Appendix A. Additional Notation

For a random variable X, we denote by ||X |4, the subgaussian norm of X, i.e.,
| X ||y, = inf{o >0: Elexp(X?/o?)] < 2}.

For a random vector X, the sugaussian norm is || X ||y, = supyega-1 [|v" X||y,. For two reals a, b
we denote a V b and a A b the maximum and minimum respectively.

Appendix B. One-dimensional Example

Note that 2441 = Z — 0 aswy_g, $0 2411 ~ N (0, Z . 0 a2*). We will need the following claim.

Claim 4 Under Assumption 2 with 3 = Q(1), we must have A < O (\/11—7(1)

Proof Fix a time ¢. Since x4y1 ~ N(0, E a2?), we have Var[r; 1] = O (1 o ) and so

from Gaussian concentration: P [z;11 > r/v/T — a, | < exp(—Q(x?)). By choosing large enough
= 0(y/log (1/B)), we get that P [z441 > k/y/T — a. | < B/4. Thus,

T
E > 1z > 6/(1—a)}

t=1

< pT/4. (11)

Now, suppose that A < k/4/1 — a,. Then, E[|O|] = E [Zthl I{xiy1 > )\}} < BT/4, and so
from Markov’s inequality, P[|O| > 8T'/2] < 1/2, which contradicts Assumption 2. Thus, A <
k/v/1 — a4, and since k = O(y/log (1/5)), and 5 = Q(1), we are done. [

a*'

The claim implies that A < O ( ) Let C denote the constant on this bound, i.e., A <

We consider two cases. First, if z; < 1 = then a*xt + C > x4, 1.6, if a:t € S,thenxyyg € S
with probability exp(—O(C?)) = Q(1). If &y > 75—, then a,x; + C > 75— > X. Again, since
C = O(1), we are done.

Appendix C. Proof of Proposition 4

We will need some definitions. We define the probabilities o} := N'(A.xy, I; Si+1), and the events
EY ={af > a}, and O, := {z; € S;}. Also, consider the process

B, — <]1{Ot+1} - a) 1{O, A EXY,
and the filtration G; = o(wp, w1, ..., w;, S1,S2, . .., Si+2). Then,

E[B, | Gy1] = E [(n{om} - a) {0, A EN ‘ th}

_Pp {Om ‘ Gi1,0 A 5,?} —a>0, (12)
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where in the last step we use that given G;—1 and O; A EF, we have 2411 ~ N(A.xy, I), and
af > a. Now, let M; = By — E[B;|G¢_1], and observe that M, is G;-measurable, and that
E[M; | Gi—1] = 0. Since —1 < B; < 1, we have —2 < M; < 2. Thus, from Azuma-Hoeffding
inequality,

d aﬁT] a?3?
P E M; < —— | <exp <— T> =o(1). (13)
L1 ! 4 128

Moreover,

( — E[B|Gy— 1) <t Zf:

1{Ou1 ANOLAER} — o Z 1{O, A EX}

1 t=1

IIMH
||
Mﬂ i Mﬂ

o+
Il

T
<|Pl—a) 1{O, A EY. (14)

t=1

From Assumptions 2 and 3, we have
T
P Y 1{OAEFY < BT — L| < o). (15)
t=1

Finally, using the assumed lower bound on 7', we get 81 — L > %T. The proposition follows after
combining this with 13,14 and 15. &

Appendix D. Detailed Proof of Theorem 6

D.1. The Generic bound

We will show the following lemma

Lemma 12 [Independently of how g;’s are chosen,

N N
|4- a. 22 <1- ; (20(gi, Aiis = AL = 1(As = Az |1?) +0? ;tr (9= ) -
Eq E
(16)
Proof For all ¢,

Apg — A= A — A, — gDt (17)

Multiplying with >2;,
(A1 — A = (4 — A)D; — ngi. (18)
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Multiplying 18 with the transpose of 17,
~ ~ T
(Ai—l—l - A*)ZZ(AH-l - A*)T - ((Az - A*)Zz - 7791') (A A 779@ )
Expanding and taking trace,
MAin = ALE, = 140 = A, = 29 A = A + 2 tr (579 )

Since K is (R, w)-
(see Hazan (2019) Theorem 2.1). Thus,

it1 — Ay, < ngurl — A,

1A — A3, < 1A = AR, — 20(gi, A — Au) + 07 tr (627 ' g])
Summing over all 7,

N
0< > (1A — A3, — [1Ain — Aul3,) —2n2 gi Ai — A, +n22tr(gzz”) (19)
=1

=1 =1

We now focus on the first sum.

N N
S (14 = AE, = 1Aia = AR = 14— g, + D0 (145 = A, = 145 - AR, )
=1 =2

— AN+ = A%,
(20)

Also, since >; = X;_1 + wtix;";,
14i = ALE, = 145 = AL, = tr (A= 40T (A= A)B:) = tr (A = 40T (Ai = A)Ti)

— tr ((AZ- —A)T (A — Az a) )) = (A — Az, |2 @D

Thus,

N N

D (1A = A3, = I[Airs — Adll3,) = 141 — A3, = [Ans1 — A3y + D I1(Ai — A, |12
i=1 i=2

N
=CU Ay = ALIE, — Ans = Ay + D0 1A - Aday, |2
=1
(22)

Combining 19 with 22,

N

N
AN+t — Aullfy < A1 = AulBy = D (2090, Ai — A — [I(Ai — Az, [1P) + 07 ) tr (giEi_ngT) :
i=1 =1

Observe that [|A; — A.]|3, = [[Ao — A.[|3;, < 1, since A} = Ag and A, € K. The facts that
A= Apn41 and ¥ = X finish the proof. |
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D.2. Decomposition of F

We start with some definitions. Fix a ¢, and let
Ti = {ot = 1 and at step ¢, Test returns True}.

Also, let O; = {o; = 1}. We now define some “good” events. Let G; := {t ¢ B},

Cy = {O; — { at iteration i(t), either Test returns True and a; > -, or Test returns False and a; < 4v}},

= {I1%5 "2l < Ry/log T}

Gy = {N(A.zy,1;S¢) > a}, and observe that |B(«)| = Zthl 1{—-G; A o, = 1}. The next
event is about the “correctness” of the Test. Let

Cy = {ot = 1 and at that step, either Test returns True and ~; > -, or Test returns False and ; < 47},

where a; is defined in Section 4.3. We aggregate via & = Gy A C; A K; A O;. Now, given oy = 1,
let V; i= 2n(g(t), A(t) — A,) — ||(A(t) — A,)z||*, where A(t) and g(t) are defined in the main
text. We decompose E; as

T T T
By =) VI{TiA&E} + ) VIL{=Ti A&} + ) Vil{=& A O}
t=1 t=1 t=1
Let Q1, @2, Q3 be the above three sums, respectively.

D.3. Large Survival Probability

In this step, we prove that E[V; | T; A &] > 0, which implies E[Q1] > 0. First of all, we condition
on F; and T; A &. Then, letting p; := A(t)x; and p} = Az, we get g(t) = (2t — y¢)x, , where
yr ~ N (uf, I,S;) and 2¢ ~ N (e, I, St). So,

E[Vi | B T A& = 200 = vi' e — i) = e — 1,
where vy = E, nr,,1,5,)[2] and v = By 1,5,)[y]- Also, note that on Ty A &,

N, I; St), N(ug, 150 = v

Now, using Lemma 10 of the main text (proven in detail there), we see that for large enough constant
cn®®, we get E[Vi | Fi, Te A &) > 0. Indeed, note that V, Lg(u; u*) = v — v*, where v =
E. N (u,1,9) [z] and v* = Eyon(u*,1,5) [z]. Thus,

E[Vi | Fio ToA&] = (2n(v/2) = 1) - e = ]2 = (2(2/0) (/47 = 1) -l = pi |
ocn+1-2ccy
cn—ch 1> ’ Hut - MIHQ >0,

for any constant ¢, > 2c - c5.

20. Remember that n = (2/a)"
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D.4. Small Survival Probability
Here, we prove that E[V; | =T; A &] > 0, which implies E[Q2] > 0. Given F; and —T; A &, we
have g(t) = (u — yi)xl, where y, ~ N'(u}, I, S;). Thus,

BV | Foo =T A& = 2l = vi o = i) = e = w1 (23)

Now, since & implies Cy, we have that given —7; AE;, the probability N (e, I;S;) < 4. Moreover,
& implies Gy, i.e., N(uf,I;S:) > «, which from Claim 1 implies v — pf|| < s(a). We
claim that |z — pf|| > 2s(«), provided that ¢, = O(1) is sufficiently large. Indeed, suppose
|t — pr]l < 2s(ar). Combining with N (uf, I;.S;) > « and Claim 3, we get

4(04/2)6’\{ = 4’7 > N(Mb Ia St) > (04/2)0(1),

which is a contradiction for large enough ¢, = O(1). Using that ||} — p;|| < s(«),
(e = v e — ) = e = w1 4 ud = v e — 1) = e — g 1P = Mg = vl - e — 167

. e — I

> |l — gz - (Hﬂt —pill — 5(04)) 5

Since n > 1, equation 23 implies E[V; | F;, =T A &] > 0.
Handling Bad Events and Gradient Variance
For ()3, we show that
E[|Qs]] < O(1)-poly(1/a)- (d+ R*> + R%) - (L +1).

This is proven using that bad events have small probabilities, relative to V;’s. This is a purely tech-
nical proof, and we provide it in Appendix E.

The last step is to bound Fo = ZZ]\L L tr (giEi_l giT ) . This is often called “the gradient variance” in
optimization. We show that

E[Ey] < O(1)-d(d+ R?+ R2).

The proof uses the volume-based potential-function argument used in Hazan et al. (2007), which
also appears in linear bandit theory (Lattimore and Szepesvari (2020)). We provide the proof in
Appendix F. Overall,

EME—A*Q < 1-E[Q)] - E[Qs] - E[Qs] + 1B
< O(1)-poly(1/a)- (d+R?+ R%) - (L +1) + O(1) - poly(1/a) - d(d + R* + R2)
< D+ LD,

where D = dD’, and D' = O(1) - poly(1/a) - (d + R? + R2).
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Appendix E. Bound on E[|Q);]]
Lemma 13 E[|Q3]] < O(1) - poly(1/a) - (d + R2 + R%) - (L + 1).

We now prove the above lemma. We start with some definitions (and reminders). If at time ¢ we
have o; = 1, then we define the following:

* Let i(¢) be the iteration ¢, which corresponds to time ¢.
o Let A(t) = Ajy), and i = A(t)z¢. Also, let py == Asxy.
* Lety; :== N (s, I; S).

* Let z; be the z at the end of SwitchGrad function, when called at iteration i(t).

If additionally, Test at iteration i(t) returns True (7%), then let z; be the 2’ of the SwitchGrad
function, at iteration i(¢). Observe that on T¢, z; = z;.

Now, observe that given 0, = 1,

Ve =200z — oo e — pF) — Il — 15 |1
All the above quantities are defined on O; = {o; = 1} (except for z; which is defined on 7; C Oy).
We extend all these, by defining them to be zero outside of O, (7; for z;). Furthermore, remember
that & = Gy A Cy A Ky A Oy, where the events (along with 7;) are defined in D.2. Moreover, in
Appendix H (Claim 25), we show that P[-C;] < 1/T2. About K, since K is (R,w)-accurate,
P[-K:] < O(1/T). We first decompose | Q3.
Claim 5 |Q3| < nQ4 + nQs, where

T T
Qi = @l — w1 + 2w |)U~E A O}, and Qs = |z — mel*L{~E& AT},
t=1

t=1
(24)

Proof Let w; := y; — pj (the noise). We have |Q3] < Z;‘le [Vi[1L{=& A O}, and
Vel < 20 (21 = yos e = )| - T{TeY + 20 (e = o e = )| + 1o = w52

< 2nllzy = yoll - Mo = |- LT} + 20l = well - Nlpse = w1+ nll e = pif|?
< 20llzg — pell - e — w |- LLTY + dnllie = yell - e — |+ nll e — w112
< 2llzf — el - e — |- DLT + nlle — w17 + dnllwell - e — i | + 0l — w112
< llzt = pell® - UL} + 6l — g 1> + 20l e — o |17 + 2lfwe |
=iz — pell? - L{Te} + 8nllpe — pi > + 20w

where we have used that > 1, and that for all a, b € R, 2ab < a® + b2. Since T; implies Oy,

T T
Qs <0 2 — el W{=E AT +0 ) (Bl — i |I” + 2lwe|?) - 1{=E A O}
t=1 t=1

We will prove the following claims.
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Claim 6 E[Q4] < O(R*+ R2)-(L+1).
Claim7 E[Qs] < O(d) - (L +1).
Observe that these two claims complete the bound on E[|Q3]]. We now prove the claims.

E.1. Proof of Claim 6

We will bound E[Q4] = E {Zthl(SHut — w12 4 2[Jwe|H)1{=E; A O} | by proving the following
two claims.

Claim8 Y, E [l — i [P1{~& A O}] < O(1) - RA(L +1)
Claim9 S0 E [||w|21{=& A O;}] < O(1) - R%(L + 1)

E.1.1. PROOFS OF CLAIMS 8, 9

On Oy, A(t) = Aj)and so A(t), A« € K, in other words || Ag—A4|[s, < 1and ||Ag—A(t)[[s, < 1.
From triangle inequality, || A(¢t) — A.||s, < 2, and so

* 1/2w—1/2
e = il = A = Aozl = [(A(t) = A0S >S5 2|
< I(AG) = 436 %2 - (1252
<A - A2l 1202 ael| < 221, (25)

Thus, since K is (R, w)-accurate, ||p; — || is O(R?)-subgaussian, which implies
* 1 *
P [Ilm — i || > Ry/log (TR)} < sopr and B[l —pi]l"] < O(RY). (26)

Let K| be the event in above probability.

E [Hﬂt — M:H2]l{_‘gt A Ot}] =E [Hﬂt - M?Hzﬂ{ﬂgt N O A ("Kt/)}] +E [”Mt — N:H2]l{_‘gt A O¢ N Ké}]

<9 O(R?) - P& A O + Bl — i | 1{K7}]

< O(R?) - (P[=Gd] + P[~Ji) + P[=Ce]) + /Elllie — 1§ [1] - /BIKY
1

<29 O(R?) - (P[-Gy] + 1/T) + O(R?) - TR

< O(R?) - (P[-Gy] +1/T).

Summing over ¢ and using that Zthl P[-G;] < L, we finish the proof. For Claim 9, observe that
since ||wy|| is R subgaussian, we can just use identical steps as above. H

E.2. Proof of Claim 7
Let &5 ==& A Tiand so Qs = o0 |21 — pel1{E 5}

Claim 10 Given F; and & 5, we have that || z; — ut]]2 is O(d) - (1 V log (1/~;))-subgaussian.
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Proof Given F; and &; 5, we have z; ~ N (g, I, S¢). In Appendix H (Claim 22) we show that this
implies ||z; — prz < O(1V ). Claim 23 in Appendix H finishes the proof. [

The claim above implies (see Vershynin (2018))

El||2f — pel3 | P, £5) < O(d) - (1V 1og (1/3)). 27)
Thus,
[E [llz — wel*1{E5} | 7]
[E [llz — well*1{E5} | F]]
[E [ll2t — well® | Fi, &) - PlErs | Fil]
d)-E[(1Vlog(1/v)) Pl&s | Fill

)
d)-E[E[(1Vlog(1/7)) - 1{&s} | Fil]
(d)-E[(1Vlog (1/7)) - 1{& s}, (28)

where the inequality above is justified by (27). So,

E [||z — Mt“2]1{5t,5}] <0(d) - (P [Et,5] + Eflog (1/v) - 11{&,5}]) (29)
We will first bound

Ellog (1/7:)-1{&5}] = E [log (1/v¢) - 1{Cy A & 53] + Eflog (1/v) - 1{=Cy A E; 5 }]
=E[log (1/v) - 1{Ct A Ti} - 1{~(G¢ A K¢)}] + E [log (1/7) - 1{=Ct A Te}],
(30)

where we used the definition of & 5. Now, observe that on C; A Ty, we have 7, > «. Thus,

Eflog (1/v) - 1{C: ATt} - L{~(Gt A K¢)}] <log (1/7) - P[=(Gt A Ky)]
<log(1/7) - (P[-Gy +P[-Ki]). (3D
We now bound E [log (1/v;) - 1{—C} A T¢}] via the following claim.

Claim 11 Fixr = O(1). Then, E [(bg %)r L{=Cy A 7;}} <0(1) %oy

We state the claim for general r, because later we will need it for » = 2. Observe that for r = 1,

we get E [log (1/7,) - 1{=C, AT} < O (1)- % We prove the claim at the end of the subsection.
Combining with (30) and (31), we get

Eflog (1/7:) - 1{:5}] <log (1/7) - (P[=Gy] + P[~K4)) + O (1) - 1

so from (29),

~ -1
E [llz — pl*1{&s}] < O(d) - (P[&,ﬂ + P[~Gy] + P[-K;] + 7T2>
< 0(d)- (

Plées] + PI-Gi) + Bl + 1
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Observe that P[€; 5] < P[~Cy] + P[-K;] + P[-Gy]. Also, Y1, Pr[~Gy] = E[|B(a)|] < L, and
P[-K;] < O(1/T) (since K is (R,w)-accurate), and P[-C;] < 1/T? (Appendix H, Claim 25).
Thus, from (28),

T -1

BiQs) < 0+ Y- (PG + YT + T ) < 0d)- (B4 1)

using that 7" > poly(1/a) and 1/ = poly(1/«).

We now give the proof of Claim 11.
Proof Let P, = {; > 1/T?}. Then,

E| <log ;) -G AT =B <10g ;) L{-C, AT A P

+E Klog ,>1/> -1 {_\Ct AT A (ﬂPt)}:| .
t
(32)

Since 7; A (—F;) implies —C}, we have

EKlogiY-n{ﬁctA%/\(ﬁPt)}} _E (log > ]l{T/\(ﬁPt)}]
<E <log > 1{T3) ﬁpt]
_E E[(log ) 1{7}‘%,ﬁpt] ﬁpt}
=F <log ) P [T; | v, ~ P ﬁpt]

Combining with (32), we get
1\" ONT
E[ 10g,7 -]l{—Ct/\ﬁ}] S(logT) -E[]l{—'Ct/\'E}}
t
1 T
+E|(tog ) P (7|07
Tt
From Appendix H (Claim 25), we get E [1{—=C; A T;}] < E[1{~=C; A O;}] < 1/T?. Also, given

¢, the probability of 7; is at most 1 — (1 — %)k (if no &; hits Sy, then the Test definitely returns
False), where k is defined in Algorithm 3. From Bernoulli’s inequality, 1 — (1 —7;)* < v;k, and so

1 T
E[(log) P [T: | v, ~P)
Tt

-n).

1 T
ﬁpt} <k-E [(log) - ’ e < 1/T2}
Ve

7)) gé(l).%’

where we used that » = O(1) and that 7" is lower-bounded by a large constant. |
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Appendix F. Bound on Gradient Variance

Lemma 14 E[E,] < O(1)-d- (d+ R? + R2).

In this section, we prove Lemma 14.
N N N

Ey = Ztr(giz;lg?) < Z ||Zti - yti”2 : (ffnglxti) < mlaX{Hth - ytiHQ} : Z$£E;1$ti
i=1 i=1 i=1
; N _Ty-1 1/d :
Claim 12 Y°;' 2! ¥ 'z, < d (log [Sn|Y4 + log (1/w)), where | S| denotes the determinant.

This Claim is (implicitly) proven in Hazan et al. (2007). We provide a proof for completeness.

Proof We will use the following inequality: if A, B are PSD matrices, then (A~!, A— B) < log %.
For a proof of this see Hazan (2019) Lemma 4.6.
Tl Nmypl Ty - Ny 1o 1% S|
thbzl Tt; = Z<El ,xtixti) = Z<Zl ,Ei — Ei—1> < Zlog 5 = log 5 .
i=1 i=1 i=1 i=1 |Zi-1] 20|
The Assumption that K is (R, w)-accurate, and so ¥ > w - I completes the proof. |

By Cauchy-Schwarz,

E[E) < O(d) \/E g, = 1] - /B og? (2177 + 5.
The following claims complete the proof.
Claim 13 E [log? [Sy|Y4] <log® (e + T - R2).
Claim 14 E [max; ||z, — ys,[|*] < O(1) - (> + R* + RY)
We now prove these two claims.

F.1. Proof of Claim 14

Let M = max; ||z:, — ys,||, and also let
1. My == maxy {||z; — pe|| - 1{C: AN T¢}}
2. My = max; {2 — pull - 1{=C; A Ti}}
3. Ms = max; || S0~ 2z ||

4. My = maxy ||w|

Proposition 15 M < M; + My + 4Ms + 2My
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Proof M; = max; {||z: — y|| - 1{O:}}. Now,

2t = yell - T{O:} = |zt — well - T{Te} + [[2e — well - L{=Te A O}
= llzg = well - T{Te} + e — well - T{=T¢ A O1}
< lzp = el - T{Te} + [l — wel| - 1{O4}
< ([l = pell + e = well) - {T} + e — well - {0}
< lzp = pell - T{Te} + 2[\ e — el - {04}
<zt = pell - W{Te} + 2llpee — i || - T{Oe} + 2[Jawe|
<12 = pull - T} + 4155 ]| + 2w

= |2t = pell - 1{Cy AT} + |12 — el - 1{=C A To} + 41|55 ]| + 2w,

where in the second-to-last step we used (25). |

We will prove the following claims, which finish the proof of Claim 14.

Claim 15 E[M{] < O(d?).

Claim 16 E[Mj] < O(1) - 4.

Claim 17 E[MZ] < O(R%), and E[M}] < O(R%).

First, Claim 17 follows immediately from (a) ||w;|| being R2-subgaussian, (b) ||, Y 2xtH being
RQ—subgaussian, and (c) Claim 24 (Appendix H). We now prove the other two claims.

F.1.1. PROOF OF CLAIM 15

Let 02 = (1 Vlog(1/7)) - d - log (2d). We will show that for all t, ||z, — | - 1{C; A T} is
O(0?)-subgaussian. Given this, Claim 24 (Appendix H) finishes the proof. Fix an r > 0.

Pz — pell - H{CeATe} =0 r] P [llat — pull >0 r | G AT
Observe given C; A T;, we have v, > 7. Let 02 := (1 Vlog (1/)) - d - log (2d).

Plllz; = puell - L{Ce ATe} > 0] <P llz — puel| > 007 | Ce ATE]
E [P[l|z; — puell > o1 -7 | Fo, Te) | Co A Te] -

But, given F; and T;, we have z; ~ N (u, I, S;), and so from Claims 22 and 23 (Appendix H),
|20 — pue|| is O(c2)-subgaussian. Thus, P[||z} — ]| - L{C, AT} > 0 - 7] < e~ ). A
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F.1.2. PROOF OF CLAIM 16

As previously, given F; and —=C; A Ty, we have z; ~ N (u, I, S;), and so from Claims 22 and 23
(Appendix H), ||z} — pu|| is o2-subgaussian. Thus,

E||z —Mtu‘*.n{ﬁctm;}} — P[-C, AT -E[E[Hzg — ||| ]-"t,ﬂC’tAﬁ} ‘ﬁctm;}

IN

O(1)-E [0} - 1{=Cy A Ti}]

O(d?) - E [(1V10g(1/7%))” - 1{~C; A T}

O(d?) - ( A +IE{log(l/%))Q-]l{ﬂCt/\ﬁ}D
< O(d?) - (1/T? +471/T7),

| /\

| /\

where in the last step we used Claim 25 (Appendix H) and Claim 11. l

F.2. Proof of Claim 13

The function log? () is concave for 2 > e. Thus, from Jensen’s inequality,
E [log2 |EN|1/d} <E [log2 (e + \ZNll/d)] < log? (e +E [|2N|1/dD
Now, from AM-GM, |Ex|"/? < 1. tr(Sy) < 327, ||lo¢]|>. Thus,

E [1og2 |2N|1/d} <log?(e+T-R2%).

Appendix G. Proof of Theorem 11

For all Z C [T, we define X7 € R%*/Zl be the matrix whose columns are the {x;};<7, placed in
temporal order. Also, let X := X7, and I'; := ZZ;B(Ai)(Ai)T. The following lemma (a) upper
and lower bounds the “size” of the covariates, (b) certifies that our algorithms will use enough data
and that |B(«)| is small, and (c) bounds ||w:||.

Lemma 16 Let Z) =Ty \ B(«a), and Cy, g = poly(1/a, 1/) (sufficiently large). Also, let
7/3

€1 = {|B(@)| < LY AM|To|, [T1] > aBT/4}, and

d 1 1
= XX < -Tps A Xr Xt = ——Tr b A X7 X1 o= —Tp b,
b2 {T 5 T} {|I| LA 7 s T} {|Il| XL F o T}

and E,3 = {Vt : |Jwy|| < O(d)}. Let & = Eg1 A Egy N Eg 3. Then, P[E,] > 1 — 6 — o(1).

We will prove Lemma 16 in Appendix G.4. We will need some definitions to ease notation. Let
B = B(a), Xo = X7,, No = |Zo|, vf = Eyn(Aw,1,5:40) W] and (¢ == v} — A,z Finally,
for all Z C [T, let Wz, Z7 denote the d x |Z| matrices whose columns are (w;)iez and ((;)iez
respectively (in temporal order).
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. ~1
Oné&,, XoX, = 0, so the least-squares solution is unique, i.e., Ay = Y iet, Tz (XoXy)

Using z;41 = Az + wy, we get

XoXJ 1/2 1/2
(Ao — Ay) - < NOO ) FteZI Wy (XOXO >
/ /
F; — )z, (XOXO) v W;mt <X0X0> v
A Ag
1 T T\ /2
+ \/N—OtE;BthEt <X0X0> R
Az

where remember that Z) = Z, \ B. We will control each ||A;||r separately.
Claim 18 On &,, || As||2 < O(dL/Ny).

Aol < O(log(1/a) +1).
Claim 20 On &, with probability at least 1 — &, we have | A1]|% < O(d?/Ny).

Claim 19 On &,

Given these claims, we have that on &4, with probability at least 1 — 9,

d?> +dL
+

1/2]|2
XOXOT) 6(1) . oA O(log(1/a) + 1)

(Ao = 4)- ( No

XOX

F

But,on &;, Ng > ofT/4 and = . ( >FT Setting 6 = 1/T', and using the assumed lower
poly( o3

bound for 7', we have that with probability 1—o(1), —Ayllr, < O(y/log(1/a)+1). Moreover,

in Appendix H.4, we show that ||F;1/ 2;1ct|| is O(d)-subgaussian. Combining with Lemma 16, we
complete the proof of Theorem 11. We now prove the three claims.

G.1. Proof of Claim 18

Let B’ = Zy N B. We will show that on &, [|A3][3 < 5= 3¢ p [|wi]|*. Observe that from Lemma
16, this immediately gives the claim.

1 .
sl = 5t (Wi X G (XoX]) " X W5, )

1
= F<Wg,WB/,Xg,(XOXOT)—U(B,>
=% <WB,WB, X Px,, (XoX{ )*1PXB,XB,>

where Py, is the projection matrix for the columnspace of X /. Now, note that X X, g = XpX gl
This implies that

-1
Py, (X0X0) P, < (XpX5)T,
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where (X g/ X g, )t denotes the pseudoinverse of X g/ X g,. For a proof of this implication, see Arora
et al. (2019) Lemma E.1. Thus,

1
1812 < FO<W;WB,,Xg,(XB/Xg,)+XB/>.

But, XL, (X5 X},)" Xp is just the projection matrix for the rowspace of X/, and so ||Asz||Z <
|2, and we are done. B

1
No
G.2. Proof of Claim 19

First we show that on &, if ¢t € Z|, then ||¢|| < /2log(1/a) + 1. Consider the filtration G; =
o(wo,...,wi—1,81,...,Si+1), and (similarly to the time-series case) the events O, = {z; € S},
and

Gt = {0 = {N(Asxy, I;Si11) > a}}
Notice that ¢ € Z|) implies O; A Gy. Now, given G; and Oy A Gy, we have 41 ~ N (A.xy, I, Sp41),
and N (Asxy, I; Si41) > . Using Claim 1, we get ||¢;]| = ||vf — Asae|| < /21log(1/a) + 1. Now,

1Az = <Z Z7y, X7, (XOX()T)_IXI()>,

No

and since XI/ T < (Xo ) the exact same arguments as in proof of Claim 18 show that
0

1As]If < 51127 If < O(log(1/a) +1). W

G.3. Proof of Claim 20

First, remember that on &, XOXOT = XZ(/)XIT, > 0. So,
0

|Arllr < v/d/Ng - '(Wzé - Zzé) XT() (XOXJ)71/2 , (33)
/Ny - '(WI6 _ ZI(/)) X7, (XI(,)XT(/))*U2 2 (34)
Now,
—1/2 1/2

T T
‘(W% - Zzé> X7, (XZ(/)X 6)

sup vy (WI/ ZI/> (XI/X ) V2

2 V1,02 €8d-1

= sup
v1,v2€84-1

= sup
v1,v2€89—1 HX;—/ ()

sup
v1 €841 vy eRY HXZT/U2H2
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Fix some v; € S9! vy € RY. Let Hy = vl (wy — ) - 1{t € I}, and Uy = vlixy - 1{t € I},
and observe that on &,

U’{ (WI’ ZII) XI’ V92 23;1 H, - U,

T
gl Yz v

Let I'pin == ﬁﬁFT, Thax == Q’B%IFT, and C, g = poly(1/«a, 1/p) that is large enough, so that

Thin < XI()X%:,) < I'max on &;. Fix a § € (0,1), and consider a large enough K = é(d) We will
bound the probability

T T
_H - U,
p1=P 2 MU > K 3 A {U;FminUQ <) U< ngFmaxvz}
\/ Zthl Ut t=1
Consider the filtration F; := o(wg, w1, ..., w—1,81,...,St+1, L{xi41 € Si4+1}) (similarly to the

time-series case). Given F; and that ¢t € 7, we have A,z + wy = x411 ~ N(Asxy, I, S¢41),
and N (Asxy, [;Sp+1) > a. Combining with Claim 22 (Appendix H), we get ||vrfwt||12h <O(1lv
log (1/a)). Also, from Claim 1, [|of Gt[[3, < [|¢tl|3 < O(1 V log (1/a)). Thus, given Fy, Hy is
mean zero, and O(1 V log (1/«))-subgaussian. Furthermore, observe that H; is F;;-measurable,
while U, is F;-measurable. Using Lemma 4.2 from Simchowitz et al. (2018), we get

b= Vg Dinaxva O(1Vlog(1/a)) )’

Also, observe that

T T
o <WZ‘3_Z%)XZ&U2 e > K| <p
e, <
o],

Now, let V] be a 1/2-net of S¢~!, and let N5 be a 1/4-net of Sr, . in the norm HF;{;() ||2. Taking
a union bound,

’[)1T <WI/ Zz'/> XI(/)UQ
‘ &} > K| <pi- M| [N

Using the bounds on ||, |N2| from Simchowitz et al. (2018) (Lemma D.1), we get

P ({31 €N1,U2 ENQZ

HX (%)

VL] - [N2| < o 92 'maxvz exp | O(d) + 2log det(T'max ' L) K* <4
: ’ S8 max - >~ 0,
Pl Rl =08 o T )P BEHEmatmin] T 0 (1 V Tog (1/a))

where we used the definitions of ' ax, I'min, and K. So now we have

'Uir (WI’ ZI’) XI’ (%]
> Ky AE| <.

P sup
leNl,’UzENg HX /'UZH
Iy 2
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With an argument identical to the one of Simchowitz et al. (2018) (Appendix D.2), we get that

Uir (WI(’) - ZI(’)) X;, V2
P sup S > 4K 3 ANE| <6,

Ulesd_l,’vQERf HX;—/ UQH
0 2

and we are done. B

G.4. Proof of Lemma 16

We will deduce Lemma 16 as a corollary of the following lemma.

Lemma 17 Fixd,e € (0,1), and an integer k > 1. Then, there exist absolute constants C,C" > 0,
such that if

T d d\ 1
—>C(slog|—)+51 78
k C<62 og <5e> —1-62 ogdet(I'rI', )), then (35)
Pl lxxT <904 vzc[T]stm>TwehaveiXXT>ér >1-4
T ST =Sk = e 7| ET T o k| =
(36)

Given the above, we prove Lemma 16.

Proof We will use Lemma 17, with ¢ = «/3/8, and k = 5) (%). We need the following

proposition.
Proposition 18 For large enough k = 5) (#(A*))’ we have 21y, = T'p.

Proof |[I'r7—Dyl2 < ZST;kl H(A,f)(A;i)TH2 Also, observe that H(A;i)(Ai)TH2 < cond(9)%p?* (A,).
Summing up and using the scale of k, we get ||[I'p — T'x||2 < 1. The fact that T'y, = I completes the
proof. |

Observe that the above proposition, and the assumed lower bound on 7" imply that 35 is satis-
fied. Now, from Proposition (4), P[|Zy|, |Z1| > aBT/4] > 1 — o(1). Also, from Assumption 3,
P[|B(a)] < L] > 1 — o(1). Thus, P[|Zo|, |Z1|, |Z| > €T] > 1 — o(1) (remember that L << T)).
Lemma 17 and Gaussian-norm concentration finish the proof. |

The main part of this section is devoted to proving the following lemma, from which we can
easily deduce Lemma 17.

Lemma19 Fixe € (0,1),1 < k < \/eT, andv € S4'. Let c(¢) = ¥ i/ﬂ, and k(e) = | £ |.
Then,

1 v Thov |T/k|
PI\3ZCIT]: |Z| > T — T )2« 97| < ——L =.
C[T]: |Z| > 5v/€T and 7] tEEI(v xy)° < 2200 | = exp ( g )

Given Lemma 19, we can show the following corollary, from which Lemma 17 immediately follows.
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Corollary 20 Fixe € (0,1), 1 < k < /€T, and let c(¢€), k(€) as in Lemma 19. Then,

1

P
IZ|

1
{TXXT < ZFT} A {VI C [T)] s.t. |Z| > 5+/€T we have

X7X7 = Fm,-n}]

T/k
>1—6—exp <d10g9 + logdet(I‘maxF,;iln) — L g J) ,

where Tyjp = ﬁ(e)rk(e)’ Cinax = %\/EFT

Proof Using that for any Z C [T such that |Z| > 5./€T, we have \TIIXIX; < %ﬁ%XXT, the
corollary follows from Lemma 19 by using exactly the same (net-based) arguments as Simchowitz

et al. (2018) (Lemma D.1., and beginning of Section 4). |

For the rest of the section, we work on proving Lemma 19. We use the martingale small-ball
technique of Simchowitz et al. (2018).

Definition 21 (Martingale Small-Ball; Simchowitz et al. (2018)) Let G; be a filtration, and let
(2t)t>1 be a {Gt}i>1-adapted random process taking values in R. We say (z;)i>1 satisfies the
(k, v, p)-block martingale small-ball (BMSB) condition if, for any j > 0, one has % Z,’f:l P(|zj4i | >
v|G;) > p almost surely. Given a process (1)i>1 taking values in R%, we say that it satisfies the
(k, s, p)-BMSB condition for Ty, = 0 if, for any fixed v € S, the process z; == (v, x;) satisfies
(k, /v Tv, p)-BMSB.

Now, suppose that a (real) process (z;); satisfies the (k, v, 1 —e)-BMSM condition. We partition
the sequence 21, ...,z into 7 := |T/k| blocks of size k (we discard the remaining terms). For
0 < /¢ <7 —1, we consider the events

K
1
& = k;]lﬂzewﬂ >vp>1—e

Claim21 P [z;;g &) < (1 - ﬁ/2)r] < exp(—1/8).

We provide a proof of Claim 21 in Appendix H (Claim 27).

APPLICATION TO LDSS

Proposition 22 Consider the linear dynamical system xiy1 = Asxs + wy, where xg = 0, wy W
N(0,1), and let T, := ZZ;%)(A‘:;)(A;%)T. Fix an e € (0,1). Then, for 1 < k < T, the process
(x4)¢>1 satisfies the

1
(k, S~ Lk(e)s 1 — e) -block martingale small-ball condition,
c?(e)

VI and k(e) = ||,

where c(€) =
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Proof Consider the filtration G; == o (wq, w1, ..., w;_1). Fixav € S¥~1. We have
j—1
T T 45 T ;
V Ts4j =V Alxg +v ZAiwerjfifl-
i=0

Given Gg, v g;& Aiwsﬂ-_i_l ~ N(0, UTFjv). From Claim 26 (Appendix H), for any ¢ > 0,
} < V2T

Cc

.
v I

P [|UT$S+]-| <

We choose ¢ = Lf/ﬂ Using that for all j > k(e), T'; = Tyc), we get

k v Th(e k JUTD v
%Z [0 24y > S o s Z%ZP lv $s+y|2% s
j=k(e)
1 & [ vITv
> E P ‘U x5+j| > J gs]
j=k(e) L
zk_kk(e) (1—?/”) >(1—¢/2)>>1—c¢

Now, fixav € S !, ak € [T],and an e € (0,1). Let 0%(v, €) = 02( ZoY Fk(e)v We define the
events:

k
1
{0 21
forall 0 < ¢ < 7 — 1. Observe that Claim 21 and Proposition 22 imply
T—1 -
P [Zn Er<1- \/E/Q)T] < exp (—7) :
8
(=0
which implies

P szn {0T2)? 2 (0,0} < (1= Ve/2)1 - ﬁ)/w] <exp(—5)-

For k < |\/eT'|, we have T — 7k < /€T, and so

T
T2)? >0 <(1- < ~I).
P Lz:;]l{(v ) >0 (v,e)} < (1-5Ve/2)T _exp( 8>
Observe that this implies
P|(3IZ C[T): |Z| > 5T and Zv z4)? <02(v’6) <exp<—z).l
P R
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Appendix H. Technical Claims
Claim 22 Let z ~ N (p, I, S), and v = N (u, I; S). Then,

2 —ull2, < 001 Vlog (1/7)

Proof It suffices to show that for some absolute constant ¢ > 0, and for all v € Sd_l,

42
P [|UTZ — UT,U| > t] <exp | - (37)
c- (1 V log <l>>
5
Observe that it suffices to show it for v = (1,0, - -- ,0) (otherwise we can just change coordinates).
So, it suffices to prove
2

Plz1 — p1| > t] <exp

e (vie (1)

Now, consider samples 1, ..., §r1q ~ N (1, I). From van Handel (2014),
Y

1
Ve >0, P [max|§i,1 —p1] > 4/2log — + x] < 2e%/2,
i Vo oy
Also, note that P[3i : & € S]>1— (1 — ’y)g] > 1/2. Let
1 1
p=Pllaa —m| >t] =P |[z1 — | > 210g;+t— 2108;;-

For ¢t > 1/2log%,leta::t—,/210g% ZO,andsop:]P’Dzl—,uﬂ > \/@+m],and
1 1
P {maXI«Sz',l — | > 210g,y+x] =1-]]P [\&,1 — | < ,/210g7+x}
Z .
KA
1
=1-]] (1—P[|§i,1—u1! > \/2ln7+x]>

1

>1-T] (1-Ple 8] F flgu -l 2 20 4

(2

oes)

Now, P [¢; € S] = v, and given §; € S, we have & ~ N (p, I, .S), and so observe that

/ 1
]P’|:|§i71—;£1’2 2ln§+:1c
Thus,

1 1
26x2/22P[maX\§i71—u1| > 1/21n+$} Z1—1_1(1—717):1—(1—7]9)&1 >1—e?
v Y

i

& € S] = p, Thus,
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Now, observe that due to e~? being convex in [0, 1], we have e < 1 — #(1 — 1/e), which allows
us to conclude that p < 4e~7"/2. Let ¢(y) = 1/21log(1/7). We showed that for t > c(v),

2
t —
Pllzy — ] > 1] <2 exp (—(2(”” +1og2>. (38)
From here, straightforward calculations complete the proof. |

X|l2 is O(o2dlog (2d))-

Claim 23 Let X be a random vector in RY, such that | X ||12112 < 02, Then,
subgaussian.

Proof Forall i, P [z7 > t?] < 2-exp (—Q(t?/0?)). Letting t = O(0) - 1/log (Z(S—d) and applying
union-bound finish the proof. |

Claim 24 Let M be the maximum of T nonnegative o*-subgaussian random variables (not neces-
sarily independent). Then, for all ¢ > 1,

E[MY] < <\/20'2 log T + Ca\@)q :

where C' > 0 is an absolute constant.

Proof Let B := \/202logT. From van Handel (2014), PIM > B + z] < e~ 72/(20%) et
Y =MVB—-B2>0. Forallz > 0,P[Y > 2] < e~%°/(20%) This implies that for all p > 1,
Y|, < O(o/p) (Vershynin (2018)). Thus, || M|, < [|[M V B||, < B+ O(0)+/p. u

Claim 25 P[-C;] < 1/7T2

Proof Given F; and Oy, let i = i(t), and consider p, k, and the £;’s of the Test at iteration ¢. Then
Elp | Ft, O¢] = ~:. We consider two cases, and we use standard Chernoff-bounds in both of them.

1. If v > 4, then Plp < 27] < exp(—kv/2) < 1/T%.

2. If ¢ <, then P[p > 29] < exp (—éﬂgﬂ; Ve k:) < exp(—ky) <1/T7

Claim 26 Let z ~ N(u,0?) be a one-dimensional normal. Fix a ¢ > 0. Then, P[|z| < o/c] <

Ned
Proof P[|2| <o/c] = —— ffﬁc e~ (@=1?)/(20%) gy < ¢217m ffﬁjc iz < \/3/7 .

Claim27 P [z;;g & < (1 - \/5/2)7] < exp(—7/8).
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Proof Let H; = o(z1,...,2:). Fix a block ¢. From (k,v,1 — ¢)-BMSB, %E?ﬂPHZEkH‘ >
v|He) >1—¢ie.,

k

1

EE Z]l{|zék+j| >v} | Hu| >1—¢ (39)
=1

We will need the following simple proposition.

Proposition 23 v Let Z be a random variable supported on [0, 1], such that E[Z] > 1 — ¢, for some
€ € (0,1). Then, we have P[Z > 1 — \/e] > 1 — y/e.

Proof Suppose it is not true, then

—Ve
E[Z}:/OIP[sz]dJ::/OI P[ZZ$]d$+/11 P[Z > x]dx <1 — e+ e (1 —/¢)

—Ve
=1—e¢,
contradiction. |
Combining (39) with the proposition above,
1k
Pl | Fu] =P | > {1 Zonss| > v} > 1= Ve | Hu| 21— Ve (40)
j=1

Now, let Ay, = 1(&) — P[& | Ry], where Ry = Hyg, so that E[A, | Ry] =0, and Ay is H,-
measurable. Since —1 < A, < 1, from Azuma-Hoeffding inequality,

T—1 t2
P ZAf < —t| <exp (_27>
=0
Setting t = 7(1 — /€/2), and combining with (40) completes the proof. [ |

H.1. Proof of Claim 2

We will prove the following claim, which combined with Claim 29 (Appendix H.2) gives Claim 2.

Claim 28 If N (u, I; S) > (, then Cov, n(u1,9)2, 2] = %I, where C > 0 is an absolute constant.

Proof The proof is implicitly in Daskalakis et al. (2018). Let R = Cov.ar(,,1,9)[2, 2] and

R =E. non {(Z —E.on(urs)2]) (2 = Eoonu.9) [Z])T}

First, from Claim 3 in Daskalakis et al. (2018), R’ %= I. Fix some v € S%"!. We want to relate
vl Ro with v R'v. Now, v"Rv = E, (1,9 [Po(2)], and vT R'v = E, nru 1 [po(2)], where
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puv(2) is a polynomial of degree at most two, whose coefficients depend on v. Also, p,(z) > 0, and
R’ = I implies

E. nv(unlpo(2)] = 1

2
Let 0 = (ﬁ) , where C, is the constant from Theorem 5 in Daskalakis et al. (2018). Let

S ={z€R?%: p,(2) <0}. Applying the aforementioned theorem,

_ C,-2- -5
N, 1,5) < AC:

<(¢/2.
(Eoniuy lpo(2)]) 2

Thus, E.xr(0,1,5)[Po(2)] > (/20 > Q(C?). u

H.2. Proof of Claim 3
We prove a more general claim:

2

Claim 29 IfN(p*, I;S) > cand ||p—p*|| < 7, then N'(p, I; S) > §-exp (—% —r-y/2log é)

Observe that if r = ¢ - s(«), we get Claim 3.
Proof Without loss of generality, suppose u* = 0 (the general case follows from a simple affine
transformation).

4D

N(u, I;
N, I1;8) = Epnvio,n) []1(96 €5)- M]

N(0, I; z)

We will show that if 2 ~ N(0, I) then with probability at least 1 — § the ratio % is larger
than some bound . Since N'(0, I;.S) > a, this implies from (41) that N'(u, [;.S) >

N, Iz) 2]
NO,T;z) P (‘2

5 A
+ a:T,u,> > exp (—r2/2) - exp <a:T,u> 42)
Observe now that since z ~ N(0, I), we have ="y ~ N(0, ||u||?), so for all £ > 0,

PloT < ~llult] < exp (~£2/2)

Letting t = v/24/log %, we get P [z < —||pl/t] < %, and we are done. [ |

H.3. Bound on R,

Claim 30 For all t, E[||z|?] < O (ﬁ‘f;‘) . cond(U)Q)
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Proof By unrolling the system, z; = 2;10 AFw;_p_q,and so z; ~ N (0, Z’,;;lo AP (Aif)T>, o)
E[|z]|?] < tr('r). Since A, = UDU ™Y, we have A% (A¥) " = UDFU='U~*DFU*, and so
T
tr <Af (4f) ) = w(UD'UT U DRUY) = e (U U DR U U D)
< |U*U|2 - tr(DkU*IU**Dk*) = |U*U]s - tr(Dk*DkalU**>
< U U2 - [UUY2 -tr(Dk*D’f) — cond(U)? - tr(D"“*Dk)
< cond(U)? - d - p(A,)*E.

Summing over ¢t completes the proof. |

H.4. Bound on HF;l/thH.

Claim 31 Forallt,

F;l/th H is O(d)-subgaussian.

Proof By unrolling the system, z; = Y4  A¥w;_j_1, and so 2, ~ N (O, S h Ak (Af)T)
Since I'r = ’,;;10 AF (Aff)T, ||F;1/2xt|| is stochastically dominated by a || z||, where z ~ N (0, I).

So, from concentration of Gaussian norm (Vershynin (2018)), F;I/ th H is O(d)-subgaussian. W
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