
Proceedings of Machine Learning Research vol 134:1–27, 2021 34th Annual Conference on Learning Theory

Improved Regret for Zeroth-Order Stochastic Convex Bandits

Tor Lattimore LATTIMORE@DEEPMIND.COM
DeepMind, London

András György AGYORGY@DEEPMIND.COM

DeepMind, London

Editors: Mikhail Belkin and Samory Kpotufe

Abstract
We present an efficient algorithm for stochastic bandit convex optimisation with no assumptions
on smoothness or strong convexity and for which the regret is bounded by O(d4.5

√
npolylog(n)),

where n is the number of interactions and d is the dimension.
Keywords: Bandits, zeroth order convex optimisation, ellipsoid method.

1. Introduction

Let K ⊂ Rd be a convex body (compact and convex with non-empty interior) and L : K → [0, 1]
be a convex function. A learner and environment interact sequentially over n rounds. In each
round t the learner chooses Xt ∈ K and observes L (Xt) + ξt, where (ξt)

n
t=1 is a sequence of

centered conditionally subgaussian random variables: E[ξt|Ft−1] = 0 and E[exp(ξ2
t )|Ft−1] ≤ 2 with

Ft−1 = σ(X1, ξ1, . . . , Xt−1, ξt−1, Xt) the σ-algebra generated by the history. The learner’s aim is
to minimise the regret, which is Rn = E [

∑n
t=1 (L (Xt)− L?)], where L? = minx∈K L (x) and the

expectation is over the noise and any randomness in the learner’s actions. Our contribution is an
efficient and conceptually simple algorithm for the above problem, known as stochastic zeroth-order
bandit convex optimisation, and a proof of the following theorem bounding its regret.

Theorem 1 Assume K contains a unit radius Euclidean ball. Then there exists an algorithm for
which

Rn ≤ const ·d4.5√n log(n diam(K ))3/2 max

(
1,

log(n diam(K ))1/2

d

)
,

where const is a universal constant and diam(K ) = maxx,y∈K ‖x−y‖ with ‖·‖ being the standard
Euclidean norm.

Because the dependence on the diameter of K in Theorem 1 is logarithmic, it is enough to
prove the statement for Lipschitz losses, as given in the next theorem. Theorem 1 then follows by
running Algorithm 2 for Lipschitz losses on a slightly restricted and scaled version of K , which is a
procedure adopted by Bubeck et al. (2017a) and Lattimore (2020), and summarised in Appendix F.

Theorem 2 Suppose that L (x) − L (y) ≤ ‖x − y‖ for all x, y ∈ K and that K contains a unit
radius Euclidean ball. Then the regret of Algorithm 2 is bounded as in Theorem 1 with another
universal constant const1.

1. Throughout we use const to denote universal constants, but their exact value may differ for every appearance.
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The algorithm uses the ellipsoid method, so needs to approximately compute minimum volume
ellipsoids of K intersected with a finite number of half-spaces. The computational complexity
(and accuracy) of this procedure depends on the representation of K . A number of situations are
discussed in Section 8.

Organisation After the related work and preliminaries, we introduce a surrogate loss function
and explain its role in defining a separation oracle to be used by the ellipsoid method (Section 4).
There follows the construction and analysis of the separation oracle (Section 5), the main algorithm
(Section 6) and then the proof of Theorem 2 (Section 7). The computational complexity under
different assumptions is explained in Section 8, which is followed by a discussion of practical
considerations (Appendix A).

2. Related work

Bandit convex optimisation is studied under a wide range of assumptions. The most notable distinc-
tion is between the adversarial and stochastic settings. In the adversarial setting the loss function
changes from round to round and the learner is evaluated relative to the best single point in hind-
sight. Assumptions on the regularity of the loss function also play a role. The major considerations
are: (a) smoothness, (b) strong convexity, (c) Lipschitzness and (d) the diameter of the constraint
set.

Adversarial setting Algorithms designed for the adversarial setting can be used in the stochastic
setting. The only caveat is that standard proofs in the adversarial setting implicitly assume that
the noise is homogeneous (independent of the action). For example, they cannot handle classical
Bernoulli noise where ξt = 1 with probability L (Xt) and ξt = 0 otherwise. We expect, however,
that most analysis can be generalised to handle dependent noise as well.

Research on zeroth-order bandit convex optimisation was initialised by Kleinberg (2005) and
Flaxman et al. (2005). Both use importance-weighting to approximate the gradient of the loss,
which is then used in gradient descent. In our setting this leads to a regret of O(n5/6d2/3) or
O(n3/4

√
d diam(K ) + d2). While the dependence on n was later shown to be suboptimal, these

algorithms are simple to implement and the regret depends only quite weakly on the dimension.
Making assumptions on smoothness and/or strong convexity leads to improved bounds for

gradient-based algorithms. For example, Saha and Tewari (2011) refined the arguments of Flax-
man et al. (2005) to prove that for smooth loss functions, a gradient-based algorithm can achieve
a regret of O(dn2/3 log(n)1/3) with a polynomial dependence on the diameter of K . Hazan and
Levy (2014) assume strong convexity and smoothness and design a gradient-based algorithm for
which the regret is O(d1.5

√
n log(n)). Ito (2020) showed that when the optimum is not too close

to the boundary, then this can be improved to O(d
√
n log(n)), which matches the Ω(d

√
n) lower

bound of Dani et al. (2008) up to a logarithmic factor. There has been much effort – and a few failed
attempts – to show that O(

√
n polylog(n)) regret is possible for gradient-based methods assuming

only that the losses are Lipschitz, rather than smooth and/or strongly convex. It seems, however,
that there may be fundamental limitations, at least with current estimation techniques (Hu et al.,
2016). Another kind of assumption is that the learner can evaluate the loss function at two (or more)
points simultaneously, which reduces the variance of gradient estimation and leads to O(

√
dn) re-

gret (Shamir, 2017). This argument depends on the evaluations having the identical noise (or no
noise), and hence the idea cannot be used in the stochastic setting studied here.
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The breakthrough by Bubeck et al. (2015) showed that O(
√
n polylog(n)) regret is possible

in the adversarial setting when d = 1 without any regularity conditions. Hazan and Li (2016)
showed that Õ(

√
n) is also possible in higher dimensions, but with an exponential dependence

on the dimension and computation. Like our work, these authors also use the ellipsoid method,
though this is about where the similarity ends. Shortly after, Bubeck et al. (2017a) used the mirror-
descent framework and a kernel-based loss estimator to construct a polynomial-time (but not terribly
practical) algorithm for the adversarial setting with regret at most O(d10.5√n log(n)7.5). A key
ingredient of this work is a kernel-based method for estimating a convex function based on bandit
feedback. The surrogate loss used in the present work is closely related, as we explain in detail at
the end of Section 4.

The best known bound without strong convexity or smoothness is by Lattimore (2020), who
showed that the minimax regret is at most O(d2.5√n log(n)). Their analysis, however, relies on the
information-theoretic machinery developed by Russo and Van Roy (2014) and Bubeck and Eldan
(2018), and does not yield an algorithm.

Stochastic setting Perhaps surprisingly, stochastic bandit convex optimisation has received far
less attention. Agarwal et al. (2013) developed and analysed an algorithm for which the regret is at
most O(d16√n polylog(n)), showing for the first time that the optimal dependence on the horizon
is at most n1/2 polylog(n). Much like ours, their algorithm is based on the ellipsoid method to
incrementally focus on the minimiser of L . Where the methods diverge is the separation oracle.
While Agarwal et al. (2013) use the tetrahedron construction of Nemirovsky and Yudin (1983), we
use a new gadget that proves to be statistically more efficient.

There is an enormous literature on zeroth-order stochastic convex optimisation, where the learner
aims to approximately minimise a convex function using noisy function evaluations. Here the best
known bound, at least without any kind of smoothness assumption, is by Belloni et al. (2015). They
show that a version of simulated annealing finds an ε-optimal minimiser withO(d6/ε2) evaluations.
This algorithm makes O(1/ε2) noisy evaluations of the loss function at every point along its trajec-
tory, which generally leads to an Ω(n2/3) cumulative regret. Adapting this algorithm to achieve a
Õ(
√
n) regret in the present setting seems to require new ideas.

3. Preliminaries

Before the analysis, we introduce the necessary notation and remind the reader about elementary
results on the ellipsoid method and Orlicz norms.

Notation The Euclidean norm on Rd is ‖·‖ =
√
〈·, ·〉 and for a positive definite matrix P ∈ Rd×d,

‖x‖P =
√
x>Px. The centered ball of radius r is Br = {x ∈ Rd : ‖x‖ ≤ r} and its boundary

is the (d − 1)-dimensional sphere Sr = {x ∈ Rd : ‖x‖ = r}. The uniform (rotational invariant)
probability measure on the latter is H (Sr). The zero vector is 0 and the identity matrix is I .
The context will always inform the reader about the dimension of these quantities. The Gaussian
distribution with mean µ and covariance matrix Σ is denoted by N (µ,Σ). The density of the
standard d-dimensional Gaussian N (0, I) is ρ(z) = (1/(2π))d/2 exp(−‖x‖2/2). The (Lebesgue)
volume of a measurable set A ⊂ Rd is denoted by vol(A) =

∫
A dx. The convex hull of A is

conv(A) and its (Euclidean) diameter is diam(A) = supx,y∈A ‖x − y‖. The image of A under a
function f : Rd → R is denoted by f(A) = {f(x) : x ∈ A}. Let Lip` be the space of functions
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f : Rd → R for which |f(x) − f(y)| ≤ `‖x − y‖ for all x, y ∈ Rd. The space of affine bijections
from Rd → Rd is Aff(Rd). For a positive integer s, [s] = {1, . . . , s}.
Orlicz norms Given a real-valued random variable X , let ‖X‖ψ1 = inf{t : E [exp(|X|/t)] ≤ 2}
and ‖X‖ψ2 = inf{t : E

[
exp(|X|2/t2)

]
≤ 2}. Recall that ‖XY ‖ψ1 ≤ ‖X‖ψ2‖Y ‖ψ2 (Vershynin,

2018, Lemma 2.7.7). Furthermore, if (Xt)
n
t=1 are a sequence of independent and identically dis-

tributed random variables with mean µ, then there exists a universal constant C ∈ (0, 1) such that
for all ε > 0,

P

(
1

n

n∑
t=1

Xt − µ ≥ ε
)
≤ exp

(
− Cnε2

‖X‖2ψ2

)
(Vershynin, 2018, §2.6.2, §2.8.1)

P

(
1

n

n∑
t=1

Xt − µ ≥ ε
)
≤ exp

(
−Cnmin

(
ε2

‖X‖2ψ1

,
ε

‖X‖ψ1

))
. (1)

Our assumption on the noise (ξt) is that the conditional law of the noise given the history has ‖·‖ψ2-
norm of at most 1. For readers unfamiliar with Orlicz norms, a random variable X has ‖X‖ψ2 <∞
if and only if it is subgaussian:(

‖X‖ψ2 <∞
)
⇔
(
∃σ2 > 0 ∀α ∈ R , E[exp(α(X − E[X]))] ≤ exp(α2σ2/2)

)
.

Similarly, random variables with ‖X‖ψ1 < ∞ are sub-exponential, though conventions on the
definition of sub-exponential random variables vary. These connections are explained in Chapter 2
of Vershynin (2018). On the positive side, the behaviour of Orlicz norms under composition is easier
algebraically than moment generating functions, which justifies our choice. More negatively, Orlicz
norms and convolutions are not so well behaved, which sometimes introduces additional constants.
The universal constants are not especially large but are left unspecified for simplicity. For readers
bold enough to try and implement the algorithm (which uses these confidence intervals), we provide
recommendations in Appendix A.

Extending the loss function Many quantities in our analysis are simplified by assuming that L is
defined on all of Rd. For x /∈ K we define L (x) = supy∈K supg∈∂L (y) (L (y) + 〈g, x− y〉), where
∂L (y) ⊂ Rd is the set of subgradients of L at y. The extended function is the supremum of linear
1-Lipschitz functions and hence is convex and 1-Lipschitz. Note that the extended loss function
is only used in the analysis, as we will prove that our algorithm only evaluates L outside K with
negligible probability.

Affine transformations and noisy functions Our learner interacts with the environment by choos-
ing actionsX ∈ K , possibly with randomisation, and observing Y = L (X)+ξ where E[exp(ξ2)|X] ≤
2. When the learner interacts with the environment this way, we abuse notation by writing Y ∼
L (X). Very often these interactions are made via an affine reparameterisation. Given any A ∈
Aff(Rd) and f = L ◦ A, we write Y ∼ f(X) to mean that Y = f(X) + ξ = L (A(X)) + ξ where
E[exp(ξ2)|X] ≤ 2 and E[ξ|X] = 0. We refer to f and L in this context as noisy convex functions.

Ellipsoid method The ellipsoid method is a classical tool in convex optimisation, which is ex-
plained in detail by Grötschel et al. (2012, Chapter 3). Given a convex body K , let E (K ) denote
the ellipsoid of smallest volume containing K , which exists and is unique. Our algorithm uses the
shallow cut ellipsoid method as a component. The key inequality is below.
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Lemma 3 (Grötschel et al. 2012, §3.3.21) Suppose that E = E (K ) is the minimum volume ellip-
soid of a convex body K ⊂ Rd and A ∈ Aff(Rd) is such that A(Br) = E with r > 0. Let η ∈ Rd
be a unit vector. Then,

vol(E (K ∩A({x : 〈x, η〉 ≤ r/(2d)}))) ≤ exp

(
− 1

20d

)
vol(E) , γ vol(E) .

We will also make use of the fact that if E = A(Br) is the minimum volume ellipsoid of K
with A ∈ Aff(Rd), then A(Br/d) ⊂ K (Artstein-Avidan et al., 2015, Remark 2.1.17).

Constants Let us state upfront a number of constants. The meaning and intuition for these choices
will be described later. We assume the following equalities:

r = 105d2
√

2 log(1/δ) λ =
d

2r
√

2 log(1/δ)
` =

d

r
diam(K ) γ = exp

(
− 1

20d

)
,

where δ is the smallest positive root of

δ log(1/δ)7 =
(
211 · 1050d21n2 diam(K )2

)−1
. (2)

Note that δ satisfies δ = λ4
/

(1026 diam(K )2n2d5r6) and is upper bounded by the right-hand side
of Eq. (2). Furthermore, λ = Θ(1

/
(d log(1/δ))) < 1 and ` = Θ(diam(K )

/
(d
√

log(1/δ))).

4. Outline and surrogate losses

Our algorithm combines the ellipsoid method with a surrogate loss function that can be estimated
efficiently. To set the stage, we remind the reader how the ellipsoid method can be used for optimi-
sation.

Ellipsoid method Suppose for a moment that the learner has access to the actual gradients of L .
A simple method for minimising L is to compute a sequence of convex sets (K k)

∞
k=1 inductively,

starting with K 1 = K . The inductive update operates as follows. Given K k, the learner computes
the minimum volume ellipsoid Ek = E (K k) and Ak ∈ Aff(Rd) such that Ak(Br) = Ek. Next, let
fk = L ◦Ak and z ∈ Rd be any point with ‖z‖ ≤ r/(2d) and ∇fk(z) 6= 0 and

K k+1 = K k ∩ {x ∈ Rd : 〈x−Ak(z),∇L (Ak(z))〉 ≤ 0}
= K k ∩Ak({x ∈ Rd : 〈x− z,∇fk(z)〉 ≤ 0}) .

By convexity, K k+1 contains the minimiser of L , and by Lemma 3,

vol(K k+1) ≤ vol(Ek+1) ≤ γ vol(Ek) ≤ γk−1 vol(E1) ≤ γk−1 diam(K )d vol(B1) .

With a judicious choice of a stopping rule, it is easy to show that this procedure finds an approximate
minimiser of L in just logarithmically many iterations (Bubeck, 2015). Note the unorthodox choice
of z: in the standard method, it would be chosen at the center of the current ellipsoid (z = 0).

In the terminology of the ellipsoid method, the gradient ∇fk(z) is providing a shallow cut
separation oracle. Adapting this idea to the noisy setting leads to a serious complication. Namely,
the gradient of fk is hard to estimate without many samples from L . The novelty employed here
is to use a surrogate loss function for which the gradient can be estimated efficiently while still
providing a shallow separation oracle. This replaces the tetrahedron construction used by Agarwal
et al. (2013).
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A surrogate loss Let f ∈ Lip` be convex and X be a random variable with law N (0, I). Define
g : Rd → R by

g(z) = E

[
f(X) +

f((1− λ)X + λz)− f(X)

λ

]
. (3)

Convexity of f implies that g is convex and g ≤ f pointwise. We will show that
(a) g and its gradients can be estimated statistically efficiently using noisy evaluations of f ; and
(b) ∇g can be used as a separation oracle in place of ∇f in the argument above, provided the

point z is chosen carefully.
To see why (b) might be true, let x? = arg minx∈Br

f(x). Convexity of g and the fact that g ≤ f
pointwise means that if we can find a z ∈ Rd with ‖z‖ = r/(2d) and g(z) ≥ f(x?), then

0 ≥ f(x?)− g(z) ≥ g(x?)− g(z) ≥ 〈∇g(z), x? − z〉 . (4)

Hence, using ∇g(z) as a separation oracle will not eliminate the minimiser of f . An example is
illustrated in Fig. 1. The main challenge is to show that points z for which g(z) ≥ f(x?) exist and
can be identified in a statistically and computationally efficient manner.

That g and its gradients can be estimated efficiently using zeroth-order information is straight-
forward. Let Y = f(X) + ξ where E[exp(ξ2)|X] ≤ 2 and E[ξ|X] = 0 and define

R z(x) =
ρ
(
x−λz
1−λ

)
(1− λ)dρ(x)

Iz(x) = 1

(
R z(x) ≤ e

(1− λ)d
and ‖x‖ ≤ r/d

)
.

The former quantity is the Radon-Nikodym derivative between the laws of (1− λ)X + λz and X .
By a change of measure,

g(z) = E

[
f(X) +

f((1− λ)X + λz)− f(X)

λ

]
= E

[
Y

(
1− 1

λ
+

R z(X)

λ

)]
.

The expectation can now be estimated by sampling. A minor annoyance is that R z(X) is large with
low probability, which compels us to use the truncated version. Nevertheless, an easy calculation
shows that Iz(X) = 1 with overwhelming probability, and so

ĝ(z) = Y

(
1− 1

λ
+

R z(X)

λ

)
Iz(X) (5)

is a nearly unbiased estimate of g(z) that simultaneously has well-behaved moments. Similarly,
integrating by parts shows that the gradient of g satisfies ∇g(z) = 1

(1−λ)2
E [Y (X − λz)R z(X)] .

Note, g is differentiable even if f is not. Like Eq. (5), this means that a nearly unbiased estimator
of∇g(z) is

∇̂g(z) =
Y (X − λz)

(1− λ)2
R z(X)Iz(X) . (6)

The next two lemmas establish the key properties of the surrogate loss. The first lemma shows that
the above estimators are nearly unbiased and have small Orlicz norms. Note, the former property
would hold immediately if the estimators had been defined without the truncation Iz(X). The proof
is routine and is provided in Appendix D.
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−3 −2 −1 0 1 2 3

0

5

10
f(x) = x2 + x+ 1

g(x) = (1 + x)2/2, λ = 1/2

Figure 1: Using the gradient of g as a sep-
aration oracle for minimising f is not safe in
general. For example, when x = −3/4, then
〈∇g(z), x? − z〉 ≥ 0. Convexity of g and
the fact that g ≤ f ensures that whenever z is
such that g(z) ≥ f(x?) (shaded region), then
〈∇g(z), x? − z〉 ≤ 0.

Lemma 4 Suppose that f ∈ Lip` is convex and f(Br/d) ⊂ [0, 1] and g is defined as in Eq. (3).
Then g(z) ≤ f(z) for all z ∈ Rd. Furthermore, when ‖z‖ = r/(2d), then there exists a universal
constant c = 135 such that

(a) |E[ĝ(z)]− g(z)| ≤ 1/(8rn) . (b) E[〈∇̂g(z)−∇g(z), η〉] ≤ 1/(8rn) for all η ∈ B1 .

(c) ‖ĝ(z)‖ψ2 ≤
c

λ
. (d) ‖〈∇̂g(z), η〉‖ψ1 ≤ c for all η ∈ B1 .

The next lemma shows there exist z for which g(z) ≥ f(0) ≥ f(x?), and they can be found with
constant probability by sampling. Furthermore, the gap between g(z) and f(0) can be controlled in
terms of the regret. The proof is given in Appendix E.

Lemma 5 Suppose that Z ∼ H (Sr/(2d)) and ∆ = E[f(X)]−minx∈Br f(x). Then,

P

(
g(Z)− f(0) ≥ λr(∆− 1/n)

8 · 108d5/2

)
≥ 1/48 .

Relation to the kernel-based method of Bubeck et al. (2017b) The surrogate loss g is closely
related to the kernel-based estimator used by Bubeck et al. (2017b). There are some minor differ-
ences in how the truncation is done, but setting these aside, their algorithm samples X ∈ Rd from
some time-dependent distribution on K and observes L (X). The algorithm then uses importance-
weighting as above to estimate

h(z) = E [L ((1− λ)X + λz)] .

Except for shifting and scaling this is the same as the estimator in Eq. (3). The law of X is a
smoothed version of an exponential weights distribution constructed from previous loss estimates.
Both our analyses exploit the fact that g (or h) can be estimated efficiently with samples. This is
where the similarity ends. Bubeck et al. (2017b) focus on properties needed to use an estimator in
conjunction with exponential weights, while Lemma 5 is designed for using g as part of a separation
oracle. Whether or not our analysis can be used to improve the bounds in the adversarial setting by
Bubeck et al. (2017b) is an interesting question. Curiously, Bubeck (2016) conjectured that it may
be possible to prove an Õ(d4.5√n) bound on the regret for the kernel-based method in the stochastic
setting. It is not at all obvious whether or not this is a coincidence.
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5. Separation oracle

Lemmas 4 and 5 provide the tools to define an efficient separation oracle. Lemma 5 and Eq. (4)
show that when z is sampled uniformly from Sr/(2d), then with constant probability, the pair z
and ∇g(z) provide a separation oracle. By sampling sufficiently many values of z randomly, at
least one will be suitable with high probability, and Lemma 4 shows that the relevant values can
be estimated efficiently. This idea is implemented in Algorithm 1. In its initialisation phase, the
algorithm randomly selects several candidate z-values, Z1, . . . , Zu. The algorithm then repeatedly
queries the loss function until it can certify that a specific point is suitable and returns a half-space
that includes the optimal point with high probability. The separation oracle is randomised and the
number of times the loss function is queried before the algorithm terminates is a random variable
that depends on both the initialisation and the random observations.

input: function f
set u =

⌈
48 log(3n2)

⌉
and sample (Zs)

u
s=1 ∼ H (Sr/(2d)).

for m = 1, 2, . . .:
sample Xm ∼ N (0, I) and Ym ∼ f(X) and Y ′m ∼ f(0)
for s = 1, . . . , u:

θ̂s =
1

m

m∑
i=1

(
Yi

(
1− 1

λ
+

R Zs(Xi)

λ

)
IZs(Xi)− Y ′i

)
estimator of g(Zs)− f(0)

∇̂gs =
1

m

m∑
i=1

Yi(Xi − λZs)
(1− λ)2

R Zs(Xi)IZs(Xi) estimator of ∇g(Zs)

θ̃s = max

(
0, θ̂s −

( c
λ

+ 1
)√ log(1/ε)

Cm
− 1

8rn

)
lower confidence
bound on g(Zs)− f(0)

if m ≥
(

4cr

θ̃s

)2 log(1/ε)

C
then

set s? = s, m? = m, and return
{
x : 〈∇̂gs, x− Z〉 ≤ 0

}
Algorithm 1: Separation oracle

Lemma 6 Suppose that Algorithm 1 is initialised with a noisy convex function f ∈ Lip` and let
∆ = E[f(X)]−minx∈Br f(x), whereX has law N (0, I). Assume that x ∈ Br is a point for which
f(x) ≤ f(0) + δ. Let m? be the number of iterations before Algorithm 1 returns a half-space H .
Provided that m? is finite, H ∩ Sr/(2d) 6= ∅. Furthermore, with probability at least 1 − 1/n2 the
following hold:

(1) Correctness: x ∈ H or m? > n.

(2) Running time: if ∆ ≥ 2/n, then m? ≤ const

(
d5

∆2λ2
max

(
1,

1

λ2r2

)
log(n)

)
.

where const is a universal constant.

Proof Let θs = g(Zs) − f(0) and θ̂s,m and ∇̂gs,m and θ̃s,m be the values of θ̂s, ∇̂gs and θ̃s as
defined in Algorithm 1 in the mth iteration. Note the definition of s? ∈ [u] and m? in Algorithm 1.
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To begin, provided the algorithm returns, the half-space returned has a non-empty intersection with
Sr/(2d) because {Zs}us=1 are all in Sr/(2d) by definition.

Concentration of measure Let ε = 1/(3un3), where u =
⌈
48 log(3n2)

⌉
is defined in Algo-

rithm 1. A union bound in combination with Lemma 4 and Eq. (1) shows that with probability at
least 1− 2/(3n2) the following hold for all m ∈ [n] and s ∈ [u]:

|θ̂s,m − θs| ≤
1

8rn
+
( c
λ

+ 1
)√ log(1/ε)

Cm

|〈∇̂gs,m −∇g(Zs), x− Zs〉| ≤
‖x− Zs‖

8rn
+ ‖x− Zs‖max

(
c log(1/ε)

Cm
, c

√
log(1/ε)

Cm

)
. (7)

By Lemma 5 and the assumption in the statement of the present lemma that ∆ ≥ 2/n, for any
s ∈ [u], with probability at least 1/48,

θs ≥
λr∆

16 · 108d5/2
. (8)

Therefore, with probability at least 1 − (47/48)u ≥ 1 − 1/(3n2), there exists an s ∈ [u] such that
Eq. (8) holds. In the remaining two parts we prove the correctness and bound the number of queries
under the event where all of the above concentration properties hold, which by a union bound has
probability at least 1− 1/n2.

Proof of correctness By the assumed concentration properties, θ̃s,m ≤ max(0, θs) for all m ≤ n.
Furthermore, whenever the algorithm halts with m? ≤ n, combining the stopping condition with
Eq. (7) gives

〈∇̂gs?,m?
, x− Zs?〉 ≤ 〈∇g(Zs?), x− Zs?〉+

‖x− Zs?‖
8rn

+
‖x− Zs?‖θs?

4r

≤ 〈∇g(Zs?), x− Zs?〉+
1

4n
+
θs?
2
,

where we used the fact that x ∈ Br and Zs? ∈ Sr/(2d) ⊂ Br, and that c, r > 1. Since g is convex
and g(x) ≤ f(x) by the first part of Lemma 4, and by the assumption that f(x) ≤ f(0) + δ,
it follows that f(0) + δ ≥ f(x) ≥ g(x) ≥ g(Zs?) + 〈∇g(Zs?), x − Zs?〉, which shows that
〈∇g(Zs?), x− Zs?〉 ≤ δ − θs? . Therefore, whenever m? ≤ n,

〈∇̂g(Zs?), x− Zs?〉 ≤ 〈∇g(Zs?), x− Zs?〉+
θs?
2

+
1

4n
≤ δ +

1

4n
− θs?

2
≤ 1

2n
− θs?

2
≤ 0 ,

where the last inequality follows since n ≥ m? ≥ 1/θ̃s?,m? ≥ 1/θs? . The result follows from the
definition of the half-space returned by Algorithm 1.

Bound on running time Let s ∈ [u] be such that Eq. (8) holds and

M =

⌈
log(1/ε)

C
max

((
8c/λ+ 4

θs

)2

,

(
8cr

θs

)2
)⌉
≤ const

(
d5

λ2∆2
max

(
1,

1

λ2r2

)
log(n)

)
,

9
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where const ≈ 1022 is a suitably large universal constant. By construction, the algorithm has
returned after m? ≤M iterations provided that θ̃s,M ≥ 1

2θs, which holds because

θ̃s,M = θ̂s,M −
( c
λ

+ 1
)√ log(1/ε)

CM
− 1

8rn
≥ θs −

2

8rn
−
(

2c

λ
+ 1

)√
log(1/ε)

CM

≥ 3θs
4
−
(

2c

λ
+ 1

)√
log(1/ε)

CM
≥ θs

2
,

where in the first inequality we used the assumed concentration property and the second that for
M ≤ n, θs ≥ 1/n, r > 1 and that C < 1.

6. Algorithm

The algorithm combines the ellipsoid method described at the start of Section 4 with the shallow
cut separation oracle defined in Section 5.

let K 1 = K

for k = 1, 2, . . .:
let Ek ← E (K k) and Ak ∈ Aff(Rd) be such that Ak(Br) = Ek

run Algorithm 1 with fk = L ◦Ak until oracle returns half-space Hk

update the constraint set: K k+1 ← K k ∩Ak(Hk)

Algorithm 2

7. Proof of Theorem 2

The proof is decomposed into three steps: (1) defining and bounding the probability of a good event,
(2) bounding the total number of iterations, and (3) combining the previous parts. Before these, let
us introduce a little common notation. By translating coordinates, assume without loss of generality
that B1 ⊂ K . Let x? = arg minx∈K L (x) and, using Lemma 7, let T ⊂ K be a collection of d+ 1
points such that (a) x? ∈ T , (b) maxy∈T ‖x− y‖ ≤ δ, and (c),

vol(conv(T )) ≥ 1

2d!

(
3

4

)(d−1)/2( δ

diam(K )

)d
.

Since L ∈ Lip1, it follows that L (x) ≤ L (x?) + δ for all x ∈ T .

Step 1: Good event Recall from the definition of Algorithm 2 that fk = L ◦ Ak. Since Ak(Br)
is the minimum volume ellipsoid of K k, by the remark after Lemma 3, Ak(Br/d) ⊂ K k ⊂ K ⊂
diam(K )B1. Therefore, for any x, y ∈ Rd,

fk(x)− fk(y) ≤ ‖Ak(x− y)‖ ≤ d diam(K )

r
‖x− y‖ = `‖x− y‖ ,

10
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which means that fk ∈ Lip`. Let ∆k =
∫
fk(x) dρ(x) − f(A−1

k (x?)), which is the instantaneous
expected regret of querying Ak(X); note that 2∆k is an upper bound on the regret per round in
iteration k, since f(0) ≤

∫
fk(x) dρ(x) by convexity. Let G0 be the trivial event that always holds

and Gk be the event that the following both hold:
(a) T ⊂ K k+1 if there is an iteration k + 1.
(b) The number of rounds in iteration k is at most

Nk ≤ const

(
d5

∆2
kλ

2
max

(
1,

1

λ2r2

)
log(n)

)
, (9)

where const is the universal constant of Lemma 6.
Let k be fixed and suppose that Gk holds so that T ⊂ K k, which implies that A−1

k (T ) ⊂ Br.
Therefore, the minimiser of fk is in Br and furthermore that for any x ∈ A−1

k (T ) we have fk(x) ≤
fk(0) + δ. Hence, by Lemma 6 and a union bound over x ∈ T , P(Gk+1 | Gk) ≥ 1− (d+ 1)/n2,
where we used the naive bound that Nk ≤ n in case ∆k ≤ 1/(2n).

As promised, next we show that the algorithm only queries L outside of K with low probability.
Suppose that X ∼ N (0, I), then by Lemma 8, P(‖X‖ ≥ 6

√
d log(1/δ)) ≤ δ. Algorithm 1 is

initialised with fk = L ◦ Ak and hence queries L either at Ak(0) or Ak(X) where X is a standard
Gaussian. Since Ak(Br/d) ⊂ K and 6

√
d log(1/δ) ≤ r/d, it follows by a union bound that the

algorithm never queries L outside K with probability at least 1− nδ ≥ 1− 1/n.
Finally, define the good event G = ∩kGk ∩ {algorithm never queries outside K }. Since there

are at most n iterations, by induction and a union bound it follows that P(G) ≥ 1− (d+ 2)/n.

Step 2: Bounding the number of iterations Let k? be the number of iterations. On the event G,
by Lemma 3 and the fact that Hk ∩Br/(2d) 6= ∅,

1

2d!

(
3

4

)(d−1)/2( δ

diam(K )

)d
≤ vol(T ) ≤ vol(K k) ≤ γk−1 vol(E1) ≤ γk−1 diam(K )d vol(B1) .

Hence, by the definition of γ = exp(−1/(20d)), the number of iterations is bounded by k? ≤
const d2 log (diam(K )/δ), where const is a suitably large universal constant.

Step 3: Combining Decomposing the regret,

Rn ≤ nE [1Gc ] + 2E

[
1G

k?∑
k=1

Nk∆k

]

≤ (d+ 2) + const

(
d5/2

λ
max

(
1,

1

λr

)
E

[
1G

k?∑
k=1

√
Nk log(n)

])

≤ (d+ 2) + const

d5/2

λ
max

(
1,

1

λr

)√√√√E

[
1Gk?

k?∑
k=1

Nk

]
log(n)


= (d+ 2) + const

(
d5/2

λ
max

(
1,

1

λr

)√
E [1Gk?]n log(n)

)

≤ const

(
d9/2√n (log(n diam(K )))3/2 max

(
1,

√
log(n diam(K ))

d

))
,
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where in the first inequality we used the fact that the losses are bounded in [0, 1] and P(G) ≥
1 − (d + 2)/n. The second inequality is true by the definition of the good event and the fact that
Eq. (9) implies that

Nk∆k ≤ const

(
d5/2

λ
max

(
1,

1

λr

))√
Nk log(n) .

The final inequalities follow from the bound on the number of iterations, the fact that
∑k?

k=1Nk = n
and naive simplification.

8. Computation

The only computationally heavy part of Algorithm 2 is the update of the minimum volume ellipsoid.
Recall the algorithm is initialised with K 1 = K . Then, in each round the following steps are needed:
(a) Find ellipsoid Ek = E (K k); (b) use Algorithm 1 to find a shallow cut half-space Hk,;and (c)
update K k+1 = K k ∩ Hk. Let Ak ∈ Aff(Rd) be such that Ak(Br) = Ek. The two essential
properties of these calculations are: (1) thatAk(Bαr) ⊂ K where α is large enough so thatX ∈ Bαr
with high probability when X ∼ N (0, I); and (2) that vol(Ek+1) ≤ γ vol(Ek) for some γ < 1.
The complexity of (approximately) computing Ek depends on the representation of K k. Below we
outline three special cases.

Unconstrained version Consider the case where L is defined on all of Rd and the learner knows
the minimum lies inBR for some given radiusR. Then a simple modification of Algorithm 2 yields
an efficient algorithm that only needs elementary matrix operations. Specifically, let the algorithm
be initialised with K 1 = BR. Subsequently,

(a) Set Ek = K k;
(b) Use Algorithm 1 to find a shallow cut half-space Hk;
(c) Update K k+1 = E (Ek ∩Hk).

The difference is that K k+1 is taken to be the minimum volume ellipsoid of Ek ∩ Hk, rather than
the intersection K k ∩Hk. The point is that E (Ek ∩Hk) has a closed form solution (Grötschel et al.,
2012, §3.1). Nothing changes in the analysis. The volume of (Ek)k still shrinks exponentially
and because L is defined everywhere, the condition that the shrunken ellipsoid is contained in the
domain of L is satisfied automatically.

Polytopes When K is a polytope, then K ∩Hk is also a polytope. Sadly, however, finding the min-
imum volume ellipsoid for a polytope represented as an intersection of half-spaces is computation-
ally intractable. Like in the unconstrained case, a simple modification of the algorithm is efficient
and retains the same guarantees. Given a polytope P and an ellipsoidE′ with P ⊂ E′, there exists an
efficient algorithm for finding another ellipsoid E = A(Br) ⊂ E′ such that A(Bαr) ⊂ P ⊂ A(Br)
where α = (d(d+ 1))−1/2. The algorithm for computing E is itself based on the ellipsoid method
and is explained in the proof of Theorem 4.6.3 of Grötschel et al. (2012). The modified algorithm
is initialised with K 1 = K and an ellipsoid E1 = A1(Br) for which A1(Bαr) ⊂ K ⊂ A1(Br).
Subsequently:

(a) Use Algorithm 1 to find a shallow cut half-space Hk.
(b) Compute E′k+1 = E (Ek ∩Hk) and K k+1 = K k ∩Hk.
(c) Compute ellipsoid Ak+1(Br) = Ek+1 ⊂ E′k+1 such that Ak+1(Bαr) ⊂ K k+1 ⊂ Ak+1(Br).

12
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Separation oracle Like for polytopes, when K is represented by a (weak) separation oracle,
there exists an efficient algorithm for finding an ellipsoid E and associated affine map A such that
A(Brα) ⊂ K ⊂ A(Br), where α = 1/(d1/2(d + 1)). For details, see Theorem 4.6.1 (Grötschel
et al., 2012). Notice that α is a factor of d−1/2 worse than what was achievable for a polytope, but
still large enough that X ∈ Bαr with high probability given our choice of r.

9. Discussion

Other surrogate losses What is interesting about our choice of surrogate loss is that it is a lower
bound on the true loss (it is optimistic), but is also a poor approximation. Meanwhile, the surrogate
losses used in many previous works are good approximations, but suffer from high variance that
leads to suboptimal rates (Flaxman et al., 2005, and many followups). Interestingly, the standard
approach based on smoothing leads to a surrogate loss that is an upper bound on the true loss.

Another observation is g (as defined in Eq. (3)) and its gradients can be estimated from single-
point feedback, so some of the theory developed here may potentially have applications in the
adversarial model.

Other approaches There are many ideas to explore to improve the bound. One can try alterna-
tive loss functions or replace the ellipsoid method with something else like Vaidya’s cutting plane
method. As mentioned, Agarwal et al. (2013) borrowed the tetrahedron construction of Nemirovsky
and Yudin (1983), which was used for noise-free zeroth order optimisation. But this latter method
already has a poor dependence on the dimension, which has been improved (for example) by Pro-
tasov (1996). There is no immediate reduction from noise free convex optimisation to the bandit
case, however. One must check that the algorithm is (a) robust to noise and (b) the regret can be
controlled.
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Appendix A. Practical considerations

The only polynomial-time algorithms with O(
√
n polylog(n)) regret without smoothness or strong

convexity are by Agarwal et al. (2013) and Bubeck et al. (2017a), with the latter designed for the
adversarial setting. Below we discuss the computation requirements of these algorithms.
Bubeck et al. (2017a): The algorithm is based on continuous exponential weights and needs to

solve two computationally heavy sub-problems in every round: (a) repeatedly approximately
sampling from an approximately log-concave probability measure and (b) approximately op-
timising a convex function. Implementing this algorithm would be a daunting task, except in
one dimension for which there is a simplified version.

Agarwal et al. (2013): Like our algorithm, an elimination argument is used and approximate min-
imum volume ellipsoids need to be computed periodically. The algorithm is otherwise ele-
mentary, though care would be required to carefully handle the many cases in the tetrahedron
construction borrowed from Nemirovsky and Yudin (1983). As mentioned, the regret of this
algorithm is O(d16√n polylog(n)), which hints towards worse performance. We are not
aware of an existing implementation.

Algorithm 2 can be implemented in an afternoon and in low dimensional problems is numerically
robust and extremely fast. There are, however, a number of modifications that are essential before
the algorithm is able to get off the ground.

1. The theoretically recommended value of δ is too conservative. This is largely a consequence
of the analysis and is due both to naive rounding and the decision to use a single δ for all
small error terms.

2. The theoretically recommended value of r is also much too conservative. We recommend
r = d2

√
log(1/δ) as a heuristically well-motivated choice for which we did not observe any

problems in experiments.
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3. Replace the finite-time confidence bounds in Algorithm 1 with (asymptotic) statistical hypoth-
esis tests. Possibly variance-aware concentration inequalities would suffice, but in practice the
number of samples is large enough that the Gaussian approximation is reasonable.

With these changes we were able to produce the regret plot and accompanying piece of abstract art
in Fig. 2.
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Flaxman et al. (2005)

Figure 2: The regret of a modified version of Algorithm 2 and the algorithm proposed by Flaxman
et al. (2005) with L (x) = ‖x‖1 and d = 2 and K is a ball of radius 4 and center (2, 2). The
parameters of the algorithm by Flaxman et al. (2005) were tuned to the values recommended by
theory, so a tuned version of this algorithm may have better performance. The piecewise linear
regret of this algorithm is caused by the fixed learning rate. The shaded circles in the right-hand
figure are the sequence of ellipsoids generated by Algorithm 2. The lines mark the half-spaces and
the green dot is the minimiser of L .

Appendix B. Technical inequalities

Lemma 7 Let K be a convex body with B1 ⊂ K and let x ∈ K . Then there exists a set T of d+ 1
points such that

(a) x ∈ T ;
(b) maxy∈T ‖x− y‖ ≤ δ;

(c) vol(conv(T )) ≥ 1
2d!

(
3
4

)(d−1)/2
(

δ
diam(K )

)d
.

Proof By way of a rotation, assume without loss of generality that x = (α, 0, . . . , 0) with α ∈
[0,diam(K )]. Let U = {y ∈ B1 : y1 = −1/2}, which is a (d − 1)-dimensional ball with radius√

3/2 and take y1, . . . , yd ∈ U to be the corners of a (d−1)-dimensional simplex in U of maximum
volume.2 Then, let ε = δ/diam(K ) and xi = (1− ε)x+ εyi, which is chosen so that ‖x−xi‖ ≤ δ.

2. Note that the construction and the following calculations are valid for d = 1, in which case U = {y1} is a single
point with 0-dimensional volume 1.
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Finally, let T = {x, x1, . . . , xd}. Then, denoting by vold the volume in Rd to avoid confusion,

vold(conv(x, x1, . . . , xd)) = εd vold(conv(x, y1, . . . , yd)) ≥
εd

2d
vold−1(conv(y1, . . . , yd))

=
εd

2d

(
3

4

)(d−1)/2 dd/2

(d− 1)(d−1)/2(d− 1)!
≥ εd

2d!

(
3

4

)(d−1)/2

,

where the first inequality follows because the height of the cone with base (y1, . . . , yd) and point x
is at least 1/2 and the second equality follows because the volume of the largest (d − 1)-simplex
inside Bd−1

1 is dd/2/((d − 1)(d−1)/2(d − 1)!). The latter can be easily verified by using that the
largest (d− 1)-simplex with diameter 1 is a regular simplex with volume

√
d/2d−1/(d− 1)! (see,

e.g., Kind and Kleinschmidt, 1976) and that the (d − 1)-regular simplex spanned by the standard
unit vectors in Rd has a diameter of

√
2 and the radius of its circumscribed sphere is

√
1− 1/d.

Appendix C. Concentration

This whole section is a rather monotonous application of standard tail bounds.

Lemma 8 Let X ∼ N (0, I) and δ ≤ 1/e. Then P
(
‖X‖ ≥ 6

√
d log(1/δ)

)
≤ δ.

Proof This is a naive simplification of a tail bound for the χ-squared distribution (Laurent and
Massart, 2000, Lemma 1).

Lemma 9 Suppose that η ∼ H (S1) and x ∈ S1 is arbitrary. Then,

P

(
|〈η, x〉| ≥ ε

√
π

2d

)
≥ 1− ε for all ε ∈ [0,

√
2d/π] .

Proof P(|〈η, x〉| ≥ a) is the surface area of the hyperspherical cap of height 1 − a divided by
the surface area of a hemisphere, which can be written in terms of the regularised incomplete beta
function (Li, 2011):

P (|〈η, x〉| ≥ a) = I1−a2

(
d− 1

2
,
1

2

)
.

Let a = ε
√
π/(2d). Differentiating shows that a 7→ I1−a2((d − 1)/2, 1/2) is convex on [0, 1]

whenever d ≥ 3 and concave otherwise (famously linear when d = 3). When d = 1, then |〈η, x〉| =
1 and when d = 2, then by concavity and the fact that I0(1/2, 1/2) = 1 and I1(1/2, 1/2) = 0,

I1−a2

(
d− 1

2
,
1

2

)
≥ 1− a = 1− ε

√
π

4
≥ 1− ε .

Finally, when d ≥ 3, using convexity and letting B(α, β) be the beta function,

I1−a2

(
d− 1

2
,
1

2

)
≥ 1− a

(
∂

∂x
I1−x2

(
d− 1

2
,
1

2

) ∣∣∣∣
x=0

)
= 1− ε

√
2π/d

B
(
d−1

2 , 1
2

) ≥ 1− ε . �
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Lemma 10 Let η ∼ H (S1). Then, E[η2
1] = 1/d and E[η4

1] = 3/(d2 + 2d).

Proof The first is trivial by symmetry. For the second, recall that the cumulative density function
of |η1| is P(|η1| ≥ a) = I1−a2((d − 1)/2, 1/2) with I the regularised incomplete beta function.
Differentiating yields the density which is integrated to obtain the result.

Lemma 11 Let a ∈ Rd be a vector with non-negative entries and η ∼ H (S1). Then,

P

(
〈a, η2〉 ≥ ‖a‖1

2d

)
≥ 1

12
,

where η2 is interpreted coordinatewise.

Proof By linearity of expectation and Lemma 10, E[〈a, η2〉] = ‖a‖1/d. On the other hand, by the
second part of Lemma 10,

E[〈a, η2〉2] =
∑
i,j

aiajE[η2
i η

2
j ] ≤

∑
i,j

aiaj

√
E[η4

i ]E[η4
j ] =

∑
i,j

3aiaj
d2 + 2d

=
3‖a‖21
d2 + 2d

.

Hence, by the Payley-Zygmund inequality, for any θ ∈ [0, 1],

P(〈a, η2〉 ≥ θ‖a‖1/d) ≥ (1− θ)2E[〈a, η2〉]2
E[〈a, η2〉2]

≥ (1− θ)2 ‖a‖21/d2

3‖a‖21/(d2 + 2d)
≥ 1

3
(1− θ)2 .

The result is completed by choosing θ = 1/2.

Lemma 12 Suppose X ∼ N (0, I) and ‖z‖ = r/(2d). Then,

P

(
R z((1− λ)X + λz) ≥ e

(1− λ)d

)
≤ δ and P

(
R z(X) ≤ exp(−2/(1− λ)2)

(1− λ)d

)
≤ 2δ .

Proof Using the definitions and elementary tail bounds for the standard Gaussian,

P

(
R z((1− λ)X + λz) ≥ e

(1− λ)d

)
= P

(
exp

(
−1

2
‖X‖2 +

1

2
‖(1− λ)X + λz‖2

)
≥ e
)

≤ P
(

exp

(
λ(1− λ)〈X, z〉+

λ2‖z‖2
2

)
≥ e
)

= P

(
λ(1− λ)〈X, z〉+

λ2‖z‖2
2

≥ 1

)
≤ P

(
λ(1− λ)〈X, z〉 ≥ λ(1− λ)‖z‖

√
2 log(1/δ)

)
≤ δ ,

18
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where in the second to last inequality we used the assumption in the lemma statement that ‖z‖ =
r/(2d) and in the last inequality we used naive simplification in combination with the fact that
〈X, z〉/‖z‖ is a standard Gaussian and the well known tail bound (Abramowitz and Stegun, 1964,
§26), ∫ ∞

ε
ρ(x) dx ≤ 1√

2π

1

ε
exp(−ε2/2) for all ε > 0 .

For the second part,

P

(
R z(X) ≤ exp(−2/(1− λ)2)

(1− λ)d

)
= P

(
exp

(
1

2
‖X‖2 − 1

2(1− λ)2
‖X − λz‖2

)
≤ exp

(
− 2

(1− λ)2

))
= P

(
1

2
‖X‖2

(
2λ− λ2

)
+
λ2

2
‖z‖2 − λ〈X, z〉 ≥ 2

)
≤ P

(
λ‖X‖2 +

λ2

2
‖z‖2 − λ〈X, z〉 ≥ 2

)
≤ P

(
λ‖X‖2 ≥ 1

)
+ P

(
λ2

2
‖z‖2 − λ〈X, z〉 ≥ 1

)
≤ P

(
λ‖X‖2 ≥ 1

)
+ P

(
λ〈X, z〉 ≥ 1

2

)
≤ 2δ .

where in the second last inequality we used the fact that λ‖z‖ ≤ 1 and in the final inequality we
used Lemma 8, the assumption that ‖z‖ = r/(2d), the definitions of r and λ, and the above tail
bound for the Gaussian.

Lemma 13 Let f : Rd → R be a non-negative function and let ‖z‖ ≤ r/(2d) and X ∼ N (0, I)
and Y = (1− λ)X + λz. Then,

E[f(Y )] ≤ exp(2)E[f(X)] +
√
δE[f(Y )2]

E[f(Y )] ≥ exp(−8)E[f(X)]−
√
δE[f(X)2] .

Proof Let A = {x : R z(x) ≤ e/(1− λ)d}. Then, by Lemma 12,

E[f(Y )] = E[f(Y )1A(Y )] + E[f(Y )1Ac(Y )]

≤ E[f(Y )1A(Y )] +
√
E[f(Y )2]E[1Ac(Y )]

≤ E[f(Y )1A(Y )] +
√
δE[f(Y )2]

= E[f(X)1A(X)R z(X)] +
√
δE[f(Y )2]

≤ e

(1− λ)d
E[f(X)] +

√
δE[f(Y )2]

≤ exp(2)E[f(X)] +
√
δE[f(Y )2] .
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For the other direction, let B = {x : R z(x) ≥ exp(−2/(1− λ)2)/(1− λ)d}. Then, by Lemma 12,

E[f(Y )] = E[f(X)R z(X)]

= E[f(X)R z(X)1B(X)] + E[f(X)R z(X)1Bc(X)]

≥ exp(−2/(1− λ)2)

(1− λ)d
E[f(X)1B(X)]

≥ exp(−2/(1− λ)2)

(1− λ)d
E[f(X)]− exp(−2/(1− λ)2)

(1− λ)d
E[f(X)1Bc(X)]

≥ exp(−2/(1− λ)2)

(1− λ)d
E[f(X)]− exp(−2/(1− λ)2)

(1− λ)d

√
2δE[f(X)2]

≥ exp(−8)E[f(X)]−
√
δE[f(X)2] . �

Lemma 14 Let h : Rd → R be a non-negative convex function with h(0) = 0 and X ∼ N (0, I).
Then E

[
‖X‖2h(X)

]
≥ d

32E[h(X)].

Proof Note that ‖X‖2 has a χ-squared distribution with mean d and E[‖X‖4] = d2+2d. Therefore,
by the Payley-Zygmund inequality,

P

(
‖X‖2 ≥ d

2

)
≥ 1

4

E[‖X‖2]2

E[‖X‖4]
=

d2

4(d2 + 2d)
≥ 1

8
.

Therefore,

E[‖X‖2h(X)] ≥ E
[
d

2
h(X)1(‖X‖2 ≥ d/2)

]
≥ d

4
E
[
h(X)1(‖X‖2 ≥ d/2

]
+
d

4
E
[
h(X)1(‖X‖2 ≥ d/2)

]
≥ d

4
E
[
h(X)1(‖X‖2 ≥ d/2)

]
+
d

4

P(‖X‖2 ≥ d/2)

P(‖X‖2 ≤ d/2)
E
[
h(X)1(‖X‖2 < d/2)

]
≥ d

4
E
[
h(X)1(‖X‖2 ≥ d/2)

]
+

d

32
E
[
h(X)1(‖X‖2 < d/2)

]
≥ d

32
E [h(X)] . �

Appendix D. Proof of Lemma 4

That g(z) ≤ f(z) follows immediately from convexity. Moving now to (a) and (b). Let U =
(1− λ)X + λz. Then, by Lemma 8 and the definition of r,

P(‖X‖ ≥ r/d) ≤ P(‖X‖ ≥ 6
√
d log(1/δ)) ≤ δ .

Similarly,

P(‖U‖ ≥ r/d) ≤ P(‖X‖+ λ‖z‖ ≥ r/d) ≤ P(‖X‖ ≥ 6
√
d log(1/δ)) ≤ δ .
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Combining the above with Lemma 12, Lemma 13 and a union bound,

P(Iz(U) 6= 1) ≤ 2δ ≤ ζ , exp(9)
√
δ

P(Iz(X) 6= 1) ≤ δ + exp(8)(2δ +
√
δ) ≤ ζ .

Let us now prove (a):

E[ĝ(z)] = E

[
f(X)

(
1− 1

λ
+

R z(X)

λ

)
Iz(X)

]
= E

[
f(X)

(
1− 1

λ

)
Iz(X) +

f(U)

λ
Iz(U)

]
= g(z) + E

[
f(X)

(
1− 1

λ

)
(Iz(X)− 1) +

f(U)

λ
(1− Iz(U))

]
≤ g(z) +

1

λ

√
E [f(X)2]P(Iz(X) 6= 1) +

1

λ

√
E [f(U)2]P(Iz(U) 6= 1)

≤ g(z) +
1

λ

√
ζ(1 + `2E[‖X‖2) +

1

λ

√
ζ(1 + `2E[‖(1− λ)X + λz‖2])

≤ g(z) +
1

λ

√
ζ(1 + d`2) +

1

λ

√
ζ(1 + `2E[‖(1− λ)X + λz‖2])

≤ g(z) +
2

λ

√
ζ(1 + (d+ 1)`2)

≤ g(z) +
1

8rn
.

A symmetric argument yields (a). In a similar manner, for any η ∈ B1,

E
[
〈∇̂g(z)−∇g(z), η〉

]
= E [〈X, η〉f(U)(Iz(U)− 1)]

≤
√
E[‖X‖2f(U)2]P(Iz(U) 6= 1)

≤
√
ζE[‖X‖2(1 + `2 + `2‖X‖2)]

≤
√
ζ(d+ (d2 + 3d)`2)

≤ 1

8rn
.

where we used the fact that E[‖X‖4] = d2 + 2d. We move now to parts (c) and (d). For (c), notice
that

‖ĝ(z)‖ψ2 =

∥∥∥∥Y (1− 1

λ
+

R z(X)

λ

)
Iz(X)

∥∥∥∥
ψ2

≤ 2 exp(1)

λ
‖Y Iz(X)‖ψ2

=
2 exp(1)

λ
‖(f(X) + ξ)Iz(X)‖ψ2 ≤

2 exp(1)

λ

(
1 +

√
1/ log(2)

)
,
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For (d),

‖〈∇̂g(z), η〉‖ψ1 =

∥∥∥∥Y 〈X − λz, η〉(1− λ)2
R z(X)Iz(X)

∥∥∥∥
ψ1

≤ ‖Y Iz(X)‖ψ2

∥∥∥∥〈X − λz, η〉(1− λ)2
R z(X)Iz(X)

∥∥∥∥
ψ2

≤ exp(3)‖Y Iz(X)‖ψ2 ‖〈X − λz, η〉‖ψ2

≤ exp(3)‖Y Iz(X)‖ψ2

(
‖〈X, η〉‖ψ2

+ λ ‖〈z, η〉‖ψ2

)
≤ exp(3)‖Y Iz(X)‖ψ2

(
‖〈X, η〉‖ψ2

+ λ ‖〈z, η〉‖ψ2

)
≤ exp(3)‖Y Iz(X)‖ψ2

(
2

√
2

3
+ λ‖z‖

)

≤ exp(3)‖Y Iz(X)‖ψ2

(
2

√
2

3
+
√

2

)

≤ exp(3)(1 +
√

1/ log(2))

(
2

√
2

3
+
√

2

)
.

Appendix E. Proof of Lemma 5

Let x? = arg minx∈Br
f(x) and ∇f(0) be any subgradient of f at 0. Then, since f is convex,

f(x?) ≥ f(0) + 〈∇f(0), x?〉 ≥ f(0)− ‖x?‖‖∇f(0)‖ ≥ f(0)− r‖∇f(0)‖ .

Rearranging shows that ‖∇f(0)‖ ≥ (f(0) − f(x?))/r. Let h(z) = f(z) − f(0) − 〈∇f(0), z〉.
Clearly h is non-negative and convex. Furthermore, since f ∈ Lip`, it follows also that h ∈ Lip2`.
Let

Ψ(z) =
1

λ
E [h((1− λ)X + λz)− h(X)] .

Plugging in the definitions shows that

g(z) = E[f(X)] + 〈∇f(0), z〉+
1

λ
E [h((1− λ)X + λz)− h(X)]

= E[f(X)] + 〈∇f(0), z〉+ Ψ(z) .

By Lemma 15 below, when Z ∼ H (Sr/(2d)), then with probability at least 1/12,

max
(
Ψ(Z) + 〈∇f(0), Z〉, Ψ(−Z)− 〈∇f(0), Z〉

)
≥ λ‖Z‖|〈Z,∇f(0)〉|

107
− 104r4 diam(K )

√
δ

λ
.

Furthermore, by Lemma 9, with probability at least 1− 1/24,

|〈∇f(0), Z〉| ≥ 1

24

√
π

2
‖∇f(0)‖‖Z‖d−1/2 .
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Therefore, with probability at least 1/24,

max(g(Z), g(−Z))− f(0) ≥ E[f(X)]− f(0) +
λ‖Z‖2‖∇f(0)‖

2 · 108
√
d

− 104r4 diam(K )
√
δ

λ

≥ E[f(X)]− f(0) +
λ‖Z‖2(f(0)− f(x?))

2 · 108r
√
d

− 104r4 diam(K )
√
δ

λ

≥ λ‖Z‖2(E[f(X)]− f(x?))

2 · 108r
√
d

− 104r4 diam(K )
√
δ

λ

=
λ∆r

8 · 108d5/2
− 104r4 diam(K )

√
δ

λ

≥ λ(∆− 1/n)r

8 · 108d5/2
,

where in the second inequality used the convexity of f and that x? ∈ Br, the third holds since
E[f(X)] ≥ f(0) by Jensen’s inequality, while the last inequality holds by the definition of δ (in fact,
δ is defined to make this inequality true). The result now follows since H (Sr/(2d)) is rotationally
invariant, the laws of Z and −Z are the same, so that with probability at least 1/48,

g(Z)− f(0) ≥ λ(∆− 1/n)r

8 · 108d5/2
. �

Lemma 15 Let u ∈ Rd and let Ψ and h be defined as above. Then, with probability at least 1/12,

max
(
Ψ(Z) + 〈Z, u〉, Ψ(−Z)− 〈Z, u〉

)
≥ λ‖Z‖|〈Z, u〉|

107
− 104r4 diam(K )

√
δ

λ
.

Proof Recall that X ∼ N (0, I) and h ∈ Lip2` is convex, non-negative and with h(0) = 0. The
first call of business is to resolve an annoying edge case. Since h is non-negative, by definition
Φ(z) ≥ −E[h(X)]/λ. Suppose that E[h(X)] ≤ 104r4 diam(K )

√
δ, then for any z,

max(Ψ(z) + 〈z, u〉,Ψ(−z)− 〈z, u〉) ≥ |〈z, u〉| − 104r4 diam(K )
√
δ

λ
.

Since λ‖z‖ ≤ 1, this implies the result. For the remainder, assume that E[h(X)] > 104r4 diam(K )
√
δ.

Integrating by parts shows that

∇Ψ(z) =
1

1− λE [Xh((1− λ)X + λz)] and ∇2Ψ(z) =
λ

(1− λ)2
E
[
XX>h((1− λ)X + λz)

]
.

Let H = E[XX>h(X)] and z ∈ Sr/(2d) and suppose that

‖z‖2H ≥
‖z‖2 tr(H)

2d
. (10)

We will prove that this implies the lemma’s conclusion. The proof is concluded by Lemma 11
showing that when Z ∼ H (Sr/(2d)), then

P

(
‖Z‖2H ≥

‖Z‖2 tr(H)

2d

)
≥ 1

12
. (11)
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To see this, notice that H is positive semidefinite and symmetric by definition, hence H = U>AU
where U is a rotation matrix and A = 〈a1, . . . , ad〉 is a diagonal matrix with the eigenvalues of H ,
which are non-negative. Letting Z ′ = UZ/‖Z‖, it is easy to see that Z ′ is uniformly distributed
over S1 and ‖Z‖2H/‖Z‖2 = Z ′>AZ = 〈a, Z ′2〉, where Z ′2 is interpreted coordinatewise and
a = (a1, . . . , ad). Therefore, since tr(H) = ‖a‖1, Lemma 11 implies Eq. (11).

For the remainder, we prove the lemma under the assumption that Eq. (10) holds and also,
without loss of generality, that 〈z, u〉 ≥ 0. The core idea is to argue that Ψ(0) is relatively small
and that either Ψ(±z) is negligible relative to |〈z, u〉| or that Ψ has a lot of curvature so that one
of Ψ(±z) dominates |〈z, u〉|. We get started with three facts, all of which follow arduously from
Lemma 13:

for all s ∈ [0, 1] E[〈z,X〉2h((1− λ)X + λsz)] ≤ 500‖z‖2H (12)

E[〈z,X〉2h((1− λ)X] ≥ ‖z‖
2
H

1500
(13)

E[h((1− λ)X + λz)] ≤ 10E [h(X)] . (14)

The proof is delayed until the end of the section. Moving on, by Lemma 14 and Eq. (10),

‖z‖2H ≥
‖z‖2 tr(H)

2d
=
‖z‖2
2d

tr(E[XX>h(X)])

=
‖z‖2
2d

E[‖X‖2h(X)] ≥ ‖z‖
2

64
E[h(X)] ≥ E[h(X)] , (15)

where in the last step we used that ‖z‖2 = r2/(4d2) > 64. Second, by convexity of h and integrat-
ing by parts,

Ψ(0) =
1

λ
E[h((1− λ)X)− h(X)] ≥ −E[〈X,∇h(X)〉]

= E[h(X)]− E[‖X‖2h(X)] ≥ −E[‖X‖2h(X)] .

Therefore, repeating at first the argument in Eq. (15), and using that Ψ(0) ≤ 0 because h is non-
negative and convex with h(0) = 0,

λ‖z‖2H ≥
λ‖z‖2

2d
E[‖X‖2h(X)] ≥ λ‖z‖2

2d
|Ψ(0)| ≥ 6000|Ψ(0)| , (16)

where the final inequality follows from the the fact that z ∈ Sr/(2d) and the definition of r and λ.
We move now to study the curvature of Ψ. Let η = z/‖z‖. Using the fact that for differentiable f ,
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f(t) = f(0) +
∫ t

0

∫ s
0 f
′′(r) dr ds and also convexity of h shows that

1

2
(Ψ(z) + Ψ(−z)) = Ψ(0) +

1

2

∫ ‖z‖
0

∫ t

0

(
‖η‖2∇2Ψ(sη) + ‖η‖2∇2Ψ(−sη)

)
dsdt

≥ Ψ(0) +

∫ ‖z‖
0

∫ t

0
‖η‖2∇2Ψ(0) dsdt

= Ψ(0) +
1

2
‖z‖2∇2Ψ(0)

= Ψ(0) +
λ

2(1− λ)2
E[〈z,X〉2h((1− λ)X)]

≥ Ψ(0) +
λ‖z‖2H
3000

≥ λ‖z‖2H
6000

, (17)

where the first inequality follows from the convexity of h, the second from Eq. (13) and the third
from Eq. (16). On the other hand,

Ψ(z) = Ψ(0) +

∫ 1

0
〈z,∇Ψ(sz)〉ds

= Ψ(0) +
1

1− λ

∫ 1

0
E[〈z,X〉h((1− λ)X + λsz)] ds

≥ Ψ(0)− 1

1− λ

∫ 1

0

√
E[〈z,X〉2h((1− λ)X + λsz)]E[h((1− λ)X + λsz)] ds

≥ Ψ(0)− 1

1− λ
√

5000‖z‖2HE[h(X)]

≥ −λ‖z‖
2
H

6000
− 1

1− λ
√

5000‖z‖2HE[h(X)]

≥ −λ‖z‖2H

(
1

6000
+

1

1− λ

√
64 · 5000

λ‖z‖

)

≥ −600λ‖z‖2H
λ‖z‖ = −600‖z‖2H

‖z‖ . (18)

where in the first inequality we used Cauchy-Schwarz and in the second we used Eqs. (12) and (14).
The third inequality follows from Eq. (16) and the fourth from Eq. (15). The last step is true since
λ‖z‖ = 1/(4

√
log(1/δ)) < 1 and λ < 4 · 10−5. The result is finally completed by considering two

cases. Suppose that

600‖z‖2H
‖z‖ ≤ 1

2
〈z, u〉 . (19)

Then Ψ(z) + 〈z, u〉 ≥ 〈z, u〉/2 is immediate from Eq. (18). On the other hand, if Eq. (19) does not
hold, then

max (Ψ(z) + 〈z, u〉,Ψ(−z)− 〈z, u〉) ≥ 1

2
(Ψ(z) + Ψ(−z)) ≥ λ‖z‖2H

6000
≥ λ‖z‖〈z, u〉

107
.
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where in the first inequality we used that the max is larger than the average. The second inequality
follows from Eq. (17) and the third from the assumption that Eq. (19) does not hold.

Change of measure The proof is completed by proving Eqs. (12) to (14). All results follow from
the change of measure result in Lemma 13. Since E[h(X)] ≥ 104r4 diam(K )

√
δ, by Eq. (15),

‖z‖2H ≥ E[h(X)] ≥ 104r4 diam(K )
√
δ .

In order to apply Lemma 13 we crudely bound moments of h. Let Y = (1− λ)X + λsz for some
s ∈ [0, 1]. Using the fact that ‖X‖2 is χ-squared distributed,

E[‖X‖6] = (d+ 4)3

E[‖Y ‖6] ≤ (1− λ)‖X‖6 + λ‖z‖6 ≤ (d+ 4)3 +
λr6

(2d)6
.

Now we prove Eqs. (12) to (14). The argument in all cases starts with algebraic manipulation,
followed by an application of Lemma 13 and then collecting constants. We start with Eq. (12):

E
[
〈z,X〉2h(Y )

]
=

1

(1− λ)2
E
[
〈z, Y − λsz〉2h(Y )

]
≤ 4

(
E
[
〈z, Y 〉2h(Y )

]
+ λ2‖z‖4s2E[h(Y )]

)
≤ 4

(
E
[
〈z, Y 〉2h(Y )

]
+ ‖z‖2E[h(Y )]

)
≤ 4

(
E
[
〈z, Y 〉2h(Y )

]
+ 64‖z‖2H

)
≤ 4

(
72E

[
〈z,X〉2h(X)

]
+
√
δE[〈z, Y 〉4h(Y )2]

)
= 4

(
72‖z‖2H +

√
δE[〈z, Y 〉4h(Y )2]

)
≤ 4

(
72‖z‖2H + 2`‖z‖2

√
δE[‖Y ‖6]

)
≤ 4

(
72‖z‖2H + `r

(
(d+ 4)3 +

λr6

(2d)6

)1/2√
δ

)
≤ 4

(
72‖z‖2H + r4 diam(K )

√
δ
)

≤ 4 · 73‖z‖2H
≤ 500‖z‖2H .

where in the first inequality we used that 1/(1 − λ)2 ≤ 2 and (x + y)2 ≤ 2x2 + 2y2. In the
second that λ‖z‖ ≤ 1 and s ∈ [0, 1]. The third inequality follows from Eq. (15) and the fourth
from Lemma 13. The fourth inequality is true because h ∈ Lip2` and by Cauchy-Schwarz. The last
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inequality holds by our assumption on δ. Moving on to Eq. (13),

E
[
〈z,X〉2h((1− λ)X)

]
≥ E

[
〈z, (1− λ)X〉2h((1− λ)X)

]
≥ exp(−8)E

[
〈z,X〉2h(X)

]
−
√
δE [〈z,X〉4h(X)2]

= exp(−8)‖z‖2H −
√
δE [〈z,X〉4h(X)2]

≥ exp(−8)‖z‖2H − 2`‖z‖2
√
δE [‖X‖6]

≥ exp(−8)‖z‖2H −
`r2
√
δ(d+ 4)3

d2

≥ exp(−8)

2
‖z‖2H

≥ ‖z‖
2
H

1500
,

where in the first inequality we used that λ ∈ (0, 1). The second follows from Lemma 13 and the
third from the fact that h ∈ Lip2` and Cauchy-Schwarz. The fourth is from our moment bound and
the fifth from the assumption on δ. Finally, for Eq. (14),

E[h(Y )] ≤ 8E[h(X)] +
√
δE[h(Y )2] ≤ 8E[h(X)] + (2`)

√
δE[‖Y ‖2] ≤ 10E[h(X)] ,

where in the first inequality we used Lemma 13, the second we used Cauchy-Schwarz and then the
assumption on δ.

Appendix F. Non-Lipschitz case: the proof of Theorem 1

The following reduction shows how to use Algorithm 2 for non-Lipschitz zeroth-order stochastic
bandit convex optimisation. A proof of all claims that follow are given by Lattimore (2020). Let

K ′ =
{
nx ∈ K : min

y∈∂K
‖x− y‖ ≥ 1/n

}
L ′(x) = L (x/n) .

Then, using the fact that L (K ) ⊂ [0, 1], it follows that L ′ : K ′ → [0, 1] is 1-Lipschitz and there
exists an x ∈ K ′ such that L ′(x) ≤ minx∈K L (x) + 1/n. Furthermore, diam(K ′) ≤ n diam(K ).
Then, simulating L ′ in the obvious manner using L , run Algorithm 2 on K ′ and L ′. Letting (X ′t)

n
t=1

be the sequence of decisions of the algorithm and (Xt)
n
t=1 be given by Xt = X ′t/n, we have

Rn = E

[
n∑
t=1

L (Xt)− L?

]
≤ 1 + E

[
n∑
t=1

L ′(Xt)− L ′?

]
,

where L ′? = minx∈K ′ L ′(x). Now Theorem 2 provides a bound on the right-hand side, giving

Rn ≤ 1 + const ·d4.5√n log(n diam(K ))3/2 max

(
1,

log(n diam(K ))1/2

d

)
.

This proves Theorem 1
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