
ULLAH MAI RAO ROSSI ARORA

Appendix A. Additional related work

We survey the works on machine unlearning - Cao and Yang (2015) were one of the first papers to
study the topic of machine unlearning. Their approach implements statistical query (SQ) algorithms
by estimating the statistical queries using training data. Since the estimates are usually the mean
of query evaluations computed on training data, unlearning is cheap, as we only need to subtract
the evaluation on the deleted point. Bourtoule et al. (2019) studies this problem, with the goal to
design systems to efficiently handle deletion requests. Their approach, called SISA, is essentially a
divide-and-conquer strategy, wherein the data is divided into disjoint sets, called shards, and a model
on each shard is trained separately and aggregated. Furthermore, they do several check-pointing
of states for each shard. In the average case, this provides a speedup of (R+1)S

2 for S shards and
R checkpoints per shard, over retraining. They however give no guarantees on accuracy with this
divide-and-conquer training method. Guo et al. (2019) is another work which uses (ε, δ)-differential
privacy based unlearning criterion. They study unlearning in generalized linear models, and propose
a Newton-step based method, leveraging connections with influence functions. Their computational
cost isO(d3) computations for one unlearning. They, however give no guarantees on excess empirical
risk achieved by the training method. Finally, the work of Izzo et al. (2020) studies batch unlearning
in linear regression, with the goal to improve the computational cost of batch k unlearning requests.
Their method achieves a runtime of O(k2d) as opposed to O(kd2) for a naive approach. However,
their notion of unlearning is again approximate, in the sense that model returned after unlearning is
closest to the exact unlearning model among models in the d dimensional subspace spanned by the
to-be-deleted k points. So it is easy to see that with larger k, the notion of approximation improves,
which explains the k2 term in the runtime as opposed to k.

A.1. Comparison with Neel et al. (2020)

Our algorithm guarantees provable exact unlearning with probabilistic runtime guarantees, whereas
Neel et al. (2020) give algorithms with deterministic runtime and provide only an approximate
(ε, δ)-DP based unlearning guarantee – the δ can be interpreted as probability of the failure event in
Monte-Carlo guarantees. To handle these discrepancies when comparing, our stated runtime is the
in-expecatation runtime. For a fixed runtime, we will look at regimes of ε and δ, when the accuracy
guarantee of Neel et al. (2020) is smaller than ours. We remind that a large ε, δ means a weaker
unlearning criterion. We have that with the same runtime, the accuracy of Neel et al. (2020) is smaller
than ours in the regime when their unlearning parameters and hence the notion, is rather weak. This
is summarized in Fig. 3 - we give details of the calculations below.

Considering the Lipschitz, smoothness parameters and diameter as constants, for smooth convex
functions and k edit requests, Neel et al. (2020) (Theorem 3.4) achieve an excess empirical risk of

O

(√
d
√

log(1/δ)

εnk

)2/5

with an unlearning runtime of k2 full-gradient computations. On the other

hand, our algorithms achieve an an excess empirical risk of min

{
1√
ρn ,
(√

d
ρn

)4/5
}

with ρk expected

re-computations. Each re-computation takes m · T gradient computations where m is the mini-
batch size and T the number of iterations. Therefore, in order to have the same runtime, we need
ρkmT = k2n ⇐⇒ ρ = kn

mT . Firstly, note that as as long as d ≤ (ρn)3/4, noisy-m-A-SGD has
smaller excess empirical risk than sub-sample-GD - this are the two regimes of interest. We now
set m and T for both the algorithms: for Algorithm 3, m = ρn

T and T =
√
ρn. This gives us

18

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

Unlearning notion Accuracy Unlearning runtime

Neel et al. (2020) Approximate ((ε, δ)-DP)
(√

d log(1/δ)

εnk

)2/5

k2n (Deterministic)

Ours Exact min

(
1√
ρn ,
(√

d
ρn

)4/5
)

ρkmT (Expected)

Figure 2: Overview of Theorem 3.4 in Neel et al. (2020) and our main result. Note that k: number
of edit requests, n: number of data points. m: mini-batch size, T : number of iterations

Regime When is accuracy of Neel et al. (2020) < Ours, with same runtime?

d < (ρn)3/4 ε√
log(1/δ)

> d

d ≥ (ρn)3/4 Our runtime ρ2kn is always smaller than NRS k2n

For ρ = 1: ε√
log(1/δ)

>
√
dn1/4

k

Figure 3: Comparison of Theorem 3.4 in Neel et al. (2020) with our main result. In the “low
dimension” regime, we have that ε and δ (approximate unlearning parameters) need to be
large for their result to be better. In the other case, our result is always better.

ρ = kn
ρn ⇐⇒ ρ =

√
k, however ρ is the total variation distance and is at most 1. Hence in regime

d ≥ (ρn)3/4, our runtime is always smaller than Neel et al. (2020): kn as opposed to k2n gradient
computations. Even with ρ = 1, our excess empirical risk is O

(
1√
n

)
and the excess empirical risk

of Neel et al. (2020) is smaller than ours when
(√

d
√

log(1/δ)

εnk

)2/5

. 1√
n
⇐⇒ ε√

log(1/δ)
&
√
dn1/4

k .

In the second regime d < (ρn)3/4, we use Algorithm 1, wherein we have mT = (ρn)2

d . This gives

us ρ = knd
(ρn)2

⇐⇒ ρ =
√

kd
n , and our excess empirical risk is O

((√
d

ρn

)4/5
)

= O
(

1
(nk)2/5

)
.

Therefore, excess empirical risk of Neel et al. (2020) is smaller than ours when
(√

d
√

log(1/δ)

εnk

)2/5

.

1
(nk)2/5

⇐⇒ ε√
log(1/δ)

& d. We therefore have that unless k is very large, the accuracy of Neel

et al. (2020) is smaller than ours when ε and δ, take prohibitively large values which correspond to a
weak notion of approximate unlearning. We can similarly compare against Theorem 3.5 in Neel et al.
(2020), which will yield qualitatively similar conclusions.

Space complexity: We now compare our space complexity with that of Neel et al. (2020). Firstly,
note that we need not consider regime d ≥ (ρn)3/4, since here we have better accuracy than Neel
et al. (2020), and our algorithm (sub-sample-GD) need not save any iterate. For regime, d <

(ρn)3/4, from Appendix G.3, the space complexity of noisy-m-A-SGD is max
{

(ρn)2

d , d3/4√ρn
}

=

max
{
kn, (kn)1/4

}
, where we plugged in ρ =

√
kd
n for our runtime to be same as Neel et al. (2020).

Since d < (ρn)3/4, the maximum term is kn. Hence, we get same runtime as Neel et al. (2020),

19

ULLAH MAI RAO ROSSI ARORA

better accuracy (for reasonable ε, δ) with space complexity = O(kn) – so for moderate values of k,
this is smaller than space to store the dataset, which both our result and Neel et al. (2020) require.

Appendix B. Additional discussion

B.1. Total variation stability from optimal transport

In this section, we give a didactic treatment of our approach to motivate the notion of total variation
stability. Consider neighbouring datasets S and S′ and let P = A(S) and Q = A(S′) for some
randomized algorithm A. The algorithm first computes on S, and then observes edit requests which
generate S′ as the current dataset. To satisfy exact unlearning , we need a procedure which moves P
to Q. This is akin to the well-studied optimal transport problem (Villani, 2008), which we briefly
explain below. Given probability distributions P and Q over measurable space X , and a cost function
c : X ×X → R, the goal is to transport from P to Q using the minimum cost. Formally, let Π(P,Q)
denote the set of couplings (or transport plans) of P and Q; the modern (Kantorovich’s) formulation
asks for a transport plan π which minimizes the expected cost: minπ∈Π(P,Q) E(x,y)∼πc(x, y).

A model of computation: Note that there is of course the trivial coupling in which we generate
independent samples from P and Q - this corresponds to re-computation, which is not practical
in general. Instead, we should correlate P and Q so that transporting from P to Q can reuse the
randomness (computation) used for P . For this, we use the cost function in the optimal transport
problem as a surrogate of modelling computation. In the optimal transport problem, the cost is
typically a distance on the space, whereas we are concerned with computational cost. So is there
a distance function which corresponds to computational cost? Note that the sequential nature of
the problem already gives us samples generated from P , so a natural question is, can we use this to

transport to Q? We can set the cost function as c(x, y) =

{
1 if x 6= y

0 otherwise
. This corresponds to an

oracle which charges a unit computation if we use y which is different from x, which can correspond
to a recomputation. Under this simple model of computation, the optimal expected computational
cost becomes exactly equal to the total variation distance between P and Q: infπ∈Π(P,Q) 1 {x 6= y} -
the maximal coupling characterization of total variation distance.

TV stability: The above establishes that if we want to transport P to Q using minimum computa-
tion cost, the expected computation cost cannot be smaller than the total variation distance between
P and Q. Intuitively, this means that is least 1− TV(P,Q) fraction of samples are representative
for both P and Q. From the sequential nature of our problem, when we generate P - the output on
dataset S, we don’t know what Q would be, since we don’t know the incoming edit request. Hence
a reasonable property to have in the algorithm is that its output is close in total variation distance
uniformly over all possible Q’s. This motivates our definition of total variation stability.

Optimal transport vs unlearning: Unlike the optimal transport problem wherein we are given P
and Q, and the task is to find a coupling, in our setup, we have to find an algorithm generating P and
Q as well as the coupling. Moreover, for a fixed ρ, there may be many algorithms which are ρ-TV
stable. The goal therefore, is to find among these algorithms, the one with the maximum accuracy
for the (convex ERM) problem, and for which we can design a corresponding efficient unlearning
algorithm.

20

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

B.2. DP convex ERM algorithms for unlearning

We first discuss an important distinction in the differential privacy and our unlearning setup. In the
DP setup, we have a curator which possesses the dataset, and an analyst/adversary, against which the
curator want to provide privacy. The analyst queries the dataset, and the curator provides DP answers
to the queries. The curator can also reveal additional information pertaining to the algorithmic
details, however, it is beneficial to the curator to only release limited information. In particular, the
curator can chose to keep certain states of the algorithm secret. This could be done in the case when
only the marginals of the output satisfy a strong DP-guarantee. So, if the curator were to release
the secret state as well, the adversary can correlate information and then the privacy level, which
is now measured using the joint distribution of output and state, degrades. In the noisy-m-A-SGD
algorithm for example, the output typically is the average or final iterate whereas the rest of iterates
and mini-batch indices bj’s are the secret state.

In the unlearning setup, there is no such adversary per se, or in the idealized application, the
curator is the adversary and the dataset owners wants it to have as little control as possible. It is
therefore natural to demand that the probability distribution of the entire state maintained by the
algorithm, and not just the output be exactly identical after performing the unlearning operation.
This, with slight differences, is referred to as perfect unlearning in Neel et al. (2020), and what our
algorithms satisfy. We have argued that designing TV stable algorithms is a good start, and for a
moment suppose that the TV stability is same as DP. Then should we measure TV stability between
the joint distributions over the entire state? This would limit the application of DP techniques
in which keeping additional state hidden has stronger privacy property. In that case, TV stability
parameter, and hence the computational cost of unlearning would be large. Interestingly, even though
the previous work in differentially private convex ERM, for example Bassily et al. (2014), show that
the released iterate (average/final iterate) is differentially private, the analysis is typically carried
out by first arguing, via a composition step, that all iterates together are differentially private. This
means that all iterates can be released without any additional cost of privacy. This innocuous property
arguably provides no benefit for privacy, but turns out to be extremely beneficial to us in unlearning.
However, even though the all the iterates can be released, the mini-batches still need to kept secret.
We handle this in the unlearning algorithm using an estimation step - see paragraph titled “Estimation
of marginals” in Section 5.2.

Appendix C. sub-sample-GD

The algorithm which is superior in high dimensions, called sub-sample-GD, is just vanilla mini-batch
SGD. Herein, at each iteration, a mini-batch of sizem is sub-sampled uniformly randomly to compute
the gradient, and make the update. Finally, we save all the mini-batch indices, gradients and iterates
to memory. We will see that the unlearning algorithm presented (Algorithm 4) uses all the saved
iterates. However this is done only for ease of presentation - in Appendix G.3, we discuss a simple
efficient implementation (of the unlearning algorithm), which doesn’t need any iterate, yet has the
same unlearning time complexity.

We now give guarantees on excess empirical risk for sub-sample-GD.

Proposition 3 Let f(., z) be an L-smooth G-Lipschitz convex function ∀ z. Algorithm 3, run with
t0 = 1, η = min

{
1

2L ,
D
√
ρn

GT

}
, T =

DL
√
ρn

G , and m = max
{
G
√
ρn

DL , 1
}

, outputs ŵS which is

min {ρ, 1}-TV-stable and satisfies EF̂S(ŵS)− F̂S(w∗S) . GD√
ρn .

21

ULLAH MAI RAO ROSSI ARORA

Algorithm 3 sub-sample-GD(wt0 , t0)

Input: Initial model wt0 , data points {z1, . . . , zn} , T,m, η
1: for t = t0, t0 + 1 . . . , T do
2: Sample mini-batch bt of size m uniformly randomly
3: gt = 1

m

∑
j∈bt ∇f(wt, zj)

4: wt+1 = P (wt − ηgt)
5: Save(bt,wt, gt)
6: end for

Output: ŵS = 1
T

∑T+1
t=1 wt

C.1. Unlearning for sub-sample-GD

At the start of the stream, at every iteration of sub-sample-SGD, we sample a mini-batch of size m
out of n points uniformly randomly, and then compute a gradient using these samples - note that
this is the only source of randomness in the algorithm. As we progress along the stream observing
edit requests, the number of available data points changes. Therefore, if the algorithm were executed
on this dataset of, say ñ points, at every iteration it would have sub-sampled m out of ñ (and not
n) points. The way to account for this discrepancy is to simply adjust the sub-sampling probability
measure accordingly.

Coupling mini-batch indices: The main idea to unlearning in Algorithm 4 is to couple the sub-
sample indices. For deletion, we just look at each mini-batch, and (literally) verify if the deleted
point were used or not. If the deletion point was not used in any iterations, then we don’t do anything,
otherwise, we trigger a recompute. In the case of insertion, there is no such way of selecting iterations
in which the point was sampled, because the inserted point was absent. However, we know that the
new point would have been sampled with probability m/(n+ 1). We can thus verify by selecting
each iteration with the same probability. We then replace a uniformly sampled point in the mini-batch
of that step by the inserted point. Algorithm 4 implements the above procedure.

We state our main result for unlearning with Algorithm 4 below.

Proposition 4 (Algorithm 3, Algorithm 4) satisfies exact unlearning. Moreover, for k edits, Algo-
rithm 4 recomputes with probability at most 2kρ.

Appendix D. Proofs of main results

In this section, we give the proofs of main results, stated in Section 3, using the results in the
preceding sections.

D.1. Proof of Theorem 1

The proof follows by combining the guarantees for the two algorithms we present: sub-sample-GD
(Algorithm 3) and noisy-m-A-SGD (Algorithm 1), and their corresponding unlearning algorithms:
Algorithm 4 and Algorithm 2. We discuss these one by one. From Proposition 3, we have that, given
0 < ρ ≤ 1, sub-sample-GD is ρ-TV stable and has excess empirical risk bounded by O

(
GD√
ρn

)
. This

holds at every point in the stream by assumption that the number of samples are between n
2 and 2n.

Furthermore, from Proposition 4, we have that the unlearning algorithm satisfies exact unlearning

22

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

Algorithm 4 Unlearning for sub-sample-GD
Input: Data point index j to delete or data point z to insert (index n+ 1)

1: for t = 1, 2 . . . , T do
2: Load(bt, gt,wt)
3: if deletion and j ∈ bt then
4: sub-sample-GD(wt, t) // Continue training on current dataset
5: break
6: else if insertion and Bernoulli

(
m
n+1

)
then

7: Sample i ∼ Uniform(bt)
8: g′t = gt − 1

m (∇f(wt, zi)−∇f(wt, z))
9: wt+1 = P (wt − η (g′t + θt))

10: Save(wt+1, g
′
t, bt\ {i} ∪ {n+ 1})

11: sub-sample-GD(wt+1, t+ 1) // Continue training on current dataset
12: break
13: end if
14: end for

at every point in the stream, proving the first part of the claim for sub-sample-GD. Moreover, it
states that recompute probability for k edit requests is O(ρk). Finally, from Claim 7, we have that
there exist efficient implementations, such that the runtime of unlearning for sub-sample-GD is
O(max {k,min {ρ, 1} k · Training time}, where ”Training time” is the runtime of the corresponding
learning algorithm - this means that re-computations overwhelm the total unlearning time. This
establishes all the guarantees for one algorithm and recovers one of the upper bounds in the second
claim.

The situation for the other algorithm is a little more involved. From Proposition 1, for dataset S
of n points, we have that, given 0 < ρ̃ ≤ 1, noisy-m-A-SGD is ρ̃-TV stable and its excess empirical
risk is bounded as follows:

EF̂S(ŵS)− F̂S(w∗S) .
LD2

T 2
+

GD√
Tm

+
GD
√
d

nρ̃
,

where T is the number of iterations for noisy-m-A-SGD algorithm, and m the mini-batch size. From
Proposition 2, we have that the unlearning algorithm satisfies exact unlearning (establishing the first
claim) and recomputes, for k edit requests, with probability O(ρ̃k

√
T). Finally, from Claim 8, we

have that there exist efficient implementations, such that the runtime of unlearning for noisy-m-A-
SGD is O(max{k, kmin

{
ρ̃
√
T , 1

}
· Training time}). In the statement of Theorem 1, we want that

the unlearning runtime be such that we recompute for a ρ fraction of edit requests (as opposed to
something dependent on T). Therefore, we substitute ρ̃ = ρ√

T
, and this changes the excess empirical

risk bound for noisy-m-A-SGD, as follows:

EF̂S(ŵS)− F̂S(w∗S) .
LD2

T 2
+

GD√
Tm

+
GD
√
d
√
T

nρ
.

We use the largest mini-batch size, which does not hurt runtime, which is m =
(
G
LD

)2
T 3.

This simplifies the upper bound to LD2

T 2 + GD
√
d
√
T

nρ . Optimizing the trade-off, we have LD2

T 2 =

23

ULLAH MAI RAO ROSSI ARORA

GD
√
d
√
T

nρ ⇐⇒ T =
(
LD(nρ)

G
√
d

)2/5
, and the excess empirical risk becomes EF̂S(ŵS)− F̂S(w∗S) .

LD2

T 2 =
(
L1/4GD3/2

√
d

(ρn)

)4/5
– this recovers the other term in the upper bound in Theorem 1. However,

note that Proposition 1 has an additional condition that T ≥ (nρ̃)2

16m2 - we show that in our setting
of ρ̃ and m, this condition is equivalent to the excess empirical risk of noisy-m-A-SGD being
smaller than that of sub-sample-GD. Hence, the regime in which the aforementioned condition
is violated is the same regime in which it is better to use the other sub-sample-GD algorithm,
and therefore is benign. Setting m =

(
G
LD

)2
T 3 and ρ̃ = ρ/

√
T , the condition simplifies as

T ≥ (nρ)2

16T ·T 6

(
LD
G

)2 ⇐⇒ T 8 ≥ (nρ)2

16

(
LD
G

)4 ⇐⇒
(
LD(nρ)

G
√
d

)16/5
≥ (nρ)2

16

(
LD
G

)4 ⇐⇒(√
d

(nρ)

)4/5
≤ 2√

nρ

(
LD
G

)1/5 ⇐⇒ (
L1/4GD3/2

√
d

(ρn)

)4/5
≤ 2GD√

nρ , where the final inequality indicates
that the expected excess empirical risk of noisy-m-A-SGD is at most that of sub-sample-GD, up to
constants. The above is established for dataset S but holds for any dataset Si in the stream using the
assumption that the number of samples are between n

2 and 2n.
Combining the above arguments finishes the proof of Theorem 1. �

D.2. Proof of Theorem 2

We give two algorithms, sub-sample-GD (Algorithm 3) and noisy-m-A-SGD (Algorithm 1), one for
each of the upper bounds. From Proposition 3 and Corollary 1, we have that, given 0 < ρ <∞, these
are min {ρ, 1}-TV stable and their excess empirical risk is bounded is O

(
GD√
ρn

)
and O

(
GD
√
d

ρ̃n

)
respectively. Hence combining the above by taking a minimum, establishes the claimed result. �

D.3. Proof of Theorem 3

In all the lower bounds, we have a GD term - this is a trivial lower bound, since if an algorithm is
defined as A(S) = 0 (or any constant), then this is perfectly TV stable (ρ = 0), and the expected
excess empirical risk is upper bounded as F̂S(A(S))− F̂S(w∗S) ≤ G ‖A(S)− w∗S‖ ≤ GD, where
the first inequality uses G-Lipschitzness of F̂S and the second the fact the both A(S) and w∗S lie in a
ball of diameter D. Hence, attaining an excess empirical risk of GD is trivial, and we now focus on
deriving the other terms in the bounds.

Firstly, as discussed in Bassily et al. (2014), we consider G = D = 1, since a simple reduction
gives a factor of GD for general G and D. Furthermore, similar to Bassily et al. (2014), we show
that the problem of TV-stable convex ERM is at least as hard as that of TV stable mean computation
of a dataset with bounded mean - we state this reduction in Proposition 10. We now focus on
showing accuracy lower bounds for ρ-TV-stable mean computation of dataset S of size n, with mean
M
2 ≤ ‖µ(S)‖ ≤ 2M . The accuracy, denoted by α, is defined as α2 = E ‖A(S)− µ(S)‖2, A is a
ρ-TV stable algorithm, and the expectation is taken over the algorithm’s randomness. The first part
of Theorem 3 follows Theorem 6 which is based on a simple reduction argument. This gives us that
α ≥ 1

ρn with M = 1
ρn . Plugging it in Proposition 10, this gives us that excess empirical risk is lower

bounded by Ω
(

1
ρn

)
. Similarly, the second part follows from Theorem 7 which gives us α ≥ 1√

ρn

with M = 1√
ρn - the condition α ≤ 1

4 in the statement of Theorem 7 can be absorbed in the trivial
lower bound GD. �

24

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

Appendix E. Proofs for Section 5.1

Proof [Proof of Proposition 3] We first show that Algorithm 3 is min {1, ρ}-TV stable for the
aforementioned choice of number of iterations T and mini-batch size m. Consider neighbouring
dataset S and S′ of n points which differs in one sample, WLOG say the nth sample. LetA(S) := ŵS

and A(S′) := ŵS′ denote the outputs of Algorithm 3 on S and S′ respectively. Since in Algorithm 3,
the randomness is only on indices, rather than actual data points, say that S = {1, 2, . . . , n}. Now
we consider neighbouring dataset S′, which contains n+ 1 or n− 1 samples. We will now consider
the case when S′ contains n− 1 elements and the case with n+ 1 elements will follow analogously.
Let n be the index present in S but absent in S′ i.e. S′ = {1, 2, . . . , n− 1}. Let the sigma-algebra on
these sets be the power sets of S and S′ respectively, denoted by Pow(S) and Pow(S′) respectively.
Moreover, let µn,m denote the sub-sampling probability measure on n points in S i.e it sub-samples
m out of n elements in S uniformly randomly. Let µ⊗Tn,m denote the product measure of T of µn,m’s.
We similarly define µn−1,m and µ⊗Tn−1,m for S′.

We first extend the sigma-algebra for the probability spaces so that the random variables µn,m
and µn−1,m, are defined on a common probability space. For this, we will just add an event where
the index n can be sampled under µn−1,m with probability 0. We define µ′n,m as follows: for any set

b ∈ Pow(S), µ′n,m(b) =

{
µn−1,m(b) if n 6∈ b
0 otherwise

. We similarly extend the sigma algebra for the

product space with measure µ⊗Tn−1,m to get µ
′⊗T
n,m .

Observe that for fixed initialization w0 and other parameters, Algorithm A(S) and A(S′) is
the same (deterministic) map from b = (b1, b2, . . . , bT) where bj ∈ [n]m toW . They only differ
because of different measures on the input space. Hence total variation distance between A(S)
and A(S′) is just the total variation distance between the push-forward measures A(S)#µ

⊗T
n,m and

A(S′)#µ
′⊗T
n,m which by using the fact that A(S) ≡ A(S′) and data-processing inequality, is at most

the total variation distance between µ⊗Tn,m and µ
′⊗T
n,m . Now the total variation distance can be bounded

as,

TV(A(S),A(S′)) ≤ TV(µ⊗Tn,m, µ
′⊗T
n,m) = sup

b∈Pow([n]m)T)

∣∣∣µ⊗Tn,m(b)− µ′⊗Tn,m(b)
∣∣∣

= µ⊗Tn,m (b such that at least one bj contains n)

≤ Tµn,m(b1 contains n) =
Tm

n

where the inequality follows using a union bound.
A similar argument works when S′ is an neighbouring dataset of n + 1 elements, yielding a

total variation bound of Tm
n+1 ≤

Tm
n . Taking a uniform bound over all neighbouring datasets S′, we

get that sup∆(S,S′)=1 TV(A(S),A(S′)) ≤ Tm
n . By definition of TV distance, we trivially have that

sup∆(S,S′)=1 TV(A(S),A(S′)) ≤ 1. Therefore, setting m = ρn
T , we get the desired result that the

output of Algorithm 3 is min {ρ, 1}-TV stable.
We now proceed to the accuracy guarantee which follows directly by analysis of SGD. We first

show that the sub-sampling procedure produces unbiased gradients and bound its variance. For a
fixed model w, we have that

25

ULLAH MAI RAO ROSSI ARORA

Eb

∑
j∈b∇f(w, zj)

m
=

∑
(nm) choices for b

∑
j∈b∇f(w, zj)

m
(
n
m

) =

(
n−1
m−1

)
m
(
n
m

) n∑
j=1

∇f(w, zj) =

∑n
j=1∇f(w, zj)

n

where in the second equality, we use the observation that every zj appears in exactly
(
n−1
m−1

)
terms

over all choices for b. We now bound its variance, denoted by a V2 by direct computation.

V2 = Eb
∥∥∥∥
∑

j∈b∇f(w, zj)

m
− Eb

[∑
j∈b∇f(w, zj)

m

]∥∥∥∥2

= Eb
∥∥∥∥
∑

j∈b∇f(w, zj)

m

∥∥∥∥2

−
∥∥∥∥Eb [

∑
j∈b∇f(w, zj)

m

]∥∥∥∥2

=
∑

(nm) choices for b

1(
n
m

) 1

m2

∥∥∥∥∥∥
∑
j∈b
∇f(w, zj)

∥∥∥∥∥∥
2

−

∥∥∥∥∥
∑n

j=1∇f(w, zj)

n

∥∥∥∥∥
2

In the first term, expanding the square and summing over all choices of b, we get exactly(
n−1
m−1

)
terms of the form ‖∇f(w, zj)‖2 for j = 1 to n, and

(
n−2
m−2

)
cross terms of the form

〈∇f(w, zi),∇f(w, zj)〉 for i 6= j, i, j = 1 to n. Similarly, expanding the second term produces both
these kind of terms. Accumulating the coefficients of all the terms, we get

V2 = Eb
∥∥∥∥
∑

j∈b∇f(w, zj)

m
− Eb

[∑
j∈b∇f(w, zj)

m

]∥∥∥∥2

=

((
n−1
m−1

)
m2
(
n
m

) − 1

n2

)
n∑
j=1

‖∇f(w, zj)‖2 +

((
n−2
m−2

)
m2
(
n
m

) − 1

n2

)
n∑

i,j=1,i 6=j
〈∇f(w, zi),∇f(w, zj)〉

≤
(

1

mn
− 1

n2

)
nG2 +

∣∣∣∣ m− 1

nm(n− 1)
− 1

n2

∣∣∣∣ n∑
i,j=1,i 6=j

‖∇f(w, zi)‖ ‖∇f(w, zj)‖

≤
(

1

m
− 1

n

)
G2 +

∣∣∣∣ m− 1

nm(n− 1)
− 1

n2

∣∣∣∣n(n− 1)G2

=

(
1

m
− 1

n

)
G2 +

∣∣∣∣m− 1

m
− (n− 1)

n

∣∣∣∣G2

=

(
1

m
− 1

n

)
G2 +

∣∣∣∣ 1n − 1

m

∣∣∣∣G2

= 2

(
1

m
− 1

n

)
G2 ≤ 2G2

m

where in the first inequality we used Cauchy-Schwartz inequality, and the fact the G-Lipschitzness
implies the gradient norms are bounded by G. Finally, in the second last equality and the last
inequality we used the fact that m ≤ n.

Since the sub-sampled gradients are unbiased, we can use the convergence guarantee of SGD on
smooth convex function (see Theorem 4.1 in Allen-Zhu (2018)) which when using step size η ≤ 1

L

26

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

gives us

EF̂S(ŵS)− F̂S(w∗S) ≤ O
(

ηV2

(1− ηL)
+
D2

ηT

)
Using step size η ≤ 1

2L , the right hand side simplifies to 2ηV2 + D2

ηT ≤
4G2η
m + D2

ηT = 4G2Tη
ρn + D2

ηT ,
where in the last equality, we substituted m = ρn

T to ensure ρ TV-stability. Balancing the trade off in

η gives us η =
D
√
ρn

GT . Therefore setting η = min
{

1
2L ,

D
√
ρn

GT

}
gives us

EF̂S(ŵS)− F̂S(w∗S) ≤ O
(
GD
√
ρn

+
D2L

T

)
Setting T =

DL
√
ρn

G achieves the claimed result.

Proof [Proof of Proposition 1] We first prove the stability guarantee. For this, we use the Rènyi-
divergence based analysis used in differential privacy literature. Let P and Q be probability dis-
tributions such that P is absolutely continuous with respect to Q and have densities φP and φQ,
respectively. For α ∈ (1,∞), the α Rènyi-divergence between P and Q is defined as follows Rényi
et al. (1961):

Dα(P‖Q) =
1

α− 1
ln

(∫
fP (x)αfQ(x)1−αdx

)
Consider two neighbouring datasets S = {zj}j and S′ =

{
z′j

}
j

such that ∆(S, S′) = 1, and

let {b′t}
T
t=1 and {w′t}

T
t=1 denote the mini-batch indices and iterates of Algorithm 1 on dataset S′

respectively. We look at iteration t, and fix all the randomness before t i.e. fix wt (and w′t), as well as
randomness in sub-sampling mini-batch indices i.e. fix bt. The α-Rènyi Divergence between wt+1

and w′t+1 can be bounded as,

Dα(wt+1‖w′
t+1) = Dα

(
P
(

ẘt − η
(∑

j∈bt ∇f(ẘt, zj)

m
+ θt

))∥∥∥P (ẘt − η
(∑

j∈bt ∇f(ẘt, z
′
j)

m
+ θt

)))
≤ Dα

(
ẘt − η

(∑
j∈bt ∇f(ẘt, zj)

m
+ θt

)∥∥∥ẘt − η
(∑

j∈bt ∇f(ẘt, z
′
j)

m
+ θt

))
≤ Dα

(∑
j∈bt ∇f(ẘt, zj)

m
+ θt

∥∥∥∑j∈bt ∇f(ẘt, z
′
j)

m
+ θt

)
≤ 2αG2

m2σ2

where in the first and second inequality, we used post-processing property of Rènyi divergence,
and in the last inequality, we use the fact that datasets S and S′ differ in at most one sample, therefore∥∥∥∑j∈bt

∇f(ẘt,zj)

m −
∑
j∈bt
∇f(ẘt,z′j)

m

∥∥∥2

≤ 4G2

m2 . Hence the divergence is between two multivariate

Gaussians of same variance and with the square of the separation of their means at most 2αG2

m2σ2 .
Therefore, the inequality follows by using the formula for Rènyi divergence between two such
multivariate Gaussians.

We now unfix bt, and use the fact the bt is a uniform sample of m out of n (or n − 1 or
n + 1) indices. By privacy amplification by sub-sampling result in (Balle et al., 2018), for

27

ULLAH MAI RAO ROSSI ARORA

α ≤ 2, we will argue that the Rènyi divergence upper bound amplifies to 32αG2

n2σ2 . There are
certain subtleties about the application of this result, so we explain, as follows. The first is that
Theorem 9 stated in (Balle et al., 2018), when considering α ≤ 2, the right hand side simplifies
as 1

α−1 log
(

1 + m2

n2
α(α−1)

2 4
(

exp
(

8G2

m2σ2

)
− 1
))
≤ 2αm2

n2

(
exp

(
8G2

m2σ2

)
− 1
)
≤ 32αG2

n2σ2 where the
last inequality use the numeric inequality exp (x) ≤ 1 + 2x when x ≤ 1.256; this means that
we need the following condition 8G2

m2σ2 ≤ 1.256 - we will revisit this condition later. The second
point is that Theorem 9 in (Balle et al., 2018) holds integer α ≥ 2, which only leaves us with
α = 2. In the subsequent part of the proof, we will need to take α → 1. This discrepancy can
be accounted for by using the fact the α-Rènyi Divergence is non-decreasing for α ∈ [0,∞] (see
Theorem 3 in Van Erven and Harremos (2014)). Therefore the result holds for all α ≤ 2, and we
can replace the upper bound to be 64G2

n2σ2 The third and final point is that even though the ampli-
fication result in Balle et al. (2018) is established under the neighbouring relation that one point
is replaced between datasets, it can be shown that the same result holds (perhaps upto constants)
when the neighbouring relation is add/delete one data-point; see Lemma 3, Abadi et al. (2016) for
example. We now use adaptive sequential composition property of Rènyi divergence (Proposition
1 in Mironov (2017)) which linearly accumulates the divergence across iterations, yielding that
the Rènyi divergence between the iterates (w1,w2, . . . ,wT) and (w′1,w

′
2, . . . ,w

′
T) is bounded as,

Dα((w1,w2, . . . ,wT)‖(w′1,w′2, . . . ,w′T)) ≤ 64TG2

n2σ2 . An application of data-processing inequality
gives us the same upper bound on the Rènyi divergence between the final iterates ŵS and ŵ′S . We now
use the result that limα→1Dα(ŵS‖ŵ′S) = DKL(ŵS‖ŵ′S) whereDKL denotes the KL-divergence (see
Theorem 5 in Van Erven and Harremos (2014)). Hence we get that DKL(ŵS‖ŵ′S) ≤ 64TG2

n2σ2 . Finally,
we use Pinsker’s inequality to further lower bound the left hand side by total variation distance,

which yields TV(ŵS‖ŵ′S) ≤
√

DKL(ŵS‖ŵ′S)
2 ≤ 8

√
TG
nσ . As remarked before, this is a uniform bound

over all neighbouring datasets. Finally, as before, we trivially have that TV(ŵS‖ŵ′S) ≤ 1; therefore
setting σ = 8

√
TG
nρ gives us that the algorithm’s output is min {ρ, 1} TV-stable.

We now proceed to the accuracy guarantee. This follows simply by guarantee of Accelerated
SGD on smooth convex functions. We have already shown in Proposition 3 that the gradients
computed by sub-sampling are unbiased and its variance bounded by 2G2

m . The mean-zero Gaussian
noise added preserves unbiasedness but the variance is bounded as,

V2 = E
∥∥∥∥
∑

j∈bt ∇f(ẘt, zj)

m
+ θt −∇F̂S(ẘt)

∥∥∥∥2

= E
∥∥∥∥
∑

j∈bt ∇f(ẘt, zj)

m
−∇F̂S(ẘt)

∥∥∥∥2

+ E‖θt‖2

≤ 2G2

m
+ σ2d

We now use Theorem 2 from Lan (2012) - they use notation {βt}t and {γt}t for the step size
schedule of Accelerated SGD and set βt = t+1

2 and γt = t+1
2 γ. Even though the updates of their A-

SGD seem different than us, it can be verified that they are the same with αt = βt+1(1−β−1
t) = 1−t

t+2

with α0 = 0 and η = γ. Finally, using step-size η ≤ 1
2L , and appealing to Theorem 2 in Lan (2012),

we get,

EF̂ (ŵS)− F̂ (w∗) ≤ O
(
TηV2 +

D2

ηT 2

)
= O

(
ηT

(
2G2

m
+ σ2d

)
+

D2

ηT 2

)

28

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

Let G̃2 = 2G2

m + σ2d, balancing the trade-off in η gives us η = D
G̃T 3/2 . Therefore, setting

η = min
{

1
2L ,

D
G̃T 3/2

}
gives us

EF̂ (ŵS)− F̂ (w∗) ≤ O

(
LD2

T 2
+
G̃D√
T

)
≤ O

(
LD2

T 2
+

GD√
Tm

+
σ
√
dD√
T

)

≤ O

(
LD2

T 2
+

GD√
Tm

+
GD
√
d

nρ

)

Finally, note that when using the amplification lemma, we arrived at the condition 8G2

m2σ2 ≤ 1.256.

Substituting σ = 8
√
TG
nρ , this reduces to (nρ)2

8m2T
≤ 1.256 ⇐⇒ T ≥ (nρ)2

16m2 .

Proof [Proof of Corollary 1] We start with the result in Proposition 1, and balance the two trade-offs:
the first between the terms GD√

mT
and GD

√
d

ρn , and the second between GD
√
d

ρn and LD2

T 2 . Note that as

long as GD√
mT
≥ LD2

T 2 ⇐⇒ m ≤ T 3G2

(LD)2
, the second term is larger than the first. Optimizing the trade-

off between second and third term gives us GD√
mT

= GD
√
d

ρn ⇐⇒ T = (ρn)2

md . Similarly, optimizing

the trade-off between the first and third term gives us GD
√
d

ρn = LD2

T 2 ⇐⇒ T =
√

LD(ρn)

G
√
d

. Hence

setting T = max
(

(ρn)2

md ,
√

LD(ρn)

G
√
d

)
yields an expected excess empirical risk of O

(
GD
√
d

nρ

)
.

We now look at the given condition T ≥ (nρ)2

16m2 given in Proposition 1. We have set

T = max
(

(ρn)2

md ,
√

LD(ρn)

G
√
d

)
, there we need to ensure that (ρn)2

md ≥ (ρn)2

16m2 ⇐⇒ m ≥ d
16 ,

as well as
√

LD(ρn)

G
√
d
≥ (ρn)2

16m2 ⇐⇒ m ≥ 1
4

(
(ρn)3G

√
d

LD

)1/4
- this recovers the condition

m ≥ min

{
d
16 ,

1
4

(
(ρn)3G

√
d

LD

)1/4
}

in the Proposition statement. Combining all the above arguments,

we get that for any m ≥ min

{
d
16 ,

1
4

(
(ρn)3G

√
d

LD

)1/4
}

, setting T = max
{

(ρn)2

md ,
√

LD(ρn)

G
√
d

}
, yields

an expected excess empirical risk of O
(
GD
√
d

nρ

)
.

Remark 3 Note that in the above proof, if we use the stronger variance bound of 2L2
(

1
m −

1
n

)
from

sub-sampling (derived in the proof of Proposition 3), we get that when doing full-gradient descent,
the variance, as expected is zero, which yields a running time of T =

√
LDρn

G
√
d

.

Corollary 1 Let f(., z) be an L-smooth G-Lipschitz convex function ∀ z. For any 0 < ρ < ∞,

Algorithm 1, run with t0 = 1,m ≥ min

{
d
16 ,

1
4

(
(ρn)3G

√
d

LD

)1/4
}

, η = min

{
1

2L ,
D(

G√
m

+σ
)
T 3/2

}
,

α0 = 0, αt = 1−t
t+2 , σ = 8

√
TG
nρ , and T = max

{
(ρn)2

md ,
√

LDρn

G
√
d

}
outputs ŵS which is min {ρ, 1}-TV

stable and satisfies EF̂S(ŵ)− F̂S(w∗S) . GD
√
d

ρn .

29

ULLAH MAI RAO ROSSI ARORA

Remark 4 The choice of T in Corollary 1 yields that the largest mini-batch size that can be

set, without hurting runtime, is m =
(

(ρn)3G√
d
3
LD

)1/2
=
(
G
LD

)2
T 3. Furthermore, the condition

m ≥ min

{
d
16 ,

1
4

(
(ρn)3G

√
d

LD

)1/4
}

yields (ρn) ≥
(
LD(
√
d)7

256G

)1/3
.

Next we show that the upper bound on total variation stability parameter of Algorithm 1 derived
in Proposition 1 is tight in all problem parameters, upto constants.

Proposition 5 There exists neighbouring datasets S and S′ of n points, and smooth G-Lipshcitz
convex functions f and constraint setW such that the total variation distance between iterates pro-
duced by Algorithm 1 run on datasets S and S′, denoted by {w1,w2, . . . ,wT } and {w′1,w′2, . . . ,w′T }
respectively, is bounded as TV((w1,w2, . . . ,wT) , (w′1,w

′
2, . . . ,w

′
T)) ≥ min

{
Ω
(
G
√
T

nσ

)
, 1
}

.

Proof [Proof of Proposition 5] We first prove this without projection - let the constraint setW = Rd,
and so the projection P is the identity map. Also, for simplicity, let the initial model be 0. Consider
data sets S and S′ such that all points are 0 but the nth differing point. Let the nth point of S be−Ge1

and that of S′ be Ge1, where e1 is the first canonical basis vector. Let the function f(w, z) = 〈w, z〉.
The gradients are just data points z, therefore gradients are 0 on all but the differing points, wherein
in the differing point in dataset S, the gradient is a constant −Ge1 and for dataset S′, it is Ge1.
Consider the map Ψ : (x1, x2, . . . , xT) → xT ; using data processing inequality and this map, we
have that

TV((w1,w2, . . . ,wT) , (w′
1,w

′
2, . . . ,w

′
T)) ≥ TV(Ψ (w1,w2, . . . ,wT) ,Ψ (w′

1,w
′
2, . . . ,w

′
T)) = TV(wT ,w

′
T)

We now focus on bounding the total variation distance between the last iterates. Furthermore, by
data-processing inequality, we can get rid of the step size scaling, and therefore can consider the
last iterates as just the sum of all gradients. By simple calculations, we get that wT is a mixture
of multivariate Gaussians, all with variance Tσ2I but with varying means: Ge1, 2Ge1, . . . , TGe1,
similarly for w′T . We denote the mixtures probabilities by πi where the ith conditional distribution,
denoted by wi

T and w′iT respectively, has means iGe1 and −iGe1 respectively. Also, we denote the
conditional probability densities of the ith distribution by φiS(w) and φiS′(w) respectively. We will
show that the total variation between these mixtures is expected total variation distance between the
mixture components. This follows due the symmetry between these two mixtures, which implies that
the set that achieves the total variation distance is {w : w1 ≥ 0}. We can therefore write the total
variation distance as,

TV(wT ‖w′T) =
1

2
‖φS(w)− φS′(w)‖1 =

∫
w1≥0

φS(w)− φS′(w)dw

=

∫
w1≥0

∑
i

πi(φ
i
S(w)− φjS′(w))dw =

∑
i

πi

∫
w≥0

(φiS(w)− φjS′(w))dw

=
∑
i

πiTV(wi
T ,w

′i
T) &

∑
i

πi
2Gi

m
√
Tσ

=
2G

m
√
Tσ

Ei =
2G
√
T

nσ

where in the inequality, we use the fact that wi
T and w′iT are Gaussians with means separated

by 2G, and variance being Tσ2I and use the lower bound result on TV between high-dimensional

30

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

Gaussians Devroye et al. (2018). Finally, in the last equality, we compute the Expected value of i
under the mixture distribution - recall that i is a sum of T Bernoulli random variables with bias m

n ,
the expectation of which is Tm

n .
We now argue why projection doesn’t change the above claim. Note the with the projection,

all the Gaussians in the mixture are truncated forming a discrete distributions at the boundary of
the constraint set. The probability mass on either sides of the (original) mean is unchanged. Hence
{w : w1 ≥ 0} is still the witness set of total variation distance between the mixtures, and the total
variation distance in both constrained/unconstrained cases is the same. The same holds for the
total variation between the corresponding mixture components. These observations suffices for
application of proof of the unconstrained case. Finally, since TV distance, by definition is upper
bounded by 1 - this gives a trivial lower bound of 1, and hence the TV distance is lower bound by
min

{
Ω
(
G
√
T

nρ

)
, 1
}

.

Appendix F. Proofs for Section 5.2

We introduce some notation and setup the roadmap. In the start of the stream, we have a model
trained on the initial dataset of n samples. We then observe an insertion or deletion request. We
enumerate the data points from 1 to n, and without loss of generality, assume that the nth sample is to
be deleted, and the inserted sample has index n+ 1. We want to show that the unlearning algorithm
satisfies exact unlearning at every time point in the stream, and what suffices is to argue that this
holds for one edit request, since by mathematical induction it then holds for the entire stream. For
one edit request, we will show the following: 1. unlearning (deletion/insertion) algorithm is a valid
transport, and 2. the probability of recompute is small, and we will see that together these will imply,
that it is a coupling, with large enough measure of the diagonal.

Let µn,m denote the sub-sampling probability measure to sample m out of n elements uniformly
randomly. In the deletion and insertion algorithms, we replace some mini-batch indices in some
iterations - let these operations be denoted by DEL and INS respectively. To elaborate, DEL is a
(deterministic) map from ([n]m)T to ([n− 1]m)T and INS is a map from ([n]m)T to ([n+ 1]m)T .
For an input b ∈ ([n]m)T , we have that b ∼ µ⊗Tn,m. Furthermore, define µdel⊗T

n,m := DEL#µ
⊗T
n,m

and µins⊗T
n,m := INS#µ

⊗T
n,m. An important observation is that in the unlearning Algorithm 4, the sub-

sampled indices b are drawn from a product distribution µ⊗Tn,m and in each iteration of Algorithm 4
or Algorithm 2, the maps DEL and INS act component-wise and symmetrically. This implies that
DEL(b) = [del(b1), del(b2), . . . , del(bT)] where del : [n]m → [n − 1]m is the function which
describes one iteration of the unlearning algorithm for handling mini-batch indices. We similarly
have function ins : [n]m → [n + 1]m for insertion. We finally define µdel

n,m := del#µn,m and
µins
n,m := ins#µn,m - these are the probability measures induced on the sub-sampling indices by

deletion and insertion operations, respectively.

F.1. Unlearning for sub-sample-GD

We first show that µdel
n,m, the probability distribution, induced at a given iteration during deletion,

over mini-batch indices b ∈ [n]m is a transport.

Claim 1 (Deletion) For any set b ∈ [n]m, we have that µdel
n,m(b) = µn−1,m(b)

31

ULLAH MAI RAO ROSSI ARORA

Proof [Proof of Claim 1] First note that if the verification is unsuccessful, then a recompute is
triggered and therein at each iteration, we drawn b ∼ µn−1,m. Therefore, µdel

n,m(b) = µn−1,m(b)
follows trivially. We now argue for the other case. The verification is successful if the deleted point
was not present in any of iterations, i.e. at any iteration the sub-sample batch bt doesn’t contain the
deleted point z. The measure µdel

n,m is therefore just the probability under the original sub-sampling
measure µn,m conditioned on the event that z 6∈ b. We therefore have,

µdel
n,m(b) = µn,m(b| {z 6∈ b}) =

µn,m(b ∩ {z 6∈ b})
µn,m({z 6∈ b})

By direct computation, µn,m({z 6∈ b}) = 1− µn,m({z ∈ b}) = 1− (n−1
m−1)
(nm)

= 1− m
n . We now look

at two choices for b. First suppose z ∈ b, then the numerator µn,m(b ∩ {z 6∈ b}) = 0, which gives us
that µdel

n,m(b) = 0 = µn−1,m(b). We now look at a b such that z 6∈ b. We have,

µdel
n,m(b) =

µn,m(b)

µn,m({z 6∈ b})
=

1/
(
n
m

)
1−m/n

=
n

n−m
(n−m)!m!

n!

=
(n−m− 1)!m!

(n− 1)!
=

1(
n−1
m

) = µn−1,m(b)

Similarly, for insertion, we show that µins
n , the probability distribution, induced at a given iteration

during insertion, over mini-batch indices b ∈ [n]m, is a is valid transport.

Claim 2 For any set b ∈ [n+ 1]m, we have that µins
n,m(b) = µn+1,m(b)

Proof [Proof of Claim 2] Let ν denote the uniform probability measure over n + 1 − m el-
ements. Given b, we consider two cases based of whether last/inserted index n + 1 lies in
b or not. In the first case, we know that the outcome of Bernoulli(m/(n + 1)) must have
been 1 i.e. the iteration was selected. Furthermore, in that case, the inserted point would
have replaced some other point not in b - the total number of possibilities are n + 1 − m.
Let Ei be event that the inserted point replaced the ith data point, whose index we denote
by si. Note that the events E′is are disjoint and the event b is ∪n+1−m

i=1 Ei. Furthermore,
µins
n,m(Ei) = µins

n,m(original subsample is b\ {n+ 1}∪{si} | {si} replaced)µins
n,m({si} replaced)) =

µn,m(b\ {n+ 1} ∪ {si} | {si})ν({si}) = 1

(n
m−1)

1
(n+1−m) . We therefore have that

µinsn (b) =
m

n+ 1
µinsn (∪n+1−m

i=1 Ei) =
m

n+ 1

n+1−m∑
i=1

µinsn (Ei) =
m

n+ 1

n+1−m∑
i=1

1(
n

m−1

) 1

(n+ 1−m)

=
m

n+ 1

1(
n

m−1

) =
m(m− 1)!(n− (m− 1))!

(n+ 1)n!
=

1(
n+1
m

) = µn+1,m(b)

In the other case, we know that Bernoulli(m/(n + 1)) resulted in 0, so there is no replacement.
Therefore, we have

µinsn (b) =

(
1− m

n+ 1

)
1(
n
m

) =
(n+ 1−m)(n−m)!m!

n!(n+ 1)
=

1(
n+1
m

) = µn+1,m(b)

32

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

Coupling. We formally describe the coupling constructed by the unlearning Algorithm 4. We
first the discuss deletion case - consider datasets S and S′ of sizes n and n − 1 respectively, and
wlog assume that the last sample of S differs. We first sample b = [b1, b2, . . . , bT] ∼ µ⊗Tn,m. We

set b(1) = b. For each j ∈ T , if n ∈ bj , then sample b(2)
j ∼ µn−1,m, otherwise set b(2)

j = bj . This
produces the coupled mini-batches (b(1),b(2)) for deletion.

For insertion, we have datasets S and S′ of sizes n and n+ 1 respectively, and again assume that
the last of point of S′ differs. Sample b = [b1, b2, . . . , bT] ∼ µ⊗Tn,m. and set b(1) = b. Now sample

{cj}Tj=1, where cj ∼ Bernoulli
(
m
n

)
, if cj = 1, then sample uniformly a point in b(2)

j , and replace it

with n+ 1. Otherwise set b(2)
j = bj , which gives us the coupled mini-batches (b(1),b(2)).

It is easy to see that the above procedure is how Algorithm 4 handles insertions and deletions
going from S to S′. We first show that this is a valid coupling.

Claim 3 For the coupling described above, for any b,

1. P
[
b(1) = b

]
= µ⊗Tn (b)

2. P
[
b(2) = b

]
= µ⊗Tn−1(b) (deletion), P

[
b(2) = b

]
= µ⊗Tn+1(b) (insertion)

Proof [Proof of Claim 3] Follows immediately from Claims 1 and 2 .

We now show that the probability of disagreement under the above coupling is upper bounded by
k times TV-stability parameter of Algorithm 3.

Claim 4 For the ρ-TV stable Algorithm 3, under the coupling described above, the following holds

P(b(1),b(2))[b
(1) 6= b(2)] ≤ ρ

Proof For deletion, we have,

P(b(1),b(2))[b
(1) 6= b(2)] = P(b(1),b(2))[∃j ∈ [T] : b

(1)
j 6= b

(2)
j] = Pb[∃j ∈ [T] : n ∈ bj] ≤

Tm

n

For insertion, we have

P(b(1),b(2))[b
(1) 6= b(2)] = Pb,c[∃j ∈ [T] : cj = 1] ≤ Tm

n

In Proposition 3, we showed that the total variation distance of the algorithm under change of
one point is at most Tmn = ρ, which completes the proof.

We are now ready to prove Proposition 4.
Proof [Proof of Proposition 4] The following argument is for deletion, but the insertion case follows
similarly. Consider dataset S and S′ of n points and n − 1 points respectively, differing in one
sample. As in the proof of Proposition 3, we embed the randomness for Algorithm 3 executed on
S and S′ into a common probability space. Therefore, similar to the proof of Proposition 3 given
the datasets (and other parameters), Algorithm 3, A(S) is a deterministic map from sub-sampled

33

ULLAH MAI RAO ROSSI ARORA

indices b = (b1, b2, . . . ,bT) to the model: A(S) : b → W , where bj ∈ [n]m, for both datasets.
Hence, what suffices is to show that the input probability measure µ⊗Tn,m is transported to the one that
would have been produced on the current dataset S′ i.e µ⊗Tn−1,m - this follows from Claim 3. Hence it
follows that the output generated by Algorithm 3 has the same measure as A(S)#µ

⊗T
n−1,m, which

proves first part of the claim. The probability of recompute, being at most ρ, for one edit, follows
directly from 4. Finally, from Remark 2, for k edits, and the assumption the number of samples
throughout the stream is between n/2 and 2n, the recompute probability is at most 2kρ.

F.2. Unlearning for noisy-m-A-SGD

F.2.1. COUPLING MINI-BATCHES

In this section, we show that Algorithm 2 transports sub-sampling probability measures while
handling edit requests. We remind that µdel

n,m denotes the probability measure induced on the sub-
sampled indices by the deletion procedure, in any iteration. We show that, for any mini-batch, the
probability mass of the mini-batched indices under µdel

n,m is same as that under the sub-sampling
measure µn−1,m.

Claim 5 For any set b ∈ [n− 1]m, we have that µdel
n,m(b) = µn−1,m(b)

Proof [Proof of Claim 5] Firstly, note that deletion uses additional randomness which is used to
uniformly sample one element from n − (m − 1) elements - let ν denote the uniform probability
measure on n− (m− 1) elements. Let E be the event that the nth was sub-sampled originally, and
therefore replaced upon verification. By direct computation µn,m(E) = m

n . We can therefore write
µdel
n,m(b) as follows

µdel
n,m(b) = µdel

n,m(b|E)µn,m(E) + µdel
n,m(b|Ec)µn,m(Ec)

Under event E, we have the deleted index was replaced. But it can be any element of b that arised
out of this replacement. Hence we decompose the event b|E into events Ei’s, where Ei corresponds
to the event that bi was replaced. We have that b|E = ∪mi=1Ei, and furthermore, due to the uniform
measure, µdel

n,m(Ei) = µdel
n,m(Ej)∀i, j. Note that in the event Ei, we require that the original sub-

sampling measure on n points µn,m to have produced the set b\bi ∪ {n} and then a uniform bi
is drawn upon replacement. Therefore, µdel

n,m(Ei) = µn,m(b\bi ∪ {n})ν(bi) = 1

(n−1
m−1)

1
n−1−(m−1) .

Similarly, when the event Ec occurs, probability of outputting b corresponds to the event when b was
generated using the original sub-sampling measure µm (and no additional randomness used upon
verification). Therefore, we get µdel

n,m(b|Ec) = µn,m(b|Ec) = 1

(n−1
m)

. Plugging these in, and with

34

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

simple calculations, we have

µdel
n,m(b) =

m∑
i=1

µdel
n,m(Ei)µn,m(Ei) + µdel

n,m(b|Ec)µn,m(E)

=
m∑
i=1

µn,m(b\bi ∪ {n})ν(bi)
m

n
+

1(
n−1
m

) (1− m

n

)
=

m(
n−1
m−1

) 1

n− 1− (m− 1)

m

n
+

1(
n−1
m

) (1− m

n

)
=

1(
n−1
m

) +
m

n

(
m(

n−1
m−1

)
(n− 1− (m− 1))

− 1(
n−1
m

))

=
1(
n−1
m

) +
m

n

(
m(m− 1)!(n− 1− (m− 1))!

(n− 1)!(n− 1− (m− 1))
− 1(

n−1
m

))

=
1(
n−1
m

) +
m

n

(
1(
n−1
m

) − 1(
n−1
m

)) =
1(
n−1
m

) = µn−1,m(b)

Similarly, for insertion, we now show that the probability mass of any mini-batch under µins
n,m,

the probability measure induced by insertion on the n+ 1 data points, is same as that under µn+1,m.

Claim 6 For any set b ∈ [n+ 1]m, we have that µins
n,m(b) = µn+1,m(b)

Proof [Proof of Claim 6] Same as that of Claim 2.

F.2.2. LEMMAS FOR REFLECTION COUPLING

We state and prove some results about reflection mapping and couplings.

Lemma 1 Let P and Q be probability distributions over Rd. Let ψ : Rd → Rd be a bijection
such that φP (ψ(x)) = φQ(x), φP (ψ−1(x)) = φQ(x) and

∣∣∣det
(
dψ(x)
dx

)∣∣∣ = 1, where dψ(x)
dx is the

Jacobian of the multivariate map ψ. Let x ∼ P be a sample from P . Let y = x if Unif(0, 1) ≤ φQ(x)
φP (x) ,

otherwise y = ψ(x). Then (x, y) is a maximal coupling of P and Q.

35

ULLAH MAI RAO ROSSI ARORA

Proof We first show that y is a sample from Q. Let E be an event in the range of Q. Let accept be
the event when u ∼ Unif(0, 1), u ≤ φQ(x)

φP (x) . We have,

P [y ∈ E] = P [y ∈ E, accept] + P [y ∈ E, reject]

= Ex,u
[
1 {x ∈ E}1

{
u ≤

φQ(x)

φP (x)

}]
+ Ex,u

[
1 {ψ(x) ∈ E}1

{
u >

φQ(x)

φP (x)

}]
= Ex

[
1 {x ∈ E}P

[{
u ≤

φQ(x)

φP (x)

} ∣∣∣x]]+ Ex
[
1 {ψ(x) ∈ E}P

[{
u >

φQ(x)

φP (x)

} ∣∣∣x]]
=

∫
Rd
1 {x ∈ E}min

{
1,
φQ(x)

φP (x)

}
φP (x)dx

+

∫
Rd
1 {ψ(x) ∈ E}

(
1−min

{
1,
φQ(x)

φP (x)

})
φP (x)dx

=

∫
Rd
1 {x ∈ E}min {φP (x), φQ(x)} dx+

∫
Rd
1 {ψ(x) ∈ E}max {0, φP (x)− φQ(x)} dx

For the second term, we now do change of variable - let v = φ(x) - using the given properties of ψ, we
have φP (x) = φP (ψ−1(v)) = φQ(v) and φQ(x) = φP (v). Furthermore dv =

∣∣∣det
(
dψ(x)
dx

)∣∣∣ dx =

dx. Finally, we are integrating over Rd, and since φ is a bijection, it can flip the limits of some of the
coordinates, however, that is taken into account with using the absolute value of the determinant of
the Jacobian. The second term therefore becomes

∫
Rd 1 {v ∈ E}max {0, φQ(v)− φP (v)} dv. We

now combine the integrands of both the terms, and substitute v = x as the variable in the second
term. This gives us,

P [y ∈ E] =

∫
Rd
1 {x ∈ E} (min {φP (x), φQ(x)}+ max {0, φQ(x)− φP (x)}) dx

Note that for a fixed x, if φP (x) ≤ φQ(x), the integrand becomes
1 {x ∈ E} (φP (x) + φQ(x)− φP (x)) = 1 {x ∈ E}Q(x). On the other hand, if φP (x) > φQ(x),
the integrand becomes 1 {x ∈ E}φQ(x). Hence, for all cases, we get that,

P [y ∈ E] =

∫
Rd
1 {x ∈ E}φQ(x)dx = Q(E)

We now show that it is a maximal coupling i.e. the probability of accept is 1− TV(P,Q). We
have,

P [accept] = Ex,u
[
1

{
u ≤

φQ(x)

φP (x)

}]
=

∫
Rd

min

{
1,
φQ(x)

φP (x)

}
φP (x)dx

=

∫
Rd

min {φP (x), φQ(x)} dx = 1− TV(P,Q)

Lemma 2 Let P and Q be two isotropic probability distributions over Rd with means µP and µQ
such that for any vectors x, y, φP (x) = φQ(y) if ‖x− µP ‖ = ‖y − µQ‖. Given vector u in Rd, the
reflection of u under (Q,P), v = reflect(u, µQ, µP) = µQ + (µP − u), satisfies:

36

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

1. Invertibility: u = uQ + (µP − v)

2. φQ(v) = φP (u) and φP (v) = φQ(u)

3.
∣∣∣det

(
d reflect(u,µQ,µP)

du

)∣∣∣ = 1

Proof [Proof of Lemma 2] The proofs follows immediately using the given assumptions.

F.2.3. COUPLING MARKOV CHAINS

We setup some notation to describe the coupling that Algorithm 2 constructs. The following
discussion is for deletion of index n, but it can be verified that the arguments naturally ex-
tend to the insertion case. We remind that µn,m denotes the distribution of sampling m ele-
ments uniformly randomly from [n], and mini-batches bj ∼ µn,m. Furthermore, we will use
bj = [b1, b2, . . . , bj] denote the set of indices upto j. For dataset S and mini-batch indices
b, let the gradient ∇F̂S(w, zb) := 1

|b|
∑

j∈b∇f(w, zj). Define w̃j+1 := ẘj − η∇FS(ẘj , zbj),
w̄j+1 := w̃j+1 − ηθj and wj+1 := P(w̄j+1). Note that w̃j is also function of bj but this dependency
is not highlighted for notational simplicity.

The iterates and the mini-batches [(w̄2, b1), (w̄3, b2), . . . , (w̄T+1, bT)] produced by Algorithm 1
is a sample from a T -step first order Markov Chain over an uncountable state space Rd × [n]∗. We
remark that w̄1 is a constant initialization, and so isn’t considered. Let P be the joint distribution
over the T iterates × mini-batches. The joint density of P can be factored as,

φP ((w̄2, b1), (w̄3, b2), . . . , (w̄T+1, bT)) = φP (w̄2, b1)φP (w̄3, b2|w2) . . . φP (w̄T+1, bT |wT ,wT−1)

where φP (w̄2, b1) = φ̄P (w̄2|b1)µn,m(b1) and φ̄P (w̄2|b1) is the density of N (w̃2, η
2σ2I). Similarly,

the conditionals φP (w̄j , bj−1|wj−1,wj−2) = φ̄P (w̄j |bj−1,wj−1,wj−2)µn,m(bj−1). Furthermore,
let P̃ denote the marginal of [w̄2, w̄2, . . . , w̄T+1], the joint density of which can be factored as,

φ̃P̃ (w̄2, w̄3, . . . , w̄T+1) = φP̃ (w̄2)φP̃ (w̄3|w2) . . . φP̃ (w̄T+1|wT ,wT−1)

where φP̃ (w̄2) = Eb1φP (w̄2, b1), and the conditional φP̃ (w̄j |wj−1,wj−2) =
Ebj−1

φ̄P (w̄j , bj−1|wj−1,wj−2). Finally, given a fixed mini-batch sequence b = {b1, b2, . . . , bT },
let Pb denote the joint conditional distribution of {w̄2, w̄3, . . . , w̄T+1} given b. In this case, Pb

factorizes as:

φPb
(w̄2, w̄3, . . . , w̄T+1) = φPb1 (w̄2)φPb2 (w̄3|w2) . . . φPbT (w̄T+1|wT ,wT−1)

where φPb1 (w̄2) = φ̄P (w2|b1) and φPbj−1
(w̄j |wj−1,wj−2) = φ̄P (w̄j |bj−1,wj−1,wj−2). We simi-

larly have a Markov Chain to generate the iterates for dataset S′ - call this joint distribution over
iterates and mini-batches as Q, the marginals over iterates as Q̃ and for a given b ∼ {µn−1,m}⊗T ,
the conditionals over the iterates as Qb.

We now describe how the unlearning Algorithm 2 constructs a coupling between P and Q to
generate (w̄(1), w̄(2)). We first describe the coupling of mini-batch indices. Sample b ∼ (µmn)⊗T ,
let b(1) = b. We now look at all b(1)

j ∈ b(1): if n 6∈ b(1)
j , then let b(2)

j = b
(1)
j , otherwise for each

such b(1)
j , we replace n by randomly sampling an index from [n]\b(1)

j , and call this b(2)
j . We then

37

ULLAH MAI RAO ROSSI ARORA

Mini-batches b1 b2 b3 bT

w̄2w̄1 w̄3 w̄4 w̄T+1Iterates

. . .

. . .

Figure 4: Markov chain for noisy-m-A-SGD Algorithm

define the ordered set b(2) =
{
b
(2)
j

}T
j=1

. From Claim 5, this is a valid coupling of mini-batch

indices. Sample w̄ = [w̄2, w̄3, . . . , w̄T+1] ∼ Pb(1) , which corresponds to training with Algorithm 1
on dataset S. Set w̄(1) := w̄. To generate w̄(2), we do rejection sampling steps at each iteration. At

the first step, we sample u1 ∼ Unif(0, 1), and check if u1 ≤
φQ

b(2)
(w̄2)

φP
b(1)

(w̄2) . If the step succeeds, then

we proceed to the second iteration, wherein we again do a step of rejection sampling with ratio of
conditional densities and so on. However, if anyone of the rejection sampling step fails, lets say the
tth step, then we do a reflection of iterate w̄t+1 about the mid-point of the means of Pb(1)(·|wt,wt−1)

and Qb(2)(·|wt,wt−1) , which are w̃
(1)
t+1 = wt − η∇FS(wt, zbt) and w̃

(2)
t+1 = wt − η∇FS′(wt, zb′t)

respectively. Set w̄
(2)
t+1 = reflect(w̄t+1, w̃

(2)
t+1, w̃

(1)
t+1). After the reflection, we continue training on

dataset S′ which corresponds to continue sampling from the (t+ 1)th step of the Markov chain for
Qb(2) conditioned on the tth sample being w̄

(2)
t . This generates the random variables w̄(1) and w̄(2).

We now show that this is indeed a coupling.

Lemma 3 For any measurable set E ⊆ RdT , P
[
w̄(2) ∈ E

]
= Q̃(E)

Proof [Proof of Lemma 3] We will first show that P
[
w̄(2) ∈ E|(b(1),b(2))

]
= Qb(2)(E). The proof

is based on induction on the length of the Markov chain T . Define w̄
(2)
T :=

{
w̄

(2)
2 , · · · , w̄(2)

T−1

}
.

The key to the proof is the observation that the marginals P
b
(1)
1

(·) and Q
b
(2)
1

(·) are Gaussian

N (w̃
(1)
2 , η2σ2I) and N (w̃

(2)
2 , η2σ2I) respectively, and the conditionals P

b
(1)
j

(·|wj) and Q
b
(2)
j

(·|wj)

are also Gaussian N (w̃
(1)
j+1, η

2σ2I) and N (w̃
(2)
j+1, η

2σ2I).
For T = 1, we only care about the marginals P

b
(1)
1

(·) and Q
b
(2)
1

(·), which as argued before,
are normally distributed. From Lemma 2, we have established that the reflection map satisfies the
conditions in Lemma 1. Combining these, we have that the base case T = 1 follows from the
reflection coupling result stated as Lemma 1.

We proceed to the induction step. There are two cases, depending on whether we do a rejection
sampling in the T th step or not: we call these ”rej-sample” and ”no-rej-sample” respectively. If
we do a rejection sampling, we further have two cases (1a). accept: either all rejection samplings,
including the one in the T th step are accepts, (1b). reflect: all rejection samplings, except the one in
the T th step are accepts, and in the T th step, we reflect. Finally, if we don’t do a rejection sampling
step, we have the third case (2). reject: some rejection sampling prior to T results in reject; in this
case, the T th sample w̄

(2)
T+1 ∼ Qb(2)T

(·|w(2)
T ,w

(2)
T−1). Cases (1) and (2) partition the whole event space

38

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

for T draws, whereas cases (1a) and cases (1b) partitions the space of the T th draw, conditioned on
the first event. Also note that case (1) vs (2) distinction is measurable w.r.t. the natural filtration
generated by the Markov chain upto T − 1 draws.

Note that conditioned on the events ”rej sample” as well as w
(2)
T−1, the last step is just a one-step re-

flection coupling method. To elaborate, the conditionals Q
b
(2)
T

(·|w(2)
T ,w

(2)
T−1) and P

b
(2)
T

(·|w(2)
T ,w

(2)
T−1)

used in the T th rejection sampling are Gaussians, which along with the reflection map satisfies
properties of Lemma 1, as in the base case. Let Elast = {y|∃x : (x, y) ∈ E} be the projection
of E on the last co-ordinate and Ey = {x|(x, y) ∈ E}. According to Lemma 2, the conditional
distribution of w

(2)
T+1 is Q

b
(2)
T

(·|w(2)
T ,w

(2)
T−1):

P
[
w̄

(2)
T+1 ∈ Elast|rej-sample, w̄(2)

T−1, (b
(1),b(2))

]
= P

[
w̄

(2)
T+1 ∈ Elast, accept|rej-sample, w̄(2)

T−1, (b
(1),b(2))

]
+ P

[
w̄

(2)
T+1 ∈ Elast, reflect|rej-sample, w̄(2)

T−1, (b
(1),b(2))

]
=

∫
Rd
1

(
w̄

(2)
T+1 ∈ Elast

)
φQ

b
(2)
T

(w̄
(2)
T+1|w

(2)
T ,w

(2)
T−1)dw̄

(2)
T+1

For the ”no-rej-sample” case, we have:

P
[
w̄

(2)
T+1 ∈ Elast|no-rej-sample, w̄(2)

T−1, (b
(1),b(2))

]
= E

w̄
(2)
T+1

[
1

(
w̄

(2)
T+1 ∈ Elast

)]
=

∫
Rd
1

(
w̄

(2)
T+1 ∈ Elast

)
φQ

b
(2)
T

(w̄
(2)
T+1|w

(2)
T ,w

(2)
T−1)dw̄

(2)
T+1

We will now combine the two cases. Let φ(r)(·) and φ(nr)(·) denote the densities of w̄
(2)
T−1 under

the ”rej-sample” and ”no-rej-sample” events respectively.

P
[
w̄(2) ∈ E|(b(1),b(2))

]
= P

[
w̄

(2)
T+1 ∈ Elast

∣∣∣ rej-sample, w̄(2)
T−1, (b

(1),b(2))
]
P
[
w̄

(2)
T−1 ∈ Ew̄

(2)
T+1

, rej-sample
]

+ P
[
w̄

(2)
T+1 ∈ Elast

∣∣∣ no-rej-sample, w̄(2)
T−1, (b

(1),b(2))
]
P
[
w̄

(2)
T−1 ∈ Ew̄

(2)
T+1

, no-rej-sample
]

=

∫
RdT

1

{
w̄

(2)
T+1 ∈ Elast

}
1

{
w̄

(2)
T−1 ∈ Ew̄

(2)
T+1

}
·
{
1rej-sample

{
w̄

(2)
T−1

}
φ(r)(w̄

(2)
T−1) + 1no-rej-sample

{
w̄

(2)
T−1

}
φ(nr)(w̄

(2)
T−1)

}
φQ

b
(2)
T

(w̄
(2)
T+1|w

(2)
T ,w

(2)
T−1)dw̄

(2)
T

=

∫
RdT

1

{
w̄(2) ∈ E

}
φQ

b
(2)
T−1

(w̄
(2)
T−1)φQ

b
(2)
T

(w̄
(2)
T+1|w

(2)
T ,w

(2)
T−1)dw̄

(2)
T

=

∫
RdT

1

{
w̄(2) ∈ E

}
φQ

b(2)
(w

(2)
T)dw̄

(2)
T = Qb(2)(E)

39

ULLAH MAI RAO ROSSI ARORA

where the third equality uses the induction hypothesis that w̄
(2)
T−1, conditioned on b(1) and b(2), is

distributed as Q
b
(2)
T−1

. Finally, we integrate with respect to the coupling generating (b(1),b(2)); we
get

P
[
w̄(2) ∈ E

]
=

∑
(b(1),b(2))

P
[
w̄(2) ∈ E|(b(1),b(2))

]
P
[
b(1),b(2)

]
=

∑
(b(1),b(2))

Qb(2)(E)P
[
b(1),b(2)

]
=
∑
b(2)

Qb(2)(E)P
[
b(2)

]
= Q̃(E)

This completes the proof.

We now show that not only the marginals over the iterates, but the entire state maintained by the
algorithm, which includes the mini-batching indices is transported.

Lemma 4 For any measurable event in
(
Rd × [n]m

)⊗T , we have

P
[
(w̄(2),b(2)) ∈ E

]
= Q(E)

Proof [Proof of Lemma 4] We first decompose the event E ⊆
(
Rd × [n]m

)⊗T as two events,
E = E1 × E2 where E1 ⊆ RdT and E2 ⊆ ([n]m)T . We have

P
[
(w̄(2),b(2)) ∈ E

]
= Eb(1)P

[
w̄(2) ∈ E1|b(1),b(2)

]
P
[
b(2) ∈ E2

]
= Eb(1)Q̃b(2)(E1)µdel⊗T

n,m (E2)

= Eb(1)Q̃b(2)(E1)µ⊗Tn−1,m(E2)

= Q̃b(2)(E1)µ⊗Tn−1,m(E2) = Q(E)

where the second and third equality follows from Lemma 3 and Claim 5, and the final equality
follows from the definition of event E and probability distribution Q.

We now lower bound the probability of accepting at all rejection sampling steps.

Lemma 5 Let “accept” be the event in which all rejection sampling result in accepts so there is no
reflection or recompute. The probability of accept is lower bounded as,

P [accept] ≥ 1−
√
Tρ

8

40

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

Proof [Proof of Lemma 5] We evaluate the probability that all rejection sampling steps result in
accepts. We first do it conditioned on b(1),b(2)

P
[
accept|b(1),b(2)

]
= E

w̄
(1)
T ,w̄

(2)
T+1,{uj}

T
j=1

 T∏
j=1

1accept(uj)

= E

w̄
(1)
T ,w̄

(2)
T+1

 T∏
j=1

P

uj ≤ φQ
b
(2)
j

(w̄
(1)
j+1|w

(1)
j ,w

(1)
j−1)

φP
b
(1)
j

(w̄
(1)
j+1|w

(1)
j ,w

(1)
j−1)

∣∣∣w̄(1)
T , w̄

(2)
T

=

∫
RdT

T∏
j=1

min

{
φP

b
(1)
j

(w̄
(1)
j+1|w

(1)
j)w

(1)
j−1), φQ

b
(2)
j

(w̄
(1)
j+1|w

(1)
j),w

(1)
j−1)

}
dw̄

(1)
T

=

T∏
j=1

(∫
Rd

min

{
φP

b
(1)
j

(w̄
(1)
j+1|w

(1)
j),w

(1)
j−1), φQ

b
(2)
j

(w̄
(1)
j+1|w

(1)
j),w

(1)
j−1)

}
dw̄

(1)
j+1

)

The term ∫
Rd

min

{
φP

b
(1)
j

(w̄
(1)
j+1|w

(1)
j),w

(1)
j−1), φQ

b
(2)
j

(w̄
(1)
j+1|w

(1)
j),w

(1)
j−1)

}
dw̄

(1)
j+1

= 1− TV
w̄

(1)
j ,b(1),b(2)(Pb(1)j

, Q
b
(2)
j

)

where the notation TVx(·, ·) denotes the conditional TV between the arguments, conditioned on

the subscript. Let γj =
∆(b

(1)
j ,b

(2)
j)

2 i.e. the number of elements differing in b(1)
j and b(2)

j . Note

that if γj = 0, then b(1)
j = b

(2)
j and P

b
(1)
j

= Q
b
(2)
j

, and hence TV
w̄

(1)
j−1,b

(1),b(2)(Pb(1)j
, Q

b
(2)
j

) = 0.

In the other case, γj = 1, which corresponds to the case when the deleted point was used in
the jth mini-batch. In this case, the means of P

b
(1)
j

are Q
b
(2)
j

at separated by at most 2Gη
m - this

follows as in the proof of Proposition 1. In particular, fixing previous iterates and w̄
(1)
j−1 and

mini-batch indices b(1),b(2), using the fact that gradients are in norm bounded by G, P
b
(1)
j

and

Q
b
(2)
j

are Gaussians with variance η2σ2I and means separated by either 2Gηγj
m or 0, depending on

γj . Combining the two cases, and using TV between Gaussians formula Devroye et al. (2018),

we have 1 − TV
w̄

(1)
j−1,b

(1),b(2)(Pb(1)j
, Q

b
(2)
j

) ≥
(

1− Gη
ησm

)γj
=
(
1− G

σm

)γj . We therefore get∫
Rd min

{
φP

b
(1)
j

(w̄
(1)
j+1|w

(1)
j),w

(1)
j−1), φQ

b
(2)
j

(w̄
(1)
j+1|w

(1)
j),w

(1)
j−1)

}
dw̄

(1)
j+1 ≥

(
1− G

σm

)γj . Plugging

this in the conditional probability of accept expression, we get

P
[
accept|b(1),b(2)

]
≥

T∏
j=1

(
1− G

σm

)γj
=

(
1− G

σm

)∑T
j=1 γj

≥ 1−
G
∑T

j=1 γj

σm

41

ULLAH MAI RAO ROSSI ARORA

We now integrate with respect to b(1),b(2). Note that
∑T

j=1 γj is the number of mini-batches
which contain the deleted point. Since in each mini-batch, m points are selected uniformly randomly
from n, Eb(1),b(2)γj = m

n , which gives us Eb(1),b(2)

∑T
j=1 γj = Tm

n . Hence,

P [accept] ≥ 1−
GEb(1),b(2)

∑T
j=1 γj

σm
= 1− GT

σn
= 1−

√
Tρ

8

where the last equality follows from plugging in σ = 8
√
TG
nρ as in Proposition 1.

We are now ready to prove Proposition 2.
Proof [Proof of Proposition 2] We need to show that upon deletion and insertion, the probability
distribution of the entire state maintained by the algorithm, which is all iterates as well as mini-
batches indices is transported - this, for one deletion, follows from Lemma 4 (which is for unprojected
iterates), together with the fact that projection is a deterministic operation. Moreover, as before, the
above argument also holds for insertion and generalizes arbitrary edit requests.

We now proceed to bound the probability to recompute. This follows directly combining
Lemma 5, Proposition 1 and Remark 2. From Remark 2, upon k edits, the total variation distance is at
most k times total variation distance upon 1 edit. Since the algorithm is ρ-TV stable (Proposition 1),
and the assumption that the number of samples are between n/2 and 2n, the total variation distance
upon k edits is at most 2kρ. Hence, using Lemma 5, we have that the probability to recompute is
probability of “reject” is at most kρ

√
T

4 .

Appendix G. Runtime and space complexity

In this section, we discuss, in detail, the learning and unlearning runtime of the algorithms, as well as
their space complexity.

G.1. Learning runtime

In this work, we did not aim to carefully optimize the runtime for training/learning algorithm, as
long as the algorithm achieves the rate in Theorem 2. However, we briefly discuss the runtime
of each algorithm, and highlight easy improvements, where possible. Algorithm 3 requires mT
= ρn stochastic gradient computations. On the other hand, for Algorithm 1, if m ≤

√
LDρn

G
√
d

, it

requires mT = m
(ρn
md

)
= (ρn)2

d stochastic gradient computations - setting larger m only hurts the
total runtime, without any advantage. Note that total stochastic gradient descent computations of
noisy-m-SGD (i.e. without acceleration, see Appendix H.1) is also (ρn)2

d ; however, the key advantage
of acceleration is that it allows setting larger mini-batch sizes: T 3 as opposed to T , which leads to
smaller number of iterations:

√
ρn√
d

as opposed to ρn√
d

and hence a smaller probability of recompute.

From Woodworth and Srebro (2016), we know that mini-batch SGD (with or without acceleration) is
optimal for smooth convex composite/ERM optimization in the low accuracy regime: when accuracy
α & 1√

n
. In this regime, an algorithm makes at least Ω

(
1
α2

)
calls to a stochastic gradient oracle. It

can be then verified that for our accuracy, our algorithms make the optimal number of oracle calls.
For Algorithm 1, as discussed, faster algorithms lead to better unlearning times. It is natural to

ask what happens if we additionally introduce variance reduction techniques on top of acceleration

42

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

to yield even faster runtimes. In particular, what if we use Katyusha Allen-Zhu (2017), which
has optimal runtime in terms of stochastic gradient computations. We argue that even though it
improves the runtime of the learning algorithm, it does not yield improvement for unlearning beyond
what we have with acceleration. From Corollary 5.8 in Allen-Zhu (2017), setting largest allowed

m =
√
n, we get that Tm = O

(√
n√
ε

)
– in our case, ε =

√
d

ρn , which yields Tm = O

(
√
n
√

ρn√
d

)
stochastic gradient computations. Note that this is smaller than that of noisy-m-A-SGD (unless ρ is
very small), however T =

√
ρn√
d

– same as that of noisy-m-A-SGD, and hence yields no improvement

in unlearning time. However, note that using Katyusha would give us optimal oracle complexity even
in the high accuracy regime.

G.2. Unlearning runtime

We now look at how much compute it takes for Algorithm 4 and 2 to handle the edit requests. We first
give a general result, which holds for any TV-stable algorithm with the unlearning algorithm being
the one which constructs a coupling with acceptance probability at least 1−ρ. We give in-expectation
bounds on the number of times verification fails or a full or partial recompute is triggered.

Proposition 6 For a coupling based unlearning algorithm with acceptance probability at least
1− ρ, for k edit requests, the expected number of times recompute is triggered is at most 4kρ.

Proof [Proof of Proposition 6] We first setup some notation. In the general setup, for k edit
requests, let s be the number of times a recompute is triggered. Let {Z1, Z2, . . . , Zs} be a set of
random variables, where each Zi denotes how many edit requests the ith recompute can handle. To
elaborate, Zi takes value j, if upon j edit requests, a recompute is triggered. The Zi’s comprises
to the randomness used in the algorithm like mini-batching indices or Gaussian noise, as well as
the randomness used for rejection sampling. It is important to note that Z ′is are not necessarily
independent. In particular, in Algorithm 2, we reuse the Gaussian noise upto the iteration in
which rejection sampling fails, and only use fresh/independent Gaussian noise in the later steps.
However, note that we have exact unlearning, and the output at each step is ρ-TV stable (w.r.t. all the
randomness used). Hence, since the above description of the distribution of Zi’s depend only on the
TV stability parameter, it follows that Z ′is are (marginally) identical.

We now use the fact that the unlearning algorithm constructs a coupling with acceptance proba-
bility at least 1− ρ to describe the probability distribution of Zi. We have that upon one edit request,
the probability that a recompute is triggered is at most ρ. This means that Zi < 2 with probability
≤ ρ. Using Remark 2, this generalizes as Zi < j with probability at most (j − 1)ρ. Note that in our
setup, we observe at most k requests, so Zi taking values larger than k is not meaningful. However if
kρ < 1, it means that probability that Zi takes values smaller than k is less than 1, and therefore there
is a positive probability of Zi being larger than k. To remedy this, we define another random variable
Xi’s which takes values in the set {1, 2, . . . , k}. Furthermore, for any i, P [Xi = j] = P [Zi = j] for
j ≤ k, but P [Zi = j] =

∑∞
l=k P [Xi = l]. By construction, this ensures that 1 ≤ Zi ≤ k, when we

observe at most k requests.
We want upper bounds on s conditioned on the fact that k requests are addressed i.e. X1 +

X2 . . . , Xs ≥ k. For this we write s as s := minq {2k ≥ X1 +X2 . . . , Xq ≥ k}. The first inequality
holds trivially since we ensured that Xi ≤ k. It is easy to see that s is a stopping time with respect to

43

ULLAH MAI RAO ROSSI ARORA

the filtered probability space of the stochastic process {Xi}i∈N. Furthermore, sinceXi’s are identical,
we can apply Wald’s equation to get,

2k ≥ E[X1 +X2 + . . . Xs] = E[s]E[X1] = E[s]

k∑
j=1

P {Xi ≥ j} = E[s]

∞∑
j=1

P {Zi ≥ j}

≥ E[s]

1+1/ρ∑
j=1

P {Zi ≥ j} = E[s]

1+1/ρ∑
j=1

(1− P {Zi < j}) ≥ E[s]

1

ρ
−

1+1/ρ∑
j=1

(j − 1)ρ

≥ E[s]

(
1

ρ
−
∫ 1/ρ

j=0
jρdj

)
≥ E[s]

(
1

ρ
− 1

2ρ2
ρ

)
≥ E[s]

2ρ

This gives us that E[s] ≤ 4kρ.

Next, we look at the runtimes for Algorithm 4 and Algorithm 2 to handle one deletion or insertion
request. For this, we look at the runtime of verification, i.e., deciding if recompute needs to be
triggered or not. We show how in the standard algorithmic model of computation (say, word RAM
model), using suitable data structures, this can be done efficiently. Furthermore, as standard in convex
optimization, we can use oracle model of computation Nemirovskij and Yudin (1983) which counts
the number of accesses to the first-order (gradient) information of the function, and a projection
oracle. Let G denote the compute cost for one gradient access or projection in the standard model of
computation – we assume that both oracles require the same compute. In the rest of the discussion,
we provide runtime as a function of the problem parameters ignoring all constants. Furthermore,
since we assumed that the number of samples at any point in the stream is between n

2 and 2n, we
will just work with n samples, and everything would still be the same, up to constants.

Verification runtime of Algorithm 4. For Algorithm 4, note that for deletion, for every iteration,
we need to check if the used mini-batch bt contained the requested point. A brute force search takes
O(m) time, whereas if we sort when we save the mini-batch indices bt, we can do a binary search in
O(log (m)) time; we can even do constant time search by storing a dictionary/hash table, giving us
an O(T) total time. The most efficient way however is to store a dictionary of sample to mini-batch
iterations that the sample was used in. For this, it takes O(1) time lookup for every edit request. For
insertion, similarly, at every iteration, we first sample from a Bernoulli with bias m/n which takes
constant time, giving us O(T) total time. However, equivalently, we just sample one Bernoulli with
bias Tm/n and recompute based on its outcome. This gives us an O(1) time lookup for every edit
request.

Verification runtime of Algorithm 2. For Algorithm 2, we can similarly search in constant time
whether the deleted point was used in any iteration or not. For every iteration in which the deleted
point is in the mini-batch, we need to compute a gradient at a new point, so as to replace the deleted
point. Sampling a point uniformly from a discrete universe takes linear time (in the size) in the
worst case, but with some pre-processing can be done in logarithmic/constant time. For example,
when saving the mini-batch indices bt, if we save a sorted list of the indices not sampled, using
binary search, we can sample in O(log (n− (m− 1))) time. The more efficient way is, if we save a
probability table, then we can use Alias method to sample in O(1) time Walker (1977). Hence for

44

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

such iterations, we query two gradients, and it takes O(d) compute to add/subtract this gradients.
Since the total number of iterations in which a deleted point was sampled in, in expectation, is Tm

n ,
the expected total compute is Tm(G+d)

n .
We now consider the computational cost of rejection sampling. In Algorithm 2, at every iteration

we check if Unif(0, 1) ≤
φN (g′t,σ

2I)(ξt)

φN (gt,σ
2I)(ξt)

, where φN (gt,σ2I)(·) and φN (g′t,σ
2I)(·) are probability densities

evaluated at the sampled point ξt. We thus need to compute this ratio of probability densities – since
these are Gaussian densities, the ratio is just the following the expression:

φN (g′t,σ
2I)(ξt)

φN (gt,σ2I)(ξt)
=

1

(
√

2πσ2)d
exp

(
−‖g

′
t−ξt‖

2

2σ2

)
1

(
√

2πσ2)d
exp

(
−‖gt−ξt‖

2

2σ2

) = exp

(
1

2σ2

(
‖gt − ξt‖2 −

∥∥g′t − ξt
∥∥2
))

.

It takes O(d) time to do the above computation. Moreover, we only need to compute the ratio in
iterations where the means differ – these correspond to the iterations where the deleted point was
sampled or the inserted point would have been sampled. By a direct computation, the expected
number of such iterations is Tm

n . This gives us a computational cost of Tmdn for rejection sampling,
and hence the expected runtime of verification is Tm(G+d)

n .
We now state bounds on runtime for both unlearning algorithms.

Claim 7 The expected total unlearning runtime of Algorithm 4 for k edit requests is
O (max {k,min {ρ, 1} k · Training time}).

Proof [Proof of Claim 7] The total runtime of Algorithm 4 is the time for verification plus the runtime
for recomputation, whenever a recompute is triggered. The recomputation time is just the training
time, and in the model considered, excepted cost of one recomputation takes O (Tm (G + d))
time, since at every iteration, m gradients are computed and vectors added. As discussed in
Appendix G, the expected verification time for Algorithm 4 is O(1). From Proposition 4, the
unlearning Algorithm 4 recomputes with probability O(min {ρ, 1}) for one edit request. Therefore,
using Proposition 6 which bounds the number of recomputes, we have that the expected total runtime
is bounded as kO(1) + 4kmin {ρ, 1} ·O (Tm (G + d)) ≤ O (max (1,min {ρ, 1}Tm (G + d)) k).
For a sufficiently large ρ, the unlearning time of Algorithm 4 is clearly dominated by the training
time. In particular, in the corresponding batch Algorithm 3, we set m = ρn

T , giving a total runtime of
O
(
max

(
1,min

{
ρ2, 1

}
n (G + d)

)
k
)
. Hence for ρ & 1√

n(G+d)
, the total runtime in expectation is

at most O(min {ρ, 1} · k · Training time). In the other case, the expected total runtime is just O(k).

Claim 8 The expected total unlearning runtime of Algorithm 2 for k edit requests is
O
(

max
{
k,min

{
ρ
√
T , 1

}
· k · Training time

})
.

Proof [Proof of Claim 8] As before, the total runtime of Algorithm 4 is the time for verification plus
the runtime for recomputation, whenever a recompute is triggered. As discussed in Appendix G,
the expected verification time for Algorithm 2 is O

(
Tm(G+d)

n

)
. The recomputation in this case

may be partial but it also includes a reflection. The reflection operation with d dimensional vectors

45

ULLAH MAI RAO ROSSI ARORA

takes O(d) compute. Furthermore, we upper bound the partial recomputation time by worst-case
full recomputation time, giving a recomputation time O (Tm (G + d)). From Lemma 5, we have
that the unlearning coupling is not maximal but recomputes with probability min

{
ρ
√
T , 1

}
. Fi-

nally, by Proposition 6 we have that the expected total runtime is bounded as kO (Tm (G + d)) +

4kmin
{
ρ
√
T , 1

}
· O
(
Tm(G+d)

n

)
≤ O

(
max

(
min

{
ρ
√
T , 1

}
, 1
n

)
kmT (G + d)

)
. In contrast,

for Algorithm 2, the runtime is at most O
(

max
(

min
{
ρ
√
T , 1

}
, 1
n

)
kmT (G + d)

)
. Our lower

bounds will show that we need ρ & 1
n to get any non-trivial accuracy. Therefore the maximum

is always obtained by min
{
ρ
√
T , 1

}
. Moreover, k is a trivial lower bound on runtime, since we

need to observe all k edit requests. Hence, we get that the total runtime in expectation, is at most
O
(

max
{
k,min

{
ρ
√
T , 1

}
· k · Training time

})
.

G.3. Space complexity

In this work, the objective was not to optimize the memory used, but rather, to study if the problem
can be solved computationally efficiently, no matter how much (reasonable) memory the algorithm
uses. However, we discuss, in this section, that the space complexities of the proposed algorithms,
which we will see, is arguably, reasonably small. We ignore the space used to store the dataset. In both
algorithms, we save a hash-table of iterations to samples - since we do T iterations with m samples
each, this takes space of O(Tm) words. We also store all the iterates, which are d-dimensional
vectors, so this takes a space of O(dT) words. Finally, we also store a dictionary of iterations to
models, which takes O(T) space. The space complexity therefore is O(T (max {m, d}). Plugging in
the values of T , we get the following.

Algorithm 3: Plugging T ≤ ρn
m from Proposition 3, we get space complexity =

O
(
ρnmax

{
1, dm

})
. As remarked in Appendix C, we can improve the space complexity by not

requiring to save all the iterates and yet have the same unlearning runtime. In the proof of Claim 7,
we upper bound the recomputation time by a full re-computation time - this means that the upper
bound on unlearning runtime holds even if the algorithm does full retraining everytime verification
fails. The unlearning Algorithm 4 can thus be modified as follows: for deletion, instead of continue
retraining from iteration t where the deleted point participates, we can just do full retraining, with
fresh randomness for all mini-batches. For insertion, note that when if condition is met (line 6 in
Algorithm 4), we use the iterate wt to compute the gradient on the inserted point (line 8 in Algo-
rithm 4); however, if we don’t save wt, we can just compute it on the fly by doing a full retraining
with the same old mini-batches. After wt is computed, we just continue as in Algorithm 4.

With the above modification, we only need to save a hash-table of used samples to binary values
which correspond to whether they were used or not, which takes O(Tm) words, and a d dimensional
model. Hence, the space complexity of Algorithm 4 is O(Tm+ d) words.

Algorithm 1: From Proposition 1, note that if m ≤ O(T 3), T = ρn
md , and therefore, dT = ρn

m .

If we use the largest mini-batch size m = O(T 3), then T =
√

ρn√
d
, and hence dT = d3/4√ρn.

Therefore, the space complexity is O(T max {m, d}) ≤ O
(

max
{

(ρn)2

d , d3/4√ρn
})

words.

46

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

Appendix H. Other algorithms and batch unlearning

To demonstrate the generality of our framework, we give two more algorithms. The first is noisy-m-
SGD which is the same as Algorithm 1 but without acceleration, and the second is quantized-m-SGD,
based on randomized quantization. We note that both algorithms have worse theoretical guarantees
than Algorithm 1, however the first establishes our claim that acceleration is beneficial, whereas
the second shows how a previous work of Ginart et al. (2019) for k-means clustering, can, not only
be seen as a special case of our framework, but also extended to general convex risk minimization
problems. Moreover, in the second case, we consider a more general setup of batch edit requests,
and show that our techniques are flexible enough to easily generalize to the batch variant.

H.1. noisy-m-SGD

Algorithm 5 noisy-m-SGD(wt0 , t0)
Input: Initial model wt0 , data points {z1, . . . , zn}, T, η,m

1: w0 = 0
2: for t = t0, t0 + 1, . . . , T do
3: Sample mini-batch bt of size m uniformly randomly
4: gt = 1

m

∑
j∈bt ∇f(wt, zj)

5: Sample θt ∼ N (0, σ2Id)
6: wt+1 = P (wt − η (gt + θt))
7: Save(bt, θt,wt, gt)
8: end for

Output: ŵS = 1
T

∑T+1
t=1 wt

Proposition 7 Let f(., z) be an L-smooth G-Lipschitz convex function ∀ z. Algorithm 5, run with

t0 = 1, η = min

{
1

2L ,
D(

G√
m

+σ
)√

T

}
, σ = 8

√
TG
nρ , and T ≥ (ρn)2

16m2 outputs ŵS which is min {1, ρ}-

TV stable and satisfies EF̂S(ŵS)− F̂S(w∗S) . GD
√
d

ρn

Proof [Proof of Proposition 7] The TV -stability guarantee of ρ = 8
√
TG
n follows exactly as in

the proof of Proposition 1. We now proceed to the accuracy guarantee, which follows simply by
guarantee of SGD on smooth convex functions. We have already shown in Proposition 1 that the
gradients are unbiased and its variance bounded by 2G2

m + 2G2

m + σ2d.
Therefore, using Theorem 4.1 in Allen-Zhu (2018) with step-size η ≤ 1

2L , we have

EF̂ (ŵ)− F̂ (w∗) ≤ O
(

2ηV2 +
D2

ηT

)
= O

(
2η

(
2G2

m
+ σ2d

)
+
D2

ηT

)

47

ULLAH MAI RAO ROSSI ARORA

Let G̃2 = 2G2

m + σ2d, balancing the trade-off in η gives us η = D
G̃
√
T

. Therefore setting

η = min
{

1
2L ,

D
G̃
√
T

}
gives us

EF̂ (ŵ)− F̂ (w∗) ≤ O

(
LD2

T
+
G̃D√
T

)
≤ O

(
LD2

T
+

GD√
Tm

+
σ
√
dD√
T

)

≤ O

(
LD2

T
+

GD√
Tm

+
GD
√
d

nρ

)

Finally, the condition in the sub-sampling amplification 8G2

m2σ2 ≤ 1.256 again becomes T ≥ (nρ)2

16m2 .

We now show that Algorithm 5 achieves the same upper bound on excess empirical risk as
Algorithm 1.

Corollary 2 Let f(., z) be an L-smooth G-Lipschitz convex function ∀ z. Algorithm 5, run

with m ≥ min

{
d
16 ,

1
4

(
(ρn)G

√
d

LD

)1/2
}

, η = min

{
1

2L ,
D(

G√
m

+σ
)√

T

}
, σ = 8

√
TG
nρ , and T =

max
{

(ρn)2

md ,
LDρn

G
√
d

}
outputs ŵS which is ρ-TV stable and satisfies EF̂S(ŵS)− F̂S(w∗S) . GD

√
d

ρn

Proof [Proof of Corollary 2] We start with the result in Proposition 7. Note that as long as GD√
mT
&

LD2

T ⇐⇒ m . TG2

LD , the second term is larger than the first. We balance the two trade-offs in T .

Optimizing the trade-off between second and third term gives us GD√
mT

= GD
√
d

ρn ⇐⇒ T = (ρn)2

md ;

and optimizing the second trade-off gives us
√
d

ρn = LD2

T ⇐⇒ T = LD2(ρn)√
d

. Hence setting

T = max
(

(ρn)2

md ,
LD2(ρn)√

d

)
yields an expected excess empirical risk of O

(
GD
√
d

nρ

)
.

We now look at the condition T ≥ (nρ)2

16m2 given in Proposition 7, with T set as T =

max
(

(ρn)2

md ,
LD2(ρn)√

d

)
. We therefore require (ρn)2

md ≥
(ρn)2

16m2 ⇐⇒ m ≥ d
16 , as well as LD(ρn)

G
√
d
≥

(ρn)2

16m2 ⇐⇒ m ≥ 1
4

(
(ρn)G

√
d

LD

)1/2
- this recovers the condition m ≥ min

{
d
16 ,

1
4

(
(ρn)G

√
d

LD

)1/2
}

in the Proposition statement. Hence, combining all the above arguments, we get that for any

m ≥ min

{
d
16 ,

1
4

(
(ρn)G

√
d

LD

)1/2
}

, setting T = max
{

(ρn)2

md ,
LD(ρn)

G
√
d

}
, yields an expected excess

empirical risk of O
(
GD
√
d

nρ

)
.

Remark 5 The choice of T in Proposition 1 yields that the largest mini-batch size that
can be set, without hurting runtime, is m = ρnG√

dLD
. Furthermore, the condition m ≥

min

{
d
16 ,

1
4

(
(ρn)G

√
d

LD

)1/2
}

becomes T ≥
(√

dLD
4G

)2
.

We now state and prove the main theorem for this section.

48

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

Algorithm 6 Unlearning for noisy-m-SGD
Input: Delete point with index j or insert z (with index n+ 1) for noisy-m-SGD

1: for t = 1, 2 . . . , T do
2: Load(θt,wt, bt, gt))
3: if deletion and j ∈ bt then
4: Sample i ∼ Uniform([n]\bt)
5: g′t = gt − 1

m (∇f(wt, zj)−∇f(wt, zi))
6: Save(g′t, bt\ {j} ∪ {i})
7: else if insertion and Bernoulli

(
m
n+1

)
then

8: Sample i ∼ Uniform(bt)
9: g′t = gt − 1

m (∇f(wt, zi)−∇f(wt, z))
10: Save(g′t, bt\ {i} ∪ {n+ 1})
11: else
12: continue
13: end if
14: ξt = gt + θt

15: if Uniform(0, 1) ≥
φN (g′t,σ

2I)(ξt)

φN (gt,σ
2I)(ξt)

then
16: ξ′t = reflect(ξt, g′t, gt)
17: wt+1 = wt − ηξ′t
18: Save(ξ′t)
19: noisy-m-SGD(wt+1, t+ 1) // Continue retraining, on current dataset
20: break
21: end if
22: end for

Theorem 4 Let f(·, z) be an L-smooth G-Lipschitz convex function ∀ z. For any 1
n ≤ ρ ≤ 1, using

Algorithm 5 as the learning algorithm and Algorithm 6 as its unlearning algorithms, then given a
stream of edit requests,

1. Satisfies exact unlearning at every point in the stream.

2. At time i in the stream of edit requests, outputs ŵSi , such that if
(
L1/2D2

√
d

G(ρn)

)2/3
≤ GD√

ρn , then
its with excess empirical risk bounded as,

EF̂S(ŵSi)− F̂S(w∗Si) .

(
L1/2D2

√
d

G(ρn)

)2/3

3. For k edit requests, the expected total unlearning runtime is O(max {ρk · Training time, k})

Proof [Proof of Theorem 4] We proceed as in the proof of Theorem 1. For any 0 < ρ̃ ≤ 1, from
Proposition 7, the output ŵS is ρ̃-TV stable, and the excess empirical risk using Algorithm 5 on a
dataset S on n points, is bounded as,

EF̂S(ŵS)− F̂S(w∗S) ≤ O

(
LD2

T
+

GD√
Tm

+
GD
√
d

nρ̃

)

49

ULLAH MAI RAO ROSSI ARORA

It can be easily verified that Proposition 2 and Proposition 2 still holds for noisy-m-SGD, which
gives us that the algorithm satisfies exact unlearning at every time in the stream, proving the first
part of the claim, Moreover, its recompute probability bounded by O(ρ̃k

√
T) and therefore the

unlearning runtime bounded by O(max
{
k, ρ̃k

√
T · Training time

}
. Substituting ρ̃ = ρ√

T
, and

using the largest mini-batch size m =
(
G
LD

)2
T , the upper bound on excess empirical risk becomes

LD2

T + GD
√
d
√
T

nρ . Optimizing the trade-off, we have LD2

T = LD2

T ⇐⇒ T =
(
LD(ρn)

G
√
d

)2/3
, and the

excess empirical risk bound upper bound is LD
T =

(
L1/2D2

√
d

G(ρn)

)2/3
. Note that this also proves the

third part of the claim. Furthermore, as in the proof of Theorem 1, it can be verified that the condition

T ≥ (ρ̃n)2

16m2 is equivalent to
(
L1/2D2

√
d

G(ρn)

)2/3
≤ 1√

ρn , which just means that the excess empirical risk
of noisy-m-SGD is at most that of sub-sample-GD. Finally, the upper bound holds for any point in the
stream using the assumption that the number of samples are between n

2 and 2n, thereby establishing
the second claim.

H.2. quantized-m-SGD

The work of Ginart et al. (2019) considers unlearning in k-means clustering. The key algorithmic
technique is randomized quantization of vectors to a τ -lattice. The intuition is that if the vector is an
average of n data points which are bounded in norm, then upon changing one data point, the vectors
O
(

1
n

)
close. Therefore, if the lattice is sufficiently coarse, then it would ensure that both are mapped

up the same point in the lattice. However, if we consider deterministic quantization, then there exists
points such that for any ε > 0, shifting the point by ε changes the quantized point. Therefore, we
first shift the lattice by a uniformly random phase, which ensures that such a situation occurs with a
small probability.

In their application of k-means clustering, this vector is a cluster centroid, which is an average of
the data points in the cluster. We apply this idea to convex risk minimization problems, wherein we
quantize average gradients, which by the Lipshcitzness assumption are bounded in norm.

We now introduce the quantization operation formally. Given a vector x, let θ ∼ Unif
[
−1

2 ,−
1
2

]d,
consider the quantization given by:

Qθ(x) = τ

(
θ + arg min

j∈Zd
(x− τ(θ + j))

)
We now state a result about the quantization operation.

Lemma 6 Let Bδ(u) denote the Euclidean call of radius δ centered at u. The following holds for
the quantization operation,

1. For any x, EQθ(x) = x and E‖x− Ex‖2 ≤ τ2d

2. For any vector u, P [∃v ∈ Bδ(u) : Qθ(u) 6= Qθ(v)] ≤ 2dδ
τ

Proof [Proof of Lemma 6] Note that for a given x, Qθ(x) ∼ Unif
[
x− τ

2 , x + τ
2

]d, hence EQθ(w) =

w. Furthermore, since w−Ew ∼ Unif
[
− τ

2 ,
τ
2

]d, we have E‖w − Ew‖2 = dE (w1 − Ew1)2 = dτ2

12 .
The second part of the claim is Lemma C.2 in Ginart et al. (2019).

50

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

To see why Ginart et al. (2019) is a special case of our framework, note that the total variation
distance between two random variables is at most the probability of disagreement under any coupling.
Ginart et al. (2019) uses the same quantization randomness (used for training) for verifying after the
edit request - this corresponds to a trivial coupling between the quantization randomness, hence the
total variation distance between the outputs is bounded by the upper bound on the probability that
the quantized points change (see Lemma 6). This establishes that it is a TV stable method. Finally,
as said before, using the same quantization randomness corresponds to a trivial coupling, but can be
shown to be maximal since the probability distribution is uniform around the to-be-quantized point.
Therefore, we have that Ginart et al. (2019) uses a maximal coupling based unlearning method.

Batch unlearning: We consider a batch unlearning setup, wherein instead of observing an insertion
or deletion request, we observe a batch edit request with insertions and deletions. We demonstrate that
our general approach of coupling mini-batch indices is flexible enough to handle this variant naturally.
The batch unlearning ideas and results extend to other algorithms: noisy-m-A-SGD, noisy-m-SGD
and subsample-GD. We also note that the computational benefit of batch unlearning as opposed to
handling edits one by one is only a constant factor, which at best is two.

We now discuss how we extend the randomized quantization idea to convex risk minimization.
In our learning algorithm quantized-m-SGD, at each iteration, we draw a mini-batch of m samples,
uniformly randomly from n samples, use it to compute the gradient on the previous iterate , quantize
using a randomly sampled phase, and update. Algorithm 8 implements the above procedure.

Algorithm 7 quantized-m-SGD
Input: Initial model w1, data points {z1, . . . , zn},T, η

1: for t = 1, 2 . . . , T do
2: Sample mini-batch bt of size m uniformly randomly
3: Sample θt ∼ Unif

[
−1

2 ,
1
2

]d
4: gt = 1

m

∑
j∈bt ∇f(wt, zj)

5: wt+1 = wt − ηQθt (gt)
6: Save(θt,wt, bt, gt)
7: end for

Output: ŵS = 1
T+1

∑T+1
j=1 wj

We first prove a lemma which bounds the total variation distance between outputs generated by
quantized-m-SGD on arbitrarily differing datasets - these can be thought of as arising after a batch
edit request.

Lemma 7 Let S and S′ be two datasets of n and n + k2 points respectively, such that S has k1

points which differ from S′ i.e. |S\S′| = k1, therefore S and S′ differ by k1 +k2 points. Let {wj}Tj=1

and
{

w′j

}T
j=1

be iterates of quantized-m-SGD on datasets S and S′ respectively. The total variation

distance between distribution of average iterates ŵS and ŵS′ is bounded as,

TV(ŵS , ŵS′) ≤
4GTd(k1 + k2)

nτ

51

ULLAH MAI RAO ROSSI ARORA

Proof [Proof of Lemma 7] Without loss of generality, we enumerate S and S′ into subsets as follows:
let S1 and S′1 be the first n− k1 elements of S and S′ which are the same. Let S2 and S′2 be the next
k1 differing elements in S and S′ respectively. Finally, let S′3 be the last k2 elements of S′.

We look at iteration t of quantized-m-SGD and fix the previous model wt = w′t = w. We will
now compute the conditional total variation distance between wt+1 and w′t+1. Note that since the
only randomness is in the sub-sampling and quantization, we can compute the total variation distance
between sub-sampled quantized gradients on fixed w for both datasets, and this will lower bound
total variation distance between the iterates wt+1 and w′t+1 by data processing inequality. Let b(1)

and b(2) be a uniform sample of m points from datasets S and S′ respectively. For a fixed w, let the
gradient on S indexed by b(1) be denoted as gS

b(1)
(w) = 1

m

∑
j∈b(1) ∇f(w, zSj), and similarly for S′.

Let P and Q denote the probability distribution of gS
b(1)

(w) and gS
′

b(2)
(w) respectively. We have the

following claim, which we will prove via mathematical induction on k2: for any measurable set R,
for any k2, |P (R)−Q(R)| ≤ 4Gdk1

nτ +
∑k2

j=1
4Gd

(n+j)τ .

Base case 1: k2 = 0 : Firstly note that both b(1) ∼ Unif([n],m) and b(2) ∼ Unif([n],m), and
consider the trivial coupling b(1) = b(2) = b, where b ∼ Unif([n],m), be a uniform sample of
m points from [n]. We now use the fact that total variation distance is at most the probability of
disagreement for any coupling. This gives us that

TV(Qθ(g
S
b(1)

(w)), Qθ(g
S′

b(2)
(w)) ≤ P

[
Qθ(g

S
b (w)) 6= Qθ(g

S′
b (w))

]
We will focus on upper bounding the right hand side. The proof follows by using the quantization
guarantee (Claim 6) combined amplification from subsampling. Without loss of generality, assume
that the first k1 samples in S and S′ are the ones that differ. Fix the random (uniform) sample b
of indices - suppose for this fixed value of b, exactly j differing data points are sampled. From G

Lipschitzness, and that we have exactly j differing data points,
∥∥∥gSb (w)− gS

′
b (w)

∥∥∥ ≤ 2Gj
m . Hence,

applying Claim 6, we have that

P
[
Qθ(g

S
b (w)) 6= Qθ(g

S′
b (w))

∣∣∣b producing j differing samples
]
≤ 4Gdj

τm
.

We will now integrate with respect to the randomness in b - for this, we need to calculate the
probability that a sample of b (uniform m out of n) produces exactly j differing data points, call it

p(j). By direct computation, we have that p(j) =
(k1j)(n−k1m−j)

(nm)
. Hence we have,

P
[
Qθ(g

S
b (w)) 6= Qθ(g

S′
b (w))

]
=

k1∑
j=0

p(j)P
[
Qθ(g

S
b (w)) 6= Qθ(g

S′
b (w))

∣∣∣ b produces j differing samples
]

≤
k1∑
j=0

(
k1
j

)(
n−k1
m−j

)(
n
m

) 4Gdj

τm
=
mk1

n

4Gd

τm
=

4Gdk1

τn

where the second last equality is a consequence of Vandermonde’s identity, as we show below. We

need to show that
∑k1

j=0

(k1j)(n−k1m−j)j

(nm)
= mk1

n ⇐⇒
∑k1

j=0

(
k1
j

)(
n−k1
m−j

)
j = mk1

n

(
n
m

)
= k1

(
n−1
m−1

)
. This

52

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

holds because,

k1∑
j=0

(
k1

j

)(
n− k1

m− j

)
j =

k1∑
j=0

k1

j

(
k1 − 1

j − 1

)(
n− k1

m− j

)
j = k1

k1∑
j=0

(
k1 − 1

j − 1

)(
n− k1

m− j

)

= k1

k1−1∑
j=0

(
k1 − 1

j

)(
n− k1

(m− 1)− j

)
= k1

(
n− 1

m− 1

)

where in the second last equality, we re-indexed the sum which removes the first element, but it was
zero anyway, and the last equality follows from Vandermonde’s identity.

Base case 2: k2 = 1 : In this case, S′ has one more element that S′ - let this point be denoted
as q. In this case, the probability distribution using S′ has the form Q =

(
1− m

n+1

)
Q1 + m

n+1Q2,
where Q1 is the probability distribution conditioned on the event that q is sub-sampled, and Q2 is the
probability distribution conditioned on the complementary event. For any measurable set R, we have,

|P (R)−Q(R)| =
∣∣∣∣(1− m

n+ 1

)
Q1(R) +

m

n+ 1
Q2(R)− P (R)

∣∣∣∣
Note that Q1, Q2 and P are all probability distributions over n elements. Furthermore, P and Q1 are
probability distributions over k1 differing elements, therefore we can use base case k2 = 0 to get that
|P (R)−Q1(R)| ≤ ε1 := 4Gdk1

nτ . We therefore get,

|P (R)−Q(R)| ≤
∣∣∣∣(1− m

n+ 1

)
Q1(R) +

m

n+ 1
Q2(R)−Q1(R) + ε1

∣∣∣∣
=

∣∣∣∣ m

n+ 1
(Q2(R)−Q1(R)) + ε1

∣∣∣∣
Finally note that Q1 and Q2 are probability distributions over n such that upon sub-sampling m
elements, there is exactly one differing element, therefore we get, |Q2(R)−Q1(R)| ≤ 4Gd

mτ . We
therefore have that

|P (R)−Q(R)| ≤ m

n+ 1

4Gd

mτ
+

4Gdk1

nτ
=

4Gd

(n+ 1)τ
+

4Gdk1

nτ

Induction Hypothesis: Suppose the following holds for k2 ≤ k̃: for any measurable set R,
|P (R)−Q(R)| ≤ 4Gdk1

nτ +
∑k̃

j=1
4Gd

(n+j)τ .

Induction Step: k2 = k̃ + 1 Let the last element of S′ be q. As in the base case, we decompose
the distribution Q into a mixture of two components based on whether q is sampled or not. We
have Q =

(
1− m

n+k̃+1

)
Q1 + m

n+k̃+1
Q2. Note that Q1 is a probability distribution which does

not use the last element of S′. Therefore we can use Induction hypothesis which gives us that

53

ULLAH MAI RAO ROSSI ARORA

|Q1(R)− P (R)| ≤ 4Gdk1
nτ +

∑k̃
j=1

4Gd
(n+j)τ . We therefore get,

|P (R)−Q(R)| =
∣∣∣∣P (R)−

(
1− m

n+ k̃ + 1

)
Q1(R)− m

n+ k̃ + 1
Q2(R)

∣∣∣∣
≤

∣∣∣∣∣∣ m

n+ k̃ + 1
(Q1(R)−Q2(R)) +

4Gdk1

nτ
+

k̃∑
j=1

4Gd

(n+ j)τ

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ m

n+ k̃ + 1

4Gd

mτ
+

4Gdk1

nτ
+

k̃∑
j=1

4Gd

(n+ j)τ

∣∣∣∣∣∣
=

4Gdk1

nτ
+

k̃+1∑
j=1

4Gd

(n+ j)τ

where in the last inequality, as in the base case, we used that fact that distributions Q1 and Q2 differ
because in one we subsample the last element where as in the other we don’t, so from Claim 6, for
two data sets of size m differing in one element, the failure probability is 4Gd

mτ . This completes the
induction argument. We bound the sum simply as

∑k2
j=1

4Gd
(n+j)τ ≤

4Gdk2
nτ , which gives us that the

whole term is bounded by 4Gd(k1+k2)
nτ .

The above, by an application of data processing inequality, shows that the conditional TV distance
between wt+1 and w′t+1 is at most 4Gd(k1+k2)

nτ . Note that the upper bound holds uniformly over all
conditioning events. Moreover, from the maximal coupling characterization of TV distance, we
have that for any coupling of wt+1 and w′t+1, the conditional probability of disagreement is at most
4Gd(k1+k2)

nτ . Consider the coupling which just concatenates all these couplings, then an application
of union bound over the T iterates, the joint probability of disagreement under this coupling is at
most 4Gd(k1+k2)T

nτ which gives us our upper bound on TV distance between joint iterates. Finally, by
data processing inequality, the same upper bound holds for the average iterates which finishes the
proof.

We now establish the guarantees on the learning Algorithm 7. To handle batch edit request,
we extend the notion of exact unlearning with one edit request to batch request: we term it exact
batch unlearning. We similarly also extend ρ-TV-stability to (k1, k2, ρ)-TV stability, which is ρ-TV
stability under arbitrary k1 deletions and k1 + k2 insertions, as well as k1 insertions and k1 + k2

deletions.

Proposition 8 Let f(., z) be an L-smooth G-Lipschitz convex function ∀ z. Algorithm 5, run with

η = min

{
1

2L ,
D(

G√
m

+τ
√
d
)√

T

}
, τ = 4GdT

ρn , and T = max

{
(ρn)

d3/2
√
m
,
(
LD(ρn)

Gd3/2

)2/3
}

outputs ŵS

which is (k1, k2, (k1 + k2)ρ)-TV stable and satisfies EF̂S(ŵS)− F̂S(w∗S) .
(√

LGD2d3/2

ρn

)2/3
.

Proof [Proof of Proposition 8]
The (k1, k2, (k1 + k2)ρ)-TV stability guarantee follows from Lemma 7 by taking a supremeum

over all datasets S and S′ of sizes n and n+ k2 (or n− k2) to get that that TV stability is uniformly
upper bound by 4GTd(k1+k2)

nτ = (k1 + k2)ρ, where the equality follows upon setting τ = 4GdT
ρn .

54

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

For the excess empirical risk bound, we use the guarantee on excess empirical risk of SGD on
smooth convex functions (for example, Theorem 4.1 from Allen-Zhu (2018)), combined with the fact
in Lemma 6 that quantization produces unbiased estimates of the gradient with bounded variance
V2 ≤ 2G2

m + τ2d = 2G2

m + 16G2d3T 2

(ρn)2
. Therefore, choosing step size η ≤ 1

2L , we get

EF̂S(ŵS)− F̂S(w∗S) ≤ O
(

2ηV2 +
D2

ηT

)
= O

(
2η

(
2G2

m
+

16G2d3T 2

(ρn)2

)
+
D2

ηT

)
Define G̃2 = 2

(
2G2

m + 16G2d3T 2

(ρn)2

)
and set η = min

{
1

2L ,
D

G̃
√
T

}
, which makes the upper bound

EF̂S(ŵS)− F̂ (w∗S) ≤ O
(

2ηV2 +
D2

ηT

)
= O

(
LD2

T
+
G̃D√
T

)

≤ O

(
LD2

T
+

GD√
Tm

+
GDd3/2

√
T

(ρn)

)

Balancing the trade-off between the las two terms gives us T = (ρn)

d3/2
√
m

. Similarly, bal-

ancing the trade-off between the first and last term gives us T =
(
LD(ρn)

Gd3/2

)2/3
. Hence setting

T = max

{
(ρn)

d3/2
√
m
,
(
LD(ρn)

Gd3/2

)2/3
}

gives us that the expected excess empirical risk is bounded by(√
LGD2d3/2

ρn

)2/3
and completes the proof.

Remark 6 We see that the TV stability parameter above is (k1 + k2)ρ as opposed to (k1 + 2k2)ρ
which is what we would obtain with ρ-TV stability for one edit request and using the triangle
inequality of TV distance (see Remark 2).

Remark 7 The largest mini-batch size, without hurting runtime, is m =
(
G
LD

)2
T =(

G2(ρn)

(LD)2d3/2

)2/3
, which gives us T =

(
LD(ρn)

Gd3/2

)2/3
.

We now proceed to unlearning. The unlearning algorithm (Algorithm 8) upon observing an edit
request comprising of both insertions and deletions, first couples the mini-batch indices (described
formally in the next paragraph), and computes the gradient on the new mini-batch It then uses the
same quantization randomness as in training, and checks if the quantized point changes. If it does, in
any iteration, then it calls recompute. The use of the same quantization randomness corresponds to a
trivial coupling between the quantization randomness. We explain the coupling procedure in detail
below.

Batch coupling: We setup some notation. Consider the training dataset S and dataset realized
after the batch edit request S′. Given a vector w, let Qθ1(gSb1(w)) denote the quantized gradient
vector where θ1 is the quantization randomness and b1 is the mini-batching randomness on dataset
S′. Similarly, Qθ2(gS

′
b1

(w)) denotes the quantized vector with θ2 as the quantization randomness and
b2 as the mini-batching randomness on dataset S′. We couple θ1 and θ2 by considering the trivial

55

ULLAH MAI RAO ROSSI ARORA

coupling θ1 = θ2 i.e. the joint probability measure is defined only on the diagonal of the product
measure. To couple the mini-batch indices, we consider two cases: if the training dataset S has less
more or more points than S′. For simplicity, Algorithm 8 is the pseudo-code corresponding only to
the first case.

In the first case, suppose S has n points and S′ has n+ k2 points, realized after k1 deletions and
k1 +k2 insertions. Without loss of generality, order the two datasets as follows: the first n−k1 points
in S and S′ are the same, call these S1 = S′1, next we have the last k1 points of S, and arbitrary
k1 points of S′ - call these S2 and S′2, and moreover let the mapping of indices from S2 → S′2 by
denoted by ι. Finally we have the rest of k2 points of S′, call this S′3. In the following discussion, and
in Algorithm 8, when we consider elements of these sets, we mean their indices. As before, let µn,m
and µn+k2,m denote the probability measures correspondingly to sampling m elements uniformly
from a discrete universe of size n (i.e. S) and n + k2 (i.e. S′) respectively. These sub-sampling
measures are coupled in the following way in Algorithm 8. We first sample b(1) ∼ µn,m (during
training). Let b(1)

2 be the m2 indices in S2: replace these by the corresponding indices in S′2 i.e.
ι(b(1) ∩ S2). Next, sample b ∼ µn+k2,m: let b3 be the m3 indices which are in S′3. We now resample
b
(2)
1 ∼ Unif(b(1),m3) - these are indices used in training, which are now to be replaced. Define
b(2) =

(
b(1)\

{
b(1) ∩ S2

}
∪
{
ι(b(1) ∩ S2)

})
\b(2)

1 ∪ {S′3 ∩ b}. Let the distribution of b(2) produced
in the above way be denoted as µedit

n,m. We now show that (b(1), b(2)) is indeed a coupling of µn,m
and µn+k2,m.

Claim 9 With the construction described above, we have that b(1) ∼ µn,m and b(2) ∼ µedit
n,m =

µn+k2,m.

Proof [Proof of Claim 9] b(1) ∼ µn,m follows trivially by construction. For the other part, for any
set E of m indices arising from the coupling construction, let E1 be the set of m−m3 points from
S∪S′2 and E2 be the set ofm3 points from S′3. Since thesem3 points of E2 need to be selected when

sampling b, the probability of sampling these points is
(n
m−m3

)

(n+k2m)
, where the numerator denotes the

number of ways to sample from S′\S′3. For the points in E1, these come from b(1) and replacement

using S′2 (which is a deterministic operation). Hence, probability of E1 is
(n−(m−m3)

m3
)

(nm)
, where the

numerator denotes the number of ways to sample rest of elements not in E1 when sampling b(1).
Finally, we need to consider the re-sampling step i.e sampling b(2)

1 - note that the draw of E1 and E2

fixes the set produced by this re-sampling, and thus its probability is 1

(mm3
)
. This gives us

µedit
n,m(E) =

(
n

m−m3

)(
n+k2
m

) · (n−(m−m3)
m3

)(
n
m

) · 1(
m
m3

)
=

1(
n+k2
m

) · n!(n− (m−m3))!m!(n−m)!m3!(m−m3)!

(m−m3)!(n− (m−m3))!m3!(n−m)!n!m!
=

1(
n+k2
m

) = µn+k2,m(E)

In the second case, S has more samples than S′ - let number of samples in S be n, and in
S′ be n − k2 and there k1 samples in S′ not in S. As before we order the sets as: let S1 =

56

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

S′1 be the n − k2 − k1 samples which are the same in both S and S′. Let S2 be the next k1

samples in S, which correspond to S′2, the rest of k1 samples in S′ - the mapping from S2 to
S′2 being ι. Finally let S3 be the rest of k2 samples in S. We first sample b(1) ∼ µn,m (during
training). Let b(1)

2 be the m2 indices in S2: replace these by the corresponding indices in S′2 i.e.
ι(b(1) ∩ S2). Let b(1)

3 denote the sub-sampled indices which are in the last k2 indices of S, and let

m3 =
∣∣∣b(1)

3

∣∣∣. We re-sample m3 indices as b = Unif((S′\ι(b(1) ∩ S2)\b(1)),m3). Finally, define

b(2) =
(
b(1)\

{
b(1) ∩ S2

}
∪
{
ι(b(1) ∩ S2)

})
\b(1)

3 ∪ b. Let the distribution of b(2) produced in the
above way be denoted as µedit

n,m. We now show that (b(1), b(2)) is indeed a coupling of µn,m and
µn−k2,m.

Claim 10 With the construction described above, we have that b(1) ∼ µn,m and b(2) ∼ µedit
n,m =

µn−k2,m.

Proof [Proof of Claim 10] b(1) ∼ µn,m follows trivially by construction. For the other part, let E be
a set of m indices from [n− k2]. Note that any number of points in E can arise due to re-sampling
(i.e. when sampling b′), hence we need to consider all such possibilities - let m3 be the number of
indices in E produced via re-sampling. Fixing one of

(
m
m3

)
combinations, the probability that it

was re-sampled is 1

(n−k2−(m−m3)
m3

)
. From the rule of sum, the probability that any m3 sized set was

produced via re-sampling is
(mm3

)

(n−k2−(m−m3)
m3

)
. For each such set, it could arise from any of m3 points

from k2, which gives us
(
k2
m3

)
possibilities. The probability of choosing any such set, when sampling

b(1), is
(k2m3

)

(nm)
. We now combine these and apply the rule of sum on different choices of m3, from 0 to

m. We get,

µedit
n,m(E) =

m∑
m3=0

(
m
m3

)(
n−k2−(m−m3)

m3

) · (k2m3

)(
n
m

)
=

1(
n
m

) m∑
m3=0

m!(n− k2 −m)!m3!

m3!(m−m3)!(n− k2 −m+m3)!

(
k2

m3

)

=
1(
n
m

) m∑
m3=0

m!(n− k2 −m)!

(n− k2)!
· (n− k2)!

(m−m3)!(n−K2 − (m−m3))!

(
k2

m3

)

=

(
n−k2
m

)(
n
m

) m∑
m3=0

(
n− k2

m−m3

)(
k2

m3

)
=

(
n−k2
m

)(
n
m

) · (n
m

)
=

(
n− k2

m

)
= µn−k2,m

where the third last equality follows from Vandermonde’s identity.

We now state the main result about unlearning.

Proposition 9 (Algorithm 7, Algorithm 8) satisfies exact batch unlearning. Moreover, for k batch
edit requests, where the ith request comprises of ki1 deletions and ki1 + ki2 insertions, or ki1 insertions
and ki1 + ki2 deletions, Algorithm 8 recomputes with probability at most 2

∑k
i=1(ki1 + ki2)ρ.

57

ULLAH MAI RAO ROSSI ARORA

Algorithm 8 Batch unlearning for quantized-m-SGD
Input: Edit request produces dataset S′ of n+k2 points, with k1 deletions and k1 +k2 insertions; let

S1, S2 and S′1, S
′
2 and S′3 be partitions of S and S′ respectively, as defined in “Batch coupling”

1: for t = 1, 2 . . . , T do
2: Load(θt,wt, bt, gt)
3: b ∼ Unif(S′,m)
4: m3 = |{x ∈ S3 ∩ b}|
5: b

(2)
1 ∼ Unif(bt,m3)

6: g′t = gt− 1
m

 ∑
j∈bt∩S2

∇f(wt, zj) +
∑

j∈ι(bt∩S2)

∇f(wt, zj)−
∑

j∈b(2)1

∇f(wt, zj) +
∑

j∈S3∩b
∇f(wt, zj)

7: b

(2)
t = (bt\ {bt ∩ S2} ∪ {ι(bt ∩ S2)}) \b(2)

1 ∪ {S′3 ∩ b}
8: Save(g′t, b

(2)
t)

9: if Qθt (gt) 6= Qθt (g′t) then
10: quantized-m-SGD // Recompute on current dataset
11: break
12: end if
13: end for

Proof [Proof of Proposition 9] We consider one batch edit request of k1 deletions and k1 + k2

insertions (case 1) and k1 insertions and k1 + k2 deletions (case 2). We have that applications of
Claims 9 and 9 give us that mini-batches are transported, for cases 1 and 2 respectively. Moreover,
since we consider a trivial coupling of quantization randomness, we can consider it part of the
(randomized) algorithmic map. Therefore, as in the proof of Proposition 4, transportation of mini-
batches suffices to give us that Algorithm 8 satisfies exact unlearning. Repeated application of the
above generalizes it to arbitrary k edits. We now proceed to bound the probability of recompute
directly for a batch edit request. For a fixed model w, and a fixed iteration, we fix the mini-batches
(b(1), b(2)) such that b(1) and b(2) differ by j indices. From Lemma 6, we have

Pθ,(b(1),b(2))
[
Qθ(g

S
b(1)

(w)) 6= Qθ(g
S′

b(2)
(w))|(b(1), b(2)) such that b(1), b(2) differ in j indices

]
≤ 4Gdj

mτ

We now integrate over the conditioning event. To do this, we need to compute the probability of
the event that sampling (b(1), b(2)) generates j differing indices - denote this as p(j).

Since we have two case for coupling constructions, we consider each one by one. We first look at
the second case: from construction of the coupling, it is easy to verify that j differing indices can be
produced when, for any i, b(1) samples i elements from the k1 differing items and j − i indices from
the last k2 indices, for any i from 0 to j. Hence, by direct computation, we have

p(j) =

j∑
i=0

(
k1
i

)(
k2
j−i
)(
n−(k1+k2)

m−j
)(

n
m

) =

(
n−(k1+k2)

m−j
)(

n
m

) j∑
i=0

(
k1

i

)(
k2

j − i

)
=

(
n−(k1+k2)

m−j
)(
k1+k2
j

)(
n
m

)
58

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

where the last equality follows from Vandermonde’s identity. Plugging this in the following, we
have,

Pθ,(b(1),b(2))
[
Qθ(g

S
b(1)

(w)) 6= Qθ(g
S′

b(2)
(w))

]
=

k1+k2∑
j=0

p(j)Pθ,(b(1),b(2))
[
Qθ(g

S
b(1)

(w)) 6= Qθ(g
S′
b2 (w))|b(1), b(2) differ in j indices

]

≤
k1+k2∑
j=0

(
n−(k1+k2)

m−j
)(
k1+k2
j

)(
n
m

) 4Gdj

mτ
=
m(k1 + k2)

n

4Gd

mτ

=
4Gd(k1 + k2)

nτ
≤ kρ

T

where the second equality is a consequence of Vandermonde’s identity proved in Lemma 7 (Base
case k2 = 0) and the last inequality follows by plugging in τ = 4GdT

ρn .
We now look at the first case (when S is smaller than S′), which is slightly more involved.

Let i1 denote the number of indices in b(1) ∩ S1, and let i2 be the number of indices in b(2) ∪ S′3.
Furthermore, since we resample i2 indices from b(1), let i3 be the number of indices from S1 which
are re-sampled. It can be verified that if b(1) and b(2) differ in j indices, then we need to have
i1 + i3 = j. This is because it can happen that both i(2) is large, but upon re-sampling, it chooses
elements from k1, which does not increase the number of different indices between b(1) and b(2)

Also, note that by construction i3 ≤ i2 ≤ j. Hence the probability p(j), by direct computation is,

p(j) =

j∑
i1,i2,i3=0,i1+i3=j,i3≤i2≤j

(
k1
i1

)(
n−k1
m−i1

)(
n
m

) ·
(
k2
i2

)(
n

m−i2

)(
n+k2
m

) ·
(

i1
i2−i3

)(
m
i2

)
=

j∑
i1=0

j∑
i2=j−i1

(
k1
i1

)(
n−k1
m−i1

)(
n
m

) ·
(
k2
i2

)(
n

m−i2

)(
n+k2
m

) ·

(
i1

i2−(j−i1)

)(
m
i2

)
where in the second equality, we substituted i3 = j − i1. We now claim that p(j) =

(n−k1m−j)(
k1+k2
j)

(n+k2m)
,

which we will argue via a double counting argument. Note that it suffices to show that∑j
i1=0

∑j
i2=j−i1

(
k1
i1

)(
n−k1
m−i1

)
·
(
k2
i2

)(
n

m−i2

)(i1
i2−(j−i1)

)

(mi2)
=
(
n−k1
m−j

)(
k1+k2
j

)(
n
m

)
. Consider set A of

n+ k2 elements, composed of A1 of n− k1, A2 of k1 and A3 of k2 elements, and a B of n elements,
composed of B1 of n − k1 and B2 of k1 elements. Note that the expression

(
n−k1
m−j

)(
k1+k2
j

)(
n
m

)
is

the size of number of combinations of 2m elements, m each from A and B such that the number of
elements from A2 ∪A3 is j. We will show that the other expression also counts this set, via basic
combinatorial rules. For this, consider combinations of m elements from B A3 and such that we have
i2 elements from A3 and the rest m− i2 from B. Also, consider combinations of m elements from
A1 ∪A2 which consists of i1 elements from A2 the rest from A1. We now modify these as follows,
out of m elements from A, select i2 elements and replace thse from elements from A3 - not that if
it turns out that out of i2 selected, j − i1 are from A1, then the number of elements from A2 ∪A3

after replacement becomes exactly j. However, also note that for each such combination arising,
there are

(
m
i2

)
combinations of samples from A1 and A2, which give the same final combination

after replacement. Hence, we need to apply the rule of division, so as not to repeatedly count

59

ULLAH MAI RAO ROSSI ARORA

the same combination. Finally, using the rule of sum to consider all possible values of i1 and i2

retrieves the expression
∑j

i1=0

∑j
i2=j−i1

(
k1
i1

)(
n−k1
m−i1

)
·
(
k2
i2

)(
n

m−i2

)(i1
i2−(j−i1)

)

(mi2)
=
(
n−k1
m−j

)(
k1+k2
j

)(
n
m

)
and completes the argument.

We again plug in the above in the following expression to get,

Pθ,(b(1),b(2))
[
Qθ(g

S
b(1)

(w)) 6= Qθ(g
S′

b(2)
(w))

]
=

k1+k2∑
j=0

p(j)Pθ,(b(1),b(2))
[
Qθ(g

S
b(1)

(w)) 6= Qθ(g
S′
b2 (w))|b(1), b(2) differ in j indices

]

≤
k1+k2∑
j=0

(
n−k1
m−j

)(
k1+k2
j

)(
n+k2
m

) 4Gdj

mτ
=
m(k1 + k2)

n

4Gd

mτ

=
4Gd(k1 + k2)

nτ

where the second equality is again a consequence of Vandermonde’s identity as in Lemma 7, and the
last inequality follows by plugging in τ = 4GdT

ρn . Finally, we condition on the iterates till iteration t,

which gives us the conditional probability of the iterates differing at iteration t is at most (k1+k2)ρ
T .

Taking a union bound over all T iterations gives us that probability is at most (k1 + k2)ρ. Finally,
we extend it to k edit request, by using the fact, by assumption than the number of data points at any
point in the stream is between n

2 and 2n. This, with the result for one edit request, directly give us
the probability to recompute is at most 2

∑k
i=1(ki1 + ki2)ρ.

We now state and prove the main result.

Theorem 5 Let f(·, z) be an L-smooth G-Lipschitz convex function ∀ z. For any 1
n ≤ ρ < ∞,

using Algorithm 7 as the learning algorithm and Algorithm 8 as its unlearning algorithm, then given
a stream of batch edit requests,

1. Satisfies exact batch unlearning at every point in the stream.

2. At time i in the stream of edit requests, outputs ŵSi , such that its excess empirical risk bounded
as,

EF̂S(ŵSi)− F̂S(w∗Si) .

(√
LGD2d3/2

ρn

)2/3

3. For k batch edit requests, where the ith request comprises of ki1 deletions and ki1 +ki2 insertions,
or ki1 insertions and ki1 + ki2 deletions, the expected total unlearning runtime is

O(max
{

min {ρ, 1}
∑k

i=1(k1
1 + ki2) · Training time, k

}
)

Proof [Proof of Theorem 5] The first and the second claims follow from Proposition 9 and Proposi-
tion 8 respectively combined with the assumption that the number of samples at every point in the
stream is between n

2 and 2n. Finally, as in the the proof Claim 8 for runtime noisy-m-A-SGD, we can
use the same data-structures together with the fact the quantization operation takes O(d) time, to get
that the claimed runtime. These together finish the proof of Theorem 5.

60

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

Appendix I. Lower bounds on excess empirical risk

Give a convex function f(·, z), we consider empirical risk minimization on a dataset of n points.
We assume f(·, z) is 1-Lipschitz for all z, and diam(W) ≤ 1. This is only for simplification as
the bounds scale naturally with these constants, as discussed in Bassily et al. (2014). We look at
algorithms, which given two datasets S and S′ of size n differing by one point, disagree only on a
set of measure at most an ρ.

We have from the optimal transport connection that this requirement is equivalent to the total
variation distance being at most ρ. We want to understand then what is the lower bound on excess
empirical risk:

sup
∆(S,S′)=1

P
[
A(S′) 6= A(S)

]
≤ ρ ⇐⇒ sup

∆(S,S′)=1
TV(A(S),A(S′)) ≤ ρ

=⇒ E[excess empirical risk] ≥ α(ρ, n, d)

We focus on proving the implication. Bassily et al. (2014) gave lower bounds on accuracy for
DP algorithms by providing a reduction to computing mean of the dataset. We present and give the
proof of the reduction, adapted to our context, for completeness. The reduction is that if we have a
TV-stable algorithm for empirical risk minimization for a particular f with some accuracy, then we
have a TV-stable algorithm for mean computation problem with certain accuracy. We will look at
mean computation problem over datasets with norm of the mean being Θ(M), for some given M .
Let µ(S) = 1

n

∑n
j=1 zi denote the mean of dataset S = {z1, z2, · · · zn}.

Let the optimal accuracy of such a mean computation problem be denoted as follows:

α2
mean(n, ρ, d,M) := min

A:ρ-TV-stable
max

S={zi}i∈[n]:‖zi‖≤1,

M/2≤‖µ(S)‖≤2M

EA

∥∥∥∥∥A(S)− 1

n

n∑
i=1

zi

∥∥∥∥∥
2

Proposition 10 For any ρ-TV stable algorithm A, there exists a 1-Lipschitz convex function f , a
constraint setW with diameter(W) ≤ 1 and a dataset S of n data point such that

F̂S(A(S))− F̂S(w∗) ≥ max
M

{
α2

mean(n, ρ, d,M)

2M

}
Proof [Proof of Proposition 10] We follow the proof in Bassily et al. (2014). Consider dataset

S = {z1, z2, . . . , zn}, zi ∈
{
− 1√

d
, 1√

d

}d
- the dataset is therefore constrained to lie in the unit

Euclidean ball. Consider the following function f(w, z) = −〈w, z〉 with the constraint setW being
the unit Euclidean ball. It is easy to see that f(·, z) is 1-Lipschitz for all z. The empirical risk becomes

F̂S(w) = −
〈
w, 1

n

∑n
i=1 zi

〉
, the minimum of which over the unit ball is w∗S =

1
n

∑n
i=1 zi

‖ 1
n

∑n
i=1 zi‖ .

Given an algorithm A for empirical risk minimization, let the reduced mean estimate be µ̂(S) =∥∥ 1
n

∑n
i=1 zi

∥∥A(S). The accuracy (mean-squared error) of µ̂ is,

‖µ̂(S)− µ(S)‖2 =

∥∥∥∥∥
∥∥∥∥∥ 1

n

n∑
i=1

zi

∥∥∥∥∥A(S)− 1

n

n∑
i=1

zi

∥∥∥∥∥
2

=

∥∥∥∥∥
∥∥∥∥∥ 1

n

n∑
i=1

zi

∥∥∥∥∥
(
A(S)−

1
n

∑n
i=1 zi∥∥ 1

n

∑n
i=1 zi

∥∥
)∥∥∥∥∥

2

=

∥∥∥∥∥ 1

n

n∑
i=1

zi

∥∥∥∥∥
2

‖A(S)− w∗S‖
2 ≤

∥∥∥∥∥ 1

n

n∑
i=1

zi

∥∥∥∥∥ 2
(
F̂S(A(S))− F̂S(w∗)

)

61

ULLAH MAI RAO ROSSI ARORA

where the last inequality follows using the following computation, wherein we use the fact all data
point are in the unit ball.∥∥∥∥∥ 1

n

n∑
i=1

zi

∥∥∥∥∥
2

‖A(S)− w∗S‖
2 ≤

∥∥∥∥∥ 1

n

n∑
i=1

zi

∥∥∥∥∥ 2 (1− 〈A(S),w∗S〉)

= 2

(∥∥∥∥∥ 1

n

n∑
i=1

zi

∥∥∥∥∥−
∥∥∥∥∥ 1

n

n∑
i=1

zi

∥∥∥∥∥
〈
A(S),

1
n

∑n
i=1 zi∥∥ 1

n

∑n
i=1 zi

∥∥
〉)

= 2

(〈
w∗S ,

1

n

n∑
i=1

zi

〉
−

〈
A(S),

1

n

n∑
i=1

zi

〉)
= 2(F̂S(A(S))− F̂S(w∗)

We therefore get,

F̂S(A(S))− F̂S(w∗) ≥ 1

2
∥∥ 1
n

∑n
i=1 zi

∥∥ ‖µ̂(S)− µ(S)‖2

There are two things left to show: a bound on 1
2‖ 1

n

∑n
i=1 zi‖ ‖µ̂(S)− µ(S)‖2 and show that

the reduced algorithm µ̂(S) is also ρ-TV stable. We proceed with the latter: note that µ̂(S) =∥∥ 1
n

∑n
i=1 zi

∥∥A(S). However the term
∥∥ 1
n

∑n
i=1 zi

∥∥ depends on the dataset, and even if, for a
neighbouring dataset S′, A(S) and A(S′) are ρ-close in total variation, this data dependent scaling
can potentially increase the distance. However, if instead we define µ̂(S) = MA(S), where M is
a constant, then it is indeed ρ TV stable. Moreover, for reasonable values of M , the there exists
dataset for which

∥∥ 1
n

∑n
i=1 zi

∥∥ = Θ(M). Finally, note that by definition, ‖µ̂(S)− µ(S)‖2 ≥
α2

mean(n, ρ, d,M). Taking a max over all M gives us the desired statement.

I.1. Lower bound for mean computation

In this section, we look at the problem of mean computation with TV stability constraint. Note that
to establish lower bounds on excess empirical risk, we need to look at mean computation over data
sets with means between M/2 and 2M , for a given M . However, we will see the mean computation
even over the unit ball has same accuracy convex ERM. We will therefore establish lower bounds for
the general mean computation problem, but the construction will use datasets with means Θ(M) for

certain values of M . Given a dataset S = {x1, x2, . . . , xn}, where xi ∈
{
− 1√

d
, 1√

d

}d
for all i, the

task is to compute the mean µ(S) = 1
n

∑
j=1 xj , while ensuring that the procedure is ρ-TV-stable.

This task is often considered in the differential privacy literature, however with the data points being
xj ∈ {0, 1}d. The mean computation task then corresponds to releasing all one-way marginals
of the database. Since we want to consider data points which lie inside the Euclidean ball, we
therefore scale it accordingly. Given an algorithm A(S), the accuracy is defined as mean-squared
error: α2 := α2

mean(n, ρ, d) = E‖A(S)− µ(S)‖2 where the expectation is over the randomization
of the algorithm.

We first describe two algorithms for this problem and give upper bounds.

62

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

Subsample-mean: Consider an algorithm which sub-samples a ρ-fraction of the dataset and outputs
the mean on it.

Claim 11 The Subsample-mean procedure satisfies ρ-TV-stability and has accuracy α2 ≤ O
(

1
ρn

)
.

Proof [Proof of Claim 11] The ρ-TV stability claim follows since TV distance is witnessed by the
event that a differing sample is sub-sampled, which happens with probability ρn

n = ρ. The proof of
accuracy follows from the proof of Proposition 3, wherein we computed the gradient on uniformly
sub-sampled m out of n points - we showed that the mean on sub-sampled points is an unbiased
estimate of the average gradient. Furthermore, since the gradients were bounded as well, the expected
accuracy of mean computation is the same as the variance of gradient computation, which we derived
to be O

(
1
m

)
= O

(
1
ρn

)
.

Noisy-mean: The algorithm computes the mean and adds N(0, σ2I) noise to it with σ2 = C
n2ρ2

,
where C is an appropriate universal constant.

Claim 12 The Noisy-mean procedure satisfies ρ-TV-stability and has accuracy α2 ≤ O
(

d
(ρn)2

)
Proof [Proof of Claim 12] Since the difference in means of two datasets, in norm, is at most 2

n , the
outputs are two multivariate Gaussians with variance σ2 and means separated by 2

n . From Devroye
et al. (2018), the total variation distance between such Gaussian sis at most O

(
1
nσ

)
= ρ. For the

accuracy, we have α2 = E‖µ(S) + ξ − µ(S)‖2 = E‖ξ‖2 = dσ2 = O
(

d
n2ρ2

)
.

If the above procedures are optimal, then we expect a lower bound of α2 & min
{

1
ρn ,

d
(ρn)2

}
.

Equivalently, for a fixed accuracy α, we expect a sample complexity lower bound of n &
min

{
1
ρα2 ,

√
d

ρα

}
.

I.1.1. LOWER BOUND I

In this section, we give a Ω
(

1
αρ

)
lower bound on sample complexity. The key ingredient is the

following result, where the proof is based on a simple reduction argument.

Proposition 11 Suppose there exists a ρ-TV-stable algorithm such that for any dataset of n points,
it achieves an accuracy of α. Then there exists a 0.1-TV stable algorithm such the for any dataset of
size d100nαρe, it achieves a 0.1-accuracy.

Proof [Proof of Proposition 11] Let n′ = d100nαρe. Consider a dataset S′ of n′ points. We
construct a dataset S of n points by concatenating K = d0.1/ρe copies of S′ followed by dn−Kn′2 e
copies of a constant sample, all ones (1√

d
, ..., 1√

d
) and dn−Kn′2 e copies of a constant sample, all ones

(− 1√
d
, ...,− 1√

d
).

Consider the algorithm wherein we compute the stable-mean on D′ by A′, defined as computing
the stable-mean on D using A and adjusting:

A′(D′) =
n

Kn′
A(D)

63

ULLAH MAI RAO ROSSI ARORA

Let S̃′ be a neighbouring dataset of S′. By construction, note that S and S̃ differ by K sam-
ples. Furthermore, since the algorithm A on D is ρ-TV stable, on K-neighbouring datasets, it is
Kρ = 0.1-TV. This establish the stability part of claim. The accuracy, by direct computation is
E‖A′(D′)− µ(D′)‖2 = n2

K2n′2E‖A(D)− µ(D)‖2 ≤ (0.1)2.

Theorem 6 For the d-dimensional mean computation problem over the Euclidean ball, there exists
a dataset S of n samples with mean ‖µ(S)‖ = Θ

(
1
ρn

)
such that the accuracy of any ρ TV stable

algorithm is α ≥ Ω
(

1
ρn

)
.

Proof [Proof of Theorem 6] Even for accuracy α0 = 0.1 accuracy and ρ0 = 0.1 stability, we need
at least one sample. Hence, using Proposition 10, we get that sample complexity is n ≥ Ω

(
1
ρα

)
,

which equivalently gives the claimed accuracy lower bound. Note that for this one-sample dataset
S′, ‖µ(S′)‖ = 1. Finally, from the reduction in Proposition 10, the mean of dataset S becomes
‖µ(S)‖ = d0.1

ρn e, which finishes the proof.

I.1.2. LOWER BOUND II

In this section, we will prove the Ω
(

1
α2ρ

)
lower bound. We first introduce a technical assumption.

Assumption 1 For any dataset S, we assume that the probability distribution A(S) is defined over
the unit Euclidean ball, is absolutely continuous with respect to the uniform measure (in the unit
Euclidean ball) and its probability density function, with respect to the uniform measure, is bounded
by K in absolute value.

As a remark, the above assumption can also be stated with respect to the Lebesgue measure, but
then we would get a scaling of πd/2

Γ(1+ d
2)

, which is the Lebesgue volume of the Bd(0, 1), to some of

our terms. In order to simplify, we therefore use the uniform measure.

Theorem 7 Let n ≥ 72, α ≤ 1
4 and 1

n ≤ ρ ≤ 1
4 . Let A be any ρ-TV-stable algorithm satisfying

Assumption 1 with K ≤ 2d. For large enough dimension d, there exists a dataset S of n points with
‖µ(S)‖ = Θ

(
1√
ρn

)
such that accuracy is lower bounded as α ≥ Ω

(
1√
ρn

)
.

Proof [Proof of Theorem 7] We will prove the result by contradiction. Let ”Vol” of a set refer to its
volume with respect to the uniform measure on the unit ball. Consider the following high-dimensional
setup. Consider a dataset S (or S0) which mean µ(S) such that ‖µ(S)‖ = Θ

(
1√
ρn

)
. It is easy to

construct such datasets by considering points such that sum of n− d
√

n
ρ e points is 0 and the rest of

points is the same point repeated - this uses the assumption that ρ ≥ 1
n . Now consider neighbouring

datasets Si’s, i ∈ [n] such that the means of Si’s are all 1
n far from that of S, in norm. We also need

that the means of any two datasets
∥∥µ(Si)− µ(Sj)

∥∥ ≥ 1
2n for i, j = 0 to n and i 6= j. It is easy to

see the existence of such datasets, by considering the means of Si’s in near orthogonal directions to
that of S, which is possible when d is large enough.

64

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

Suppose the algorithmA has expected error α2 i.e. E‖A(S)− µ(S)‖2 ≤ α2 with 72 ≤ n ≤ 1
α2ρ

.

Consider Bd
(
µ(S), 1

K1/d

)
, the d dimensional Euclidean ball centered at µ(S) of radius 1

K1/d . From

Markov’s inequality, we have that P
[
A(S) 6∈ Bd

(
µ(S), 1

K1/d

)]
≤ P

[
A(S) 6∈ Bd

(
µ(S), 1

2

)]
=

P
[
‖A(S)− µ(S)‖2 ≥ 1

4

]
≤ E‖A(S)−µ(S)‖2

(1/4) ≤ 4α2, where in the first inequality, we used the

assumption K ≤ 2d. Therefore, we have P
[
A(S) ∈ Bd

(
µ(S), 1

K1/d

)]
≥ 1− 4α2.

We now setup some additional notation. Let Ai denote the set
Bd

(
µ(Si), 1

K1/d

)
\
(
∪nj=0,j 6=iBd

(
µ(Sj), 1

K1/d

))
i.e. the region in the ball Bd(µ(Si) which

is not contained in any of the other balls. Let Bij denote the region of intersection between

Bd

(
µ(Si), 1

K1/d

)
and Bd

(
µ(Sj), 1

K1/d

)
where i 6= j and i and j go from 0 to n. Note that

set Bij is constituted of two spherical caps. By construction the centers of the intersecting
spheres are at least 1

2n apart. To study the properties of such a set, we define cap as the
region in a d dimensional sphere of radius 1

K1/d which intersects with another sphere of the
same radius but with centers being apart by 1/2n. From known results Chudnov (1991), the
volume of cap is asymptotic to Vol

(
Bd

(
0, 1

K1/d

))(
1− Φ

(√
d

2n

))
as d → ∞ where Φ is the

cumulative distribution function of a standard normal random variable. We therefore have that
limd→∞Vol(cap) ∼ limd→∞Vol

(
Bd

(
0, 1

K1/d

))(
1− Φ

(√
d

2n

))
= 0. Furthermore, using

Assumption 1, we have P [A(S) ∈ cap] ≤ KVol(cap) ∼ KVol
(
Bd

(
0, 1

K1/d

))(
1− Φ

(√
d
n

))
≤

K
(

1
K1/d

)d (
1− Φ

(√
d
n

))
=
(

1− Φ
(√

d
n

))
as d → ∞. Since Φ(t) = Pg∼N (0,1)[g ≤ t], we

have that 1 − Φ(t) = Pg∼N (0,1)[g > t] ≤ e−t
2/2

√
2πt

where the last inequality follows from standard
bounds on tails of normal distribution (See Proposition 2.1.2 in Vershynin (2018)). Therefore, we

have P [A(S) ∈ cap] . ne−d/4n
2

√
d

. For constant ε > 0, choosing d & 4n2 ln (n/ε) ensures that
P [A(S) ∈ cap] ≤ ε

2n for large enough n (to be specified later). Since Bij is made up of two
conjoined caps, this gives us that for any j = 0 to n and i 6= j, we have that P

[
A(Si) ∈ Bij

]
≤ ε

n .
Finally, we look at Ai’s by removing the mass of all Bij’s, and using a union bound, we

get that P
[
A(Si) ∈ Ai

]
= P

[
A(Si) ∈ Bd

(
µ(Si), 1

K1/d

)]
− P

[
A(Si) ∈ ∪nj=0,j 6=iBij

]
≥

1 − 4α2 −
∑n

j=0,j 6=i P
[
A(Si) ∈ Bij

]
≥ 1 − 4α2 − ε ≥ 1

2 − 4α2 where the last inequality
holds for ε ≤ 1

2 . We now evaluate how large n we need for this regime of ε: recall that we set

d & 4n2 ln (n/ε), this gives ne−d/4n
2

√
d
≤ ε

2n
√

ln (n/ε)
. We want the right hand side to be at most ε

2n

for ε ≤ 1/2. Plugging in this worst-case value of ε, we get the condition ln (2n) ≥ 1 which holds for
any n ≥ 1.4 and therefore is valid by our assumption of n.

We now use the fact that A′is are disjoint by construction. Therefore the total measure of A(S)
on union ofA′is is at most 1 i.e P [A(S) ∈ ∪ni=1Ai] =

∑n
i=1 P [A(S) ∈ Ai] ≤ 1. Furthermore, since

A(S) is ρ-TV stable, we have that P [A(S) ∈ Ai] ≥ P
[
A(Si) ∈ Ai

]
− ρ. Combining this with the

previous analysis which gives a lower bound on P
[
A(Si) ∈ Ai

]
yields

n

(
1

2
− 4α2 − ρ

)
≤

n∑
i=1

P
[
A(Si) ∈ Ai

]
− ρ ≤

n∑
i=1

P [A(S) ∈ Ai] ≤ 1 (2)

We now proceed in two cases:

65

ULLAH MAI RAO ROSSI ARORA

Case 1: Suppose 72 ≤ n ≤ 17
4α2 . The latter condition gives us that 4α2 ≤ 17

n . Using Eq. (2)
gives us n(1/2− 4α2 − ρ) ≤ 1 ⇐⇒ 4α2 ≥ 1

2 −
1
n − ρ. Upper bounding 4α2 by 17

n gives us that
18
n ≥

1
2 − ρ ⇐⇒ n ≤ 18

(1/2−ρ) ≤ 72 where in the last inequality we used ρ ≤ 1/4. This gives us a
contradiction.

Case 2: Suppose 17
4α2 ≤ n. We again start with Eq. (2) which gives us n(1/2 − 4α2 − ρ) ≤

1 ⇐⇒ ρ ≥ 1
2 −

1
n − 4α2. We want to prove the right hand side is at least 1

nα2 , which would give
us that n ≥ 1

ρα2 . Suppose this is not true i.e. 1
2 −

1
n − 4α2 ≤ 1

nα2 ⇐⇒ n−2−8α2n
2n ≤ 1

nα2 ⇐⇒

α2n(1 − 8α2) ≤ 2(1 + α2) ⇐⇒ n ≤ 2(1+α2)
α2(1−8α2)

. Finally using the fact that α ≤ 1
4 gives that

n ≤ 2(1+1/16)
α2(1−8/16)

≤ 17
4α2 which yields a contradiction.

Hence, we see that with n > 72 samples and accuracy α2, we have established that n ≥ 1
ρα2 and

so α ≥ 1√
ρn .

Appendix J. Excess population risk bounds

The goal in machine learning is (population) risk minimization. The population risk of w, denoted
by F (w) is defined as F (w) := E

z∼D
f(w, z), where D is an unknown probability distribution over

data points. Analogously, given an output of algorithm A on dataset S = {zi}i where zi ∼ D
i.i.d., denoted as A(S), we will give guarantees on the expected excess population risk, defined as
EF (A(S))− F (w∗), where w∗ is the population risk minimizer: w∗ ∈ arg minw∈W F (w), and the
expectation is taken with respect to randomness in algorithm A as well as sampling S. We assume
that the edits requests are independent of the dataset, so that the resulting current dataset is still
independently and identically distributed.

J.1. Upper bounds

In this section, we will bound the expected excess population risk appealing to connections between
algorithmic stability and generalization (Bousquet and Elisseeff, 2002). We first define uniform
stability.

Definition 5 (Uniform stability) LetA : Zn →W be an algorithm andA(S) denotes its output on
dataset S. We say thatA is εstable(n)-uniformly stable if for any datasets S and S′ of n points such that
they differ by one data point (i.e. ∆(S, S′) = 2), we have supz∈Z EA [f(A(S), z)− f(A(S′), z)] ≤
εstable(n)

A classical result (Bousquet and Elisseeff, 2002) shows that expected excess population risk is at
most uniform stability + expected excess empirical risk: i.e. any w ∈ W , we have

E [F (A(S))− F (w)] ≤ εstable(n) + E
[
F̂S(A(S))− F̂S(w)

]
Theorem 8 (Upper bound) There exists a ρ TV stable algorithm, such that for any function f(·, z)
which is L-smoothG-Lipschitz convex ∀ z and any dataset S of n points, it outputs ŵS which satisfies
the following.

EF (ŵS)− F (w∗) .
GD√
n

+GDmin

{
1
√
ρn
,

√
d

ρn

}

66

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

Proof [Proof of Theorem 8] We use sub-sample-GD (Algorithm 3) and noisy-m-SGD (Algorithm 5).
From Lemma 3.2 in Bassily et al. (2019), we have that εstable(n) ≤ G2ηT

n . From Proposition 3, we

set η = min
{

1
2L ,

D
G
√
T

}
, and T =

DL
√
ρn

G . We therefore have εstable(n) ≤ G2T
2Ln =

GD
√
ρ√

ρn . Using
the excess empirical risk bound from Proposition 3, and the fact that ρ ≤ 1, the excess population
risk is bounded as,

EF (ŵS)− F (w∗) ≤
GD
√
ρ

√
n

+
GD
√
ρn
≤ GD√

n
+
GD
√
ρn

For noisy-m-SGD, we need to balance the trade-offs more directly. In Proposition 7, we arrived
at that when using η ≤ 1

2L , the expected excess empirical risk is bounded by ηV2 + D2

ηT . Using the

uniform stability bound of G
2Tη
n , the expected excess population risk is bounded as,

EF (ŵS)− F (w∗) ≤ G2Tη

n
+ ηV2 +

D2

ηT
= η

(
G2T

n
+ V2

)
+
D2

ηT

Define G̃2 =
(
G2T
n + V2

)
, where V2 . G2 + σ2d . G2 + G2Td

n2ρ
. Setting η = min

{
1

2L ,
D

G̃
√
T

}
,

we get,

EF (ŵS)− F (w∗) ≤ LD2

T
+
G̃D√
T

.
LD2

T
+
G
√
TD√

T
√
n

+
GD√
T

+
GD
√
T
√
d

ρn
√
T

=
LD2

T
+
GD√
n

+
GD√
T

+
GD
√
d

ρn

Setting T = max
{

min
{√

n, ρn√
d

}
, LDG min

{√
n, ρn√

d

}}
, and combining the two results fin-

ishes the proof.

J.2. Lower bounds

In this section, we will prove a lower bound on excess population risk for any ρ-TV stable algorithm.
As before, we will consider the Lipschitz constant G and diameter D to be both 1, as the bounds
scale naturally with these constants. We first define the following quantity, which denotes the lower
bound on expected excess empirical risk of ρ-TV-stable algorithm with n points.

α̂(n, ρ) := inf
A:ρ-TV-stable

sup
S:|S|=n

EAF̂S(A(S))− F̂S(ŵS)

Theorem 9 For the problem of stochastic convex optimization, there exists a data distribution D,
such that any ρ-TV-stable algorithm A incurs expected excess population risk, bounded as follows

E
S∼Dn,A

F (A(S))− F (w∗) ≥ max

{
Ω

(
1√
n

)
, α̂(n, ρ)

}
67

ULLAH MAI RAO ROSSI ARORA

Proof [Proof of Theorem 9] The 1√
n

term follows directly since it is the lower bound for any
algorithm, and so applies to ρ-TV stable algorithms as well. We now focus on the second term
α̂(n, ρ) The proof is based on a standard reduction argument: if there is ρ-TV stable algorithm,
which with n i.i.d. samples from any distribution, achieves an expected excess population risk less
than α̂(n, ρ), then there is an ρ-TV stable algorithm which achieves an expected excess empirical
risk less than α̂(n, ρ) on any dataset of n samples. Since the latter contradicts the definition of
α̂(n, ρ), this gives us that the expected excess population risk is at least or equal to α̂(n, ρ). We now
focus on the proof of the reduction. Consider a dataset S of n points. Consider A as the following
algorithm: sample n i.i.d. samples from S, call this set S̃, and run some ρ-TV algorithm Ã on S̃. For
a fixed S̃, from TV-stable property of Ã, for any neighbouring dataset S̃′ with one point differing,
we have that TV(Ã(S̃), Ã(S̃′)) ≤ ρ. Furthermore, using the group property of TV-stability, for any
dataset S̃′, we have TV(Ã(S̃), Ã(S̃′)) ≤ ∆(S, S′)ρ. Using the maximal coupling characterization
of total variation distance, we have that there exists a coupling π̃ of random variables Ã(S̃) and
Ã(S̃′) such that TV(Ã(S̃), Ã(S̃′)) = Eπ̃1

{
Ã(S̃) 6= Ã(S̃′)

}
. We now show that the algorithm A

is also TV-stable for dataset S.
Consider dataset S′ of n points which differs from S in the first sample. We now generate S̃′ by

drawing n i.i.d samples from S′. For this, consider the following coupling: we draw n i.i.d samples
from S, call it S̃. For every draw of the first sample, replace it by the first sample of S′, call it S̃′.
It is easy to check the S̃ and S̃′ are i.i.d. samples from S and S′ respectively. We now proceed to
show the A is ρ-TV stable. We will use the fact the total variation distance is at most the probability
of disagreement under any coupling. The coupling π we consider is that we first generate S̃ and
S̃′ using the aforementioned coupling, and then use the coupling π̃ which achieves total variation
distance for worst-case fixed neighbouring datasets S̃ and S̃′. We have,

TV(A(S),A(S′)) ≤ Eπ1
{
A(S) 6= A(S′)

}
= Eπ1

{
Ã(S̃) 6= Ã(S̃′)

}
≤ Eπ sup

S̃,S̃′
1

{
Ã(S̃) 6= Ã(S̃′)

}
≤ Eπ∆(S̃, S̃′)ρ = ρ

where the last equality follows from direct computation of ∆(S̃, S̃′): number of differing samples,
under coupling π.

We now proceed to the accuracy guarantee. From straight-forward computation, the excess
population risk, under the sampling of S̃, is F̂S(Ã(S̃))− F̂S(w∗S) - this is the excess empirical risk
for dataset S. So if we have an upper bound on excess population risk using algorithm Ã, we have
an upper bound on excess empirical risk for dataset S. This completes the reduction argument and
hence the proof.

Appendix K. Algorithms for approximate unlearning

We consider an approximate notion of unlearning, based on differential privacy, which has appeared
in the literature (Neel et al., 2020; Guo et al., 2019). With such a notion, we show a simple black-box
reduction to DP algorithm, to handle unlearning requests, and show how to use group privacy to
trade-off accuracy and runtime. For convex ERM, this method performs competitively with existing
works.

We first define the notion of approximate unlearning.

68

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

Definition 6 ((ε, δ)-approximate-unlearning) We say a procedure (A,U) satisfies (ε, δ)-
approximate-unlearning unlearning if for any S, S′ ⊂ X ∗ such that ∆(S, S′) = 1 and for any
measurable event E ∈ Range(U) ∩ Range(A), with probability at least 1− δ,

e−εP
[
U(A(S), S′\S ∪ S\S′) ∈ E

]
≤ P

[
A(S′) ∈ E

]
≤ eεP

[
U(A(S), S′\S ∪ S\S′) ∈ E

]
We now define (g, ε, δ)-group differential privacy.

Definition 7 ((g, ε, δ)-group differential privacy) An algorithm A satisfies (ε, δ)-differential pri-
vacy if for any two datasets S and S′ such that ∆(S, S′) ≤ g, for any measurable event
E ∈ Range(A), it satisfies

P(A(S) ∈ E) ≤ eεP(A(S′) ∈ E) + δ

Remark 8 (Dwork et al., 2014) If an algorithm satisfies (ε, δ)-DP, then for any g ∈ N, it satisfies
(g, gε, ge(g−1)εδ)-group differential privacy.

We now define privateCompute oracle which, basically is a differentially private solver for the
said task.

Definition 8 (privateCompute(S, ε, δ) oracle) For a problem instance, given a dataset S of n points,
and privacy parameters ε and δ, a privateCompute oracle outputs a (ε, δ)-differentially private
solution with accuracy αprivate(n, ε, δ)

We now give a very simple algorithm (Algorithm 9) based on the observation above using
privateCompute oracle calls.

Algorithm 9 Approximate unlearning
Input: ε, δ, ρ

1: i← 0
2: ŵS ← PrivateCompute

(
S, ρα, βgroup

(⌊
1
ρ

⌋
, ρα, ρβ

))
3: // Observe k edit requests
4: while t = 1, 2, . . . , k do
5: St ← Update dataset(edit request)
6: i+ = 1
7: if i =

⌊
1
ρ

⌋
then

8: ŵSt ←PrivateCompute
(
St, ρα, βgroup

(⌊
1
ρ

⌋
, ρα, ρβ

))
9: i← 0

10: end if
11: end while

Theorem 10 Given a set of n data points to start with, and observing a stream of k requests, at any
time t in the stream, the following hold about Algorithm 9:

1. It satisfies (ε, δ)-approximate unlearning.

69

ULLAH MAI RAO ROSSI ARORA

2. The unlearning runtime for k requests is at most 2ρk privateCompute oracle calls.

3. The accuracy is at most αprivate

(
n
2 , ρε, δgroup

(⌊
1
ρ

⌋
, ρε, ρδ

))
.

Proof [Proof of Theorem 10] Consider a point t in the stream, and let j be such that j
⌊

1
ρ

⌋
≤ t ≤

(j+1)
⌊

1
ρ

⌋
. Since the algorithm uses privateCompute with parameters ρε and δgroup

(⌊
1
ρ

⌋
, ρε, ρδ

)
, it

satisfies (ρε, δgroup

(⌊
1
ρ

⌋
, ρε, ρδ

)
differential privacy and hence

(⌊
1
ρ

⌋
, α, δ

)
-group privacy. There-

fore, for any such t, since the number of requests after time j
⌊

1
ρ

⌋
is less that or equal to

⌊
1
ρ

⌋
, this

implies it satisfies (α, δ)-approximate unlearning. For the second part of the claim, note that for
k updates, the number of times the algorithm calls privateCompute is k⌊

1
ρ

⌋ . Note that 1
ρ ≥ 1, so if

1 ≤ 1
ρ < 2, then

⌊
1
ρ

⌋
= 1, which gives that the update complexity is k ≤ 2k. However, if 1

ρ ≥ 2,

we have that k⌊
1
ρ

⌋ ≤ k(
1
ρ
−1
) ≤ 2kρ, which gives the update complexity is at most 2ρk in both cases.

For the third part of the claim, at time j
⌊

1
ρ

⌋
≤ t ≤ (j + 1)

⌊
1
ρ

⌋
, the private estimator is computed

with n
(
j
⌊

1
ρ

⌋
)
)
≥ n

2 , by assumption. Moreover the privacy parameters of the algorithm are ρε and

δgroup

(⌊
1
ρ

⌋
, ρε, ρδ

)
which gives the claimed accuracy bound.

As an example, consider ρ = 1√
k

, we first do privatecompute with parameters

(ε/
√
k, , δgroup(ε/

√
k, δ/
√
k, b
√
kc)). Since after b

√
kc edit requests, we would no longer satisfy the

unlearning guarantee, so we now need to do privateCompute again. However note that we would
only need to do privateCompute

√
k times which gives the update computation cost.

Example: Convex ERM. For convex ERM, we can use Bassily et al. (2014) to instantiate the
oracle. In this case, accuracy αprivate is the excepted excess empirical risk, which is αprivate(n, ε, δ) =

O

(
GD
√
d
√

log(1/δ)

nε

)
. Using Algorithm 9, given 0 ≤ ρ ≤ 1, at any point in the stream, we have,

EF̂S(ŵS)− F̂S(w∗S) ≤ αprivate

(
n

2
, ρε, δgroup

(⌊
1

ρ

⌋
, ρε, ρδ

))

≤ O

GD
√
d

√
log
(

(1/ρδ) exp
(
ρε
(⌊

1
ρ

⌋
− 1
)))

nρε

≤ O

(
GD

(√
d
√

log (1/ρδ)

nρε
+

√
d

nρ
√
ε

))

≤ O

(
GD
√
d
√

log (1/ρδ)

nρε

)

where the last inequality holds when ε
log(1/ρδ) ≤ O(1), which usually is the case in DP, and so is a

reasonable regime. We now compare against Neel et al. (2020) - we ignore G,D and log factor in

70

MACHINE UNLEARNING VIA ALGORITHMIC STABILITY

both the bounds. To have the same runtime, we need ρkTm = k2n ⇐⇒ ρ = kn
Tm = kd

ε2n
, where in

the last equality we substituted Tm = (εn)2

d , parameters for the DP convex ERM algorithm. Our

accuracy bound is O
(√

d
nρε

)
= O

(
ε

k
√
d

)
, which is smaller than that of Neel et al. (2020), when

ε
k
√
d
≤
(√

d
nkε

)2/5
⇐⇒ ε7 ≤

√
d
7
k3

n2 ⇐⇒ ε ≤
√
dk3/7

n2/7 . Hence in regimes where the unlearning
parameter ε is small enough, which corresponds to a stronger unlearning criterion, this algorithm is
better than that of Neel et al. (2020).

Appendix L. Experiments

We run experiments on MNIST (LeCun, 1998), a standard digit classification computer vision dataset
with 10 classes. We train a logistic regression model, which can be formulated as a smooth convex
risk minimization problem. Starting with a training dataset of 60k points, we simulate a stream of
300 deletions of randomly chosen points and 300 insertions of new points, randomly permuted. We
use Algorithm 5 as the learning algorithm, and the corresponding Algorithm 6 as the unlearning
algorithm. We train for T = 200 iterations, with mini-batch of size m = 50 with a constant learning
rate η = 0.05. We run experiments on a range of values of standard deviation σ of Gaussian noise,
from 0 to 1.1 separated by the intervals of size 0.005. For every value of σ, we run 10 instances of
the whole unlearning procedure and report average performance: accuracy and number of unstable
edits (i.e. number of times a recompute is triggered) , and their standard deviations. Note that σ = 0
corresponds to standard mini-batch SGD, and therefore the accuracy obtained is the accuracy for the
standard training method with the aforementioned setting of the hyperparameters. Moreover, the
σ = 0 setting also corresponds to Algorithm 3, and therefore the corresponding unlearning algorithm
Algorithm 4 handles edits for this case.

In Fig. 5, we report the test accuracy (fraction of mis-classified samples in the test set) and the
number of unstable edits i.e the number of times a retrain is triggered, as a function of σ. As expected,
as σ increases, we get less unstable edits. Interestingly, for small values of σ, for example 0.05, the
degradation in accuracy: 88% (vanilla SGD) to 87% (our method) is not as much as compared to
decrease in the the number of unstable edits: 520 to 210 i.e. a factor of two and a half. Apart from
the above improvement, there is an additional improvement from the fact that our method triggers a
partial retraining rather than full retraining i.e. only some of the iterations of SGD are to be rerun.
This behaviour is shown in Fig. 6 - the orange line shows the average number of iterations we need
to do if we did full retraining on every unstable edit, and the blue line shows the number of iterations
for our method. For σ = 0.05, we see an advantage of a factor of two. Hence, our method with
σ = 0.05 has accuracy comparable to retraining (87% vs 88%) but the computational advantage, in
terms of number of iterations rerun, over retraining, is about a factor of five. Similar conclusions
can be drawn by looking at different values of σ in the plots which show a smooth trade off between
accuracy and unlearning efficiency.

71

ULLAH MAI RAO ROSSI ARORA

Figure 5: Accuracy and number of unstable edits as a function of variance of noise used.

Figure 6: Number of retraining iterations by unlearning algorithm compared to all full retraining (all itera-
tions)

72

