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In reinforcement learning (RL), an agent encounters a particular state and decides which action
to select; as a result, the agent transitions to a new state and collects some reward. Standard RL
approaches assume that rewards and transition dynamics are drawn identically and independently
from fixed (yet unknown) distributions that depend on the current state and the selected action.
However, these techniques tend to be vulnerable to even a small amount of outliers from such i.i.d.
patterns. Such outliers are prevalent in most RL applications e.g., click fraud in online advertising,
patients not following prescriptions in clinical trials, attacks against RL agents in computer gaming.

We focus on episodic RL, a basic paradigm in which time is partitioned into episodes of fixed
length H , and the agent’s state is reinitialized in each episode. The algorithm only observes the
outcome of the chosen action, i.e., the next state and the reward received.We consider one model
that captures outliers, that of adversarial corruptions. This model posits that most of the episodes
display i.i.d. patterns but some of them are corrupted: have rewards and transitions that are se-
lected by an adaptive adversary. The number of episodes that are corrupted, denoted by C, is not
known to the agent. The adversary can choose an arbitrary sequence of episodes to be corrupted,
e.g., all corruptions may happen in the initial episodes, which causes irrevocable damage to standard
algorithms that rely on these rounds for exploration. The goal is to design algorithms whose perfor-
mance gracefully degrades as C becomes larger while retaining the i.i.d. bounds when C = 0. This
model is well-understood in multi-armed bandits (MAB), where there is only one state. However,
the main challenge in RL lies in effectively learning the transition dynamics; this is absent in MAB.

We initiate the study of episodic RL under adversarial corruptions in both the rewards and the
transition probabilities of the underlying system extending recent results for multi-armed bandits.
We provide a framework which modifies the aggressive exploration enjoyed by existing reinforce-
ment learning approaches based on “optimism in the face of uncertainty”, by complementing them
with principles from “action elimination” and, in doing so, achieves the above desiderata. To show-
case the generality of our approach, we derive results for both tabular settings as well as linear MDP
settings. Notably, our work provides the first sublinear regret guarantee which accommodates any
deviation from purely i.i.d. transitions in the bandit-feedback model for episodic RL. 1

1. Extended abstract. Full version appears as [https://arxiv.org/abs/1911.08689, v3].
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