = Ht(x

∗)−Ht(x
∗|yt, xt = x) .

The second equality rewrites the mutual information as the entropy reduction on x∗, which is a
random variable in the Bayesian setting. Computation of the posterior distribution is tractable with a
Gaussian priorN (0, λ−1) on the parameter and Gaussian observation likelihood yt ∼ N (⟨xt, θ⟩, 1).
In this case the posterior distribution is N (θ̂t, V

−1
t ). However, computing the mutual information

requires further evaluations of d-dimensional integrals which is challenging even with Gaussian
distributions.

As a remedy, Russo and Van Roy (2014) proposed a variance-based information gain

IVAR
t (x)

def
= Et[

(
Et[⟨x, θ⟩|x∗]− Et[⟨x, θ⟩]

)2
] = Et[⟨ν̄t(x∗)− θ̂t, x⟩2] . (29)

The last step uses that Et[θ] = θ̂t and we defined ν̄t(x) = Et[θ|x∗ = x]. They further showed that
the variance-based information gain lower-bounds the mutual information, IMI

t (x) ≥ 2IVAR
t (x),

while, at the same time, the information ratio is still bounded in the Bayesian setting with linear
reward (Russo and Van Roy, 2014, Proposotion 7). Importantly, (29) can be approximated for a
moderate number of actions using samples from the posterior distribution.

We compute the posterior probability q̄t(c)
def
= Pt[x∗ = z] with a Laplace approximation of the

integral over the cell Cz = {θ ∈M : x∗(θ) = z},

q̄t(z) =
1√

(2π)d det(Vt)

∫
Cz

exp
(
−1

2∥ν − θ̂t∥2Vt
)
dν ≈ Q−1

z exp
(
−1

2∥ν̃t(z)− θ̂t∥2Vt
)
,

where ν̃t(x) = argminν∈Cx ∥ν − θ̂s∥2Vs . Similarly, in the Laplace limit, the conditional distribution
Pt[θ|x∗ = x] concentrates on ν̃t(x), which allows us to approximate ν̄t(x) ≈ ν̃t(x). This leads to

IVAR
t (x) ≈

∑
z ̸=x∗

q̄t(z)⟨ν̃t(x)− θ̂t, x⟩2 ,

which resembles the definition of the cell-based information gain in (14).
Using the Laplace argument, we can also compute the mutual information more directly. As-

suming that the posterior is well-concentrated, there exists an action x̄∗t with q̄t(x̄∗t ) ≈ 1. For all
z ̸= x̄∗t and interpolation variable τ ∈ [0, 1], we define the conditional weights

q̄τt (z|x)
def
= q̄t(z) exp

(
− τ

2 ⟨ν̃t(z)− θ̂t, x⟩2
)
,
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Figure 3: Comparison of information gain functions on the ‘end of optimism’ example with
ϵ = 0.01. The information gain functions are evaluated on the same trajectory gener-
ated by IDS-IH-UCB

t and normalized such that
∑

x∈A It(x) = 1. On this instance, x1 is
optimal, x2 is ϵ-suboptimal, and x3 is 1-suboptimal, but asymptotically more informative
than action x2. Clearly visible is that the lower-order terms of the IHt and IH-UCB

t are
increasingly dominated by the asymptotic term where x3 is the most informative action.
IVAR
t is approximated using 104 samples from the posterior distribution, and converges

much faster than the information gain functions based on the q-learner, which uses a more
conservative learning rate. Note that the approximation with posterior samples is unstable
on a larger horizon without increasing the number of samples accordingly.

and qτt (x̄
∗
t |x)

def
= 1 −∑z ̸=x̄∗t q

τ
t (z|x). Using the approximate posterior probabilities, the entropy

reduction up to first order is

It(yt;x∗|xt = x) ≈ −
∑
z∈A

q̄t(z) log q̄t(z) +
∑
z∈A

(
q̄τt (z|x) log(q̄τt (z|x)

)∣∣
τ=1

≈
∑
z∈A

d

dτ

(
q̄τt (z|x) log(q̄τt (z|x)

)∣∣
τ=1

= −1

2

∑
z ̸=x̄∗t

q̄t(z)⟨νz − θ, x⟩2 log
(

q̄t(z)

1−∑z′ ̸=x̄∗t q̄t(z
′)

)
.

Using that −x log x ≥ x for x ≪ 1, the last expression can be lower bounded to arrive at a form
similar to the cell-based information gain (14).

While our reasoning here is rather informal, we think that it warrants a more formal investiga-
tion in the future. Such results could be fruitful in two directions. First, interpreting the mutual
information as an approximation of a dual loss could lead to an instance-dependent analysis for the
Bayesian IDS algorithm, either on the frequentist or Bayesian regret. Second, the Bayesian infor-
mation gain might serve as a starting point to design more effective information gain functions in
the frequentist framework, for example adapted to other likelihood functions and regularizers.
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Figure 4: Comparison of information gain functions defined on cells and halfspaces respectively, as
well as exact and approximate sampling from the IDS distribution. All variants achieve
similar performance within the standard error, however the correction term has a larger
impact on the regret. In the right plot, the y-axis is scaled to make the difference visible.

Appendix E. Additional Experiments

In this section we summarize further numerical results. In Section E.1 we compare different infor-
mation gain functions and show evidence that the cell based information gain IDS-ICs variant from
Eq.(14) behaves similarly to IDS despite much longer runtimes. In Section E.2 we show the effect
of the choice of confidence coefficient βt and the learning rate ηs on the performance, and also
evaluate the confidence coefficient derived by Tirinzoni et al. (2020). In Section E.3, we provide a
benchmark with Bayesian methods including Bayesian IDS and a runtime evaluation.

E.1. Comparison of Information Gain Functions

The information gain functions used in the experiments are summarized below.

• The information gain defined in the main text with halfspaces-based alternatives (7):

IHs (x) =
1

2

∑
z ̸=x̂s

qs(z)
(
|⟨ν̂s(z)− θ̂s, x⟩|+ β

1/2
s,s2
∥x∥V −1

s

)2
• As before, but with correction only for the UCB action (13):

IH-UCB
s (x) =

1

2

∑
z ̸=x̂s

qs(z)
(
|⟨ν̂s(z)− θ̂s, x⟩|+ 1(x = xUCB

s )β
1/2
s,s2
∥x∥V −1

s

)2
• The information gain defined with cell-based alternatives (14):

ICs (x) ≜
1

2

∑
z ̸=x̂s

q̃s(z)
(
|⟨ν̃s(z)− θ̂s, x⟩|+ β

1/2
s,s2
∥x∥V −1

s

)2
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• The information gain defined on cells and UCB correction:

IC-UCB
s (x) =

1

2

∑
z ̸=x̂s

q̃s(z)
(
|⟨ν̃s(z)− θ̂s, x⟩|+ 1(x = xUCB

s )β
1/2
s,s2
∥x∥V −1

s

)2
• The variance-based information gain defined in (29) and used for Bayesian IDS:

IVAR
t (x) = Et[

(
Et[⟨x, θ⟩|x∗]− Et[⟨x, θ⟩]

)2
]

Alternative definitions of the information gain function based on the log-determinant potential are
proposed by Kirschner et al. (2020). The resulting IDS algorithm satisfies similar worst-case guar-
antees but does not achieve asymptotic optimality, e.g. on the end of optimism example.

Figure 3 shows a quantitative comparison of the information gain functions evaluated on the
same trajectory on the end of optimism example. The asymptotic information gain based on half-
spaces is not shown since it was empirically indistinguishable from the cell-based variant (which
might be also due to the fact that there are only three cells in this example). This finding is confirmed
by the regret plot in Figure 4, where compare information gain functions, as well as the approximate
IDS distribution (optimized directly on x̂s and one other action) and the exact IDS distribution. The
results show that, at least on our examples, there is almost no difference between the information
gain defined with ν̂s and ν̃s, and the approximate and exact IDS sampling.

E.2. Choice of Confidence Coefficient and Learning Rate

We run all our experiments with the simplified rate βt = σ2(2 log(t) + d log log(t)) instead, as
suggested in Tirinzoni et al. (2020). These result are shown on Figure 5 and confirm the statement
in Section 3 that there is no significant difference in the conclusions. However tuning βt to minimize
regret significantly improves the performance as shown in Figures 6 and 7. On the other hand, tuning
the learning rate ηs has much less effect on the regret. The choice ηs = 1/

√
βs as suggested by the

theory leads to good results and can be used to reduce the number of tuning parameters.

E.3. Comparison with Bayesian Methods

In our last empirical benchmark, we include Bayesian methods, specifically Thompson sampling
(TS) and an approximation of Bayesian IDS. Our implementation of Bayesian IDS uses the variance-
based information gain defined in (29), and we approximate the Bayesian gap estimates and infor-
mation gain using 104 posterior samples per round as suggested in (Russo and Van Roy, 2014,
Algorithm 6). The performance plots are in Figure 8. Thompson sampling significantly outper-
forms UCB and the frequentist IDS variants, unless we set βs = 1, which, as noted before, im-
proves performance of the frequentist methods. The approximation of Bayesian IDS is the most
effective on our benchmark, outperforming the best frequentist method on the ‘end of optimism’
example roughly by a factor two. Lastly, we show runtime of all methods on a horizon n = 106

in Table 2. Note that despite the approximation, Bayesian IDS is computationally much more de-
manding, whereas the frequentist IDS is only about a factor of 5 slower than Thompson sampling
on instances in R5 with k = 50 actions.
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Figure 5: Experiments with βt = σ2(2 log(t) + d log log(t)). The numerical performance is com-
parable to the log-determinant confidence coefficient used in the main paper.
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Figure 6: The matrix shows the regret on randomly generated action sets after n = 104 steps for
different values of βs and ηs. The first observation is that the regret can be significantly
reduced by choosing a smaller value for βs. On the other hand, tuning the q-learning rate
ηs affects performance marginally. Tuning only βs and setting ηs = 1/

√
βs as suggested

by the theory leads to near optimal results.
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Figure 7: The matrix shows the regret on the ‘end of optimism’ example after n = 106 steps for
different values of βs and ηs. The observations are similar as in Figure 6. Note that IDS
is consistently better than UCB for any value of βs.

0 20000 40000 60000 80000 100000
n

0

20

40

60

80

100

R
n

Random Action Sets

20

0 20000 40000 60000 80000 100000
n

0

50

100

150

200
End of Optimism

40

IDS-IH

IDS-IH-TUNED

IDS-IH−UCB

IDS-IH−UCB-TUNED

BAYES-IDS-IVAR

TS
UCB
UCB-TUNED

Figure 8: Comparison with Bayesian methods. On these examples, Bayesian IDS outperforms the
frequentist methods, even when tuning the frequentist counterpart (βs = 1).
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Algorithm d = 2, k = 6 d = 5, k = 50

BAYES-IDS-IVAR-EXACT 561.7±58.8 2560.0±78.4
BAYES-IDS-IVAR 544.4±69.7 1771.9±40.5
IDS-IH-UCB-EXACT 50.5±22.6 798.5±233.5
IDS-IH-UCB 45.7±18.8 106.8±28.6
UCB 26.9±7.7 23.9±5.7
TS 21.6±5.9 22.2±6.9

Table 2: Runtime comparison on random action sets with horizon n = 105. The table shows mean
and standard-deviation of the runtime in seconds on 50 runs, computed on a single core
at 2.30GHz. The EXACT-suffix indicates that the IDS distribution is computed exactly,
whereas no suffix means that we minimize the tradeoff directly between x̂s and an infor-
mative action as discussed at the end of Section 2.
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