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Abstract

Theorems 1 and 2 appearing in the paper contain a shared critical issue and this note serves as a
retraction note. The issue is traced to the Theorem 4, which concerns the control of the Lipschitzness
of a Gradient Descent (GD)-trained overparameterized shallow neural network in the input. In the
following we describe the issue in some detail.

Setting. We first briefly recall the setting the paper. The paper considers the problem of nonpara-
metric regression with random design where inputs X, X1,...,X,, ~ Px € Ml(Sdfl) are i.i.d.
and targets are generated by the Lipschitz (possibly non-differentiable) and bounded regression
function f* on Sl as Y, = f*(X;) + i, with o-subgaussian independent noise €1, . . ., &,. The
paper considers learning of f* by the shallow neural network predictor

fw@) =Y we (wiz),  (@es!, Wer™m
k=1

defined with respect to a fixed twice differentiable activation function ¢ : R — R, where ¢', ¢ are
bounded on R. The predictor is parameterized by an output layer, a (non-tunable) random weight

vector u < unif ({#£1/y/m})™ (sampled once at the beginning of the training), and a tunable hidden
layer weight matrix W € R?*™, where m is the width of the network. In particular, weights of a
hidden layer are obtained by the standard GD procedure by approximately minimizing the empirical
risk

i=1

Here, W is obtained by drawing each entry from A/(0, v/2

< i+) independently from each other, while
W r is obtained by the recursive update rule W1 = Wy —nVL(W,) fort =0,...,7 — 1 and

where 77 > 0 is a fixed step size.
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Claimed result and proof sketch. The aim of the paper is to control the excess risk defined as
Er =E [(fw(X) = f1(X))?* | u, Wy .

In particular, for o = 0' the paper claims a minimax optimal rate with high probability over (u, W),
assuming that the network is overparameterized, m > poly ((n/d)(1 + v2;,)):

Er = Op ((Lip(f*)2 +(1+ du%lit)g)nf%iﬁ as n— oo,

which is based on the following proof idea. Introduce a nearest-neighbor operator (with ties broken
arbitrarily)

m(x) = argmin ||z — X |2, (x € ST
i€[n]
and consider a decomposition of the excess risk (here E[-] = E[- | u, W)):

9 . 2 . R 2
E (f*(X) = f*(Xa(x)) +E (f*(Xrx) = fwr (Xnx)) +E (fwve (Xag) = S (X))

Here term (1) is controlled thanks to the Lipschitzness of f* and the standard partitioning analysis of
the one nearest-neighbor rule (Lemma 7 in the paper) gives

Term (i7) is the expected empirical risk E L(W ), which is controlled by the convergence of
optimization error of GD to zero for shallow overparameterized neural networks (Du et al., 2018;
Oymak and Soltanolkotabi, 2020).

Issue with term (ii7). The issue occurs in the control of term (i4i) which captures Lipschitzness
of the predictor trained for 7" steps. Before discussing the issue we need to introduce some technical
notions. In particular, for the analysis we require the Neural Tangent Random Feature (NTRF)
predictor, which is obtained by linearization of W fW (x) around W, namely

fiv (@) = fw, (z) + () Tvec(W — W) ,
where ¥(-) is called the NTRF feature map and defined as
U(x) = [md (Wosz)a .. und (Wi )]’

In addition, we introduce NTRF iterates (ng)tho obtained by running GD as discussed in the
beginning of the note, however with the empirical risk replaced by the least-squares objective
W= (fi(X1) = Y1) + -+ (i (Xa) = Vo)) /n.

The attractive property of the NTRF iterates is that the distance | W7 — Wi || can be made
small by overparameterization of the neural network thanks to the so-called ‘coupling’ argument,
see for instance (Bartlett et al., 2021, Theorem 5.1) and Appendix B in the paper we discuss. Then,

1. In this note we only consider a noise-free setting, but the same issue applies for the case o > 0.



assuming that in addition to the boundedness of derivatives, activation function ¢ also satisfies
¢ (z) < Byr|z| with sup,cg |¢” (2)] < Byr for all z € R, we attempt to control the Lipschitzness:

Lip(fw,) = sup ||Y_ upd/ (Wi @)Wy
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While (a) is controlled by the aforementioned ‘coupling’ argument it turns out that || W2 cannot
be made small enough. The problem comes in assuming that W = 0 while it must be Wi = W,
for the coupling argument of (Bartlett et al., 2021, Theorem 5.1) to hold. Then, having Wi = w,,
it is clear that | W||2, < ||[Wo||2 while |[Wo||Z = O(m) which renders the above bound on the
Lipschitz constant of order O(y/m).

Prospects on fixing the issue. One potential resolution to the above could be to follow a more
careful analysis and replace ||W||2, with || W} — W ||2,, where the later quantity is definitely no
larger since GD takes the shortest 52 path from the initialization for least-squares problems of the
considered kind (Oymak and Soltanolkotabi, 2020).> Such an alternative analysis of term (iii) would
be based upon a decomposition (for any x, & € S 1),

Jwr (@) — Fovg (@) = Favp (@) — Fr (@) + Frgr (@) — Foyps (8) + Foys (8) — oy (8) -

(#di.q) (i41.b) (idi.c)

Here terms (47i.a) and (iii.c) could be controlled thanks to the ‘coupling’ argument as mentioned
above. It is not hard to see that

(iii.6) = (fw, (@) — fivo (&) + vec(W — Wo) T (¥(a) - ¥ (%))
< el — &2 + Wi — Wollp|[¥(2) — ¥ (&)
< el — &2 + | WH ~ Wol rllz - & (W () is Lipschitz)

with high probability over (u, W), where using independence of (w, W), fw, (-) is Lipschitz with
a universal constant c. Now, it remains to see whether ||W} — W || can be controlled. To this end
let (\;), be the eigenvalues of the covariance matrix \II(Xl)\I’(Xl)T +o (X)) (X )T
and let Y* = [f*(X1),..., f*(X,)]". The standard analysis of GD dynamics (Yao et al., 2007)
leads to the identity
n Ty *\2
Wi Wl = 3200 (1 S
i=

2. The quantity |W% — W||3 was considered before in the analysis of GD-trained shallow neural networks as a
complexity measure of a GD solution, for instance (Arora et al., 2019).
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Now, since we focus on a noise-free setting (¢ = 0), we can consider the limiting solution with
T — oo (no need to control overfitting). To this end,

T T 1y«
IWE —Wolz <Y*'K Y ()

where K € R™*" is a Gram matrix with entries (K); ; = (¥(X;)T ®(X)). Thus, to have (iii.b)
of the right order, we need to have (x) = @(1) as n — oo, however, it is unclear how to analyze
such a quantity. Arora et al. (2019) used some Reproducing kernel Hilbert space (RKHS) arguments
and considered a closely related quantity Y* T K~'Y*, where K is a kernel matrix of a reproducing
kernel function (x, ) = E[¥(x)" ¥(&)].> While, they have established some interesting constant-
order upper bounds on Y K ly* by considering specific cases of f*, all of the considered cases
were differentiable and not necessarily Lipschitz, which violates the setting of our paper.
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3. Some standard matrix concentration inequalities (Tropp, 2015) allow to say that () is close to Y* TK~'Y”* whenever
m > poly(n/Amin(K)).
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