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Abstract
We derive improved regret bounds for the Tsallis-INF algorithm of Zimmert and Seldin (2021). We
show that in adversarial regimes with a (∆, C, T ) self-bounding constraint the algorithm achieves
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regret bound,

where T is the time horizon, K is the number of arms, ∆i are the suboptimality gaps, i∗ is the best
arm, C is the corruption magnitude, and log+(x) = max (1, log x). The regime includes stochastic
bandits, stochastically constrained adversarial bandits, and stochastic bandits with adversarial cor-
ruptions as special cases. Additionally, we provide a general analysis, which allows to achieve the
same kind of improvement for generalizations of Tsallis-INF to other settings beyond multiarmed
bandits.

1. Introduction

Most of the literature on multiarmed bandits is focused either on the stochastic setting (Thompson,
1933; Robbins, 1952; Lai and Robbins, 1985; Auer et al., 2002a) or on the adversarial one (Auer
et al., 2002b). However, in recent years there has been an increasing interest in algorithms that
perform well in both regimes with no prior knowledge of the regime (Bubeck and Slivkins, 2012;
Seldin and Slivkins, 2014; Auer and Chiang, 2016; Seldin and Lugosi, 2017; Wei and Luo, 2018),
as well as algorithms that perform well in intermediate regimes between stochastic and adversarial
(Seldin and Slivkins, 2014; Lykouris et al., 2018; Wei and Luo, 2018; Gupta et al., 2019). The
quest for best-of-both-worlds algorithm culminated with the work of Zimmert and Seldin (2019),
who proposed the Tsallis-INF algorithm and showed that its regret bound in both stochastic and
adversarial environments matches the corresponding lower bounds within constants with no need
of prior knowledge of the regime. Zimmert and Seldin (2021) further improved the analysis and
introduced an adversarial regime with a self-bounding constraint, which is an intermediate regime
between stochastic and adversarial environments, including stochastically constrained adversaries
(Wei and Luo, 2018) and stochastic bandits with adversarial corruptions (Lykouris et al., 2018) as
special cases. They have shown that the Tsallis-INF algorithm achieves the best known regret rate
in this regime and its special cases.

The Tsallis-INF algorithm is based on regularization by Tsallis entropy with power 1
2 , which

was also used in the earlier works by Audibert and Bubeck (2009, 2010) and Abernethy et al. (2015)
for minimax optimal regret rates in the adversarial regime. The key novelty of the work of Zimmert
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and Seldin (2019, 2021) is an analysis of the algorithm in the stochastic setting based on a self-
bounding property of the regret. The idea has been subsequently extended to derive best-of-both-
worlds algorithms for combinatorial semi-bandits (Zimmert et al., 2019), decoupled exploration
and exploitation (Rouyer and Seldin, 2020), bandits with switching costs (Rouyer et al., 2021), and
ergodic MDPs (Jin and Luo, 2020).

We present a refined analysis based on the self-bounding property, which improves the regret
bound in the adversarial regime with a self-bounding constraint and its special cases: stochastic
bandits, stochastically constrained adversarial bandits, and stochastic bandits with adversarial cor-
ruption. The adversarial regime with a self-bounding constraint is defined in the following way.
Let `1, `2, . . . be a sequence of loss vectors with `t ∈ [0, 1]K , let It be the action picked by the
algorithm at round t, and let RegT = E

[∑T
t=1 `t,It

]
− mini E

[∑T
t=1 `t,i

]
be the pseudo-regret.

For a triplet (∆, C, T ) with ∆ ∈ [0, 1]K and C ≥ 0, Zimmert and Seldin (2021) define an adversar-
ial regime with a (∆, C, T ) self-bounding constraint as an adversarial regime, where the adversary
picks losses, such that the pseudo-regret of any algorithm at time T satisfies

RegT ≥
T∑
t=1

∑
i

∆iP(It = i)− C.

(The above condition is only assumed to be satisfied at time T , but there is no requirement that it is
satisfied at time t < T .) A special case of this regime is the stochastically constrained adversarial
regime, where RegT =

∑T
t=1

∑
i ∆iP(It = i) with ∆ being the vector of suboptimality gaps.

In particular, the stochastic regime is a special case of the stochastically constrained adversarial
regime. (In the stochastic regime the expected loss of each arm is fixed over time. Stochastically
constrained adversarial regime relaxes this requirement by only assuming that the expected gaps
between the losses of pairs of arms are fixed, but the expected losses are allowed to fluctuate over
time.) Another special case of an adversarial regime with a self-bounding constraint are stochastic
bandits with adversarial corruptions. For two sequences of losses LT = (¯̀

1, . . . , ¯̀
T ) and LT =

(`1, . . . , `T ) the amount of corruption is measured by
∑T

t=1 ‖¯̀t − `t‖∞. In stochastic bandits with
adversarial corruptions the adversary takes a stochastic sequence of losses and injects corruption
with corruption magnitude bounded by C. Zimmert and Seldin (2021) show that a stochastic, as
well as a stochastically constrained adversarial regime with a vector of suboptimality gaps ∆ and
injected corruption of magnitude bounded by C, satisfy (∆, 2C, T ) self-bounding constraint. As
C grows from zero to T , the stochastic regime with adversarial corruptions interpolates between
stochastic and adversarial bandits.

Lykouris et al. (2018) were the first to introduce and study stochastic bandits with adversarial
corruptions and their algorithm achievedO

(∑
i:∆i>0

KC+log(T )
∆i

log(T )
)

regret bound. Gupta et al.

(2019) improved it to O
(
KC +

∑
i:∆i>0

1
∆i

log2(KT )
)

. Zimmert and Seldin (2021) have shown

that their best-of-both-worlds Tsallis-INF algorithm achievesO
((∑

i 6=i∗
log T
∆i

)
+
√
C
∑

i 6=i∗
log T
∆i

)
regret bound in the more general adversarial regime with (∆, C, T ) self-bounding constraint under
the assumption that ∆ has a unique zero entry (the assumption corresponds to uniqueness of the
best arm before corruption). Neither of the algorithms requires prior knowledge of C.

Our contributions are summarized in the enumerated list below. The improvements relative to
the work by Zimmert and Seldin (2021) are further highlighted in Table 1.
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Setting Zimmert and Seldin (2021) Our paper
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1

∆i
log T

)
O
(∑

i 6=i∗
1

∆i
log+

(
T K−1

(
∑
i 6=i∗ 1/∆i)2

))
Large C O

(√
C
∑
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1

∆i
log T

)
O
(√

C
∑

i 6=i∗
1

∆i
log+

(
T K−1
C(
∑
i 6=i∗ 1/∆i)

))
Table 1: Comparison of the leading terms in the regret bounds of Zimmert and Seldin (2021) and
our paper, differences are highlighted in color. We define log+(x) = max (1, log x). The ”Small
C” row compares the regret bounds in adversarial regimes with (∆, C, T ) self-bounding constraints

with C ≤
∑

i 6=i∗
1

∆i

((
log T (K−1)

(
∑
i 6=i∗

1
∆i

)2

)
+ 1

)
. Here, C is a subdominant term and does not show

up in the big-O notation. The ”LargeC” row compares the regret bounds in adversarial regimes with

(∆, C, T ) self-bounding constraints with C ≥
∑

i 6=i∗
1

∆i

((
log T (K−1)

(
∑
i 6=i∗

1
∆i

)2

)
+ 1

)
. The regret

bounds in the adversarial regime are identical, and hence omitted.

1. We present a refined analysis of the regret of Tsallis-INF in adversarial regimes with a
(∆, C, T ) self-bounding constraint, achieving

O
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1
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 log+
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i 6=i∗

1
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)2

+

√√√√√C
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 log+
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)
regret bound, where log+(x) = max (1, log x).

2. In the stochastically constrained adversarial regime it improves the dominating term of the

regret bound from O
((∑

i 6=i∗
1

∆i

)
log T

)
to O

((∑
i 6=i∗

1
∆i

)
log+

(
(K−1)T(∑
i 6=i∗

1
∆i

)2

))
rela-

tive to the work of Zimmert and Seldin (2021), see Table 1. A similar kind of improvement
has been studied for UCB-type algorithms for stochastic bandits by Auer and Ortner (2010)
and Lattimore (2018).

3. In the stochastic regime with adversarial corruptions the result yields an improvement by a
multiplicative factor of O

(√
log T/ log (T/C)

)
relative to the work of Zimmert and Seldin

(2021), see Table 1 for a more refined statement. In particular, for C = Θ

(
TK

(log T )
∑
i6=i∗

1
∆i

)
it achieves an improvement by a multiplicative factor of

√
log T

log log T .

4. While the analysis of Zimmert and Seldin (2021) used two different optimization problems
to analyze the regret of Tsallis-INF in adversarial environments and in adversarial environ-
ments with a self-bounding constraint, we obtain both bounds from the same optimization
problem. This provides continuity in the analysis in the sense that theO

(√
KT

)
adversarial

regret bound is obtained as a natural limit case of the adversarial bound with a self-bounding

constraint as C grows beyond O
(

KT∑
i6=i∗

1
∆i

)
. It also provides a better understanding of the

self-bounding analysis technique.
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5. We also provide a more general result, showing that any algorithm with adversarial pseudo-

regret bound satisfying RegT ≤ B
∑T

t=1

∑
i 6=i∗

√
E[wt,i]
t , where wt,i are the probabilities of

playing action i at round t and B is a constant, achieves

O

B2
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1
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 log+
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 log+
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KT

C
∑
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1

∆i

)
regret in the adversarial regime with (∆, C, T ) self-bounding constraint. The result can be di-
rectly applied to achieve improved regret bounds for extensions of the Tsallis-INF algorithm,
for example, the extension to episodic MDPs (Jin and Luo, 2020).

2. Problem Setting

We study multi-armed bandit problem in which at time t = 1, 2, . . . the learner chooses an arm
It among a set of K arms {1, . . . ,K}. At the same time the environment selects a loss vector
`t ∈ [0, 1]K and the learner only observes and suffers the loss `t,It . The performance of the learner
is evaluated using pseudo-regret, which is defined as

RegT = E

[
T∑
t=t

`t,It

]
− min
i∈[K]

E

[
T∑
t=t

`t,i

]
= E

[
T∑
t=t

(
`t,It − `t,i∗T

)]
,

where i∗T ∈ argmini∈[K] E
[∑T

t=t `t,i

]
is a best arm in hindsight in expectation over the loss gener-

ation model and, in case of an adaptive adversary, the randomness of the learner.
Like Zimmert and Seldin (2021) we consider (adaptive) adversarial regimes and adversarial

regimes with a (∆, C, T ) self-bounding constraint. In the former the losses at round t are generated
arbitrarily, potentially depending on the preceding actions of the learner, I1 . . . , It−1. In the latter
the adversary selects losses, such that for some ∆ ∈ [0, 1]K and C ≥ 0 the pseudo-regret of any
algorithm at time T satisfies

RegT ≥

(
T∑
t=1

K∑
i=1

P(It = i)∆i

)
− C. (1)

The condition is only assumed to be satisfied at time T , but not necessarily at t < T . As we have
already mentioned in the introduction, stochastic regime, stochastically constrained adversarial
regime, and stochastic bandits with adversarial corruptions are all special cases of the adversarial
regime with (∆, C, T ) self-bounding constraint.

Additional Notation: We use ∆n to denote the probability simplex over n+ 1 points. The char-
acteristic function of a closed convex set A is denoted by IA(x) and satisfies IA(x) = 0 for x ∈ A
and IA(x) = ∞ otherwise. We denote the indicator function of an event E by 1(E) and use 1t(i)
as a shorthand for 1(It = i). The probability distribution over arms that is played by the learner at
round t is denoted by wt ∈ ∆K−1. The convex conjugate of a function f : Rn → R is defined by
f∗(y) = supx∈Rn{〈x, y〉 − f(x)}.
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3. Background: the Tsallis-INF algorithm

In this section we provide a brief background on the Tsallis-INF algorithm of Zimmert and Seldin
(2021). The algorithm is based on Follow The Regularized Leader (FTRL) framework with Tsallis
entropy regularization (Tsallis, 1988). The best-of-both-worlds version of Tsallis-INF uses Tsallis
entropy regularizer with power 1

2 , defined by

Ψ(w) = 4

K∑
i=1

(
√
wi −

1

2
wi

)
.

The regularization term at round t is given by

Ψt(w) = η−1
t Ψ(w),

where ηt is the learning rate. The update rule for the distribution over actions is defined by

wt+1 = ∇(Ψt + I∆K−1)∗(−
t∑

τ=1

ˆ̀
τ ) = arg max

w∈∆K−1

(〈
−

t∑
τ=1

ˆ̀
τ , w

〉
−Ψt(w)

)
,

where ˆ̀
τ is an estimate of the loss vector `τ . It is possible to use the standard importance-weighed

loss estimate ˆ̀
t,i =

`t,i1(It=i)
wt,i

, but Zimmert and Seldin (2021) have shown that reduced-variance
loss estimates defined by

ˆ̀
t,i =

1t(i)(`t,i − Bt(i))
wt,i

+ Bt(i), (2)

where Bt(i) = 1
21
(
wt,i ≥ η2

t

)
, lead to better constants. The complete algorithm is provided in

Algorithm 1 box. The regret bound derived by Zimmert and Seldin (2021) is provided in Theorem 1.

Algorithm 1 Tsallis-INF

1: Input: (Ψt)t=1,2,...

2: Initialize: Set L̂0 = 0K (where 0K is a zero vector in RK)
3: for t = 1, . . . do
4: choose wt = ∇(Ψt + I∆K−1)∗(−L̂t−1)
5: sample It ∼ wt
6: observe `t,It
7: construct a loss estimator ˆ̀

t using (2)
8: update L̂t = L̂t−1 + ˆ̀

t

9: end for

Theorem 1 (Zimmert and Seldin, 2021) The pseudo-regret of Tsallis-INF with ηt = 4√
t

and re-
duced variance loss estimators defined in equation (2), in any adversarial bandit problem satisfies

RegT ≤ 2
√
KT + 10K log(T ) + 16.

Furthermore, if there exists a vector ∆ ∈ [0, 1]K with a unique zero entry i∗ (i.e., ∆i∗ = 0 and
∆i > 0 for all i 6= i∗) and a constant C, such that the pseudo-regret at time T satisfies the

5



MASOUDIAN SELDIN

(∆, C, T ) self-bounding constraint (equation (1)), then the pseudo-regret additionally satisfies:

RegT ≤

∑
i 6=i∗

log(T ) + 3

∆i

+ 28K log(T ) +
1

∆min
+

3

2

√
K + 32 + C, (3)

where ∆min = mini 6=i∗{∆i}. Moreover, if C ≥
(∑

i 6=i∗
log(T )+3

∆i

)
+ 1

∆min
, then the pseudo-regret

also satisfies:

RegT ≤ 2

√√√√√
∑
i 6=i∗

log(T ) + 3

∆i
+

1

∆min

C + 28K log(T ) +
3

2

√
K + 32. (4)

Remark 2 While Theorem 1 requires uniqueness of the best arm for improved regret rates in the ad-
versarial regime with a (∆, C, T ) self-bounding constraint, Zimmert and Seldin (2021) have shown
experimentally that in the stochastic regime the presence of multiple best arms has no negative ef-
fect on the pseudo-regret of the algorithm. They conjecture that the requirement is an artifact of the
analysis.

4. Main Results

In this section we provide our two main results. First, in Theorem 3 we provide a refined analysis
of Tsallis-INF, which improves the pseudo-regret bounds in the adversarial regime with a (∆, C, T )
self-bounding constraint. Then, in Theorem 4 we provide a more general result, which allows
to improve pseudo-regret bounds in adversarial regimes with (∆, C, T ) self-bounding constraints
for extensions of Tsallis-INF to other problems. An advantage of both results is that the bounds
for adversarial regimes and adversarial regimes with a self-bounding constraint are achieved from a
single optimization problem, rather than from two different optimization problems, as in prior work.
As a result, the regret bounds for the adversarial regime are achieved as a limit case of the regret
bounds for adversarial regimes with a self-bounding constraint for large C.

4.1. Improved analysis of the Tsallis-INF algorithm

We start with an improved regret bound for Tsallis-INF.

Theorem 3 The pseudo-regret of Tsallis-INF with ηt = 4√
t

and reduced variance loss estimators
defined in equation (2), in any adversarial bandit problem satisfies

RegT ≤ 2
√

(K − 1)T +
1

2

√
T + 14K log(T ) +

3

4

√
K + 15. (5)

Furthermore, if there exists a vector ∆ ∈ [0, 1]K with a unique zero entry i∗ (i.e., ∆i∗ = 0 and
∆i > 0 for all i 6= i∗) and a constant C ≥ 0, such that the pseudo-regret at time T satisfies the
(∆, C, T ) self-bounding constraint (equation (1)), then the pseudo-regret additionally satisfies:

RegT ≤
∑
i 6=i∗

1

∆i


log

T (K − 1)(∑
i 6=i∗

1
∆i

)2

+ 6

+ 28K log(T ) +
3

2

√
K + 30 + C. (6)
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Moreover, for
∑

i 6=i∗
1

∆i

((
log T (K−1)

(
∑
i 6=i∗

1
∆i

)2

)
+ 1

)
≤ C ≤ T (K−1)∑

i 6=i∗
1

∆i

the regret also satisfies:

RegT ≤
√
C
∑
i 6=i∗

1

∆i

(√
log

T (K − 1)

C
∑

i 6=i∗
1

∆i

+ 5

)
+Q, (7)

where Q =
∑

i 6=i∗
1

∆i

(
log T (K−1)

C
∑
i 6=i∗

1
∆i

+

√
2 log T (K−1)

C
∑
i6=i∗

1
∆i

+ 2

)
+ 3
√
K

2 + 28K log(T ) + 30 is

a subdominant term.

A proof of the theorem is provided in Appendix B. Theorem 3 improves on Theorem 1 in two
ways. The bound in equation (6) improves the leading term of the regret bound under self-bounding

constraint relative to equation (3) from
∑

i 6=i∗
1

∆i
log T to

∑
i 6=i∗

1
∆i

(
log T (K−1)(∑

i6=i∗
1

∆i

)2

)
. Related

refinements of regret bounds for UCB strategies for ordinary stochastic bandits have been studied
by Auer and Ortner (2010) and Lattimore (2018). More importantly, for large amount of corrup-

tion C ∈
[∑

i 6=i∗
1

∆i

(
log

(
T (K−1)

(
∑
i 6=i∗

1
∆i

)2

)
+ 1

)
, T (K−1)∑

i6=i∗
1

∆i

]
the regret bound in equation (7) is of

order O

(√
C
(∑

i 6=i∗
1

∆i

)
log+

(
KT

C
∑
i 6=i∗

1
∆i

))
, whereas the regret bound in equation (4) is of

orderO
(√

C
∑

i 6=i∗
log T
∆i

)
. For C = Θ

(
TK

(log T )
∑
i 6=i∗

1
∆i

)
Theorem 3 improves the pseudo-regret

bound by a multiplicative factor of
√

log T
log log T . Another observation is that Theorem 3 successfully

exploits the self-bounding property even when the amount of corruption is almost linear in T .

4.2. A general analysis based on the self-bounding property

Now we provide a general result, which can be used to analyze extensions of Tsallis-INF to other
problem settings.

Theorem 4 For any algorithm for an arbitrary problem domain with K possible actions that sat-
isfies

RegT ≤ B
T∑
t=1

∑
i 6=i∗

√
E[wt,i]

t
+D, (8)

where B,D ≥ 0 are some constants, the pseudo-regret of the algorithm in any adversarial environ-
ment satisfies

RegT ≤ 2B
√

(K − 1)T +D. (9)

Furthermore, if there exists a vector ∆ ∈ [0, 1]K with a unique zero entry i∗ (i.e., ∆i∗ = 0 and
∆i > 0 for all i 6= i∗) and a constant C ≥ 0, such that the pseudo-regret at time T satisfies the
(∆, C, T ) self-bounding constraint (equation (1)), then the pseudo-regret additionally satisfies:

RegT ≤ B2
∑
i 6=i∗

1

∆i


log

T (K − 1)(∑
i 6=i∗

1
∆i

)2

+ 3− 2 logB

+ C + 2D. (10)
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Moreover, for B2
∑

i 6=i∗
1

∆i

((
log T (K−1)

B2(
∑
i 6=i∗

1
∆i

)2

)
+ 1

)
≤ C ≤ T (K−1)∑

i 6=i∗
1

∆i

the pseudo-regret also

satisfies:

RegT ≤ B
√
C
∑
i 6=i∗

1

∆i

(√
log

T (K − 1)

C
∑

i 6=i∗
1

∆i

+ 2

)
+M, (11)

where M = B2
∑

i 6=i∗
1

∆i

(
log T (K−1)

C
∑
i6=i∗

1
∆i

+

√
2 log T (K−1)

C
∑
i 6=i∗

1
∆i

+ 2

)
+ 2D is a subdominant

term.

A proof is provided in Section 5. The Tsallis-INF algorithm satisfies the condition in equation (8)
with B = 5

4 (see equation (12) in Section 5, which follows from intermediate results by Zimmert
and Seldin (2021)). Although the specialized analysis of Tsallis-INF in Theorem 3 is a bit tighter
than the general result in Theorem 4, the latter can be applied to extensions of Tsallis-INF. One
such example is the best-of-both-worlds algorithm of Jin and Luo (2020) for episodic MDPs. Jin
and Luo (2020, Theorem 4) show that their algorithm satisfies the condition in (8) and use this result
to achieve O

(
(log T ) +

√
C log(T )

)
pseudo-regret bound in the stochastic case with adversarial

corruptions (Jin and Luo, 2020, Corollary 3). Application of our Theorem 4 improves the pseudo-
regret bound to O

(
(log T ) +

√
C log(T/C)

)
. In particular, for C = Θ( T

log T ) the bound gets

tighter by a multiplicative factor of log T
log log T .

5. Proofs

In this section we provide a proof of Theorem 4. The proof of Theorem 3 is analogous, but more
technical due to fine-tuning of the constants and is deferred to Appendix B. Before showing the
proof we revisit the key steps in the analysis of Tsallis-INF by Zimmert and Seldin (2021), which
show that the pseudo-regret of Tsallis-INF satisfies the condition in equation (8) of Theorem 4.

Standard FTRL analysis (Lattimore and Szepesvári, 2020) uses a potential function Φt(−L) =
maxw∈∆K−1{〈w,−L〉 − Ψt(w)} for breaking the pseudo-regret into penalty and stability terms,
RegT = stability + penalty, where

stability = E

[
T∑
t=1

`t,It + Φt(−L̂t)− Φt(−L̂t−1)

]
,

penalty = E

[
T∑
t=1

−Φt(−L̂t) + Φt(−L̂t−1)− `t,i∗T

]
.

The two terms are then typically analyzed separately. Zimmert and Seldin (2021) proved the fol-
lowing bounds for the two terms for Tsallis-INF with reduced-variance loss estimators:

stability ≤
T∑
t=1

∑
i 6=i∗

E[wt,i]
1
2

2
√
t

+
E[wt,i]

2
√
t

+ 14K log(T ) + 15,

penalty ≤
T∑
t=1

∑
i 6=i∗

E[wt,i]
1
2

2
√
t
− E[wt,i]

4
√
t

+
3

4

√
K.
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By summation of the two bounds the pseudo-regret satisfies

RegT ≤
T∑
t=1

∑
i 6=i∗

E[wt,i]
1
2

√
t

+
E[wt,i]

4
√
t

+ 14K log(T ) +
3

4

√
K + 15. (12)

Since E[wt,i] ≤ E[wt,i]
1
2 , the pseudo-regret of Tsallis-INF with reduced-variance loss estimators

satisfies the condition in equation (8) with B = 5
4 and D = 3

4

√
K + 14K log(T ) + 15. (In the

proof of Theorem 3 we keep the refined bound on the pseudo-regret from equation (12) to obtain
better constants.) Now, after we have shown how the condition in equation (8) can be satisfied, we
present a proof of Theorem 4. We start with a high-level overview of the key ideas and then present
the technical details.

5.1. Overview of the Key Ideas Behind the Proof of Theorem 4

As observed by Zimmert and Seldin (2021), for any λ ∈ [0, 1] we have

RegT = (λ+ 1)RegT − λRegT . (13)

The condition on RegT in equation (8) can be used to upper bound the first term and the self-
bounding constraint (1) to lower bound the second, giving

RegT ≤ (λ+ 1)

B∑
i 6=i∗

T∑
t=1

E[wt,i]
1
2

√
t

+D

− λ
 T∑
t=1

∑
i 6=i∗

E[wt,i]∆i

− C


≤
T∑
t=1

∑
i 6=i∗

(
B(λ+ 1)

E[wt,i]
1
2

√
t
− λE[wt,i]∆i

)
+ λC + (λ+ 1)D. (14)

In the adversarial analysis, we take λ = 0 and maximize the right hand side of (14) (which for λ = 0
is identical to the right hand side of (8)) under the constraint that wt,i is a probability distribution
to obtain O(

√
KT ) regret bound. This is almost identical to the approach of Zimmert and Seldin

(2021), except that in this case instead of the bound in equation (8) they use a bound involving
summation over all arms, including i∗.

In the self-bounding analysis, Zimmert and Seldin (2021) relax the inequality in (14) to

RegT ≤
T∑
t=1

∑
i 6=i∗

(
2B
√

E [wt,i] /t− λ∆iE [wt,i]

)
+ λC + 2D

and apply individual maximization of each 2B
√

E [wt,i] /t − λ∆iE [wt,i] term, dropping the con-
straint thatwt is a probability distribution. We use (14) directly for bounding the regret and introduce
two key novelties:

(a) we keep the constraint that wt are probability distributions; and

(b) we jointly optimize with respect to all wt,i and λ, whereas Zimmert and Seldin (2021) first
optimize w.r.t. wt,i and then w.r.t. λ.

9
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Joint optimization over all wt,i and λ under the constraint that wt are probability distributions is the
major technical challenge that we resolve. Our analysis yields three advantages:

(A) The dependence on time is improved from log T to log(T (K − 1)/(
∑

i 6=i∗
1

∆i
)2) due to (a);

(B) We gain the
√

log T/ log(T/C) factor due to (b);

(C) Our adversarial and stochastic bounds come out of the same optimization problem, highlight-
ing the relation and continuity between the two.

5.2. Proof of Theorem 4

Now we provide a detailed proof of Theorem 4.

Proof of the regret bound for an unconstrained adversarial regime (equation (9))

In the unconstrained adversarial regime we take λ = 0 and plug the inequalities∑
i 6=i∗

E[wt,i]
1
2 ≤
√
K − 1, (15)

which holds since
∑

i 6=i∗ E[wt,i] ≤ 1, and
∑T

t=1
1√
t
≤ 2
√
T into equation (14) and obtain the bound

in equation (9).

Proof of the general regret bound for an adversarial regime with a self-bounding constraint
(equation (10))

In the adversarial regime with a self-bounding constraint, we keep the constraint that wt is a proba-
bility distribution, and thus

∑
i 6=i∗ E[wt,i]

1
2 ≤
√
K − 1, and apply maximization directly to the sum

over i under this constraint.
To simplify the notation, we use at,i := E[wt,i]

1
2 , S :=

∑
i 6=i∗

1
∆i

, and w.l.o.g. assume that

i∗ = K. We denote Rt :=
∑

i 6=i∗
(
B(λ+ 1)

at,i√
t
− λ∆ia

2
t,i

)
and R :=

∑T
t=1Rt + λC. With this

notation, by equation (14) we have

RegT ≤ R+ (1 + λ)D. (16)

We bound Rt under the constraint that E[wt,i]
1
2 satisfy equation (15). We have

Rt ≤ max
a1,...,aK−1

K−1∑
i=1

B(λ+ 1)
ai√
t
− λ∆ia

2
i

s.t.
K−1∑
i=1

ai ≤
√
K − 1.

By Lemma 6 provided in Appendix A, the answer to this optimization problem is as follows:

1. If B(λ+1)S

2λ
√
t
≤
√
K − 1, then Rt ≤ SB2(λ+1)2

4λt .

10
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2. If B(λ+1)S

2λ
√
t
≥
√
K − 1, then Rt ≤

√
K−1B(λ+1)√

t
− λ(K−1)

S .

This gives a threshold T0 = B2(λ+1)2S2

4λ2(K−1)
, so that for t ≤ T0 the second case applies to Rt, and

otherwise the first case applies. We break the time steps into those before T0 and after T0 and
obtain:

R =

T0∑
t=1

Rt +

T∑
T0+1

Rt + λC

≤
T0∑
t=1

(√
K − 1B(λ+ 1)√

t
− λ(K − 1)

S

)
+

T∑
t=T0+1

SB2(λ+ 1)2

4λt
+ λC

≤ 2
√
T0(K − 1)B(λ+ 1)− λ(K − 1)T0

S
+
SB2(λ+ 1)2

4λ
log

T

T0
+ λC

=
B2(λ+ 1)2S

λ
− B2(λ+ 1)2S

4λ
+
B2(λ+ 1)2S

4λ

(
log

T (K − 1)

S2
− 2 log

B(λ+ 1)

2λ

)
+ λC

=
B2(λ+ 1)2S

4λ

[
3 + log

T (K − 1)

S2

]
− B2(λ+ 1)2S

2λ
log

B(λ+ 1)

2λ
+ λC. (17)

By taking λ = 1 we obtain

R ≤ B2S

(
log

T (K − 1)

S2
− 2 log(B) + 3

)
+ C,

which together with (16) gives the bound (10) in the theorem.

Proof of the refined regret bound for an adversarial regime with a self-bounding constraint
(equation (11))

We continue from equation (17). We improve on the bound of Zimmert and Seldin (2021) in equa-
tion (4) by applying a smarter optimization over λ. We let α = 2λ

B(λ+1) and rewrite the inequality in
(17) as

R ≤ B

2−Bα

[
S

α

(
3 + log

(
T (K − 1)

S2

))
+

2S

α
log(α) + αC

]
︸ ︷︷ ︸

f(α)︸ ︷︷ ︸
h(B,α)

. (18)

We denote the right hand side of the expression by h(B,α). We restrict the range of α, so that
T ≥ T0 = S2

α2(K−1)
, which gives α ≥ S√

T (K−1)
. Since λ ∈ [0, 1], we also have α ≤ 1

B . In order

to bound h(B,α) we need to solve an optimization problem in α over the above interval. However,
h(B,α) is not convex in α, but we show that the expression in the brackets, which we denote by
f(α), is convex. We take the point α∗ = argminα∈[ S√

T (K−1)
, 1
B

] f(α), which achieves the minimum

of f(α), and use h(B,α∗) = B
2−Bα∗ f(α∗) as an upper bound for R. Since R ≤ h(B,α) for any α,

in particular we have R ≤ h(B,α∗).

11
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In order to show that f(α) is convex and find its minimum we take the first and second deriva-
tives.

f ′(α) =
−1

α2

[
2S log(α)− Cα2 + S log

(K − 1)T

S2
+ S

]
= 0,

f ′′(α) =
2S

α3

(
2 logα+ log

T (K − 1)

S2

)
.

For α ≥ S√
T (K−1)

the second derivative is positive and, therefore, f(α) is convex and the minimum

is achieved when f ′(α) = 0. This happens when

− log
α2(K − 1)T

S2
+
C

S
α2 − 1 = 0.

We define β = α2(K−1)T
S2 , then

g(β) =
CS

(K − 1)T
β − log(β)− 1 = 0.

Since α ∈ [ S√
T (K−1)

, 1
B ], we have β ∈ [1, (K−1)T

B2S2 ]. We recall that equation (11) holds under

the assumption that B2S
(

log (K−1)T
B2S2 + 1

)
≤ C ≤ (K−1)T

S . We note that for C ≤ (K−1)T
S

we have g(1) = CS
(K−1)T − 1 ≤ 0. We also note that for C ≥ B2S

(
log (K−1)T

B2S2 + 1
)

we have

g
(

(K−1)T
B2S2

)
≥ 0. Since g(β) is continuous, the root of g(β) = 0 for C in the above range is thus

achieved by β ∈ [1, (K−1)T
B2S2 ] and since g(β) is convex the solution is unique.

We find the root of g(β) = 0 by using the−1-branch of the Lambert W function, calledW−1(x),
which is defined as the solution of equation wew = x. If g(β) = 0, then β satisfies

−CSβ
(K − 1)T

e
−CSβ

(K−1)T =
−CS

e(K − 1)T
,

and thus

β =
−T (K − 1)

CS
W−1

(
−CS

e(K − 1)T

)
.

We conclude that the minimum of f(α) is attained at

α∗ =

√
−S
C
W−1

(
−CS

e(K − 1)T

)
(19)

and, consequently, log
(
T (K−1)(α∗)2

S2

)
= C

S (α∗)2 − 1. By substituting this identity into h(B,α∗),
we obtain:

h(B,α∗) =
B

2−Bα∗

(
2
S

α∗
+ 2Cα∗

)
≤ B(1 +Bα∗)

(
S

α∗
+ Cα∗

)
= B

(
S

α∗
+ Cα∗ +BS +BC(α∗)2

)
= B

(√
CS

w
+
√
CSw +BS +BSw

)
,

(20)

12
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where w := −W−1

[
−CS

e(K−1)T

]
and the inequality follows by the fact that ∀x ∈ [0, 1] : 2

2−x ≤ 1+x.
This provides a closed form upper bound for the pseudo-regret, but we still need an estimate of w to
obtain an explicit bound. We use the result of Chatzigeorgiou (2013), who provides the following
bounds for W−1(x).

Lemma 5 (Chatzigeorgiou 2013) For any x ≤ 1

1 +
√

2 log(1/x) +
2

3
log(1/x) ≤ −W−1(−x/e) ≤ 1 +

√
2 log(1/x) + log(1/x).

To complete the proof it suffices to use Lemma 5 with x = CS
(K−1)T , which gives

1 ≤ w ≤ 1 +

√
2 log

T (K − 1)

CS
+ log

T (K − 1)

CS
≤

(
1 +

√
log

T (K − 1)

CS

)2

.

By substituting this into (20) we obtain:

h(B,α∗) ≤ B
√
CS +B

√
CS

(
1 +

√
log

T (K − 1)

CS

)

+ 2B2S +B2S log
T (K − 1)

CS
+B2S

√
2 log

T (K − 1)

CS

= B
√
CS

(√
log

T (K − 1)

CS
+ 2

)
+B2S

(
log

T (K − 1)

CS
+

√
2 log

T (K − 1)

CS
+ 2

)
.

(21)

Finally, by (18) we have R ≤ h(B,α∗), which together with (16) and the fact that λ ≤ 1 completes
the proof. �

6. Discussion

We have presented a refined analysis of the Tsallis-INF algorithm in adversarial regimes with a
self-bounding constraint. The result improves on prior work in two ways. First, it improves
the dependence of the regret bound on time horizon from log T to log (K−1)T

(
∑
i 6=i∗

1
∆i

)2 . Second, it

improves the dependence of the regret bound on corruption amount C. In particular, for C =

Θ

(
TK

(log T )
∑
i6=i∗

∑ 1
∆i

)
it improves the pseudo-regret bound by a multiplicative factor of

√
log T

log log T .

Moreover, we have provided a generalized result that can be used to improve regret bounds for ex-
tensions of Tsallis-INF to other problem settings, where the regret satisfies a self-bounding con-
straint. Due to versatility and rapidly growing popularity of regret analysis based on the self-
bounding property, the result provides a powerful tool for tightening regret bounds in a broad range
of corrupted settings.
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Appendix A. Technical Lemmas

Lemma 6 Let b and c1, . . . , cn be non-negative real numbers and let

Z = max
x∈Rn

n∑
i=1

(bxi − cix2
i )

s.t.

n∑
i=1

xi ≤M.

Then

Z =

bM −
M2∑n
i=1

1
ci

, if
∑n

i=1
b

2ci
> M,

b2

4

∑n
i=1

1
ci
, otherwise.

Moreover, we always have bM − M2∑n
i=1

1
ci

≤ b2

4

∑n
i=1

1
ci

and, therefore, we always have Z ≤
b2

4

∑n
i=1

1
ci

.

Proof Since ci ≥ 0, the objective function is a sum of downward-pointing parabolas and, therefore,
concave. Thus, the maximum is attained when the first derivative of the Lagrangian with Lagrange
variable v ≥ 0 for the inequality constraint satisfies

b− 2cixi − v = 0,

where v(
∑n

i=1 xi −M) = 0. Thus, xi = b−v
2ci

. The KKT conditions provide two cases:

i) If
∑n

i=1
b

2ci
> M , then v > 0 and

∑n
i=1 xi = M . As a consequence, v = b − M∑n

i=1
1

2ci

. So

xi = M
ci
∑n
i=1

1
ci

and Z = bM − M2∑n
i=1

1
ci

.

ii) If
∑n

i=1
b

2ci
≤M , then v = 0 and, as a consequence, xi = b

2ci
and Z = b2

4

∑n
i=1

1
ci

.

Finally, by the AM-GM inequality we have

M2∑n
i=1

1
ci

+
b2

4

n∑
i=1

1

ci
≥ bM,

which gives the final statement of the lemma.

We also use the following result by Zimmert and Seldin (2021, Lemma 15).

Lemma 7 (Zimmert and Seldin, 2021) For any b > 0 and c > 0 and T0, T ∈ N, such that T0 < T
and b

√
T0 > c, it holds that

T∑
t=T0+1

1

bt
3
2 − ct

≤ 2

b
√
T0 − c

.

By doubling the lower threshold on b
√
T0 we obtain the following corollary.

Corollary 8 For any b > 0 and c > 0 and T0, T ∈ N, such that T0 < T and b
√
T0 ≥ 2c, it holds

that
T∑

t=T0+1

1

bt
3
2 − ct

≤ 2

c
.
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Appendix B. Proof of Theorem 3

Proof Similar to the proof of Theorem 4, for any λ ∈ [0, 1] we use the self-bounding constraint
and the regret bound of Zimmert and Seldin (2021) given in equation (12) to provide the following
bound for the pseudo-regret:

RegT = (λ+ 1)RegT − λRegT

≤ (λ+ 1)

∑
i 6=i∗

[
T∑
t=1

E[wt,i]

4
√
t

+
T∑
t=1

√
E[wt,i]√
t

]
+

3

4

√
K + 14K log(T ) + 15


− λ

 T∑
t=1

∑
i 6=i∗

E[wt,i]∆i

− C
 .

As before, to simplify the notation, let at,i = E[wt,i]
1
2 and S =

∑
i 6=i∗

1
∆i

and w.l.o.g. assume
that i∗ = K and define

Rt =
∑
i 6=i∗

(
λ+ 1√

t
at,i −

(
λ∆i −

λ+ 1

4
√
t

)
a2
t,i

)
, (22)

R =
T∑
t=1

Rt + λC.

Then

RegT ≤ R+ (1 + λ)

(
3

4

√
K + 14K log(T ) + 15

)
. (23)

Hence, in order to obtain a bound for the pseudo-regret, it suffices to derive a bound for R. We start
with the bound for a general adversarial environment and then prove the refinements.

Proof of the regret bound for an unconstrained adversarial regime (equation (5))

We take λ = 0. By plugging it into the definition of Rt in equation (22) we obtain

Rt ≤
√
K − 1√
t

+
1

4
√
t

and

R =
T∑
t=1

Rt ≤ 2
√

(K − 1)T +
1

2

√
T .

Plugging this into (23) completes the proof of (5).

Proof of the regret bounds for an adversarial regime with a self-bounding constraint (equa-
tions (6) and (7))

Now we prove the refined bounds for adversarial environments satisfying the self-bounding con-
straint with unique best arm. Similarly to the proof of Theorem 4, we bound Rt for each t ≥ 1 by
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solving a constrained maximization problem over {at,i}ni=1, where the constraint is
∑K−1

i=1 at,i ≤√
K − 1. But the challenge here is that the coefficients λ∆i− λ+1

4
√
t

in front of a2
t,i in the definition of

Rt are not necessarily positive, and if they are not, then Lemma 6 cannot be applied. More precisely,
if

∀i 6= i∗ : λ∆i ≥
λ+ 1

4
√
t
⇒ t ≥

(
λ+ 1

4λ∆min

)2

, (24)

where ∆min = mini 6=i∗{∆i}, then all the coefficients are positive. We denote α = 2λ
λ+1 and define a

threshold T1 =
(

λ+1
2λ∆min

)2
=
(

1
α∆min

)2
. We note that T1 is four times larger than what is required

for satisfaction of the condition in equation (24). The reason is that at a later point in the proof we
apply Corollary 8 for t ≥ T1 and we need to satisfy the condition of the corollary. For t ≥ T1 we
can use Lemma 6 to bound Rt. By the lemma we obtain:

Rt ≤
(λ+ 1)2

4t

K−1∑
i=1

1

λ∆i − λ+1√
t

=

K−1∑
i=1

λ+ 1
4λ
λ+1∆it−

√
t

=

K−1∑
i=1

λ+ 1

2α∆it−
√
t
.

We rewrite each term in the summation in the following way

λ+ 1

2α∆it−
√
t

=
λ+ 1

2α∆it
+

λ+ 1

4α2∆2
i t

3
2 − 2α∆it

and obtain

for t ≥ T1: Rt ≤
S(λ+ 1)

2αt
+

K−1∑
i=1

λ+ 1

4α2∆2
i t

3
2 − 2α∆it

. (25)

In order to bound Rt for t < T1, we break it into two parts as follows:

Rt =
∑
i 6=i∗

(
λ+ 1√

t
at,i − λ∆ia

2
t,i

)
+
∑
i 6=i∗

(
λ+ 1

4
√
t
a2
t,i

)

≤
∑
i 6=i∗

(
λ+ 1√

t
at,i − λ∆ia

2
t,i

)
+

1

2
√
t
,

where the inequality holds because λ ≤ 1 and
∑

i 6=i∗ a
2
t,i ≤ 1. We use Lemma 6 to bound the

summation in the latter expression. The solution depends on a threshold T2 = (λ+1)2S2

4λ2(K−1)
= S2

(K−1)α2 :

for t ≤ T2: Rt ≤
√
K − 1(λ+ 1)√

t
− λ(K − 1)

S
+

1

2
√
t
, (26)

for t ≥ T2: Rt ≤
S(λ+ 1)2

4λt
+

1

2
√
t

=
S(λ+ 1)

2αt
+

1

2
√
t
. (27)

Note that for t ≥ T1 we have a choice between using the bound in equation (25) or one of the bounds
in (26) or (27), depending on whether t ≤ T2 or t ≥ T2. The relation between the thresholds,

T1 ≤ T2 or T2 ≤ T1, depends on the relation between
(

1
∆min

)2
and S2

K−1 . Also note that the
choice of α (which determines λ) affects the thresholds T1 and T2, but not their relation. Similar

18
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to the proof of Theorem 4, we restrict the range of α, so that T ≥ T2 = S2

α2(K−1)
, which gives

α ≥ S√
T (K−1)

.

We now derive a bound on R. We consider three cases: T2 ≤ T ≤ T1, T2 ≤ T1 ≤ T , and
T1 ≤ T2 ≤ T .

First case: T2 ≤ T ≤ T1. By (26) and (27) we have:

T∑
t=1

Rt ≤
T2∑
t=1

Rt +
T∑

t=T2+1

Rt

≤
T2∑
t=1

(√
K − 1(λ+ 1)√

t
− λ(K − 1)

S

)
+

T∑
t=T2+1

(
S(λ+ 1)

2αt

)
+
√
T

≤ 2
√
T2(K − 1)(λ+ 1)− λ(K − 1)T2

S
+
S(λ+ 1)

2α
log(

T

T2
) +

√
T1, (28)

where in the second line we used
∑T

t=1
1

2
√
t
≤
√
T and in the third line

∑T
t=T2+1

1
t ≤ log(T/T2)

and λ ≤ 1 and T ≤ T1.

Second case: T2 ≤ T1 ≤ T . By (26), (27), and (25) we have:

T∑
t=1

Rt ≤
T2∑
t=1

Rt +

T1∑
t=T2+1

Rt +
T∑

t=T1+1

Rt

≤
T2∑
t=1

(√
K − 1(λ+ 1)√

t
− λ(K − 1)

S

)
+

T∑
t=T2+1

(
S(λ+ 1)

2αt

)
+
√
T1 +

K−1∑
i=1

T∑
t=T1+1

λ+ 1

4α2∆2
i t

3
2 − 2α∆it

≤ 2
√
T2(K − 1)(λ+ 1)− λ(K − 1)T2

S
+
S(λ+ 1)

2α
log(

T

T2
) +

√
T1 +

K−1∑
i=1

T∑
t=T1+1

1

2α2∆2
i t

3
2 − α∆it

,

(29)

where in the second line we used
∑T1

t=1
1

2
√
t
≤
√
T1 and in the third line

∑T
t=T2+1

1
t ≤ log(T/T2)

and λ ≤ 1.

Third case: T1 ≤ T2 ≤ T . By (26) and (25) we have:

T∑
t=1

Rt ≤
T2∑
t=1

Rt +
T∑

t=T2+1

Rt

≤
T2∑
t=1

(√
K − 1(λ+ 1)√

t
− λ(K − 1)

S

)
+
√
T2 +

T∑
t=T2+1

(
S(λ+ 1)

2αt

)
+
K−1∑
i=1

T∑
t=T2+1

λ+ 1

4α2∆2
i t

3
2 − 2α∆it

≤ 2
√
T2(K − 1)(λ+ 1)− λ(K − 1)T2

S
+
√
T2 +

S(λ+ 1)

2α
log(

T

T2
) +

K−1∑
i=1

T∑
t=T1+1

1

2α2∆2
i t

3
2 − α∆it

.

(30)
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Merging the cases: Corollary 8 provides an upper bound for the last terms of (29) and (30):

T∑
t=T1+1

1

2α2∆2
i t

3
2 − α∆it

≤ 2

α∆i
.

Now we combine (28), (29), and (30), and obtain following bound for R:

R =

T∑
t=1

Rt + λC

≤ 2
√
T2(K − 1)(λ+ 1)− λ(K − 1)T2

S
+
S(λ+ 1)

2α
log(

T

T2
) + λC

+
√

max{T1, T2}+
K−1∑
i=1

2

α∆i
. (31)

We note that max {T1, T2} = max
{

S2

(K−1)α2 ,
1

∆2
minα

2

}
≤ S2

α2 . Moreover, by substituting T2 =

S2

α2(K−1)
into (31) we obtain:

R ≤ 2(λ+ 1)
S

α
− λS

α2
+
S(λ+ 1)

2α
log

(
α2(K − 1)T

S2

)
+ λC +

S

α
+
K−1∑
i=1

2

α∆i

=
λ+ 1

2

[
4
S

α
− S

α
+
S

α
log

(
(K − 1)T

S2

)
+

2S

α
log(α) + αC

]
+

3S

α

=
1

2− α

[
S

α

(
3 + log

(
T (K − 1)

S2

))
+

2S

α
log(α) + αC

]
︸ ︷︷ ︸

h(1,α)

+
3S

α
. (32)

We recognize that the first term in equation (32) is h(1, α), which was defined earlier in equation
(18).

Proof of the general bound in equation (6): By taking λ = 1, which corresponds to α = 1, we
obtain

R ≤ S
(

log

(
T (K − 1)

S2

)
+ 3

)
+ C + 3S

= S

(
log

(
T (K − 1)

S2

)
+ 6

)
+ C.

Plugging this and the value of λ into (16) completes the proof of (6).

Proof of the refined bound in equation (7): We note that the range of C in the refined bound in
equation (7) is the same as in the refined bound in (11) in Theorem 4 for B = 1. We take α∗ as in

equation (19), i.e., α∗ =

√
−S
C W−1

(
−CS

e(K−1)T )
)

. By Lemma 5 we have −W−1

(
−CS

e(K−1)T )
)
≥ 1,
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and thus α∗ ≥
√

S
C . By plugging this bound and the bound on h(1, α∗) from equation (21) into

equation (32), we obtain:

R ≤
√
CS

(√
log

T (K − 1)

CS
+ 2

)
+ S

(
log

T (K − 1)

CS
+

√
2 log

T (K − 1)

CS
+ 2

)
+ 3
√
CS

=
√
CS

(√
log

T (K − 1)

CS
+ 5

)
+ S

(
log

T (K − 1)

CS
+

√
2 log

T (K − 1)

CS
+ 2

)
.

Plugging this bound into (16) and using the fact that λ ≤ 1 completes the proof of (7).
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