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Abstract
We study the problem of online learning with bandit feedback, where a learner aims to
minimize a sequence of adversarially generated loss functions, while only observing the
value of each function at a single point. When the loss functions chosen by the adversary
are convex and quadratic, we develop a new algorithm which achieves the optimal regret
rate of Õ

(
T 1/2

)
. Furthermore, our algorithm satisfies three important desiderata: (a) it is

practical and can be efficiently implemented for high dimensional problems, (b) the regret
bound holds with high probability even against adaptive adversaries whose decisions can
depend on the learner’s previous actions, and (c) it is robust to model mis-specification;
that is, the regret bound degrades gracefully when the loss functions deviate from convex
quadratics. To the best of our knowledge, ours is the first algorithm for bandit convex
optimization with quadratic losses which is efficiently implementable and achieves optimal
regret guarantees. Existing algorithms for this problem either have sub-optimal regret
guarantees (Flaxman et al., 2004; Saha and Tewari, 2011) or are computationally expensive
and do not scale well to high-dimensional problems (Bubeck et al., 2017).

Our algorithm is a bandit version of the classical regularized Newton’s method. It in-
volves estimation of gradients and Hessians of the loss functions from single point feedback.
A key caveat of working with Hessian estimates however is that they typically have large
variance. In this work, we show that it is nonetheless possible to finesse this caveat by
relying on the idea of “focus regions”, where we restrict the algorithm to choose actions
from a subset of the action space in which the variance of our estimates can be controlled.
Keywords: Online Learning, Bandit Feedback, Newton’s Method, Quadratic Losses

1. Introduction

In this work, we study the problem of online learning with bandit feedback, which can be
viewed as a repeated game between a learner and an adversary. In round t of this game, the
learner chooses an action xt from a known domain X ⊂ Rd. The adversary simultaneously
selects a loss function ft : X → R and reveals the loss suffered by the learner ft(xt). The
performance of the learner at the end of T rounds is measured using regret

RegT =

T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x).

For this problem, we would like to design an algorithm for choosing xt that satisfies the
following key criteria: (a) (optimal regret) achieves regret bounds which have optimal
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dependence on T , and which hold in high-probability against adaptive adversaries, and (b)
(computational efficiency) the run-time of each iteration of algorithm should have a
small dependence on dimension d, e.g., polynomial dependence with a small exponent, and
independent of the number of rounds T (ideally, we would like it to have similar run-time
as efficient algorithms for online learning in the full information setting).

The framework of bandit optimization is extremely general and has found numerous prac-
tical applications in fields such as computer science, economics, game theory, and medical
decision making. Some of these applications include design of clinical trials, market pricing,
online ad placement, and recommender systems (Kleinberg, 2005; Bubeck and Cesa-Bianchi,
2012; Hazan, 2016). Owing to its importance, there has been extensive work on designing
low-regret algorithms for bandit optimization. Early works on this problem have focused
on finite action space X , in which case the problem is called multi-armed bandit (MAB)
problem. This problem has been well studied and several efficient algorithms achieving the
optimal high-probability regret rate of O

(
T 1/2

)
have been developed (Auer et al., 2002;

Audibert and Bubeck, 2010; Lee et al., 2020). Later works on bandit optimization have
turned to continuous action spaces and convex loss functions. Seminal works along this line
have developed online gradient descent style algorithms for regret minimization (Flaxman
et al., 2004; Kleinberg, 2005). When the loss functions ft are convex and bounded, these
algorithms achieve O

(
T 5/6

)
regret in expectation. Improving upon these regret guarantees

has remained an open problem until the works of Hazan and Li (2016); Bubeck et al. (2017).
The algorithms developed in these latter works achieve the optimal Õ

(
T 1/2

)
regret, albeit

they are computationally expensive and are not efficiently implementable in practice. In
particular, the run time of the algorithm of Hazan and Li (2016) depends exponentially
on the dimension, and the algorithm of Bubeck et al. (2017) involves minimization of an
approximately convex function over a nonconvex set, which is non-trivial in practice1.

Despite years of research, designing efficient algorithms for bandit convex optimization
(BCO) has turned out to be challenging. This can be attributed to the extremely limited
information available to the learner about the loss functions chosen by the adversary. Con-
sequently, several works have focused on sub-cases of BCO. These works can be classified
into two broad categories. One category imposes parametric assumptions such as linearity
on the loss functions. The other category imposes structural assumptions such as strong
convexity. The most popular parametric assumption that is studied in the literature is
the linearity assumption (Abernethy et al., 2009). Recent works have designed efficient
algorithms achieving optimal regret guarantees under this assumption (Lee et al., 2020).
However, apart from linearity, to the best of our knowledge, no other parametric assump-
tion has been considered in the literature. When it comes to structural assumptions, several
works have considered assumptions such as Lipschitzness (Flaxman et al., 2004), smooth-
ness (Saha and Tewari, 2011), and strong convexity, smoothness (Hazan and Levy, 2014;
Ito, 2020). Perhaps surprisingly, among all these assumptions, computationally efficient
and optimal algorithms are only known for strongly convex, smooth functions (Hazan and
Levy, 2014). While these results are interesting, it should be noted that strong convexity
is a restrictive assumption which rarely holds in practice. Consequently, it is important

1. Although Bubeck et al. (2017) present a modified algorithm for polytopes which can be implemented
in polynomial time, the per iteration runtime of this algorithm has a large polynomial dependence on d
and a linear dependence on T .
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to relax this assumption. However, the oracle lower bounds of Hu et al. (2016) suggest
that designing optimal algorithms for non-strongly convex, smooth functions might require
new and different algorithmic techniques to those used in existing works. In particular, all
existing works which design computationally efficient algorithms first estimate the gradient
of the loss function from one-point feedback, and then use Online Mirror Descent (OMD)
style updates to choose the next action. The lower bounds of Hu et al. (2016) suggest that
such techniques will not be able to achieve the optimal Õ

(
T 1/2

)
regret for non-strongly

convex, smooth functions. So, to make progress along this line, we need new algorithmic
techniques. Unfortunately, it is unclear how to come up with such techniques for general
convex functions.

This Work. In this work, we make progress on this problem by designing an efficient
algorithm for convex, quadratic loss functions that achieves optimal high-probability regret
guarantees against an adaptive adversary. To be precise, our algorithm achieves a regret of
Õ
(
d16
√
T
)
, which is known to be optimal in T (see Dani et al. (2007) for lower bounds on

the regret). In terms of computation, the key computational bottleneck of our algorithm
involves generating uniform samples from a convex set. This is a well studied problem and
several efficient MCMC algorithms such as Hit-and-run algorithms have been developed for
this problem (Lovász and Vempala, 2003; Belloni et al., 2015; Laddha et al., 2020). For
action sets which are polytopes with m constraints, the amortized time complexity of each
iteration of our algorithm is Õ

(
m2d3+md6

T +md4 +m2d
)
. In comparison, the only existing

computationally efficient and optimal algorithm for this setting has a time complexity of
Õ (poly(dm)T ) with a much larger exponent on d (Bubeck et al., 2017). Moreover, the
runtime of each iteration of this algorithm has a linear dependence on T , thus making it
extremely inefficient for large T .

Furthermore, our algorithm is robust to model mis-specification: if each loss function
ft is ε-close to a convex, quadratic function in ‖ · ‖∞ norm, the regret of our algorithm is
bounded by Õ

(
εT + d16

√
T
)
. We believe robustness is necessary for algorithms which focus

on sub-cases of BCO, as the assumptions on loss functions do not typically hold in practice.
However, most existing works do not study this property. To the best of our knowledge, ours
is the first algorithm for BCO with quadratic functions, which is computationally efficient,
robust and achieves optimal regret guarantees.

Techniques. Our algorithm is a regularized Newton’s method with self concordant barrier
of X as the regularizer. It involves estimation of gradients and Hessians of the loss functions
from single point feedback. This is unlike most existing computationally efficient algorithms
which rely only on the gradient estimates to choose their actions (Saha and Tewari, 2011;
Hazan and Levy, 2014). As previously mentioned, gradient information alone doesn’t suffice
to design algorithms achieving optimal regret for nonlinear losses (see Section 5.1 for empir-
ical evidence). So, in this work, we estimate both the gradient and Hessian of the unknown
loss function and use the estimates in a regularized Newton method. However, estimating
the Hessian comes with its own challenges. The variance of the Hessian estimates is typically
very large. Consequently, we need new techniques to cancel the effect of variance. In this
work, we crucially rely on “focus regions” to handle the variance. This technique is inspired
by Bubeck et al. (2017), who use similar ideas to design an optimal, albeit computation-
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ally inefficient, algorithm for general convex functions. At a high level, the variance of the
Hessian estimates can only be controlled in a small region, which we call focus region. So,
we restrict ourselves to this region and always choose actions within this region. However,
the resulting algorithm only ensures low regret with respect to (w.r.t) points in the focus
region. To ensure low regret even w.r.t points outside the focus region, we perform a test
every iteration called “restart condition”. Intuitively, this test checks if the minimizer of the
cumulative loss over the entire domain falls well within the focus region. If yes, we continue
the algorithm, as having a low regret w.r.t points in the focus region ensures the overall
regret is low. The test fails when the minimizer gets too close to the boundary of the focus
region. In this case, we show that the regret of our actions until now is negative, and restart
the algorithm.

While the ideas of focus region and restart condition appeared in Bubeck et al. (2017),
we note that new techniques are needed to make this approach computationally efficient.
Restricting to quadratics doesn’t automatically make Bubeck et al. (2017)’s approach com-
putationally efficient. To make our algorithm efficient, we move away from the exponential
weights update scheme used by Bubeck et al. (2017) and instead rely on Newton method
and OMD framework. Moreover, we design a new test for the restart condition that is much
more computationaly efficient than the test of Bubeck et al. (2017) (see Section 5 for more
details).

Before we proceed, we note that our algorithm requires access to a self-concordant barrier
(SCB) of X which satisfies certain assumption on the behavior of its Hessian (see Assump-
tion 3). If X ⊂ R, then any SCB satisfies this property (see Proposition 4). Moreover, we
show that the log-barrier of any polyhedral set satisfies this property. We conjecture that
any SCB of any convex action set X ⊂ Rd satisfies this property.

Paper Organization. Section 2 presents necessary background. Section 3 presents our
main results. Section 4 discusses some of the related works. Section 5 presents our algorithm
and Section 6 discusses the key ideas used in the algorithm. In Section 7 we discuss the
computational aspects of our algorithm. We conclude with Section 8. Due to the lack of
space, most proofs are presented in the appendix.

2. Problem Setting and Background

Notation. Throughout the paper, we denote vectors by bold-faced letters (x), and ma-
trices by capital letters (A). ‖ · ‖ is the Euclidean norm in Rd and ‖ · ‖A is the weighted
Euclidean norm, i.e., ‖x‖A = 〈Ax,x〉1/2, where A is a positive definite matrix. We let
Br(x) denote an `2 ball of radius r centered at x, i.e., Br(x) = {y : ‖y − x‖ ≤ r}. We let
Br,A(x) = {y : ‖x − y‖A ≤ r}. For any strictly convex twice differentiable function f , we
define the local norm at x as ‖v‖x,f =

〈
v,∇2f(x)v

〉1/2. ∂X denotes the boundary of a set
X . b = Õ (a) implies b ≤ Ca log a for a large enough constant C independent of a.

A function f : X → R is ε-close to a function g : X → R if supx∈X |f(x)− g(x)| ≤ ε. A
function f is a quadratic function if it can be parameterized as f(x;A,b, c) = 1

2 〈x, Ax〉 +
〈b,x〉 + c, for some A ∈ Rd×d,b ∈ Rd, c ∈ R. In addition, if (A + AT ) is positive semi-
definite, then f is called a convex quadratic function. Note that the set of linear functions is a
subset of the set of convex quadratic functions. We let Et denote the conditional expectation
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conditioned on all randomness in the first t − 1 rounds. We use Bd,Sd−1 to denote the d-
dimensional unit ball and unit sphere w.r.t Euclidean norm. We let u ∼ Bd,v ∼ Sd−1 denote
the random variables chosen uniformly from these sets.

Problem Setting. In this work, we assume that the action space X is convex, compact
and has non-empty interior. Without loss of generality, we assume X contains an Euclidean
ball of radius 1, and has an `2 diameter of D, i.e., supx,y∈X ‖x − y‖ ≤ D. We assume
that each loss function ft is ε-close to a convex quadratic function qt which is bounded and
Lipschitz, i.e., supx∈X |qt(x)| ≤ B, and for all x,y ∈ X , |qt(x)− qt(y)| ≤ L‖x−y‖. Finally,
we assume the adversary is adaptive, i.e., the decisions of the adversary can depend on the
learner’s previous actions.

2.1. One-point Gradient and Hessian Estimates

A major component of our algorithm involves estimating the gradient and Hessian of the
unknown loss function from one-point feedback provided by the adversary. These estimates
are then used in OMD to pick the next move of the learner. In this work, we rely on the
following randomized sampling scheme to compute these estimates.

Proposition 1 Let f : Rd → R be a quadratic function. Let C ∈ Rd×d be any symmetric
positive definite matrix. Then

∇f(x) = dEv1,v2∼Sd−1

[
C−1v1f(x + Cv1 + Cv2)

]
,

∇2f(x) =
d2

2
Ev1,v2∼Sd−1

[
C−1(v1v

T
2 + v2v

T
1 )C−1f(x + Cv1 + Cv2)

]
.

To generate unbiased estimates of the gradient and Hessian of f at x, we first randomly
sample v1 and v2 from uniform distribution on Sd−1, and get the one-point feedback from
the adversary about f(x+Cv1+Cv2), and then rely on the above proposition. We note that
one can also rely on Gaussian smoothing to estimate this information (see Proposition 27
in Appendix). For the simplicity and clarity of analysis, in this work, we use the above
sampling scheme instead of Gaussian smoothing. However, our algorithm and its analysis
can be modified in a straightforward way to rely on Gaussian smoothing.

2.2. Self Concordant Barriers

Self Concordant Barriers (SCBs) play a crucial role in our algorithm and its analysis. So,
in this section, we define SCB and present some of its useful properties.

Definition 2 Let X ⊆ Rd be a closed convex set with non-empty interior. A function
R : int(X )→ R is called a ν-self-concordant barrier of X , if

1. (Barrier Property) R is three times continuously differentiable with R(xk)→∞ along
every sequence {xk ∈ int(X )} converging to a boundary point of X , as k →∞

2. R satisfies the following for all x ∈ int(X ), h ∈ Rd,

|∇3R(x)[h, h, h]| ≤ 2|∇2R(x)[h, h]|3/2, | 〈∇R(x), h〉 | ≤
√
ν|∇2R(x)[h, h]|1/2.
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Without loss of generality, we assume minx∈X R(x) = 0. It is well known that R satisfies
the following properties (see Appendix G for a more comprehensive review)

• (P1) Dikin Ellipsoid : For any x ∈ int(X ), the Dikin ellipsoid centered at x, B1,∇2R(x)(x),
is entirely contained in X .

• (P2) For any x ∈ int(X ), and y ∈ B1,∇2R(x)(x), we have

(1− ‖x− y‖∇2R(x))
2∇2R(x) � ∇2R(y) � 1

(1− ‖x− y‖∇2R(x))
2
∇2R(x). (1)

In this work, we assume that X has an SCB which satisfies the following additional property.

Assumption 3 For any x,y ∈ int(X ) such that ‖y − x‖∇2R(x) ≤ λ

∇2R(y) � 1

(1 + λ)2
∇2R(x). (2)

The following propositions show that a wide range of action spaces have SCBs which satisfy
this property. We conjecture that any SCB satisfies this property.

Proposition 4 Suppose X ⊆ R. Then any SCB of X satisfies Assumption 3.

Proposition 5 Suppose X ⊆ Rd is polyhedral, i.e., it is the intersection of a finite number
of closed half spaces. Then the logarithmic barrier of X is an SCB which satisfies Assump-
tion 3.

3. Main Results

Theorem 6 (Approximately quadratic losses) Suppose ft is ε-close to a convex, quadratic
function qt(x) = 1

2x
TAtx + 〈bt,x〉+ ct, for ε = O

(
dBT−1/2

)
. Let R be a ν-self-concordant

barrier of X that satisfies Assumption 3. Suppose Algorithm 1 is run for T iterations with
appropriate choice of hyper-parameters. Suppose the diameter of X is bounded by T , and
the Lipschitz constants of {qt}Tt=1 are bounded by T . Then with probability at least 1− δ, the
regret of the algorithm is upper bounded by Õ

(
d11(d+ ν)5

√
T
)
.

Remarks. We now briefly discuss the above result. See Table 1 for a detailed comparison
of our algorithm with other related algorithms.
• Our algorithm achieves the optimal regret guarantees in high probability, against adap-

tive adversaries. In comparison with Bubeck et al. (2017), our regret bound has similar
dependence on T and slightly worse dependence on dimension d. We believe the dimen-
sion dependence of our regret can be improved to d8 using a tighter analysis. Also note
that the OMD based algorithm of Saha and Tewari (2011), which only relies on gradient
estimates of loss functions, achieves a sub-optimal regret of Õ

(
T 2/3

)
.

• There are two key computational bottlenecks in our approach: (a) (uniform sampling)
on an average, each iteration of our algorithm involves generating Õ

(
d
T

)
samples from

uniform distribution over a convex set. This is a well studied problem and several efficient
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Paper Regret Adversary
amortized time complexity

of each iteration
(dependence on d, T )

Hazan and Li (2016) Õ
(

2d
4
(log T )2dT 1/2

)
(h.p) adaptive O

(
(log T )poly(d)

)
Bubeck et al. (2017) Õ

(
d9.5T 1/2

)
(h.p) adaptive O

(
2d
)

Bubeck et al. (2017)
(computationally
efficient variant)

Õ
(
d10.5T 1/2

)
(h.p) adaptive Õ (poly(dm)T )

Saha and Tewari (2011) Õ
(
d2/3T 2/3

)
(exp) oblivious involves minimization of

a self concordant function

Flaxman et al. (2004) Õ
(
d1/2T 3/4

)
(exp) oblivious involves projecting a

point onto a convex set

This paper
(instantiation for polytopes) Õ

(
d16T 1/2

)
(h.p) adaptive

Õ
(
m2d3+(m+d)d5

T

)
+Õ

(
(m+ d)d3 +m2d

)
Table 1: Comparison of various approaches for BCO with quadratic losses. “h.p”, “exp” in

the second column denote high probability and expected regret bounds respectively.
m in the last column denotes the number of constraints in the polytope.

algorithms are known for uniform sampling from various classes of convex sets. To derive
concrete runtime bounds, we consider the special case of the action set X being a polytope
with m constraints. By relying on the algorithm of Laddha et al. (2020), we can generate
a single sample in Õ

(
m2d2 + (m+ d)d4

)
time. (b) (Newton update) The Newton

update in our algorithm involves minimization of a convex objective. This objective can
be minimized using plethora of convex optimization techniques that have been developed.
For the special case of action set being a polytope with m constraints, this objective can
be minimized in Õ

(
m2d+ (m+ d)d3

)
time using interior point methods (IPM).

• Our algorithm is robust to model mis-specification. In particular, even if each loss function
ft is O

(
T−1/2

)
away from a convex, quadratic function, our algorithm achieves the optimal

regret. This result can be improved in a straightforward fashion: suppose each ft is εt
close to a convex, quadratic function. Then our algorithm achieves the optimal regret as
long as

∑T
t=1 εt = O

(
T 1/2

)
.

4. Related Work

In this section, we present a review of bandit optimization that is necessarily incomplete but
is relevant to the current work. Multi-armed bandits is perhaps the simplest and most well
studied sub-case of bandit optimization. Several efficient and optimal algorithms have been
proposed for this problem (Audibert et al., 2009; Audibert and Bubeck, 2010; Abernethy
et al., 2015; Lee et al., 2020). These algorithms first estimate the unknown loss function from
one-point feedback, and then rely on Follow-the-Regularized-Leader (FTRL) framework with
appropriate regularizer to choose the next action.

Moving beyond MAB, several recent works on bandit optimization have focused on BCO.
For bounded, convex functions, Flaxman et al. (2004); Kleinberg (2005) developed online
gradient descent style algorithms which achieve Õ

(
T 5/6

)
regret. Recent works of Bubeck

et al. (2017); Hazan and Li (2016) improved upon this result and developed algorithms which
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achieve the optimal Õ
(
T 1/2

)
regret (also see Lattimore (2020) for information-theoretic

upper bounds). However, these algorithms are computationally expensive. Moreover, the
regret bounds of Hazan and Li (2016) have exponential dependence on dimension. As
previously mentioned, several works have studied sub-cases of BCO. The most popular
among these sub-cases is bandit linear optimization. For this problem, Abernethy et al.
(2009) provided the first efficient algorithm with optimal O

(
T 1/2

)
regret in expectation (see

Dani et al. (2007) for lower bounds on regret for linear losses). This algorithm uses one-point
estimate of the gradient and relies on OMD with SCB of X as the regularizer to choose the
next action. Subsequent works have attempted to develop algorithms which achieve optimal
regret in high-probability (Bartlett et al., 2008; Abernethy and Rakhlin, 2009). However,
this turned out to be a difficult problem. It is only recently that an efficient and optimal
algorithm for this problem was designed (Lee et al., 2020). A related line of work studied
generalizations of linear bandits in euclidean space to the framework of Reproducing Kernel
Hilbert Spaces (RKHS) (Chatterji et al., 2019; Takemori and Sato, 2020). As an application
of this general framework, Chatterji et al. (2019) study convex quadratic losses. However,
their algorithm, which is based on exponential weights update scheme, is computationally
inefficient as it involves sampling from non log-concave distributions, which is NP-hard in
general. Moving beyond linear losses, Flaxman et al. (2004) provided an algorithm with
O
(
T 3/4

)
regret for convex, Lipschitz loss functions. Saha and Tewari (2011) provided an

algorithm for convex, smooth loss functions with Õ
(
T 2/3

)
regret. For strongly convex,

smooth functions, Hazan and Levy (2014); Ito (2020) provide algorithms which achieve the
optimal Õ

(
T 1/2

)
regret (see Shamir (2013) for lower bounds on regret for strongly convex

losses).
Another active line of research on bandit optimization has focused on handling weaker

adversary models. One such popular model is the stochastic adversary model, where it
is assumed that the loss functions seen by the learner are independent samples generated
from an unknown but fixed distribution (Lai and Robbins, 1985; Agrawal and Goyal, 2012;
Filippi et al., 2010; Kveton et al., 2020; Agarwal et al., 2011; Srinivas et al., 2009). Recently,
there has been a flurry of research on designing computationally efficient and optimal regret
algorithms for this setting. However, these algorithms usually have poor performance in the
stronger adversary model considered in this work. Yet another line of research on bandit
optimization has focused on multi-point feedback models where the player can query each
loss function at multiple points. Several recent works have designed efficient algorithms for
this setting (Agarwal et al., 2010; Duchi et al., 2015; Shamir, 2017). These works show that
it is possible to achieve similar regret guarantees in this setting as in the full-information
setting.

5. Regularized Bandit Newton Algorithm

In this section we describe our algorithm for BCO (see Algorithm 1). At a high level, our
algorithm tries to estimate the missing information (i.e., gradient and Hessian) about the
unknown loss function and pass it to the OMD framework, which chooses the next action.

Gradient and Hessian estimation. To estimate the gradient and Hessian of ft at xt, we
rely on the following randomized sampling scheme. We first randomly sample a point from
the uniform distirbution on a ellipsoid with mean xt and whose covariance matrix depends
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on the Hessian estimates of the past loss functions {fs}t−1
s=1. Next, we get one-point feedback

from the adversary about the loss value at the sampled point, and use it to estimate the
gradient and Hessian (see lines 6-13 of Algorithm 1). Our choice of the covariance matrix
ensures that the sampling scheme adapts to the geometry of the cumulative loss

∑t−1
s=1 fs(x).

In particular, it reduces exploration along directions which are strongly convex, and increases
exploration along directions which are linear. This choice of exploration helps us achieve
the right balance between exploration and exploitation, and plays a crucial role in achieving
optimal regret guarantees.

Focus Region. Once we have an estimate of the gradient and Hessian, we construct a
quadratic approximation of ft around xt (see line 14 of Algorithm 1). One caveat with this
approximation, however, is that it is not guaranteed to have a low variance. To see this,
first note that the variance of our estimate f̂t(x) scales with ‖x− xt‖Mt (look at line 6 for
definition of Mt). If xt gets too close to the boundary of X , then ‖∇2R(xt)‖2 and ‖Mt‖2
become very large. This in turn increases the variance of f̂t(x), for x far away from xt.
Consequently, we can not directly plug in the estimate f̂t(x) into the OMD framework to
choose the next action. To handle this issue, we rely on focus regions. In each iteration of
the algorithm, we maintain a focus region Ft which satisfies the following key property: the
variance of the quadratic approximation within Ft is small and bounded. To this end, we
choose an Ft such that ‖x−xt‖Mt is bounded for any x ∈ Ft. When picking the next action
xt+1 using OMD, we restrict ourselves to the focus region Ft.

At the beginning of the algorithm, we set F1 to Xξ, a scaled version of X , which is
defined as Xξ = ξx1 + (1 − ξ)X , where ξ = T−4 and x1 is the minimizer of R(x) over
X . We use Xξ instead of X purely for theoretical reasons, as it simplifies our proofs. In
practice, one can set F1 to X . To ensure Ft satisfies the above mentioned property on low
variance, we perform a check in each iteration of the algorithm (see lines 20-25). Intuitively,
this checks if the current focus region has a large overlap with Bα,Mt(xt), the region of low
variance of the quadratic approximation. If yes, we do not change the focus region. If not,
we shrink the focus region so that it overlaps with the low variance region. Moreover, we
simultaneously increase the learning rate (ηt) of OMD. This learning rate change ensures
that the algorithm can quickly adapt to any changes of the adversary. If the adversary
attempts to move the minimizer of minx∈Xξ

∑t
s=0 fs(x) outside of the focus region, then

increasing the learning rate helps us quickly detect this change. This plays a crucial role
in the restart condition, which we explain next. Several recent works have used the idea of
increasing learning schedule for various purposes (Agarwal et al., 2017; Bubeck et al., 2017;
Lee et al., 2020).

Restart Condition. By relying on focus regions, we can only guarantee low regret w.r.t
points within the focus region. To ensure low regret even w.r.t points outside the focus
region, we perform another test every iteration, which we call “restart condition” (see lines
15-18). Intuitively, this test checks if the minimizer of minx∈X

∑t
s=1 fs(x) is well within the

focus region. If yes, we continue the algorithm, as having a low regret w.r.t points in the
focus region ensures the overall regret is low. If instead the test fails, then it usually implies
that the minimizer is too close to the boundary of the focus region ∂Ft ∩ int(X ). In this
case we show that the regret of our actions until now is negative. So, we can safely restart
the algorithm. That is, we act as if time step t+ 1 is time step 1 and run the algorithm for
T − t steps.
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Algorithm 1 Regularized Bandit Newton Algorithm
1: Input: ν-self-concordant barrier R, initial learning rate η1, number of iterations T ,

radius of initial focus region α, learning rate increment γ, exploration parameter λ, β.
2: Denote ĝ0 = 0, Ĥ0 = 0, η0 = 0, ξ = T−4

3: Let x1 = argminx∈X R(x)
4: Focus Region F1 = Xξ, where Xξ = ξx1 + (1− ξ)X
5: for t = 1 . . . T do
6: Let Mt =

(
∇2R(xt) +

∑t−1
s=0 ηsĤs

)
.

7: Sample v1,t,v2,t ∼ Sd−1, and compute yt = xt + λM
−1/2
t (v1,t + v2,t)

8: if yt ∈ X then
9: Play yt and observe ft(yt)

10: Estimate gradient and Hessian of ft at xt as

ĝt = λ−1dft(yt)M
1/2
t v1,t, Ĥt =

λ−2

2
d2ft(yt)M

1/2
t

(
v1,tv

T
2,t + v2,tv

T
1,t

)
M

1/2
t

11: else
12: Play xt and set ĝt = 0, Ĥt = 0.
13: end if
14: Let f̂t(x) =

〈
ĝt − Ĥtxt,x

〉
+ 1

2x
T Ĥtx be the quadratic approximation of ft at xt

15: //restart condition
16: if

∑t
s=0 f̂s(xs)−miny∈Ft

∑t
s=0 f̂s(y) ≤ − β

η1
then

17: Restart
18: end if
19: Compute xt+1 using OMD

xt+1 = argmin
x∈Ft

ηt 〈ĝt,x〉+ ΦRt+1(x,xt).

Here ΦRt+1 is Bregman divergence w.r.t Rt+1(x)
def
= R(x) +

t∑
s=0

ηs
2 (x− xs)

T Ĥs(x− xs)

20: //Update focus region
21: if Vol(Ft ∩Bα,Mt+1(xt+1)) ≤ 1

2Vol(Ft) then
22: Ft+1 = Ft ∩Bα,Mt+1(xt+1) and ηt+1 = (1 + γ)ηt
23: else
24: Ft+1 = Ft and ηt+1 = ηt
25: end if
26: end for

We note that the ideas of focus region and restart condition appeared in the work of
Bubeck et al. (2017). However, their approach is computationally expensive, even after
restricting the loss functions to convex quadratics. There are two main reasons for this:

1. the algorithm of Bubeck et al. (2017) relies on exponential weights update scheme. Each
iteration of this algorithm involves generating Õ (d) samples from an approximately log-
concave distribution, which can be computationally expensive in high dimensions. In
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contrast, we rely on OMD framework in our work, which doesn’t require access to an
approximately log-concave sampler.

2. the restart condition of Bubeck et al. (2017) involves optimization of an approximately
convex objective over a non-convex set. To be precise, the authors use the following
restart condition

min
y∈∂Ft∩int(X )

t∑
s=0

f̂s(y)− min
y∈Ft

t∑
s=0

f̂s(y) ≤ 1

η1
.

Implementing this can be NP-hard in general because the domain of the first optimization
is a nonconvex set. While the authors present a modified algorithm to handle this issue, it
is still computationally expensive (the runtime of each iteration is Õ (daT ) for some large
a). Moreover, the modified algorithm only works for constraint sets which are polytopes
and whose coefficients in the constraints are rational numbers with absolute values of
numerators and denominators bounded by poly(T ). In contrast, the restart condition we
use only involves minimization of minx∈Ft

∑t
s=0 f̂s(x), which we show is approximately

convex and can be optimized efficiently (see Section 7).

5.1. Importance of Hessian Estimates

In this section we empirically demonstrate that existing OMD algorithms that only rely on
gradient information don’t achieve optimal regret bounds for quadratic losses (Abernethy
et al., 2009; Saha and Tewari, 2011; Hazan and Levy, 2014).

Lets consider a simple example where the adversary always selects the following loss
function in each iteration: ft(x) =

∑d/2
i=1 x

2
i +
∑d

i=1 xi. Here, we choose the domain X to be
Bd. In this case, all the three algorithms mentioned above get sub-optimal regret of Ω(T 2/3)
(see image for empirical evidence). This is because Mt (defined in line 6 of Algorithm 1),
which controls the exploration, is not chosen appropriately by these algorithms. Ideally, we
should explore the first d/2 directions less and the last d/2 directions more. This is because
the expected regret of these algorithms depends on the following term: E[ft(yt) − ft(xt)]
= E[ft(xt+M

−1/2
t vt)−ft(xt)] =

∑d/2
i=1 E[(M

−1/2
t vt)

2
i ]. So a good choice ofMt should ensure

E[(M
−1/2
t vt)

2
i ] is low for the first d/2 coor-

dinates. We achieve this in our algorithm
by relying on Hessian estimates, which tell us
how much exploration to do in each direc-
tion. For the example considered here, Mt

in our algorithm is approximately equal to
∇2R(xt) +

∑t−1
s=0 2ηs∇2fs(x). For this choice of

Mt, E[(M
−1/2
t vt)

2
i ] goes down with t along the

first d/2 directions. As a result, our algorithm
performs less exploration along directions with
large curvature, and more exploration along di-
rections with small curvature, and achieves the optimal trade-off between exploration and
exploitation. If we do uniform exploration in all directions (similar to existing algorithms),
then we don’t achieve the optimal regret.

11



Suggala Ravikumar Netrapalli

6. Analysis

In this section we provide an outline of the proof of our main result stated in Theorem 6.
We prove the following Theorem from which Theorem 6 follows readily.

Theorem 7 (Regret) Consider the setting of Theorem 6. Suppose Algorithm 1 is run for
T iterations with the following hyper-parameters

λ =
1

4
, α = c1(ν + d)d log2 dT , β = d log dT , γ =

c2

d log T
, η1 =

c3

d7(B + ε)α4
√
T log T

,

for some universal constants c1, c2, c3 > 0. Let T be the minimum between T and the first
time at which the algorithm restarts. Then with probability at least 1− δ

T∑
t=1

ft(yt)−min
x∈X

T∑
t=1

ft(x) ≤

{
Õ
(
d11(d+ ν)5

√
T
)

if T = T

0 otherwise
.

Proof (Sketch) We first consider the case where the restart condition triggered for the first
time at iteration T < T . Then we show that the regret of the learner until T is negative.
There are several key steps involved in showing this result:

1. We first show that the minimizer of the cumulative loss
∑T

s=0 fs(x) over the entire domain
X lies in FT ; that is, minx∈X

∑T
s=0 fs(x) = minx∈FT

∑T
s=0 fs(x). This immediately

entails that the regret after T iterations satisfies.

RegT =

T∑
s=0

fs(ys)− min
x∈FT

T∑
s=0

fs(x).

2. Next, consider the following for any x ∈ FT

T∑
s=0

fs(ys)−
T∑
s=0

fs(x) =
T∑
s=0

[fs(ys)− fs(xs)] +
T∑
s=0

[
fs(xs)− fs(x)− f̂s(xs) + f̂s(x)

]
+
T∑
s=0

[
f̂s(xs)− f̂s(x)

]
.

Recall yt − xt = λM
−1/2
t (v1,t + v2,t). Relying on standard martingale concentration

inequalities, the first term in the RHS above can be bounded as Õ
(
dη−1

1

)
. To bound the

second term, we rely on a key property of our loss estimates {f̂t}Tt=1: the cumulative loss
estimate concentrates well around the true cumulative loss (see Proposition 8). Using
this property, the second term can be bounded as O

(
η−1

1

)
. To bound the last term, we

rely on the definition of restart condition which says that
∑T

s=0 f̂s(xs)− f̂s(x) ≤ −βη−1
1 .

Combining these bounds shows that the regret after T iterations is negative.

Next, consider the case where the restart condition never triggered. Here, we can again
show that the minimizer of the cumulative loss over the entire domain lies in the focus
region FT . So it suffices to bound

∑T
s=0 fs(ys) −minx∈FT

∑T
s=0 fs(x). Consider the same

12
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decomposition of regret as above. We use the same arguments as above to bound the first
two terms in the decomposition. To bound the thrid term, we consider the following

T∑
s=0

[
f̂s(xs)− f̂s(x)

]
=

T∑
s=0

[
f̂s(xs)− f̂s(xs+1)

]
+

T∑
s=0

[
f̂s(xs+1)− f̂s(x)

]
.

The first term in the RHS can be upper bounded using stability of the iterates ‖xt−xt+1‖Mt

(in our proof we show that ‖xt − xt+1‖Mt is upper bounded by Õ (ηt)). The second term is
the regret of Be-The-Regularized-Leader and can be upper bounded as Õ

(
η−1

1

)
. Combining

these two bounds, we show that the regret is Õ
(
T 1/2

)
.

The proof of Theorem 7 relies on several crucial properties of the iterates produced by our
algorithm. First, we need to ensure that the matrix Mt is positive definite and the iterates
yt produced by our algorithm lie within the domain X . Second, we need to show that the
algorithm is stable, i.e., ‖xt−xt+1‖Mt is small. The following proposition plays a crucial role
in showing these properties. It is concerned about concentration of the Hessian estimates
{Ĥt}Tt=1, and the loss estimates {f̂t}Tt=1 computed by the Algorithm.

Proposition 8 Consider the setting of Theorem 7. Let T be the minimum between T and
the first time at which the algorithm restarts. Then for any t ≤ T , the following properties
hold with probability at least 1− T−2

• Let Ht = 1
2(At +ATt ) be the Hessian of qt(x), and let M̃t = ∇2R(xt) +

∑t−1
s=0 ηsHs. Then

Mt defined in line 6 of Algorithm 1 satisfies

‖M̃−1/2
t (M̃t −Mt)M̃

−1/2
t ‖2 = O

(
α2η1λ

−2d5B
√
T log(dT )

)
.

• The cumulative loss estimate
∑t

s=1 f̂s(x) satisfies

sup
x∈Ft

∣∣∣ t∑
s=1

η1(f̂s(x)− f̂s(xs)− qs(x) + qs(xs))
∣∣∣ ≤ O (α2η1λ

−2Bd4.5
√
T log dT

)
.

7. Implementation

In this section, we discuss the implementation aspects of our algorithm.

Focus region update. To estimate the ratio
Vol(Ft∩Bα,Mt+1

(xt+1))

Vol(Ft) , we generate sufficiently
many independent uniformly distributed samples in Ft and count what fraction of them fall
in Ft ∩Bα,Mt+1(xt+1). By sampling just O(log T ) points, we can show that with probability
at least 1 − 1

T 4 , the focus region gets updated whenever the true ratio is less than 1
4 and

doesn’t get updated whenever the true ratio is greater than 3
4 . The intermediate values don’t

effect our argument. Next, note that we need not generate the samples every iteration. It
suffices to generate them only when the focus region gets updated. We can reuse the old
samples in rest of the iterations. In Appendix E we show that the focus region doesn’t get
updated more than O (d log T ) times (see Lemma 22). So, over T iterations of the Algorithm,
we only need to generate O

(
d log2 T

)
samples.

As previously mentioned, uniform sampling from a convex set is a well studied problem.
For the special case of the action set being a polytope with m constraints, we rely on the
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recent work of Laddha et al. (2020) which uses Dikin walk for sampling. The authors show
that the Dikin walk mixes in O (dν̄) steps, where ν̄ is the strong self concordant parameter
of the set. For our problem, ν̄ is O(m+O (d log T )) (this follows from the fact that each of
our focus regions is an intersection of O (d log T ) elliposoids and a polytope). Moreover, each
iteration of Dikin walk takes O

(
d3 log T +md+ d2

)
time. So generating a single sample

from uniform distribution in Ft takes Õ
(
m2d2 + (m+ d)d4

)
time.

OMD Update. Our results in Appendix E entail that the objective in line 19 is strictly
convex (see Lemma 21). So we can use IPM to solve the objective. As a concrete example,
lets again consider the case of action set being a polytope withm constraints. Since there are
O (d log T ) elliposoidal constrains and m linear constraints, the self concordant parameter
of the entire objective is m+O (d log T ). So, the number of Newton updates we perform is
Õ (m+ d). Moreoever, performing each newton update takes O

(
d3 log T +md

)
time. So,

the overall compute time of IPM is Õ
(
m2d+ (m+ d)d3

)
.

Restart Condition. Checking the restart condition involves minimizing
∑t

s=0 f̂s(y) over
the focus region Ft. We note that this need not be a convex function. However, it is pointwise
close to the following convex function:

∑t
s=0 f̂s(y) + (d2α2η1)−1(y − xt)

T∇2R(xt)(y − xt)
(see Remark 24 in Appendix for a discussion on the convexity of this objective). To see
why this objective is pointwise close to

∑t
s=0 f̂s(y), first note that our choice of Ft always

ensures ‖y−xt‖∇2R(xt) ≤ O (dα) for any y ∈ Ft (see Lemma 21). So the modified objective
is O

(
η−1

1

)
close to the original objective. So we can rely on IPM to solve the modified

objective and obtain O
(
η−1

1

)
-approximate solution to the original objective (note that an

approximate solution suffices for our argument). The computational complexity of IPM in
this case is same as the complexity of OMD update described above.

8. Conclusion
In this paper, we presented a new algorithm for bandit optimization with convex (approxi-
mately) quadratic functions. Our algorithm achieves the optimal regret rate of Õ(

√
T ) and

is computationally much more efficient than any other known algorithms for this problem.
To obtain these results, we (i) estimate the Hessian of the loss functions and use it in a
controlled fashion to minimize the effect of variance in this estimation and (ii) develop new
algorithmic ideas to implement this efficiently.
Future work. While our work focuses on the convex quadratic setting, we believe our ideas
can be extended to other convex, parameteric loss functions such as generalized linear mod-
els. However, extending the idea of using Hessian (or more generally kth order derivatives for
k > 1) estimates to obtain efficient algorithms with optimal regret rates seems challenging,
even for highly smooth functions as the estimates of higher order derivatives come with high
variance and new ideas seem necessary to make effective use of them. This is an interest-
ing future direction to explore. Finally, we believe the dimension dependence in our regret
bound can improved to d8 by tightening the Hessian concentration result in Proposition 8.
We base this claim on the results in Appendix D, where we show that Algorithm 1 achieves
Õ
(
d5.5
√
T
)
regret when the Hessian of ft is known to the learner ahead of round t.
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Appendix A. Proof of Proposition 1

Let f(x) = 1
2 〈x, Ax〉 + 〈b,x〉 + c, for some A ∈ Rd×d,b ∈ Rd, c ∈ R. The gradient and

Hessian of f at x are given by

∇f(x) =
1

2
(A+AT )x + b, ∇2f(x) =

1

2
(A+AT ).

Gradient. From the definition of f , we have

Ev1,v2∼Sd−1

[
C−1v1f(x + Cv1 + Cv2)

]
=

1

2
Ev1,v2∼Sd−1

[
C−1v1(x + Cv1 + Cv2)TA(x + Cv1 + Cv2)

]︸ ︷︷ ︸
T1

+ Ev1,v2∼Sd−1

[
C−1v1 〈b,x + Cv1 + Cv2〉

]︸ ︷︷ ︸
T2

.

First consider T1

Ev1,v2∼Sd−1

[
C−1v1(x + Cv1 + Cv2)TA(x + Cv1 + Cv2)

]
= Ev1,v2∼Sd−1

[
C−1v1

]
xTAx + Ev1,v2∼Sd−1

[
C−1v1(v1 + v2)TCAC(v1 + v2)

]
+ Ev1,v2∼Sd−1

[
C−1v1x

TAC(v1 + v2) + C−1v1(v1 + v2)TCAx
]
.

Since v1,v2 are independent random variables whose distributions are symmetric around
origin, it is easy to see that the first two terms in the RHS are 0. So we get

Ev1,v2∼Sd−1

[
C−1v1(x + Cv1 + Cv2)TA(x + Cv1 + Cv2)

]
= Ev1,v2∼Sd−1

[
C−1v1x

TAC(v1 + v2) + C−1v1(v1 + v2)TCAx
]

= Ev1,v2∼Sd−1

[
C−1v1x

TACv1 + C−1v1v
T
1 CAx

]
= C−1Ev1∼Sd−1

[
v1v

T
1

]
C(Ax +ATx) =

1

d
(A+AT )x,

where we used the fact that Ev1∼Sd−1

[
v1v

T
1

]
= 1

dId×d. Now consider T2

Ev1,v2∼Sd−1

[
C−1v1 〈b,x + Cv1 + Cv2〉

]
= Ev1

[
C−1v1 〈b, Cv1〉

]
=

1

d
b.

Substituting the above expressions for T1, T2 in the first display gives us

Ev1,v2∼Sd−1

[
C−1v1f(x + Cv1 + Cv2)

]
=

1

d
∇f(x).

Hessian. From the definition of f , we have

Ev1,v2∼Sd−1

[
C−1(v1v

T
2 + v2v

T
1 )C−1f(x + Cv1 + Cv2)

]
=

1

2
Ev1,v2∼Sd−1

[
C−1(v1v

T
2 + v2v

T
1 )C−1(x + Cv1 + Cv2)TA(x + Cv1 + Cv2)

]
+ Ev1,v2∼Sd−1

[
C−1(v1v

T
2 + v2v

T
1 )C−1 〈b,x + Cv1 + Cv2〉

]
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Since v1,v2 are independent random variables whose distributions are symmetric around
origin, it is easy to see that the second term in the RHS above is 0. So, consider the first
term

Ev1,v2∼Sd−1

[
C−1(v1v

T
2 + v2v

T
1 )C−1(x + Cv1 + Cv2)TA(x + Cv1 + Cv2)

]
= Ev1,v2∼Sd−1

[
C−1(v1v

T
2 + v2v

T
1 )C−1(v1 + v2)TCAC(v1 + v2)

]
= 2Ev1,v2∼Sd−1

[
C−1(v1v

T
1 )CAC(v2v

T
2 )C−1 + C−1(v1v

T
2 )CAC(v1v

T
2 )C−1

]
,

where we relied on the fact that odd moments of v1,v2 are zero. Continuing, we get

Ev1,v2∼Sd−1

[
C−1(v1v

T
2 + v2v

T
1 )C−1(x + Cv1 + Cv2)TA(x + Cv1 + Cv2)

]
=

2

d2
(A+AT ),

where we used the fact that Ev1∼Sd−1

[
v1v

T
1

]
= 1

dI and Ev1,v2∼Sd−1

[
(v1v

T
2 )W (v1v

T
2 )
]

=
1
d2W

T . Substituting this in the first display gives us

Ev1,v2∼Sd−1

[
C−1(v1v

T
2 + v2v

T
1 )C−1f(x + Cv1 + Cv2)

]
=

2

d2
∇2f(x).

Appendix B. Proof of Proposition 4

This proposition was proved in Nemirovski (2004). For the sake of completeness, we repro-
duce the proof here. Let h = y − x and r = ‖h‖∇2R(x). Let φ(t) = ∇2R(x + th)[h,h]. The
function φ satisfies the following properties

0 ≤ φ(t), r2 = φ(0), |φ′(t)| = |∇3R(x + th)[h,h,h]| ≤ 2φ3/2(t).

So, for all positive ε, we have

0 < φε(t) = ε+ φ(t), |φ′ε(t)| ≤ 2φ3/2
ε (t).

Continuing, ∣∣∣ d
dt
φ−1/2
ε (t)

∣∣∣ ≤ 1.

It follows that
φ−1/2
ε (t) ≤ φ−1/2

ε (0) + t.

This gives us
φε(0)

(1 + tφ
1/2
ε (0))2

≤ φε(t).

The above inequality holds for any t ∈ [0, 1] and any ε > 0. Passing to limit as ε→ 0+, we
get

r2

(1 + rt)2
≤ φ(t) = ∇2R(x + th)[h,h]

Setting t = 1, we get ∇2R(y) ≥ 1
(1+r)2∇2R(x). Using the fact that r ≤ λ gives us the

required result.
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Appendix C. Proof of Proposition 5

Let X = {x : 〈ai,x〉 ≥ bi, for i = 1, . . .m}. Consider the logarithmic barrier for X

R(x) = −
∑
i

log(〈ai,x〉 − bi).

It is well know that R(x) is a m-self concordant barrier for X (Nemirovski, 2004). The
Hessian of R is given by

∇2R(x) =
∑
i

aia
T
i

(〈ai,x〉 − bi)2
.

Since ‖y − x‖∇2R(x) ≤ λ, we have

∑
i

〈ai,y − x〉2

(〈ai,x〉 − bi)2
≤ λ2

=⇒ ∀i, 〈ai,y − x〉2

(〈ai,x〉 − bi)2
≤ λ2

=⇒ ∀i, 〈ai,y − x〉 ≤ λ(〈ai,x〉 − bi),

where we used the fact that x ∈ X and hence 〈ai,x〉 − bi ≥ 0 in the last step. This then
implies that

〈ai,y〉 − bi ≤ (1 + λ)(〈ai,x〉 − bi).

Since y ∈ X and hence 〈ai,y〉 − bi ≥ 0, we have (〈ai,y〉 − bi)2 ≤ (1 + λ)2(〈ai,x〉 − bi)2. So,
we have

∇2R(y) =
∑
i

aia
T
i

(〈ai,y〉 − bi)2
� 1

(1 + λ)2

∑
i

aia
T
i

(〈ai,x〉 − bi)2
=

1

(1 + λ)2
∇2R(x).

This finishes the proof of the Proposition.

Appendix D. Warm up: Hypothetical case of known Hessians

In this section, we consider a hypothetical scenario where we are given access to the Hessian
Ht of loss function ft at the beginning of iteration t. In such a scenario, instead of estimating
the Hessian from single point feedback (as done in Algorithm 1), one can rely on Ht. In this
section, we study such an algorithm; that is, we study a variant of Algorithm 1 where we
replace the Hessian estimate Ĥt with Ht.

Studying this hypothetical scenario helps the readers understand the intuition behind
Algorithm 1. Moreover, it greatly simplifies our proofs and makes it easier to understand
the key ideas in the proof of Theorem 6. Finally, this hypothetical scenario encompasses
the important special case of linear loss functions (i.e., Ht = 0) that is often studied in the
literature of bandit optimization (Abernethy et al., 2009).

The following Theorem bounds the regret of this hypothetical algorithm. To further
simplify the analysis, we assume the loss functions are exactly quadratic (i.e., ε = 0).
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Theorem 9 (Approximately quadratic losses) Suppose ft is a convex, quadratic func-
tion ft(x) = 1

2x
TAtx + 〈bt,x〉+ ct. Let R be a ν-self-concordant barrier of X that satisfies

Assumption 3. Suppose the diameter of X is bounded by T , and the Lipschitz constants of
{ft}Tt=1 are bounded by T . Suppose Algorithm 1 is run for T iterations with Ĥt = 1

2(At+A
T
t )

and the following hyper-parameters

λ =
1

4
, α = c1(ν + d)d log2 dT , β = 4d log dT , γ =

c2

d log T
, η1 =

c3

d2.5Bα
√
T log T

,

for some universal constants c1, c2, c3 > 0. Let T be the minimum between T and the first
time at which the algorithm restarts. Then with probability at least 1− δ

T∑
t=1

ft(yt)−min
x∈X

T∑
t=1

ft(x) ≤

{
Õ
(
d3.5(d+ ν)2

√
T
)

if T = T

0 otherwise
.

Remark 10 (Linear losses) The above regret bound can be improved to Õ
(
d3.5ν2

√
T
)

for linear loss functions. This is because for linear losses, we can obtain a tighter bound for∑T
s=1 fs(ys) − fs(xs) than the one we obtained for general quadratic functions in the proof

of Theorem 9 (see Equation 6 below).

Remark 11 (Convex losses) The above Theorem can be generalized in a straightforward
way to general convex loss functions. Suppose ft’s are general convex loss functions and
suppose we have access to a lower bound for of ∇2ft’s. In particular, suppose at the beginning
iteration t, we have access to Ht which satisfies: ∀x ∈ X , Ht � ∇2ft(x). Suppose we run
Algorithm 1 with Ĥt = Ht. Then we can use similar proof techniques as in Theorem 9 to
obtain regret bounds. There are two special cases of particular interest here.

1. (Strongly convex and smooth) Suppose ft’s are strongly convex and smooth and we
have access to the strong convex parameter of ft (say κt) at each iteration t. Suppose
Algorithm 1 is run with Ĥt = κtI. Then its regret is Õ

(
d3.5ν2

√
T
)
.

2. (Smooth) Suppose ft’s are smooth and we run Algorithm 1 with Ĥt = 0. Then its
regret can be bounded by Õ

(
d7/3T 2/3

)
.

Before we present a proof of this Theorem, we present some useful intermediate results.

D.1. Intermediate Results

Lemma 12 (Initial focus region) For any α ≥ ν + 2
√
ν,

F1 ⊆ X ⊆ Bα,∇2R(x1)(x1).

Proof Consider property (P4) of self-concordant barriers stated in Equation (21) of Ap-
pendix G. It says that for any x ∈ int(X )

X ∩ {y : 〈∇R(x),y − x〉 ≥ 0} ⊆ Bν+2
√
ν,∇2R(x)(x).

Since x1 is the minimizer of R(x) over X , and since it is in the interior of X , we have
∇R(x1) = 0. So, from property (P4) we have X ⊆ Bν+2

√
ν,∇2R(x1)(x1). The lemma then

immediately follows from the definition of F1 (recall F1 = Xξ ⊆ X ).
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Lemma 13 (Lemma 5 of Bubeck et al. (2017)) Let K be a convex body and E be an
ellipsoid centered at the origin. Suppose that Vol(K ∩ E) ≥ 1

2Vol(K). Then K ⊂ 4dE.

Lemma 14 (Lemma 4.6 of Hazan (2016)) Let B0 be a symmetric positive definite ma-
trix and let {Bt}Tt=1 be symmetric positive semi-definite matrices. Let At =

∑t
s=0Bs. Then

T∑
t=1

tr (At(At −At−1)) ≤ log2

detAT
detA0

.

Lemma 15 (Wainwright (2019)) Let X1, . . . XK ∈ R be a martingale difference se-
quence, where E [Xi|Fi−1] = 0. Assume that Xi satisfy the following tail condition, for some
scalar Bi > 0

P
(∣∣∣Xi

Bi

∣∣∣ ≥ z∣∣∣Fi−1

)
≤ 2 exp(−z2).

Then

P

(∣∣∣ K∑
i=1

Xi

∣∣∣ ≥ z) ≤ 2 exp

(
−c z2∑K

i=1B
2
i

)
,

where c > 0 is a universal constant.

Lemma 16 (Matrix Azuma; Tropp (2012)) Consider a finite adapted sequence {Xi}
of symmetric matrices in dimension d, and fixed sequence {Ai} of symmetric matrices that
satisfy

Ei [Xi] = 0 and X2
i � A2

i almost surely.

Compute the variance parameter σ2 := ‖
∑

iA
2
i ‖2. Then, for all t ≥ 0,

P

(
λmax

(∑
i

Xi

)
≥ t

)
≤ de−t2/8σ2

.

D.2. Proof of Theorem 9

To prove Theorem 9, we work with a slightly modified algorithm and show that with high
probability, the iterates of the modified algorithm are exactly same as the actual algorithm.
Consequently, proving the proposition for the modified algorithm entails that the Theorem
also holds for the actual algorithm. In the modified algorithm, we slightly change ĝt, Ĥt and
work with the following sequence of random variables

ĝt = λ−1dιtft(yt)M
1/2
t v1,t, Ĥt =

ιt
2

(
At +ATt

)
.

where ιt is an indicator random variable which is equal to 1 if and only if the following event
happen

sup
x∈Ft

∣∣∣ t−1∑
s=1

(f̂s(x)− f̂s(xs)− ιsfs(x) + ιsfs(xs))
∣∣∣ ≤ 1

η1
.
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This event happens when the cumulative loss estimate
∑t−1

s=1 f̂s(x) is close to the true cumu-
lative loss

∑t−1
s=1 fs(x) over the focus region Ft. We assume the algorithm is run with these

modified estimates of gradients and Hessians. The main benefit of working with the modi-
fied gradient and Hessian estimates is that they are more amenable to analysis. Our proof
shows that with high probability, the modified random variables ĝt, Ĥt are exactly equal to
the original definitions of ĝt, Ĥt. In particular, we show that in every iteration before the
algorithm restarts, ιt = 1 with high probability. This entails that the actions output by the
modified algorithm are exactly same as the actual algorithm, with high probability. As a
result, it suffices to prove Theorem 9 for the modified algorithm.

We now derive some useful properties of the iterates produced by the modified algorithm.
Some of these properties are very basic and pertain to the well-behavedness of the iterates
of the algorithm. For example, the first property ensures that yt always lies in X .

Lemma 17 (Properties of iterates) Consider the setting of Theorem 9. Let T be the
minimum between T and the first iteration at which the modified algorithm restarts. For
any t < T such that ηt ≤ 10η1, the iterates of the algorithm satisfy the following stability
properties

1. Mt is positive definite and yt ∈ X .

2. Rt(x) is a strictly convex function over Ft.

3. For all x ∈ Ft, ‖x− xt‖Mt ≤ 4dα and ∇2R(x) � 1
(1+4dα)2∇2R(xt).

4. ‖xt+1 − xt‖Mt ≤ 2λ−1dBηt and ‖I −M−1/2
t Mt+1M

−1/2
t ‖2 ≤ 12λ−2d2Bηt.

5. if ιt = 0, then ιt = ιt+1 = · · · = ιT , xt = xt+1 · · · = xT and Ft = Ft+1 · · · = FT .

Proof We use induction to prove the lemma.

Base Case (t=1).

1. First note that M1 = ∇2R(x1). From property P3 of SCB stated in Appendix G, we
know that R(x) is strictly convex over int(X ). So M1 is positive definite and invertible.
Moreover, from the Dikin ellipsoid property (P1) of SCB stated in Section 2, and from
our choice of λ, it is easy to see that y1 ∈ X .

2. The strict convexity property of R(x) over F1 follows from property P3 of SCB stated in
Appendix G.

3. To show that for all x ∈ F1, ∇2R(x) � 1
(1+4dα)2∇2R(x1), we rely on Assumption 3 and

Lemma 12. In particular, from Assumption 3 we know that if ‖x− x1‖∇2R(x1) ≤ λ, then
∇2R(x) � 1

(1+λ)2∇2R(x1). Moreover, from Lemma 12 we know that any x ∈ X satisfies

‖x− x1‖∇2R(x1) ≤ ν + 2
√
ν ≤ α.

Combining these two facts gives us the required result.

24



Efficient Bandit Convex Optimization

4. We now show that x2 and x1 are close to each other. Note that x2 is the minimizer of
the following objective

x2 ∈ argmin
x∈F1

η1 〈ĝ1,x〉+ ΦR2(x,x1). (3)

From first order optimality conditions we have

∀x ∈ F1, 〈∇R2(x2)−∇R2(x1) + η1ĝ1,x− x2〉 ≥ 0.

Substituting x1 in the above equation gives us

〈∇R2(x2)−∇R2(x1) + η1ĝ1,x1 − x2〉 ≥ 0.

This can equivalently be written as〈
∇R(x2)−∇R(x1) + η1ĝ1 + η1Ĥ1(x2 − x1),x2 − x1

〉
≤ 0. (4)

Now suppose ‖x2 − x1‖M1 > 2λ−1dBη1. Then we have〈
∇R(x2)−∇R(x1) + η1ĝ1 + η1Ĥ1(x2 − x1),x2 − x1

〉
(a)

≥
‖x2 − x1‖2M1

1 + ‖x2 − x1‖M1

+
〈
η1ĝ1 + η1Ĥ1(x2 − x1),x2 − x1

〉
(b)

≥
‖x2 − x1‖2M1

1 + ‖x2 − x1‖M1

− η1‖ĝ1‖∗M1
‖x2 − x1‖M1

= ‖x2 − x1‖M1

(
‖x2 − x1‖M1

1 + ‖x2 − x1‖M1

− η1‖ĝ1‖∗M1

)
,

where (a) follows from property P7 of SCBs stated in Appendix G and (b) follows from
the fact that Ĥ1 is a positive semi-definite matrix. Next, consider the following

(‖ĝ1‖∗M1
)2 = ĝT1 M

−1
1 ĝ1 = λ−2d2f2

1 (y1)vT1,1v1,1 ≤ λ−2d2B2.

Substituting this in the previous inequality and using the fact that ‖x2 − x1‖M1 >
2λ−1dBη1 gives us〈

∇R(x2)−∇R(x1) + η1ĝ1 + η1Ĥ1(x2 − x1),x2 − x1

〉
≥ λ−1dBη1‖x2 − x1‖M1

(
2

1 + 2λ−1dBη1
− 1

)
(a)
> 0,

where (a) follows from the fact that λ−1dBη1 < 1/2. This contradicts the first order
optimality condition in Equation (4). This shows that ‖x2 − x1‖M1 ≤ 2λ−1dBη1.

Next, we show that M−1/2
1 M2M

−1/2
1 is close to identity. From the definitions of M1,M2,

we have

M
−1/2
1 M2M

−1/2
1 − I = M

−1/2
1 (∇2R(x2)−∇2R(x1))M

−1/2
1 + η1M

−1/2
1 Ĥ1M

−1/2
1 .
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Since ‖x2 − x1‖M1 ≤ 2λ−1dBη1, we can rely on property P2 of SCB stated in Section 2
to infer that

∇2R(x2) � 1

(1− 2λ−1dBη1)2
∇2R(x1) � (1 + 6λ−1dBη1)∇2R(x1),

where the last inequality follows since λ−1dBη1 < 1/10. Next, note that Ĥ1 can be
written as

Ĥ1 = E
[
λ−2

2
d2f1(y1)M

1/2
1

(
v1,1v

T
2,1 + v2,1v

T
1,1

)
M

1/2
1

]
.

So we have M−1/2
1 Ĥ1M

−1/2
1 = E

[
λ−2

2 d2f1(y1)
(
v1,1v

T
2,1 + v2,1v

T
1,1

)]
which is a bounded

quantity. Substituting the previous two bounds in our expression forM−1/2
1 M2M

−1/2
1 −I

we get

‖M−1/2
1 M2M

−1/2
1 − I‖2 ≤ 6λ−1dBη1 + λ−2d2Bη1

5. Note that ι1 is always equal to 1. So the last property trivially holds. This finishes the
proof of the base case.

Induction Step. Suppose the proposition holds for the first t−1 iterations. We now show
that it also holds for the tth iteration.

1. The first part on positive definiteness ofMt and yt ∈ X follows from the same arguments
as in the base case.

2. Note that Rt(x) = R(x)+
∑t−1

s=0
ηs
2 (x−xs)T Ĥs(x−xs). Since Ĥs is positive semi-definite,

we have ∇2Rt(x) � ∇2R(x). The strict convexity of Rt(x) then follows from the fact
that R(x) is strictly convex over int(X ).

3. The focus region update condition of our algorithm (lines 21-25 of Algorithm 1) always
ensures that

Vol(Ft ∩Bα,Mt(xt)) ≥
1

2
Vol(Ft).

So, from Lemma 13 we know that for any x ∈ Ft, ‖x − xt‖Mt ≤ 4dα. By relying on
Assumption 3 on SCB, we then get

∀x ∈ Ft, ∇2R(x) � 1

(1 + 4dα)2
∇2R(xt).

4. We now prove stability of the iterates. In particular, we show that ‖xt+1 − xt‖Mt ≤
2λ−1dBηt. If ιt−1 = 0, then this trivially holds (because xt+1 = xt). So lets consider the
case where ιt−1 = 1. From the first order optimality conditions, we have

∀x ∈ Ft, 〈∇Rt+1(xt+1)−∇Rt+1(xt) + ηtĝt,x− xt+1〉 ≥ 0. (5)

Note that from our definition of Ft, Ft−1 we always have Ft ⊆ Ft−1 and xt ∈ Ft. So
substituting xt in the above equation and rearranging terms gives us〈

∇R(xt+1)−∇R(xt) + ηtĝt +
t∑

s=1

ηsĤs(xt+1 − xt),xt+1 − xt

〉
≤ 0.
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Now suppose ‖xt+1 − xt‖Mt > 2λ−1dBηt. Then we have〈
∇R(xt+1)−∇R(xt) + ηtĝt +

t∑
s=1

ηsĤs(xt+1 − xt),xt+1 − xt

〉
(a)

≥
‖xt+1 − xt‖2∇2R(xt)

1 + ‖xt+1 − xt‖∇2R(xt)
+ ‖xt+1 − xt‖2η1:tĤ1:t

+ 〈ηtĝt,xt+1 − xt〉

(b)

≥
‖xt+1 − xt‖2∇2R(xt)

1 + ‖xt+1 − xt‖∇2R(xt)
+ ‖xt+1 − xt‖2η1:t−1Ĥ1:t−1

− ηt‖ĝt‖∗Mt
‖xt+1 − xt‖Mt ,

where (a) follows from property P7 of SCBs stated in Appendix G and (b) follows from the
fact that Ĥt is a positive semi-definite matrix. Here η1:tĤ1:t =

∑t
s=1 ηsĤs. Continuing〈

∇R(xt+1)−∇R(xt) + ηtĝt +

t∑
s=1

ηsĤs(xt+1 − xt),xt+1 − xt

〉
(b)

≥
‖xt+1 − xt‖2Mt

1 + ‖xt+1 − xt‖Mt

− ηt‖ĝt‖∗Mt
‖xt+1 − xt‖Mt ,

Next, consider the following

(‖ĝt‖∗Mt
)2 = ĝTt M

−1
t ĝt = λ−2d2f2

t (yt)v
T
1,tv1,t ≤ λ−2d2B2.

Substituting this in the previous inequality and using the fact that ‖xt+1 − xt‖Mt >
2λ−1dBηt gives us〈

∇R(xt+1)−∇R(xt) + ηtĝt +

t∑
s=1

ηsĤs(xt+1 − xt),xt+1 − xt

〉

≥ λ−1dBηt‖xt+1 − xt‖Mt

(
2

1 + 2λ−1dBηt
− 1

)
(a)
> 0,

where (a) follows from the fact that λ−1dBηt < 1/2. This contradicts the first order
optimality condition in Equation (5). This shows that ‖xt+1 − xt‖Mt ≤ 2λ−1dBηt.

Next, we show that M−1/2
t Mt+1M

−1/2
t is close to identity. From the definitions of

Mt,Mt+1, we have

M
−1/2
t Mt+1M

−1/2
t − I = M

−1/2
t (∇2R(xt+1)−∇2R(xt))M

−1/2
t + ηtM

−1/2
t ĤtM

−1/2
t .

Using similar arguments as in the base case, we get

∇2R(xt+1) � (1 + 6λ−1dBηt)∇2R(xt), M
−1/2
t ĤtM

−1/2
t = Et

[
λ−2

2
d2ft(yt)

(
v1,tv

T
2,t + v2,tv

T
1,t

)]
.

Substituting these quantities in our expression for M−1/2
t Mt+1M

−1/2
t − I we get

‖M−1/2
t Mt+1M

−1/2
t ‖2 ≤ 12λ−2d2Bηt.
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5. The last property that remains to be shown is that if ιt = 0, then ιt = ιt+1 = · · · = ιT ,
xt = xt+1 · · · = xT and Ft = Ft+1 · · · = FT . We assume ιt−1 = 1, since otherwise the
property is trivially true. Also note that Rt(x) is strictly convex over Ft and so the OMD
update in line 19 of Algorithm 1 has a unique minimizer.

When ιt = 0, we have ĝt = 0, Ĥt = 0. So the OMD update in line 19 of Algorithm 1 is
given by xt+1 = argminx∈Ft ΦRt+1(x,xt). Since Rt+1(x) = Rt(x) and xt ∈ Ft, it is easy
to see that xt+1 = xt. So the algorithm wouldn’t make any progress in further rounds.

This finishes the proof of the lemma.

We now show that the focus region doesn’t get updated more than 12d log T times. This
helps us show that the learning ηt doesn’t gets too large.

Lemma 18 (Focus region updates) Consider the setting of Theorem 9. Let T be the
minimum between T and the first time at which the modified algorithm restarts. Then the
focus region gets updated no more than 12d log T times before T . Moreover, ηs ≤ 10η1 for
any s ≤ T .

Proof We prove the proposition using contradiction. Assume that the focus region gets
updated more than 12d log T times before the algorithm restarts. Let τ < T be the iteration
where the focus region update happens for 12d log T th time. We now show that the restart
condition should have triggered in iteration τ .

We have the following upper bound on the volume of Fτ+1 :

Vol(Fτ+1) ≤ Vol(Fτ ) ≤ 1

T 6d
Vol(Xξ).

This follows from the fact that the volume of the focus region reduces by a factor of 1/2
whenever the focus region update condition triggers. In the rest of the proof, we show that
if the volume of focus region is less than 1

T 6dVol(Xξ), then the restart condition should have
triggered.

Step 1. First of all, for our choice of γ, we have (1 + γ)12d log T ≤ 10. Consequently,
ητ ≤ 10η1. So the properties of the iterates we proved in Lemma 17 apply to our setting
here. From this Lemma, we can infer that ιτ = 1. Otherwise, we know that the focus region
shouldn’t have changed in the τ th iteration (recall, in Lemma 17 we showed that if ιτ = 0,
then Fτ = Fτ+1). Moreoever, from this Lemma we can infer that ∀t ≤ τ, ιt = 1. So the
cumulative loss estimate is close to the true cumulative loss and satisfies

sup
x∈Fτ

∣∣∣ τ−1∑
s=1

(f̂s(x)− f̂s(xs)− fs(x) + fs(xs))
∣∣∣ ≤ 1

η1
.

Step 2. Let uτ+1 be the minimizer of
∑τ

s=1 f̂s(x) over Fτ . Suppose B
(
uτ+1,

1
T 2

)
∩Xξ ⊂ Fτ .

Then
Vol(Fτ ) ≥ Vol

(
B

(
uτ+1,

1

T 2

)
∩ Xξ

)
.

Next, from our assumption that X contains a euclidean ball of radius 1, we can infer that
Xξ = ξx1 +(1−ξ)X contains a ball of radius (1−ξ) in it. Let B̃ be the ball of radius (1−ξ)

28



Efficient Bandit Convex Optimization

that lies in Xξ. By convexity of X and the fact that the diameter of X is less than or equal
to T , we have (

1− 1

T 3

)
uτ+1 +

1

T 3
B̃ ⊆ B

(
uτ+1,

1

T 2

)
∩ Xξ.

This shows that Vol(Fτ ) ≥ T−4dωd, where ωd is the volume of unit sphere in Rd. Combining
this with the previous upper bound on Vol(Fτ ), we get

T−4dωd,≤ Vol(Fτ ) ≤ T−6dVol(X )
(a)

≤ T−5dωd,

where (a) follows from the fact that the diameter of X is upper bounded by T . We arrived
at a contradiction. This shows that B

(
uτ+1,

1
T 2

)
∩ Xξ 6⊂ Fτ .

Step 3. Since B
(
uτ+1,

1
T 2

)
∩ Xξ 6⊂ Fτ , the following holds: ∃x ∈ ∂Fτ ∩ int(Xξ) such that

‖x− uτ+1‖2 ≤ 1
T 2 . Now, consider the following for such an x

τ∑
s=1

f̂s(x)− f̂s(uτ+1) =

τ∑
s=1

fs(x)− fs(uτ+1)

+
τ∑
s=1

f̂s(x)− f̂s(uτ+1)− fs(x) + fs(uτ+1).

Since each fs is T -Lipschitz, the first term in the RHS above is upper bounded by 1. Since
the cumulative loss estimate is close to the true cumulative loss, the second term can be
bounded as

τ∑
s=1

f̂s(x)− f̂s(uτ+1)− fs(x) + fs(uτ+1) ≤ 1

η1
+ f̂τ (x)− f̂τ (uτ+1)− fτ (x) + fτ (uτ+1)

(a)
=

1

η1
+ 〈ĝτ − Eτ [ĝτ ] ,x− uτ+1〉 ,

where (a) follows from the definitions of fτ , f̂τ . Next, from Lemma 17 we know that for any
x ∈ Fτ , ‖x− xτ‖Mτ ≤ 4dα. Since x,uτ+1 are points in Fτ , we have ‖x− uτ+1‖Mτ ≤ 8dα.
Using, this we get

〈ĝτ − Eτ [ĝτ ] ,x− uτ+1〉 ≤ ‖ĝτ − Eτ [ĝτ ] ‖∗Mτ
‖x− uτ+1‖Mτ

≤ 16λ−1d2αB,

where the last inequality follows from the fact that ‖ĝτ‖∗Mτ
is a bounded random variable

which satisfies ‖ĝτ‖∗Mτ
≤ λ−1dB. Since 16λ−1d2Bη1 ≤ 1, we have

τ∑
s=1

f̂s(x)− f̂s(uτ+1)− fs(x) + fs(uτ+1) ≤ 2

η1
.
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This shows that
∑τ

s=1 f̂s(x) − f̂s(uτ+1) ≤ 4
η1
. We now show that this implies the restart

condition should have triggered. Consider the following
τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) =
τ∑
s=1

f̂s(xs)−
τ∑
s=1

f̂s(uτ+1)

≤ 4

η1
+

τ∑
s=1

f̂s(xs)− f̂s(x)

=
4

η1
+

τ∑
s=1

〈ĝs,xs − x〉 − 1

2
(x− xs)

T Ĥs(x− xs)

=
4

η1
+

τ∑
s=1

〈ĝs,xs − xs+1〉+ 〈ĝs,xs+1 − x〉

− 1

2
(x− xs)

T Ĥs(x− xs)

(a)

≤ 4

η1
+ 2λ−2d2B2

τ∑
s=1

ηs +
τ∑
s=1

〈ĝs,xs+1 − x〉

−
τ∑
s=1

1

2
(x− xs)

T Ĥs(x− xs),

where (a) follows from the stability of the iterates we proved in Lemma 17. Since xs+1 is
the minimizer of miny∈Fs ηs 〈ĝs,y〉+ΦRs+1(y,xs), we have the following from the first order
optimality conditions

〈ĝs,xs+1 − x〉 ≤
ΦRs+1(x,xs)− ΦRs+1(x,xs+1)− ΦRs+1(xs+1,xs)

ηs
.

Using this in the previous display, we get
τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1
+ 2λ−2d2B2

τ∑
s=1

ηs +
τ∑
s=1

ΦRs+1(x,xs)− ΦRs+1(x,xs+1)

ηs

−
τ∑
s=1

1

2
(x− xs)

T Ĥs(x− xs).

Rearranging the terms in the RHS above, we get
τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1
+ 2λ−2d2B2

τ∑
s=1

ηs +
ΦR(x,x1)

η1
−

ΦRτ+1(x,xτ+1)

ητ

+

τ∑
s=2

(
1

ηs
− 1

ηs−1

)
ΦRs(x,xs).

Recall, x ∈ ∂Fτ ∩ int(Xξ). Let τ ′ be such that x ∈ ∂Bα,Mτ ′ (xτ ′). Then

τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1
+ 2λ−2d2B2

τ∑
s=1

ηs +
ΦR(x,x1)

η1
− γ

ΦRτ ′ (x,xτ ′)

ητ ′
.
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Since ‖x − xτ ′‖Mτ ′ = α, we have the following lower bound on ΦRτ ′ (x,xτ ′) which follows
from property (P6) of SCB stated in Appendix G

ΦRτ ′ (x,xτ ′) ≥ α− log (1 + α) .

For our choice of α, ΦRτ ′ (x,xτ ′) can be lower bounded by α/2. We now upper bound
ΦR(x,x1). Since x ∈ Xξ, using property P8 of SCB stated in Appendix G, we can upper
bound ΦR(x,x1) as

ΦR(x,x1) = R(x) ≤ 4ν log T.

Substituting the above two bounds in the previous display and using the fact that ητ ≤ 10η1,
we get

τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1
+ 20λ−2d2B2η1T +

4ν log T

η1
− αγ

20η1
≤ − β

η1
.

This implies, the restart condition should have triggered. This shows that the focus region
doesn’t get updated more than 12d log T times.

Lemma 19 Consider the setting of Theorem 9. Let T be the minimum between T and the
first time at which the modified algorithm restarts. Then for any t ≤ T ,

Mt � T 8(ν + 2
√
ν)2(∇2R(x1) + I).

Proof First note that the iterates generated by the algorithm lie in Xξ, where ξ = T−4. So
using property P8 of SCB stated in Appendix G, we have

∀t ≤ T , ∇2R(xt) �
(
ν + 2

√
ν

ξ

)2

∇2R(x1) = T 8(ν + 2
√
ν)2∇2R(x1).

Next, since ft is T Lipschitz and since X contains a euclidean ball of radius 1 in it, we have
∇2ft(x) � TI. We now use the above two inequalities to bound Mt

Mt = ∇2R(xt) +
t−1∑
s=1

ηsĤs � T 8(ν + 2
√
ν)2∇2R(x1) +

t−1∑
s=1

ηsTI

(a)

� T 8(ν + 2
√
ν)2(∇2R(x1) + I),

where (a) relied on the fact that ηs ≤ 10η1 for any s ≤ T which we proved in Lemma 18.

The following Lemma is concerned about concentration of loss estimates {f̂t}Tt=1 com-
puted by the modified algorithm. This Lemma helps us show that with high probability, the
iterates of the modified and the original algorithms are exactly the same. Before we pro-
ceed, note that the focus region gets updated at most 12d log T times before the algorithm
restarts. So, for our choice of γ, we have (1 + γ)12d log T ≤ 10. Consequently, for all t ≤ T ,
ηt ≤ 10η1. So the results of Lemma 17 apply to all the iterates in the first T iterations of
the modified algorithm.
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Lemma 20 (Concentration of loss estimates) Let T be the minimum between T and
the first time at which the modified algorithm restarts. Then for any t ≤ T , the following
statement holds with probability at least 1− T−2

sup
x∈Ft

∣∣∣ t−1∑
s=1

η1(f̂s(x)− f̂s(xs)− ιsfs(x) + ιsfs(xs))
∣∣∣ ≤ Õ (λ−1d5/2αBη1

√
T
)
.

Proof First, note that

f̂s(x)− f̂s(xs) =
1

2
(x− xs)

T Ĥs(x− xs) + 〈ĝs,x− xs〉

ιsfs(x)− ιsfs(xs) =
1

2
(x− xs)

T Ĥs(x− xs) + ιs 〈∇fs(xs),x− xs〉 .

So f̂s(x) − f̂s(xs) − ιsfs(x) + ιsfs(xs) = 〈ĝs − ιs∇fs(xs),x− xs〉 . For any x ∈ Ft, define
random variables Zx,s as

Zx,s =

{
η1 〈ĝs − ιs∇fs(xs),x− xs〉 if s ≤ T
0 otherwise

.

Since Es [ĝs] = ιs∇fs(xs), it is easy to see that {Zx,s}Ts=1 is a martingale difference sequence.
Moreover, Zx,s is a bounded random variable. This follows from the fact that ‖ĝs‖∗Ms

is
bounded and satisfies ‖ĝs‖∗Ms

≤ λ−1dB. Moreover, for any x ∈ Fs, ‖x − xs‖Ms ≤ 4dα (see
Lemma 17). So we have

|Zx,s| ≤ η1| 〈ĝs − ιs∇fs(xs),x− xs〉 | ≤ 8λ−1d2αBη1.

By relying on standard concentration bounds for martingale difference sequences (see Lemma 15),
we get that with probability at least 1− δ,

sup
t≤T
|
t−1∑
s=1

Zx,s| = O
(
λ−1d2αBη1

√
T log T/δ

)
.

Next, we bound supx∈Ft supt≤T |
∑t−1

s=1 Zx,s| using ε-net arguments. Let Nε be an ε-net over
Ft which satisfies the following: for every x, there exists a xε ∈ Nε such that ‖x−xε‖Mt ≤ ε.
Then

sup
x∈Ft

sup
t≤T
|
t−1∑
s=1

Zx,s| ≤ sup
x∈Ft

sup
t≤T
|
t−1∑
s=0

Zxε,s|︸ ︷︷ ︸
T1

+ sup
x∈Ft

sup
t≤T
|
t−1∑
s=0

Zxε,s − Zx,s|︸ ︷︷ ︸
T2

.

Using a simple union bound, T1 can be bounded as

T1 ≤ O
(
λ−1d2αBη1

√
T log T |Nε|/δ

) (a)

≤ O

(
λ−1d5/2αBη1

√
T log

αdT

εδ

)
,
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where the bound holds with probability at least 1−δ and (a) holds since ∀x ∈ Ft, ‖x−xt‖ ≤
4dα and as a result |Nε| ≤

(
4dα
ε

)d. T2 can be bounded as follows

sup
x∈Ft

sup
t≤T
|
t−1∑
s=0

Zxε,s − Zx,s| = sup
x∈Ft

sup
t≤T
|
t−1∑
s=0

η1 〈ĝs − ιs∇fs(xs),x− xε〉 |

(a)

≤ 2η1λ
−1dB sup

x∈Ft
sup
t≤T

(
t−1∑
s=0

‖x− xε‖Ms

)
(b)

≤ 2(1 + 4dα)2η1λ
−1dB sup

x∈Ft
sup
t≤T

(
t−1∑
s=0

‖x− xε‖Mt

)
= O

(
λ−1d3α2Bη1εT

)
,

where (a) follows from the fact that ‖ĝs‖∗Ms
≤ λ−1dB and (b) follows from Lemma 17 where

we showed that Ms � (1 + 4dα)2Mt. Choosing ε = 1
α
√
dT
, and plugging the above bounds

for T1, T2 in the upper bound for supx∈Ft supt≤T |
∑t−1

s=1 Zx,s| gives us the required result.

Proof of Theorem 9. From Lemma 20, we know that with high probability, the iterates
of the modified algorithm which relies on indicator variables ιt are exactly same as the
original algorithm. So it suffices to prove the regret bound for the modified algorithm. In
the sequel, we work with the modified algorithm. Throughout the proof, we let T be the
minimum between T and the first time step at which the algorithm restarts. Let τ be the
minimum between T and the last time step where ιτ = 1. Our goal is to bound the following
quantity

T∑
s=1

ιsfs(ys)−min
x∈X

T∑
s=1

ιsfs(x) =

τ∑
s=1

fs(ys)−min
x∈X

τ∑
s=1

fs(x).

Case 1 (T = T ). We first consider the case where the restart condition didn’t trigger in
the first T iterations (i.e., T = T ). In this case, we show that the regret is Õ

(
T 1/2

)
. Since

the restart condition hasn’t triggered, we know that

τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≥ − β
η1
.

From the proof of Lemma 18, this implies ∀x ∈ ∂Fτ ∩ int(Xξ)

τ∑
s=1

f̂s(x)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≥ 4

η1
.

For the sake of clarity, we reproduce the argument we used in Lemma 18. To show this,
we prove the contrapositive statement. Suppose

∑τ
s=1 f̂s(x)−miny∈Fτ

∑τ
s=1 f̂s(y) ≤ 4

η1
for

some x ∈ ∂Fτ ∩ int(Xξ). We now show that this implies the restart condition should have
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triggered. Consider the following
τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1
+

τ∑
s=1

f̂s(xs)− f̂s(x)

=
4

η1
+

τ∑
s=1

〈ĝs,xs − x〉 − 1

2
(x− xs)

T Ĥs(x− xs)

=
4

η1
+

τ∑
s=1

〈ĝs,xs − xs+1〉+ 〈ĝs,xs+1 − x〉

− 1

2
(x− xs)

T Ĥs(x− xs)

(a)

≤ 4

η1
+ 2λ−2d2B2

τ∑
s=1

ηs +

τ∑
s=1

〈ĝs,xs+1 − x〉

−
τ∑
s=1

1

2
(x− xs)

T Ĥs(x− xs),

where (a) follows from the stability of the iterates we proved in Lemma 17. Since xs+1 is
the minimizer of miny∈Fs ηs 〈ĝs,y〉+ΦRs+1(y,xs), we have the following from the first order
optimality conditions

〈ĝs,xs+1 − x〉 ≤
ΦRs+1(x,xs)− ΦRs+1(x,xs+1)− ΦRs+1(xs+1,xs)

ηs
.

Using this in the previous display, we get
τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1
+ 2λ−2d2B2

τ∑
s=1

ηs +
τ∑
s=1

ΦRs+1(x,xs)− ΦRs+1(x,xs+1)

ηs

−
τ∑
s=1

1

2
(x− xs)

T Ĥs(x− xs).

Rearranging the terms in the RHS above, we get
τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1
+ 2λ−2d2B2

τ∑
s=1

ηs +
ΦR(x,x1)

η1
−

ΦRτ+1(x,xτ+1)

ητ

+

τ∑
s=2

(
1

ηs
− 1

ηs−1

)
ΦRs(x,xs).

Recall, x ∈ ∂Fτ ∩ int(X ). Let τ ′ be such that x ∈ ∂Bα,Mτ ′ (xτ ′). Then
τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1
+ 2λ−2d2B2

τ∑
s=1

ηs +
ΦR(x,x1)

η1
− γ

ΦRτ ′ (x,xτ ′)

ητ ′
.

Since ‖x − xτ ′‖Mτ ′ = α, we have the following lower bound on ΦRτ ′ (x,xτ ′) which follows
from property (P6) of SCB stated in Appendix G

ΦRτ ′ (x,xτ ′) ≥ α− log (1 + α) .
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For our choice of α, ΦRτ ′ (x,xτ ′) can be lower bounded by α/2. We now upper bound
ΦR(x,x1). Since x ∈ Xξ, using property P8 of SCB stated in Appendix G, we can upper
bound ΦR(x,x1) as

ΦR(x,x1) = R(x) ≤ 4ν log T.

Substituting the above two bounds in the previous display and using the fact that ητ ≤ 10η1,
we get

τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1
+ 20λ−2d2B2η1T +

4ν log T

η1
− αγ

20η1
≤ − β

η1
.

This implies, the restart condition should have triggered. But since the restart condition
hasn’t triggered, this result shows that ∀x ∈ ∂Fτ∩int(Xξ),

∑τ
s=1 f̂s(x)−miny∈Fτ

∑τ
s=1 f̂s(y) ≥

4
η1
. Next, since our cumulative loss estimate concentrates well around the true cumulative

loss (i.e., ιτ = 1), this implies

∀x ∈ ∂Fτ ∩ int(Xξ),
τ∑
s=1

fs(x)− min
y∈Fτ

τ∑
s=1

fs(y) ≥ 2

η1
.

Since fs’s are convex, this implies the minimizer of minx∈Xξ
∑T

s=0 fs(x) is in Fτ . So, the
regret of the algorithm can be bounded as follows

RegT =

τ∑
s=1

fs(ys)−min
x∈X

τ∑
s=1

fs(x)
(a)

≤ 1 +

τ∑
s=1

fs(ys)− min
x∈Xξ

τ∑
s=1

fs(x)

= 1 +
τ∑
s=1

fs(ys)− min
x∈Fτ

τ∑
s=1

fs(x),

where (a) follows from the definition of Xξ = (1 − ξ)X + ξx1 and the fact that the loss
functions are Lipschitz and the diameter of X is bounded. Next, consider the following for
any x ∈ Fτ

τ∑
s=1

fs(ys)−
τ∑
s=1

fs(x) =

τ∑
s=1

[fs(ys)− fs(xs)]︸ ︷︷ ︸
T1

+

τ∑
s=1

[
fs(xs)− fs(x)− f̂s(xs) + f̂s(x)

]
︸ ︷︷ ︸

T2

+

τ∑
s=1

[
f̂s(xs)− f̂s(x)

]
︸ ︷︷ ︸

T3

.

Bounding T1. We first bound T1. Since fs is a quadratic function with Hessian Ĥs, we
have
τ∑
s=1

fs(ys)− fs(xs) =

τ∑
s=1

λ
〈
∇fs(xs),M−1/2

s (v1,s + v2,s)
〉

+
λ2

2
(v1,s + v2,s)

TM−1/2
s ĤsM

−1/2
s (v1,s + v2,s)
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Let Zs = λ
〈
∇fs(xs),M−1/2

s (v1,s + v2,s)
〉
if s ≤ τ and 0 if s > τ . Note that {Zs}Ts=1 is a

martingale difference sequence with each Zs being bounded: |Zs| ≤ 2dB. This follows from
the observation that ∇fs(xs) = Es [ĝs] and the fact that M−1/2

s ĝs is a bounded random
variable. By relying on standard concentration bounds for martingale difference sequences
(see Lemma 15), we get that with probability at least 1−δ,

∑T
s=1 Zs = O

(
dB
√
T log 1/δ

)
.

We now bound the last term in the RHS above. Consider the following

(v1,s + v2,s)
TM−1/2

s ĤsM
−1/2
s (v1,s + v2,s) ≤ 4‖M−1/2

s ĤsM
−1/2
s ‖2

≤ 4‖M−1/2
s+1 ĤsM

−1/2
s+1 ‖2‖M

−1/2
s Ms+1M

−1/2
s ‖2

From Lemma 17 we know that ‖M−1/2
s Ms+1M

−1/2
s ‖2 ≤ 1 + 12λ−2d2Bηt ≤ 2. So we have

(v1,s + v2,s)
TM−1/2

s ĤsM
−1/2
s (v1,s + v2,s) ≤ 8‖M−1/2

s+1 ĤsM
−1/2
s+1 ‖2 = 8‖Ĥ1/2

s M−1
s+1Ĥ

1/2
s ‖2.

Define Nt = (1 + 4dα)−2∇2R(x1) +
∑t−1

s=1 ηsĤs. From Lemma 17 we know that ∇2R(xt) �
(1 + 4dα)−2∇2R(x1). So Nt �Mt for all t. Using this in the previous inequality we get

(v1,s + v2,s)
TM−1/2

s ĤsM
−1/2
s (v1,s + v2,s) ≤ 8‖Ĥ1/2

s N−1
s+1Ĥ

1/2
s ‖2

≤ 8tr
(
N−1
s+1Ĥs

)
=

8

ηs
tr
(
N−1
s+1(Ns+1 −Ns)

)
By relying on Lemma 14 we can upper bound

∑τ
s=1

8
ηs
tr
(
N−1
s+1(Ns+1 −Ns)

)
as

τ∑
s=1

8

ηs
tr
(
N−1
s+1(Ns+1 −Ns)

)
≤ 8

η1

τ∑
s=1

tr
(
N−1
s+1(Ns+1 −Ns)

)
≤ 8

η1
log

detNT

detN1
(6)

From Lemma 19 we know that NT � poly(dT ). Assuming ∇2R(x1) � 1
poly(dT )I, the RHS

above can be upper bounded as O
(
d log dT
η1

)
. To summarize, we have the following upper

bound T1: O
(
dB
√
T log 1/δ + d log dT

η1

)
Bounding T2. Since ιτ = 1, T2 can be upper bounded as

T2 ≤
1

η1
+
[
fτ (xτ )− fτ (x)− f̂τ (xτ ) + f̂τ (x)

]
=

1

η1
+ 〈ĝτ − Eτ [ĝτ ] ,x− xτ 〉 ≤

2

η1
,

where the last inequality follows from the fact that ‖x−xτ‖Mτ ≤ 4dα and ‖ĝτ‖∗Mτ
≤ λ−1dB.

Bounding T3. To bound T3, we consider the following
τ∑
s=1

[
f̂s(xs)− f̂s(x)

]
=

τ∑
s=1

〈ĝs,xs − x〉 − 1

2
(x− xs)

T Ĥs(x− xs)

=
τ∑
s=1

〈ĝs,xs − xs+1〉+ 〈ĝs,xs+1 − x〉 − 1

2
(x− xs)

T Ĥs(x− xs)
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Using similar arguments as at the beginning of Case 1, this can be bounded as
τ∑
s=1

[
f̂s(xs)− f̂s(x)

]
≤ 2λ−2d2B2

τ∑
s=1

ηs +
ΦR(x,x1)

η1
,

Since x ∈ Xξ, using property P8 of SCB stated in Appendix G, we can upper bound
ΦR(x,x1) as

ΦR(x,x1) = R(x) ≤ 4ν log T.

Combining the bounds for T1, T2, T3 shows that with probability at least 1− T−2 the regret
is upper bounded by

Õ

(
dB
√
T +

(ν + d)

η1
+ λ−2d2B2η1T

)
= Õ

(
d3.5(d+ ν)2

√
T
)
.

Case 2 (T < T ). We now consider the case where the restart condition triggered at some
iteration T < T . Using the fact that the restart condition hasn’t triggered in iteration
T − 1 and using similar arguments as in the beginning of Case 1, we can again show that
the minimizer of the cumulative loss over the entire domain lies in the focus region FT , and
ιT = 1. So regret until T is given by

RegT =
T∑
s=1

fs(ys)−min
x∈X

T∑
s=1

fs(x)
(a)

≤ 1 +
T∑
s=1

fs(ys)− min
x∈Xξ

T∑
s=1

fs(x)

= 1 +
T∑
s=1

fs(ys)− min
x∈FT

T∑
s=1

fs(x),

where (a) follows from the definition of Xξ. Using the same regret decomposition as in Case
1, for any x ∈ FT

T∑
s=1

fs(ys)−
T∑
s=1

fs(x) =
T∑
s=1

[fs(ys)− fs(xs)]︸ ︷︷ ︸
T1

+
T∑
s=1

[
fs(xs)− fs(x)− f̂s(xs) + f̂s(x)

]
︸ ︷︷ ︸

T2

+
T∑
s=1

[
f̂s(xs)− f̂s(x)

]
︸ ︷︷ ︸

T3

.

We use the same arguments as in Case 1 to bound T1, T2 as

T1 = O

(
dB
√
T log 1/δ +

d log dT

η1

)
, T2 =

2

η1
.

Since the restart condition triggered in round T , T3 is bounded by − β
η1
. Combining all these

bounds, we get the following bound on regret

RegT ≤ O
(
dB
√
T log 1/δ +

d log dT

η1

)
+

2

η1
− β

η1
.

For our choice of hyper-parameters, the above bound is less than 0.
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Appendix E. Proof of Theorem 7

The proof of this Theorem uses similar arguments as the proof of “known Hessian” case
in Appendix D. The additional complexity in proving Theorem 7 comes from dealing with
Hessian estimates instead of exact Hessians used in Appendix D. In particular, in Theorem 7,
we need to prove one additional result regarding the concentration of cumulative Hessian
estimates.

We first introduce some notation we use in the proof. We let rt(x) = ft(x)−qt(x), where
qt(x) = 1

2x
TAtx + 〈bt,x〉+ ct. Recall, supx∈X |rt(x)| ≤ ε. We let Ht = 1

2(At + ATt ) denote
the Hessian of qt(x). Define random variable Zt as

Zt = 2−1λ−2d2ft(yt)
(
v1,tv

T
2,t + v2,tv

T
1,t

)
.

Since ft is bounded, it is easy to see that Zt is a bounded random variable (assuming Mt is
positive definite and yt ∈ X ). In particular, Zt can be bounded as

‖Zt‖2 ≤ λ−2d2(B + ε). (7)

Another important thing to note here is that

Et
[
2−1λ−2d2qt(yt)

(
v1,tv

T
2,t + v2,tv

T
1,t

)]
= M

−1/2
t HtM

−1/2
t .

Consequently, ‖Zt −M−1/2
t HtM

−1/2
t ‖2 ≤ 2λ−2d2(B + ε).

Similar to Appendix D, to prove Theorem 7, we work with a slightly modified algorithm
and show that with high probability, the iterates of the modified algorithm are exactly same
as the original algorithm. Consequently, proving the Theorem for the modified algorithm
entails that the Theorem also holds for the actual algorithm. In the modified algorithm, we
slightly change the random variables ĝt, Ĥt and work with the following sequence of random
variables

ĝt = λ−1dιtft(yt)M
1/2
t v1,t, Ĥt =

λ−2

2
d2ιtft(yt)M

1/2
t

(
v1,tv

T
2,t + v2,tv

T
1,t

)
M

1/2
t .

where ιt is an indicator random variable which is equal to 1 if and only if the following two
events happen

‖I − M̃−1/2
t MtM̃

−1/2
t ‖2 ≤

1

10(1 + 8dα)2
,

sup
x∈Ft

∣∣∣ t−1∑
s=1

(f̂s(x)− f̂s(xs)− ιsqs(x) + ιsqs(xs))
∣∣∣ ≤ 1

η1
.

Here, we define M̃t as M̃t = ∇2R(xt) +
∑t−1

s=0 ηsιsHs. Intuitively, the first event happens
when Mt is spectrally close to M̃t, and the second event happens when the cumulative
loss estimate

∑t−1
s=1 f̂s(x) is close to the true cumulative loss

∑t−1
s=1 qs(x). We assume the

algorithm is run with these modified estimates of gradients and Hessians2. The main benefit

2. It should be noted that this is a hypothetical algorithm. We can not actually run this algorithm in
practice as we can not compute ιt
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of working with the modified gradient and Hessian estimates is that they are bounded and
are more amenable to analysis. Our proof shows that with high probability, the modified
random variables ĝt, Ĥt are exactly equal to the original random variables. As a result, it
suffices to prove Theorem 7 for the hypothetical algorithm.

We now derive some useful properties of the iterates produced by the modified algorithm.

Lemma 21 (Properties of iterates) Consider the setting of Theorem 7. Let T be the
minimum between T and the first iteration at which the modified algorithm restarts. For
any t < T such that ηt ≤ 10η1, the iterates of the algorithm satisfy the following stability
properties

1. Mt is positive definite and yt ∈ X .

2. Rt(x) is a strictly convex function over Ft.

3. For all x ∈ Ft, ‖x− xt‖Mt ≤ 4dα and ∇2R(x) � 1
(1+8dα)2∇2R(xt).

4. ‖xt+1−xt‖M̃t
≤ cηt and ‖I−M̃−1/2

t M̃t+1M̃
−1/2
t ‖2 ≤ 4cηt. Here c = 10(B + ε)(λ−1d+ λ−2d3α).

5. if ιt = 0, then ιt = ιt+1 = · · · = ιT , xt = xt+1 · · · = xT and Ft = Ft+1 · · · = FT .

Proof The proof uses similar arguments as in the proof of Lemma 17. So to avoid redun-
dancy, we often directly rely on some of the results proved in Lemma 17. We use induction
to prove the lemma.

Base Case (t=1).

1. First note that M̃1 = M1 = ∇2R(x1). So the proof follows from the proof of correspond-
ing part in Lemma 17.

2. The proof of this part follows from the proof of corresponding part in Lemma 17.

3. The proof of this part follows from the proof of corresponding part in Lemma 17.

4. We now show that x2 and x1 are close to each other. Note that x2 is the minimizer of
the following objective

x2 ∈ argmin
x∈F1

η1 〈ĝ1,x〉+ ΦR2(x,x1). (8)

From first order optimality conditions we have

∀x ∈ F1, 〈∇R2(x2)−∇R2(x1) + η1ĝ1,x− x2〉 ≥ 0.

Substituting x1 in the above equation gives us

〈∇R2(x2)−∇R2(x1) + η1ĝ1,x1 − x2〉 ≥ 0.

This can equivalently be written as〈
∇R(x2)−∇R(x1) + η1ĝ1 + η1Ĥ1(x2 − x1),x2 − x1

〉
≤ 0. (9)
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Now suppose ‖x2 − x1‖M1 > cη1, where c = 10(B + ε)(λ−1d+ λ−2d3α). Then we have〈
∇R(x2)−∇R(x1) + η1ĝ1 + η1Ĥ1(x2 − x1),x2 − x1

〉
(a)

≥
‖x2 − x1‖2M1

1 + ‖x2 − x1‖M1

+
〈
η1ĝ1 + η1Ĥ1(x2 − x1),x2 − x1

〉
≥

‖x2 − x1‖2M1

1 + ‖x2 − x1‖M1

− η1

(
‖ĝ1‖∗M1

+ ‖Ĥ1(x2 − x1)‖∗M1

)
‖x2 − x1‖M1

= ‖x2 − x1‖M1

(
‖x2 − x1‖M1

1 + ‖x2 − x1‖M1

− η1‖ĝ1‖∗M1
− η1‖Ĥ1(x2 − x1)‖∗M1

)
,

where (a) follows from property P7 of SCBs stated in Appendix G. Next, consider the
following

(‖ĝ1‖∗M1
)2 = ĝT1 M

−1
1 ĝ1 = λ−2d2f2

1 (y1)vT1,1v1,1 ≤ λ−2d2(B + ε)2.

(‖Ĥ1(x2 − x1)‖∗M1
)2 = (x2 − x1)T Ĥ1M

−1
1 Ĥ1(x2 − x1)T

≤
(
d2f1(y1)

2λ2

)2

‖x2 − x1‖2M1
‖v1,1v

T
2,1 + v2,1v

T
1,1‖22

(a)

≤ 16λ−4d6(B + ε)2α2,

where (a) follows from the fact that ‖x2−x1‖M1 ≤ 4dα proved in point (3). Substituting
this in the previous inequality and using the fact that ‖x2 − x1‖M1 > cη1 gives us〈

∇R(x2)−∇R(x1) + η1ĝ1 + η1Ĥ1(x2 − x1),x2 − x1

〉
≥ c

2
η1‖x2 − x1‖M1

(
2

1 + cη1
− 1

)
(a)
> 0,

where (a) follows from the fact that cη1 < 1/2. This contradicts the first order optimality
condition in Equation (9). This shows that ‖x2 − x1‖M1 ≤ cη1.

Next, we show that M̃−1/2
1 M̃2M̃

−1/2
1 is close to identity. From the definitions of M̃1, M̃2,

we have

M̃
−1/2
1 M̃2M̃

−1/2
1 − I = M̃

−1/2
1 (∇2R(x2)−∇2R(x1))M̃

−1/2
1 + η1M̃

−1/2
1 H1M̃

−1/2
1 .

Since ‖x2 − x1‖M̃1
≤ cη1 < 1, we can rely on property P2 of SCB stated in Section 2 to

infer that
∇2R(x2) � 1

(1− cη1)2
∇2R(x1) � (1 + 3cη1)∇2R(x1),

where the last inequality follows since cη1 < 1/10. Next, note that H1 can be written as

H1 = E
[
λ−2

2
d2f1(y1)M̃

1/2
1

(
v1,1v

T
2,1 + v2,1v

T
1,1

)
M̃

1/2
1

]
.

40



Efficient Bandit Convex Optimization

So we have M̃−1/2
1 H1M̃

−1/2
1 = E

[
λ−2

2 d2f1(y1)
(
v1,1v

T
2,1 + v2,1v

T
1,1

)]
which is a bounded

quantity. Substituting the previous two bounds in our expression for M̃−1/2
1 M̃2M̃

−1/2
1 −I,

we get

‖M̃−1/2
1 M̃2M̃

−1/2
1 − I‖2 ≤ 4cη1.

5. Since M1 = M̃1, ι1 is always equal to 1. So the last property trivially holds. This finishes
the proof of the base case.

Induction Step. Suppose the Lemma holds for the first t − 1 iterations. We now show
that it also holds for the tth iteration.

1. Invertibility. We first show that Mt is positive definite. If ιt−1 = 0, then it is easy to
see that Mt is equal to Mt−1, which we know is positive definite. So lets consider the
where ιt−1 = 1. We know that ι1 = ι2 = · · · = ιt−1 and ‖xt − xt−1‖M̃t−1

≤ cηt−1. Now,
consider the following

Mt = ∇2R(xt) +
t−1∑
s=1

ηsĤs

= Mt−1 + ηt−1Ĥt−1 +∇2R(xt)−∇2R(xt−1)

(a)

� Mt−1 + ηt−1Ĥt−1 − 2‖xt − xt−1‖∇2R(xt−1)∇2R(xt−1),

where (a) follows from the property of self-concordant functions stated in Equation (1).
From stability, we have

Mt �Mt−1 + ηt−1Ĥt−1 − 2cηt−1∇2R(xt−1)

= M
1/2
t−1

[
I + ηt−1Zt−1 − 2cηt−1M

−1/2
t−1 ∇

2R(xt−1)M
−1/2
t−1

]
M

1/2
t−1.

We now show that
[
I + ηt−1Zt−1 − 2cηt−1M

−1/2
t−1 ∇2R(xt−1)M

−1/2
t−1

]
� 0. To show this,

we rely on the following argument

‖Zt−1 − 2cM
−1/2
t−1 ∇

2R(xt−1)M
−1/2
t−1 ‖2

≤ ‖Zt−1‖2 + 2c‖M−1/2
t−1 M̃t−1M

−1/2
t−1 ‖2‖M̃

−1/2
t−1 ∇

2R(xt−1)M̃
−1/2
t−1 ‖2

≤ λ−2d2(B + ε) + 3c ≤ 4c,

where the last inequality follows from the fact that Zt is a bounded random variable, and
‖I − M̃−1/2

t−1 Mt−1M̃
−1/2
t−1 ‖2 ≤ 1

10 (consequently, ‖M−1/2
t−1 M̃t−1M

−1/2
t−1 ‖2 ≤ 3

2). This shows
that for our choice of hyper-parameters, Mt is invertible.

Valid Iterates. Next, we show that yt ∈ X . If ιt−1 = 0, then it is easy to see that this
is the case (because Mt = Mt−1). So we assume ιt−1 = 1. In this case, we first bound
‖I−M̃−1/2

t MtM̃
−1/2
t ‖2 (i.e., we show thatMt and M̃t are spectrally close). Consider the
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following

‖I − M̃−1/2
t MtM̃

−1/2
t ‖2 = ‖M̃−1/2

t (M̃t−1 −Mt−1 + ηt−1(Ĥt−1 −Ht−1))M̃
−1/2
t ‖2 (10)

≤ ‖M̃−1/2
t (M̃t−1 −Mt−1)M̃

−1/2
t ‖2 (11)

+ ηt−1‖M̃−1/2
t (Ĥt−1 −Ht−1)M̃

−1/2
t ‖2 (12)

Consider the first term in the RHS above

‖M̃−1/2
t (M̃t−1 −Mt−1)M̃

−1/2
t ‖2 ≤ ‖M̃−1/2

t−1 (M̃t−1 −Mt−1)M̃
−1/2
t−1 ‖‖M̃

−1/2
t M̃t−1M̃

−1/2
t ‖

≤ 1

5(1 + 8dα)2
,

where the last inequality follows from the fact that ‖I−M̃−1/2
t−1 Mt−1M̃

−1/2
t−1 ‖2 ≤ 1

10(1+8dα)2

and the fact that M̃t−1 is spectrally close to M̃t. Now consider the second term in the
RHS of Equation (10). Since Ĥt−1 = M

1/2
t−1Zt−1M

1/2
t−1, we have

‖M̃−1/2
t (Ĥt−1 −Ht−1)M̃

−1/2
t ‖2

= ‖M̃−1/2
t M

1/2
t−1(Zt−1 −M−1/2

t−1 Ht−1M
−1/2
t−1 )M

1/2
t−1M̃

−1/2
t ‖2

≤ ‖M̃−1/2
t−1 M

1/2
t−1(Zt−1 −M−1/2

t−1 Ht−1M
−1/2
t−1 )M

1/2
t−1M̃

−1/2
t−1 ‖2

(a)

≤ 2‖Zt−1 −M−1/2
t−1 Ht−1M

−1/2
t−1 ‖2

(b)

≤ 2 (B + ε) d2λ−2.

where (a) follows from the fact that ‖I−M̃−1/2
t−1 Mt−1M̃

−1/2
t−1 ‖2 ≤ 1

10(1+8dα)2 and (b) follows
from Equation (7). Combining the previous two displays shows that for our choice of η1,
‖I − M̃−1/2

t MtM̃
−1/2
t ‖2 ≤ 1

4(1+8dα)2 . This shows that Mt is spectrally close to M̃t and

‖yt − xt‖M̃t
≤ 2‖yt − xt‖Mt ≤ 4λ < 1.

Since ‖yt − xt‖M̃t
≥ ‖yt − xt‖∇2R(xt), using the Dikin Ellipsoid property of SCB stated

in Section 2, we have yt ∈ X .

2. The focus region update condition of our algorithm always ensures that

Vol(Ft ∩Bα,Mt(xt)) ≥
1

2
Vol(Ft).

So, from Lemma 13 we know that for any x ∈ Ft, ‖x−xt‖Mt ≤ 4dα. Using this, together
with the fact that ‖I − M̃−1/2

t MtM̃
−1/2
t ‖2 ≤ 1

4(1+8dα)2 , we get ‖x − xt‖M̃t
≤ 8dα. By

relying on Assumption 3 on SCB R, we then get

∀x ∈ Ft, ∇2R(x) � 1

(1 + 8dα)2
∇2R(xt).
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3. We now show that Rt(x) is strictly convex over interior of Ft. Consider the following for
any x ∈ int(Ft)

∇2R(x) + η1:t−1Ĥ1:t−1

(a)

� 1

(1 + 8dα)2
∇2R(xt) + η1:t−1Ĥ1:t−1

� 1

(1 + 8dα)2
∇2R(xt) + η1:t−1H1:t−1 + (Mt − M̃t)

(b)

� 1

(1 + 8dα)2
M̃t −

1

4(1 + 8dα)2
M̃t

� 0,

where (a) follows from the previous property and (b) follows from the fact that ‖I −
M̃
−1/2
t MtM̃

−1/2
t ‖2 ≤ 1

4(1+8dα)2 . This shows that Rt is strictly convex over Ft.

4. We now prove stability of the iterates. In particular, we show that ‖xt+1 − xt‖M̃t
≤ cηt.

If ιt−1 = 0, then this trivially holds. So lets consider the case where ιt−1 = 1. From the
first order optimality conditions, we have

∀x ∈ Ft, 〈∇Rt+1(xt+1)−∇Rt+1(xt) + ηtĝt,x− xt+1〉 ≥ 0.

Note that from our definition of Ft, Ft−1 we always have Ft ⊆ Ft−1 and xt ∈ Ft. So
substituting xt in the first equation gives us〈

∇R(xt+1)−∇R(xt) + ηtĝt +
t∑

s=1

ηsĤs(xt+1 − xt),xt − xt+1

〉
≥ 0.

To prove the required result, we show that for any x such that ‖x − xt‖M̃t
> cηt, the

following holds 〈
∇R(x)−∇R(xt) + η1:t−1Ĥ1:t−1(x− xt),x− xt

〉
> ηt‖ĝt‖∗M̃t

‖x− xt‖M̃t
+ ηt‖Ĥt(x− xt)‖∗M̃t

‖x− xt‖M̃t
.

This would then imply that the above optimality condition doesn’t hold. We first lower
bound the LHS of the above equation. Consider the following for any x ∈ Ft such that
‖x− xt‖M̃t

> cηt〈
∇R(x)−∇R(xt) + η1:t−1Ĥ1:t−1(x− xt),x− xt

〉
=

∫ 1

s=0
(x− xt)

T
[
∇2R(xt + s(x− xt)) + η1:t−1Ĥ1:t−1

]
(x− xt)ds

(a)

≥
∫ cηt
‖x−xt‖M̃t

s=0
(x− xt)

T
[
∇2R(xt + s(x− xt)) + η1:t−1Ĥ1:t−1

]
(x− xt)ds

(b)

≥ cηt
‖x− xt‖M̃t

(x− xt)
T
[
(1− cηt)2∇2R(xt) + η1:t−1Ĥ1:t−1

]
(x− xt),
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where (a) uses the fact that ∇2R(x) + η1:t−1Ĥ1:t−1 is a PSD matrix for any x ∈ Ft and
(b) relies on property P1 of SCB stated in Equation (1). We further lower bound the
RHS of the above equation as follows

(1− cηt)2∇2R(xt) + η1:t−1Ĥ1:t−1

= (1− cηt)2∇2R(xt) + η1:t−1H1:t−1 +Mt − M̃t

� (1− cηt)2M̃t − M̃1/2
t

[
I − M̃−1/2

t MtM̃
−1/2
t

]
M̃

1/2
t

= M̃
1/2
t

[
(1− cηt)2I −

(
I − M̃−1/2

t MtM̃
−1/2
t

)]
M̃

1/2
t .

Substituting this in the previous equation gives us〈
∇R(x)−∇R(xt) + η1:t−1Ĥ1:t−1(x− xt),x− xt

〉
≥ cηt‖x− xt‖M̃t

λmin

(
(1− cηt)2I −

(
I − M̃−1/2

t MtM̃
−1/2
t

))
>
cηt
2
‖x− xt‖M̃t

,

where the last inequality follows from the fact that ‖(I − M̃−1/2
t MtM̃

−1/2
t ‖2 ≤ 1

4(1+8dα)2 ,

and our choice of hyper-parameters. Next, consider the following

(‖ĝt‖∗M̃t
)2 = ĝTt M̃

−1
t ĝt

= λ−2d2f2
t (yt)v

T
1,tM

1/2
t M̃−1

t M
1/2
t v1,t

≤ 2λ−2d2(B + ε)2.

(‖Ĥt(x− xt)‖∗M̃t
)2 = (x− xt)

T ĤtM̃
−1
t Ĥt(x− xt)

T

≤
(
d2ft(yt)

λ2

)2

‖x− xt‖2Mt
‖M1/2

t M̃−1
t M

1/2
t ‖2

(a)

≤ 32λ−4d6(B + ε)2α2,

where (a) follows from the fact that for any x ∈ Ft, ‖x− xt‖Mt ≤ 4dα. This shows that

ηt‖ĝt‖∗M̃t
+ ηt‖Ĥt(x− xt)‖∗M̃t

≤ cηt
2

This shows that xt+1 should satisfy ‖xt+1 − xt‖M̃t
≤ cηt.

To shows that M̃t and M̃t+1 are spectrally close to each other, we rely on the closeness
of xt+1 and xt and use the same arguments as in the base case.

5. The last property that remains to be shown is that if ιt = 0, then ιt = ιt+1 = · · · = ιT ,
xt = xt+1 · · · = xT and Ft = Ft+1 · · · = FT . We assume ιt−1 = 1, since otherwise the
property is trivially true. In this case, we know that Rt(x) is strictly convex over Ft and
so the Newton update in line 19 of Algorithm 1 has a unique minimizer.

When ιt = 0, we have ĝt = 0, Ĥt = 0. So the OMD update in line 19 of Algorithm 1 is
given by xt+1 = argminx∈Ft ΦRt+1(x,xt). Since Rt+1(x) = Rt(x) and xt ∈ Ft, it is easy
to see that xt+1 = xt. So the algorithm wouldn’t make any progress in further rounds.
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This finishes the proof of the lemma.

We now show that the focus region doesn’t get updated more than 12d log T times.

Lemma 22 (Focus region updates) Consider the setting of Theorem 7. Let T be the
minimum between T and the first time at which the modified algorithm restarts. Then the
focus region gets updated no more than 12d log T times before T .

Proof The proof uses similar arguments as in Lemma 18. We prove the Lemma using
contradiction. Assume that the focus region gets updated more than 12d log T times before
the algorithm restarts. Let τ < T be the iteration where the focus region update happens for
12d log T th time. We now show that the restart condition should have triggered in iteration
τ .

We have the following upper bound on the volume of Fτ+1 :

Vol(Fτ+1) ≤ Vol(Fτ ) ≤ 1

T 6d
Vol(Xξ).

This follows from the fact that the volume of the focus region reduces by a factor of 1/2
whenever the focus region update condition triggers. In the rest of the proof, we show that
if the volume of focus region is less than 1

T 6dVol(Xξ), then the restart condition should have
triggered.

Step 1. First of all, for our choice of γ, we have (1 + γ)12d log T ≤ 10. Consequently,
ητ ≤ 10η1. So the properties of the iterates we proved in Lemma 21 apply to our setting
here. From this Lemma, we can infer that ιτ = 1. Otherwise, we know that the focus region
shouldn’t have changed in the τ th iteration (recall, in Lemma 21 we showed that if ιτ = 0,
then Fτ = Fτ+1). Moreoever, from this Lemma we can infer that ∀t ≤ τ, ιt = 1. So the
cumulative loss estimate is close to the true cumulative loss and satisfies

sup
x∈Fτ

∣∣∣ τ−1∑
s=1

(f̂s(x)− f̂s(xs)− qs(x) + qs(xs))
∣∣∣ ≤ 1

η1
.

Step 2. Let uτ+1 be the minimizer of
∑τ

s=1 f̂s(x) over Fτ . Suppose B
(
uτ+1,

1
T 2

)
∩Xξ ⊂ Fτ .

Then
Vol(Fτ ) ≥ Vol

(
B

(
uτ+1,

1

T 2

)
∩ Xξ

)
.

Next, from our assumption that X contains a euclidean ball of radius 1, we can infer that
Xξ = ξx1 +(1−ξ)X contains a ball of radius (1−ξ) in it. Let B̃ be the ball of radius (1−ξ)
that lies in Xξ. By convexity of X and the fact that the diameter of X is less than or equal
to T , we have (

1− 1

T 3

)
uτ+1 +

1

T 3
B̃ ⊆ B

(
uτ+1,

1

T 2

)
∩ Xξ.

This shows that Vol(Fτ ) ≥ T−4dωd, where ωd is the volume of unit sphere in Rd. Combining
this with the previous upper bound on Vol(Fτ ), we get

T−4dωd,≤ Vol(Fτ ) ≤ T−6dVol(X )
(a)

≤ T−5dωd,

where (a) follows from the fact that the diameter of X is upper bounded by T . We arrived
at a contradiction. This shows that B

(
uτ+1,

1
T 2

)
∩ Xξ 6⊂ Fτ .
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Step 3. Since B
(
uτ+1,

1
T 2

)
∩ Xξ 6⊂ Fτ , the following holds: ∃x ∈ ∂Fτ ∩ int(Xξ) such that

‖x− uτ+1‖2 ≤ 1
T 2 . Now, consider the following for such an x

τ∑
s=1

f̂s(x)− f̂s(uτ+1) =

τ∑
s=1

qs(x)− qs(uτ+1)

+
τ∑
s=1

f̂s(x)− f̂s(uτ+1)− qs(x) + qs(uτ+1).

Since each qs is T -Lipschitz, the first term in the RHS above is upper bounded by 1. Since
the cumulative loss estimate is close to the true cumulative loss, the second term can be
bounded as

τ∑
s=1

f̂s(x)− f̂s(uτ+1)− qs(x) + qs(uτ+1) ≤ 2

η1
+ f̂τ (x)− f̂τ (uτ+1)− qτ (x) + qτ (uτ+1)

(a)

≤ 2

η1
+ 2B + f̂τ (x)− f̂τ (uτ+1),

where (a) follows from the fact that qs is a bounded function. f̂τ (x) − f̂τ (uτ+1) can be
bounded as follows

f̂τ (x)− f̂τ (uτ+1) =
1

2
(x− xτ )T Ĥτ (x− xτ ) + 〈ĝτ ,x− xτ 〉

− 1

2
(uτ+1 − xτ )T Ĥτ (uτ+1 − xτ )− 〈ĝτ ,uτ+1 − xτ 〉

≤ 1

2
λ−2d2(B + ε)(‖x− xτ‖2Mτ

+ ‖uτ+1 − xτ‖2Mτ
)

+ λ−1d(B + ε)(‖x− xτ‖Mτ + ‖uτ+1 − xτ‖Mτ ).

From Lemma 21, we know that for any x ∈ Fτ , ‖x−xτ‖Mτ ≤ 4dα. Substituting this in the
previous equation we get

f̂τ (x)− f̂τ (uτ+1) ≤ 16(B + ε)
(
λ−2d4α2 + λ−1d2α

)
≤ 1

η1
.
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This shows that
∑τ

s=1 f̂s(x) − f̂s(uτ+1) ≤ 4
η1
. We now show that this implies the restart

condition should have triggered. Consider the following
τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) =
τ∑
s=1

f̂s(xs)−
τ∑
s=1

f̂s(uτ+1)

≤ 4

η1
+

τ∑
s=1

f̂s(xs)− f̂s(x)

=
4

η1
+

τ∑
s=1

〈ĝs,xs − x〉 − 1

2
(x− xs)

T Ĥs(x− xs)

=
4

η1
+

τ∑
s=1

〈ĝs,xs − xs+1〉+ 〈ĝs,xs+1 − x〉

− 1

2
(x− xs)

T Ĥs(x− xs)

(a)

≤ 4

η1
+ 10λ−3αd4(B + ε)2

τ∑
s=1

ηs +
τ∑
s=1

〈ĝs,xs+1 − x〉

−
τ∑
s=1

1

2
(x− xs)

T Ĥs(x− xs),

where (a) follows from the stability of the iterates we proved in Lemma 21. Since xs+1 is
the minimizer of miny∈Fs ηs 〈ĝs,y〉+ΦRs+1(y,xs), we have the following from the first order
optimality conditions

〈ĝs,xs+1 − x〉 ≤
ΦRs+1(x,xs)− ΦRs+1(x,xs+1)− ΦRs+1(xs+1,xs)

ηs
.

Using this in the previous display, we get
τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1
+ 10λ−3αd4(B + ε)2

τ∑
s=1

ηs +
τ∑
s=1

ΦRs+1(x,xs)− ΦRs+1(x,xs+1)

ηs

−
τ∑
s=1

1

2
(x− xs)

T Ĥs(x− xs).

Rearranging the terms in the RHS above, we get
τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1
+ 10λ−3αd4(B + ε)2

τ∑
s=1

ηs +
ΦR(x,x1)

η1
−

ΦRτ+1(x,xτ+1)

ητ

+

τ∑
s=2

(
1

ηs
− 1

ηs−1

)
ΦRs(x,xs).

Recall, x ∈ ∂Fτ ∩ int(Xξ). Let τ ′ be such that x ∈ ∂Bα,Mτ ′ (xτ ′). Then

τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1
+ 10λ−3αd4(B + ε)2

τ∑
s=1

ηs +
ΦR(x,x1)

η1
− γ

ΦRτ ′ (x,xτ ′)

ητ ′
.
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Since Mτ ′ , M̃τ ′ are spectrally close to each other and since ‖x − xτ ′‖Mτ ′ = α, we have
‖x− xτ ′‖M̃τ ′

≥ α/2. Using this, we now lower bound ΦRτ ′ (x,xτ ′)

ΦRτ ′ (x,xτ ′) = ΦR(x,xτ ′) +
1

2
(x− xτ ′)

T

(
τ ′−1∑
s=1

ηsHs

)
(x− xτ ′)

+
1

2
(x− xτ ′)

T
(
Mτ ′ − M̃τ ′

)
(x− xτ ′)

(a)

≥ α

2
− log

(
1 +

α

2

)
+

1

2
(x− xτ ′)

T
(
Mτ ′ − M̃τ ′

)
(x− xτ ′)

(b)

≥ α

2
− log

(
1 +

α

2

)
− α

20(1 + 8dα)2
,

where (a) follows from property (P6) of SCB stated in Equation (22) and (b) follows from the
fact that Mτ ′ , M̃τ ′ are spectrally close to each other. For our choice of α, ΦRτ ′ (x,xτ ′) can
be lower bounded by α/4. We now upper bound ΦR(x,x1). Since x ∈ Xξ, using property
P8 of SCB stated in Appendix G, we can upper bound ΦR(x,x1) as

ΦR(x,x1) = R(x) ≤ 4ν log T.

Substituting the above two bounds in the previous display and using the fact that ητ ≤ 10η1,
we get

τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1
+ 100λ−3αd4(B + ε)2η1T +

4ν log T

η1
− αγ

20η1
≤ − β

η1
.

This implies, the restart condition should have triggered. This shows that the focus region
doesn’t get updated more than 12d log T times.

E.1. Proof of Proposition 8

In this section, we first show that the cumulative Hessian estimates and cumulative loss
function estimates generated by the modified algorithm concentrate well around their ex-
pected values. In particular, Lemma 23 is concerned about concentration of the Hessian
estimates {Ĥt}Tt=1, and Lemma 25 is concerned about loss estimates {f̂t}Tt=1 of the modifed
algorithm. These two Lemmas immediately imply that ιt = 1 for any t ≤ T w.h.p, where
T is the minimum between T and the first time at which the modified algorithm restarts.
Consequently, with high probability, the iterates of the modified and the original algorithms
are exactly the same. These two Lemmas together prove Proposition 8.

Before we proceed, note that the focus region gets updated at most 12d log T times before
the algorithm restarts. So, for our choice of γ, we have (1 + γ)12d log T ≤ 10. Consequently,
for all t ≤ T , ηt ≤ 10η1. So the results of Lemma 21 apply to all the iterates in the first T
iterations of the modified algorithm.
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Lemma 23 (Concentration of Hessian estimates) Let T be the minimum between T
and the first time at which the modified algorithm restarts. Then for any t ≤ T , the following
statement holds with probability at least 1− T−2

‖I − M̃−1/2
t MtM̃

−1/2
t ‖2 = O

(
α2η1λ

−2d5B
√
T log(dT )

)
.

Proof We first try to derive upper and lower bounds for M̃t. From Lemma 21, we know
that for all s ≤ T , and for all x ∈ Fs, ‖x − xs‖M̃s

≤ 8dα. So, from Assumption 3 we have
M̃t � 1

(1+8dα)2 M̃s for all s ≤ t. This implies

M̃t �
1

(1 + 8dα)2
M̃1 =

1

(1 + 8dα)2
∇2R(x1).

Moreover, from Lemma 19 we have M̃t � T 8(ν + 2
√
ν)2(∇2R(x1) + I). Since ∇2R(x1) is

a fixed quantity, for large enough T we have 1
poly(T )I � ∇

2R(x1) � poly(T )I. This then
shows that there exist positive constants cl, cu such that T−clI � M̃t � T cuI for any t ≤ T .

Next consider the following

I − M̃−1/2
t MtM̃

−1/2
t =

t−1∑
s=1

ηsM̃
−1/2
t

(
ιsHs − Ĥs

)
M̃
−1/2
t .

So we have

‖I − M̃−1/2
t MtM̃

−1/2
t ‖2

≤ sup
T−clI�A�T cuI

ῑA

∣∣∣∣∣∣ t−1∑
s=1

ηsA
−1/2

(
Ĥs − ιsHs

)
A−1/2I

(
A � 1

(1 + 8dα)2
M̃s

) ∣∣∣∣∣∣
2
,

where ῑA is an indicator random variable which is equal to 1 if and only if

∀s ≤ T , A � 1

(1 + 8dα)2
M̃s.

We now focus on bounding the RHS of the above equation. We write Ĥt as

Ĥt = Ĥt,1 + Ĥt,2 =
λ−2

2
d2ιt(rt(yt)︸ ︷︷ ︸

Ĥt,1

+ qt(yt)︸ ︷︷ ︸
Ĥt,2

)M
1/2
t

(
v1,tv

T
2,t + v2,tv

T
1,t

)
M

1/2
t

Now consider the RHS in the second-to-last display

ῑA

∣∣∣∣∣∣ t−1∑
s=1

ηsA
−1/2

(
Ĥs,1 + Ĥs,2 − ιsHs

)
A−1/2I

(
A � 1

(1 + 8dα)2
M̃s

) ∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣ t−1∑
s=1

ηsA
−1/2Ĥs,1A

−1/2I
(
A � 1

(1 + 8dα)2
M̃s

) ∣∣∣∣∣∣
2

+ ῑA

∣∣∣∣∣∣ t−1∑
s=1

ηsA
−1/2

(
Ĥs,2 − ιsHs

)
A−1/2I

(
A � 1

(1 + 8dα)2
M̃s

) ∣∣∣∣∣∣
2
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First consider the first term in the RHS above. We have∣∣∣∣∣∣ t−1∑
s=1

ηsA
−1/2Ĥs,1A

−1/2I
(
A � 1

(1 + 8dα)2
M̃s

) ∣∣∣∣∣∣
2

≤
t−1∑
s=1

∣∣∣∣∣∣ηsA−1/2Ĥs,1A
−1/2I

(
A � 1

(1 + 8dα)2
M̃s

) ∣∣∣∣∣∣
2

If ιs = 0, then the sth term in the RHs above is 0. On the other hand if ιs = 1, then we
know that Ms, M̃s are spectrally close to each other. In this case, the sth term above is
upper bounded by 20ελ−2η1d

2(1 + 8dα)2. This follows from the fact that rt(yt) is bounded
by ε and A � 1

(1+8dα)2 M̃s. So the RHS above is upper bounded by 20ελ−2η1d
2(1 + 8dα)2T .

Now consider the second term

ῑA

∣∣∣∣∣∣ t−1∑
s=1

ηsA
−1/2

(
Ĥs,2 − ιsHs

)
A−1/2I

(
A � 1

(1 + 8dα)2
M̃s

) ∣∣∣∣∣∣
2

= ῑA

∣∣∣∣∣∣ t−1∑
s=1

ηsA
−1/2

(
Ĥs,2 − ιsHs

)
A−1/2φ

(
(1 + 8dα)2λmin(M̃−1/2

s AM̃−1/2
s )

) ∣∣∣∣∣∣
2
,

where φ : R+ → R+ is defined as

φ(x) =


1 if x ≥ 1

2x− 1 if 1 > x > 1/2

0 if 1
2 ≥ x ≥ 0

.

Continuing, we get

ῑA

∣∣∣∣∣∣ t−1∑
s=1

ηsA
−1/2

(
Ĥs,2 − ιsHs

)
A−1/2I

(
A � 1

(1 + 8dα)2
M̃s

) ∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣ t−1∑
s=1

ηsA
−1/2

(
Ĥs,2 − ιsHs

)
A−1/2φ

(
(1 + 8dα)2λmin(M̃−1/2

s AM̃−1/2
s )

) ∣∣∣∣∣∣
2
.

So we have

‖I − M̃−1/2
t MtM̃

−1/2
t ‖2 (13)

≤ sup
T−clI�A�T cuI

∣∣∣∣∣∣ t−1∑
s=1

ηsA
−1/2

(
Ĥs,2 − ιsHs

)
A−1/2φ

(
(1 + 8dα)2λmin(M̃−1/2

s AM̃−1/2
s )

) ∣∣∣∣∣∣
2

(14)

+ 20ελ−2η1d
2(1 + 8dα)2T. (15)

We now bound the first term in the RHS above using standard concentration results for
matrix-valued martingales (see Lemma 16). Define random variable ZA,s as follows

ZA,s =

{
ηsA

−1/2
(
Ĥs,2 − ιsHs

)
A−1/2φ

(
(1 + 8dα)2λmin(M̃

−1/2
s AM̃

−1/2
s )

)
, if s ≤ T ,

0 if T < s ≤ T
.
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Note that {ZA,s}Ts=1 is a matrix-valued martingale difference sequence and satisfies Et [ZA,t] =
0.Moreover, ZA,s is a bounded random variable which satisfies ‖ZA,s‖2 = O

(
η1λ
−2d2(1 + 8αd)2B

)
.

This is easy to see when ιs = 0. When ιs = 1, it follows from the facts that Ms, M̃s are
spectrally close to each other and A � 1

(1+8dα)2 M̃s and qs(x) is bounded by B. By relying
on standard concentration results for matrix martingale sequences, we get with probability
at least 1− δ

∀t ≤ T, ‖
t∑

s=1

ZA,s‖2 ≤ O
(
α2η1λ

−2d4B
√
T log(2T/δ)

)
. (16)

We now do a union bound over all A such that T−clI � A � T cuI. We first construct an
∆-net so that the following holds: for every A, there exists a A∆ in the ∆-net such that
(1 + (Td)−1)A∆ � A � (1 − (Td)−1)A∆. We can show that the size of such an ∆-net is
Õ
(

(Td)cd
2
)
, for some positive constant c. Moreover, we can show that for every A, there

exists an A∆ in the ∆-net such that

‖
t−1∑
s=1

ZA,s − ZA∆,s‖2 ≤ Õ
(
α2η1λ

−2d4B
√
T
)
.

This follows from the fact that φ is bounded and Lipschitz. Now consider the following

sup
T−clI�A�T cuI

‖
t−1∑
s=0

ZA,s‖2 = sup
A
‖
t−1∑
s=0

ZA∆,s‖2 + sup
A
‖
t−1∑
s=0

ZA∆,s − ZA,s‖2

≤ sup
A∆ in ∆-net

‖
t−1∑
s=0

ZA∆,s‖2 +O
(
α2η1λ

−2Bd4
√
T
)
,

where A∆ is the point in ∆-net which is closest to A. Finally, by relying on the bound
in Equation (16) and performing a union bound over all the elements in the ∆-net gives
us supA ‖

∑t−1
s=0 ZA,s‖2 = Õ

(
α2η1λ

−2d5B
√
T
)
. Plugging this bound in Equation (13) and

using the fact that ε = O
(
dBT−1/2

)
gives us the required result.

Remark 24 (Convexifying the restart condition) We note that a similar argument
as above can be used to show that the following two matrices are spectrally close to each
other

Nt = ∇2R(xt) + η1(dα)2
t−1∑
s=1

Ĥs, Ñt = ∇2R(xt) + η1(dα)2
t−1∑
s=1

Hs.

In particular, we can show that ‖I − Ñ−1/2
t NtÑ

−1/2
t ‖2 ≤ 1

2 . This would entail that Nt is
invertible and positive definite. This in turn implies that the following objective is convex

min
y∈Ft

t∑
s=0

f̂s(y) + (d2α2η1)−1(y − xt)
T∇2R(xt)(y − xt).
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Now consider the restart condition stated in line 16 of Algorithm 1. It involves solving
miny∈Ft

∑t
s=0 f̂s(y). Note that this objective itself may not be convex. However, it is point-

wise close to the above objective, which is convex. To see this, note that in Lemma 21
we showed that ∀x ∈ Ft, ‖x − xt‖M̃t

≤ 8dα. As a result, ∀x ∈ Ft, (d2α2η1)−1(y −
xt)

T∇2R(xt)(y− xt) = O
(
η−1

1

)
. Consequently, the two objectives are O

(
1
η1

)
close to each

other. So, one can efficiently check for an “approximate” restart condition by minimizing
the above convex objective.

Lemma 25 (Concentration of loss estimates) Let T be the minimum between T and
the first time at which the modified algorithm restarts. Then for any t ≤ T , the following
statement holds with probability at least 1− T−2

sup
x∈Ft

∣∣∣ t−1∑
s=1

η1(f̂s(x)− f̂s(xs)− ιsqs(x) + ιsqs(xs))
∣∣∣ ≤ Õ (α2η1λ

−2Bd9/2
√
T
)
.

Proof First note that

f̂s(x)− f̂s(xs) =
1

2
(x− xs)

T Ĥs(x− xs) + 〈ĝs,x− xs〉 .

We split Ĥs, ĝs into two components, one corresponding to rs and the other corresponding
to qs

Ĥt =
λ−2

2
d2ιt(rt(yt)︸ ︷︷ ︸

Ĥt,1

+ qt(yt)︸ ︷︷ ︸
Ĥt,2

)M
1/2
t

(
v1,tv

T
2,t + v2,tv

T
1,t

)
M

1/2
t

ĝt = λ−1dιt(qt(yt)︸ ︷︷ ︸
ĝt,2

+ rt(yt)︸ ︷︷ ︸
ĝt,1

)M
1/2
t v1,t.

Similarly, we define r̂s(x) and q̂s(x) as follows. These are obtained by splitting f̂s(x) into
two components based on rs and qs

r̂s(x)− r̂s(xs) =
1

2
(x− xs)

T Ĥs,1(x− xs) + 〈ĝs,1,x− xs〉

q̂s(x)− q̂s(xs) =
1

2
(x− xs)

T Ĥs,2(x− xs) + 〈ĝs,2,x− xs〉 .

We first upper bound |
∑t−1

s=1 r̂s(x)− r̂s(xs)|. First note that from Lemma 21 we know that
for any x ∈ Ft, ‖x− xt‖Mt ≤ 4dα. Using this, we have the following for any x ∈ Ft.

|
t−1∑
s=1

r̂s(x)− r̂s(xs)| ≤
t−1∑
s=1

|r̂s(x)− r̂s(xs)| (17)

≤ 16εT (λ−2d4α2 + λ−1d2α) (18)

≤ 32α2ελ−2d4T. (19)
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Next, we upper bound |
∑t−1

s=1 q̂s(x)− q̂s(xs)− ιsqs(x) + ιsqs(xs)|. Define random variables
Zx,s as

Zx,s =

{
η1(q̂s(x)− q̂s(xs)− ιsqs(x) + ιsqs(xs)) if s ≤ T
0 otherwise

.

It is easy to see that {Zx,s}Ts=1 is a martingale difference sequence. Moreover, Zx,s is a
bounded random variable which satisfies

|Zx,s| ≤ 32α2η1λ
−2Bd4.

This again follows from the fact that x ∈ Ft, ‖x − xt‖Mt ≤ 4dα which we proved in
Lemma 21. By relying on standard concentration bounds for martingale difference sequences
(see Lemma 15), we get that with probability at least 1− δ,

sup
t≤T
|
t−1∑
s=1

Zx,s| = O
(
λ−2d4α2Bη1

√
T log T/δ

)
.

Next, we bound supx∈Ft supt≤T |
∑t−1

s=1 Zx,s| using ∆-net arguments. Let N∆ be an ∆-
net over Ft which satisfies the following: for every x, there exists a x∆ ∈ N∆ such that
‖x− x∆‖Mt ≤ ∆. Then

sup
x∈Ft

sup
t≤T
|
t−1∑
s=1

Zx,s| ≤ sup
x∈Ft

sup
t≤T
|
t−1∑
s=0

Zx∆,s|︸ ︷︷ ︸
T1

+ sup
x∈Ft

sup
t≤T
|
t−1∑
s=0

Zx∆,s − Zx,s|︸ ︷︷ ︸
T2

. (20)

Using a simple union bound, T1 can be bounded as

T1 ≤ O
(
λ−2d4α2Bη1

√
T log T |N∆|/δ

) (a)

≤ O

(
λ−2d9/2α2Bη1

√
T log

αdT

∆δ

)
,

where the bound holds with probability at least 1 − δ and (a) holds since ∀x ∈ Ft, ‖x −
xt‖Mt ≤ 4dα and as a result |N∆| ≤

(
4dα
∆

)d. T2 can be bounded as follows

sup
x∈Ft

sup
t≤T
|
t−1∑
s=0

Zx∆,s − Zx,s|

(a)

≤ sup
x∈Ft

sup
t≤T
|
t−1∑
s=0

η1 〈ĝs,2 − ιs∇qs(xs),x− x∆〉 |

+ sup
x∈Ft

sup
t≤T

∣∣∣ t−1∑
s=0

η1

〈
Ĥs,2 − ιsHs, (x− xs)(x− xs)

T − (x∆ − xs)(x∆ − xs)
T
〉
F

∣∣∣
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where (a) follows from the definitions of Zx,s and qs(x), q̂s(x) and 〈·, ·〉F is the frobenius
inner product. The first term in the RHS above can be bounded as

sup
x∈Ft

sup
t≤T
|
t−1∑
s=0

η1 〈ĝs,2 − ιs∇qs(xs),x− x∆〉 |

(a)

≤ 2η1λ
−1dB sup

x∈Ft
sup
t≤T

(
t−1∑
s=0

‖x− x∆‖Ms

)
(b)

≤ 2(1 + 8dα)2η1λ
−1dB sup

x∈Ft
sup
t≤T

(
t−1∑
s=0

‖x− x∆‖Mt

)
= O

(
λ−1d3α2Bη1∆T

)
,

where (a) follows from the facts that ‖ĝs,2‖∗Ms
≤ λ−1dB, Es [ĝs,2] = ιs∇qs(xs), and (b)

follows from Lemma 21 where we showed that Ms � (1 + 8dα)2Mt.
Using similar arguments and the fact that ∀x ∈ Ft, ‖x− xt‖Mt ≤ 4dα, the second term

in the RHS of the second-to-last display can be bounded as

sup
x∈Ft

sup
t≤T

∣∣∣ t−1∑
s=0

η1

〈
Ĥs,2 − ιsHs, (x− xs)(x− xs)

T − (x∆ − xs)(x∆ − xs)
T
〉
F

∣∣∣
= O

(
λ−2d5α3Bη1∆T

)
.

Choosing ∆ = 1
α
√
dT
, and plugging the above bounds for T1, T2 in Equation (20) gives

us supx∈Ft supt≤T |
∑t−1

s=1 Zx,s| = Õ
(
α2η1λ

−2Bd9/2
√
T
)
. Finally, combining Equation (17)

and Equation (20), and using the fact that ε = O
(
dBT−1/2

)
gives us the requires result.

Remark 26 For our choice of hyper-parameters, the concentration bounds in Lemmas 23, 25
show that the indicator random variables {ιt}Tt=1 are equal to 1 with high probability. This
entails that the iterates produced by the modified algorithm are exactly equal to the iter-
ates produced by the actual algorithm with high probability. As a result all the properties
we showed for the modified algorithm in Lemmas 21, 22, 23, 25 also hold for the original
algorithm with high probability.

E.2. Main argument for Theorem 7

We are now ready to prove Theorem 7. Since we know that with high probability, the
iterates of the modified algorithm which relies on indicator variables ιt are exactly same as
the original algorithm, it suffices to prove the regret bound for the modified algorithm. In
the sequel, we work with the modified algorithm. Throughout the proof, we let T be the
minimum between T and the first time step at which the algorithm restarts. Let τ be the
minimum between T and the last time step where ιτ = 1. Our goal is to bound the following
quantity

T∑
s=1

ιsfs(ys)−min
x∈X

T∑
s=1

ιsfs(x) =

τ∑
s=1

fs(ys)−min
x∈X

τ∑
s=1

fs(x).
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Case 1 (T = T ). We first consider the case where the restart condition didn’t trigger in
the first T iterations (i.e., T = T ). In this case, we show that the regret is Õ

(
T 1/2

)
. Since

the restart condition hasn’t triggered, we know that

τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≥ − β
η1
.

From the proof of Lemma 22, this implies ∀x ∈ ∂Fτ ∩ int(Xξ)

τ∑
s=1

f̂s(x)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≥ 4

η1
.

(In Lemma 22, we proved a contrapositive statement. We showed that if ∃x ∈ ∂FT ∩ int(Xξ)
such that

∑T
s=0 f̂s(x)−miny∈FT

∑T
s=0 f̂s(y) ≤ 4

η1
, then

∑T
s=0 f̂s(xs)−miny∈FT

∑T
s=0 f̂s(y) ≤

− β
η1
). Since our cumulative loss estimate concentrates well around the true cumulative loss

(i.e., ιτ = 1), this implies

∀x ∈ ∂Fτ ∩ int(Xξ),
τ∑
s=1

qs(x)− min
y∈Fτ

τ∑
s=1

qs(y) ≥ 2

η1
.

Since qs’s are convex, this implies the minimizer of minx∈Xξ
∑τ

s=1 qs(x) is in Fτ . So, the
regret of the algorithm can be bounded as follows

RegT =
τ∑
s=1

fs(ys)−min
x∈X

τ∑
s=1

fs(x) ≤ εT +
τ∑
s=1

qs(ys)−min
x∈X

τ∑
s=1

qs(x)

(a)

≤ 1 + εT +

τ∑
s=1

qs(ys)− min
x∈Xξ

τ∑
s=1

qs(x)

= 1 + εT +

τ∑
s=1

qs(ys)− min
x∈Fτ

τ∑
s=1

qs(x),

where (a) follows from the definition of Xξ = (1 − ξ)X + ξx1 and the fact that the loss
functions are Lipschitz and the diameter of X is bounded. Next, consider the following for
any x ∈ Fτ

τ∑
s=1

qs(ys)−
τ∑
s=1

qs(x) =

τ∑
s=1

[qs(ys)− qs(xs)]︸ ︷︷ ︸
T1

+
τ∑
s=1

[
qs(xs)− qs(x)− f̂s(xs) + f̂s(x)

]
︸ ︷︷ ︸

T2

+
τ∑
s=1

[
f̂s(xs)− f̂s(x)

]
︸ ︷︷ ︸

T3

.
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Bounding T1. Consider the following

T∑
s=0

qs(ys)− qs(xs) ≤
T∑
s=0

λ
〈
∇qs(xs),M−1/2

s (v1,s + v2,s)
〉

+ λ2 1

2
(v1,s + v2,s)

TM−1/2
s HsM

−1/2
s (v1,s + v2,s).

Let Zs = λ
〈
∇fs(xs),M−1/2

s (v1,s + v2,s)
〉
if s ≤ τ and 0 if s > τ . Note that {Zs}Ts=1 is a

martingale difference sequence with each Zs being bounded: |Zs| ≤ 2dB. This follows from
the observation that ∇qs(xs) = Es [ĝs] and the fact that M−1/2

s ĝs is a bounded random
variable. By relying on standard concentration bounds for martingale difference sequences
(see Lemma 15), we get that with probability at least 1−δ,

∑T
s=1 Zs = O

(
dB
√
T log 1/δ

)
.

Next, consider the last term in the RHS

(v1,s + v2,s)
TM−1/2

s HsM
−1/2
s (v1,s + v2,s) ≤ 4‖M−1/2

s HsM
−1/2
s ‖2

≤ 4‖M̃−1/2
s+1 HsM̃

−1/2
s+1 ‖2‖M

−1/2
s M̃s+1M

−1/2
s ‖2

≤ 4‖M̃−1/2
s+1 HsM̃

−1/2
s+1 ‖2‖M

−1/2
s M̃sM

−1/2
s ‖2‖M̃−1/2

s M̃s+1M̃
−1/2
s ‖2

Since M̃s,Ms,Ms+1 are spectrally close to each other, we can show that ‖M−1/2
s M̃sM

−1/2
s ‖2,

‖M̃−1/2
s M̃s+1M̃

−1/2
s ‖2 are close to 1. So we have

(v1,s + v2,s)
TM−1/2

s HsM
−1/2
s (v1,s + v2,s) ≤ 8‖M̃−1/2

s+1 HsM̃
−1/2
s+1 ‖2.

Using similar arguments as in the proof of Theorem 9 (see Equation (6)), we get the following
upper bound for T1: O

(
dB
√
T log 1/δ + d log dT

η1

)
.

Bounding T2. Since ιτ = 1, T2 can be upper bounded as

T2 ≤
1

η1
+
[
qτ (xτ )− qτ (x)− f̂τ (xτ ) + f̂τ (x)

]
≤ 1

η1
+ + 〈ĝτ −∇qτ (xτ ),x− xτ 〉+

1

2

〈
Ĥτ −Hτ , (x− xτ )(x− xτ )T

〉
F

≤ 2

η1
,

where the last inequality follows from the facts that ‖x−xτ‖Mτ ≤ 4dα, ‖ĝτ‖∗Mτ
≤ λ−1d(B+

ε), ‖M−1/2
τ ĤτM

−1/2
τ ‖2 ≤ λ−2d2(B + ε)..
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Bounding T3. To bound T3, we consider the following

T∑
s=0

[
f̂s(xs)− f̂s(x)

]
=

T∑
s=1

〈ĝs,xs − x〉 − 1

2
(x− xs)

T Ĥs(x− xs)

=

T∑
s=1

〈ĝs,xs − xs+1〉+ 〈ĝs,xs+1 − x〉 − 1

2
(x− xs)

T Ĥs(x− xs)

(a)

≤ 10λ−3αd4(B + ε)2
T∑
s=1

ηs +

T∑
s=1

〈ĝs,xs+1 − x〉

−
T∑
s=1

1

2
(x− xs)

T Ĥs(x− xs),

where (a) follows from the stability of the iterates we proved in Lemma 21. Since xs+1 is
the minimizer of miny∈Fs ηs 〈ĝs,y〉+ ΦRs+1(y,xs), we have

〈ĝs,xs+1 − x〉 ≤
ΦRs+1(x,xs)− ΦRs+1(x,xs+1)− ΦRs+1(xs+1,xs)

ηs
.

Using this in the previous display, we get

T∑
s=0

[
f̂s(xs)− f̂s(x)

]
≤ 10λ−3αd4(B + ε)2

T∑
s=1

ηs +
T∑
s=1

ΦRs+1(x,xs)− ΦRs+1(x,xs+1)

ηs

−
T∑
s=1

1

2
(x− xs)

T Ĥs(x− xs).

Rearranging the terms in the RHS above, we get

T∑
s=0

[
f̂s(xs)− f̂s(x)

]
≤ 10λ−3αd4(B + ε)2

T∑
s=1

ηs +
ΦR(x,x1)

η1
−

ΦRT+1
(x,xT+1)

ηT

+

T∑
s=2

(
1

ηs
− 1

ηs−1

)
ΦRs(x,xs)

(a)

≤ 10λ−3αd4(B + ε)2
T∑
s=1

ηs +
ΦR(x,x1)

η1
,

where (a) follows from the facts that Rs is convex, and ηs ≥ ηs−1 for all s. Hence the last
two terms are negatives and can be ignored. Since x ∈ Xξ, using property P8 of SCB stated
in Appendix G, we can upper bound ΦR(x,x1) as

ΦR(x,x1) = R(x) ≤ 4ν log T.

Combining the bounds for T1, T2, T3 shows that with probability at least 1− T−2 the regret
is upper bounded by

Õ

(
εT + dB

√
T +

(ν + d)

η1
+ λ−3αd4(B + ε)2η1T

)
= Õ

(
d11(d+ ν)5

√
T
)
.
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Case 2 (T < T ). We now consider the case where the restart condition triggered at some
iteration T < T . Using the fact that the restart condition hasn’t triggered in iteration
T − 1 and using similar arguments as in the beginning of Case 1, we can again show that
the minimizer of the cumulative loss over the entire domain lies in the focus region FT , and
ιT = 1. So regret until T is given by

RegT =

T∑
s=1

fs(ys)−min
x∈X

T∑
s=1

fs(x)
(a)

≤ 1 +

T∑
s=1

fs(ys)− min
x∈Xξ

T∑
s=1

fs(x)

= 1 +

T∑
s=1

fs(ys)− min
x∈FT

T∑
s=1

fs(x),

where (a) follows from the definition of Xξ. Using the same regret decomposition as in Case
1, for any x ∈ FT

T∑
s=1

fs(ys)−
T∑
s=1

fs(x) ≤ εT +
T∑
s=1

[qs(ys)− qs(xs)]︸ ︷︷ ︸
T1

+

T∑
s=1

[
qs(xs)− qs(x)− f̂s(xs) + f̂s(x)

]
︸ ︷︷ ︸

T2

+
T∑
s=1

[
f̂s(xs)− f̂s(x)

]
︸ ︷︷ ︸

T3

.

We use the same arguments as in Case 1 to bound T1, T2 as

T1 = O

(
dB
√
T log 1/δ +

d log dT

η1

)
, T2 =

2

η1
.

Since the restart condition triggered in round T , T3 is bounded by − β
η1
. Combining all these

bounds, we get the following bound on regret

RegT ≤ εT +O

(
dB
√
T log 1/δ +

d log dT

η1

)
+

2

η1
− β

η1
.

For our choice of hyper-parameters, the above bound is less than 0.

Appendix F. Additional Results

Proposition 27 (Gaussian Smoothing) Let f : Rd → R be a potentially non-smooth
function. Define the smoothed function f̂ as f̂(x) = Eu∼N (0,I) [f(x + Cu)] , for some sym-
metric positive definite matrix C. Then f̂ is twice differentiable with the following gradient
and Hessian

∇f̂(x) = Eu∼N (0,I)

[
C−1uf(x + Cu)

]
, ∇2f̂(x) = Eu∼N (0,I)

[
C−1(uuT − I)C−1f(x + Cu)

]
.

Proof
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Gradient. Using the expression for probability density function of a multivariate Gaus-
sian, we get

∇f̂(x) =
∂

∂x

∫
1

(2π)d/2
f(x + Cu)e−‖u‖

2/2du
(a)
=

∂

∂x

∫
1

(2π|C|2)d/2
f(y)e−‖y−x‖

2
C−2/2dy

=

∫
∂

∂x

1

(2π|C|2)d/2
f(y)e−‖y−x‖

2
C−2/2dy =

∫
C−2(y − x)

(2π|C|2)d/2
f(y)e−‖y−x‖

2
C−2/2dy

(b)
=

∫
C−1u

(2π)d/2
f(x + Cu)e−‖u‖

2/2du,

where we used change of variables in (a) and (b). This shows that

∇f̂(x) = Eu∼N (0,I)

[
C−1uf(x + Cu)

]
.

Hessian. We use a similar argument as above to compute the Hessian. From the first
display above, we have

∇f̂(x) =

∫
C−2(y − x)

(2π|C|2)d/2
f(y)e−‖y−x‖

2
C−2/2dy.

Using the definition of Hessian, we get

∇2f̂(x) =
∂

∂x
∇f̂(x) =

∂

∂x

∫
C−2(y − x)

(2π|C|2)d/2
f(y)e−‖y−x‖

2
C−2/2dy

=

∫
∂

∂x

C−2(y − x)

(2π|C|2)d/2
f(y)e−‖y−x‖

2
C−2/2dy

=

∫
C−2(y − x)(y − x)TC−2 − C−2

(2π|C|2)d/2
f(y)e−‖y−x‖

2
C−2/2dy

(a)
=

∫
C−1uuTC−1 − C−2

(2π|C|2)d/2
f(x + Cu)e−‖u‖

2/2du

where we used change of variables in (a). This shows that

Eu∼N (0,I)

[
C−1(uuT − I)C−1f(x + Cu)

]
.

Appendix G. Review of Self Concordant Barriers

This section reviews some useful properties of Self Concordant (SC) functions and Self
Concordant Barriers (SCBs). Most of the content in this section is from Nemirovski (2004);
Nesterov (2018).

• (P3) Non-degeneracy : If X doesn’t contain straight lines, then the Hessian ∇2R(x) is
nondegenerate (i.e., ∇2R(x) � 0) at all points x ∈ int(X ).

• (P4) For any x ∈ int(X ), we have

X ∩ {y : 〈∇R(x),y − x〉 ≥ 0} ⊆ Bν+2
√
ν,∇2R(x)(x). (21)
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• (P5) Semiboundedness: For any x ∈ int(X ),y ∈ X , 〈∇R(x),y − x〉 ≤ ν.

• (P6) For any x,y ∈ int(X ),

R(y)−R(x)− 〈∇R(x),y − x〉 ≥ ‖y − x‖∇2R(x) − log(1 + ‖y − x‖∇2R(x)). (22)

• (P7) For any x,y ∈ int(X ), we have

〈∇R(y)−∇R(x),y − x〉 ≥
‖y − x‖2∇2R(x)

1 + ‖y − x‖∇2R(x)
. (23)

• (P8) Define the Minkowsky function of X with the pole at x as

πx(y) = inf{t > 0|x + t−1(y − x) ∈ X}.

Then for any x,y ∈ int(X )

R(y) ≤ R(x) + ν log
1

1− πx(y)
(24)

∇2R(y) �
(
ν + 2

√
ν

1− πx(y)

)2

∇2R(x). (25)
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