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Abstract
Understanding the implicit regularization (or implicit bias) of gradient descent has recently been a
very active research area. However, the implicit regularization in nonlinear neural networks is still
poorly understood, especially for regression losses such as the square loss. Perhaps surprisingly, we
prove that even for a single ReLU neuron, it is impossible to characterize the implicit regularization
with the square loss by any explicit function of the model parameters (although on the positive
side, we show it can be characterized approximately). For one hidden-layer networks, we prove
a similar result, where in general it is impossible to characterize implicit regularization properties
in this manner, except for the “balancedness” property identified in Du et al. (2018). Our results
suggest that a more general framework than the one considered so far may be needed to understand
implicit regularization for nonlinear predictors, and provides some clues on what this framework
should be.

1. Introduction

A major open question in the theory of deep learning is how neural networks generalize even when
trained without any explicit regularization, and when there are far more learnable parameters than
training examples. In such an underdetermined optimization problem, there are many global minima
with zero training loss, and gradient descent seems to prefer solutions that generalize well (see
Zhang et al. (2016)). Hence, it is believed that gradient descent induces an implicit regularization
(or implicit bias) (Neyshabur et al., 2014, 2017), and characterizing this regularization/bias has been
a subject for an extensive research in recent years.

The focus in the existing research is on finding a regularization function R(θ), where θ are the
parameters of the model, such that if we apply gradient descent on the average loss, then it converges
in some sense to a global optimum that minimizes R. Thus, the function R determines to which
global optimum gradient descent converges. For example, it is known that for linear regression,
gradient descent on the average square loss converges to the zero-loss solution with minimal `2
norm (Zhang et al., 2016). For linear classification and exponentially-tailed losses (such as the
logistic or exponential losses), gradient descent on linearly separable data converges in direction to
the minimal `2 norm predictor which attains a fixed positive margin over the data, also known as the
max-margin solution (cf. Soudry et al. (2018)). Thus, in both casesR is essentially the `2 norm.

Once we move beyond simple linear classification and regression, the situation gets more com-
plicated. This is especially so when considering the square loss (a setting which we focus on in
this paper), where existing works still focus on predictors which express linear functions1. For ex-
ample, there has been much effort to characterize the implicit regularization of gradient descent in
matrix factorization. This problem corresponds to training a depth-2 linear neural network, and is

1. See the related work section below for discussion of results on classification losses, which are relatively easier to
tackle.
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considered a well-studied test-bed for studying implicit regularization in deep learning. Gunasekar
et al. (2018c) conjectured that the implicit regularization in matrix factorization is the nuclear norm,
and proved it for some restricted cases. This conjecture was further studied in a string of works
(e.g., Belabbas (2020); Arora et al. (2019); Razin and Cohen (2020)), and was formally refuted
by Li et al. (2020). Focusing on a more specific setting, Woodworth et al. (2020) recently studied
the implicit regularization in diagonal linear neural networks, namely, linear networks where the
weight matrices have a diagonal structure. They find the regularization function and show how it in-
terpolates between the `1 and `2 norms depending on the initialization scale. This result was further
generalized in Yun et al. (2020).

In this paper, we study implicit regularization with the square loss in nonlinear neural networks,
when trained using gradient descent with infinitesimal step sizes (a.k.a. gradient flow). Perhaps
surprisingly, we show that already for very simple such networks (involving a single ReLU neuron,
or one thin hidden layer), the implicit regularization cannot be expressed by any explicit function of
the model parameters. In other words, the model used to capture the implicit regularization in pre-
vious works cannot be used to capture the implicit regularization of nonlinear models in general (at
least with respect to the square loss). However, on the positive side, we show that this implicit regu-
larization can sometimes be captured by an explicitR, but only up to some constant approximation
factor. In a bit more detail, our contributions are as follows:

• We start with single-neuron networks, namely, x 7→ σ(〈x,w〉). If the activation function
σ is strictly monotonic, then it is not hard to show that the implicit regularization is the `2
norm. However, if σ is the ReLU function, then we show that the implicit regularization is not
expressible by any nontrivial function of w. A bit more precisely, suppose thatR : Rd → R is
such that if gradient flow converges to a zero-loss solution w∗, then w∗ is a zero-loss solution
that minimizes R. We show that such a function R must be constant in Rd \ {0}. Hence,
perhaps surprisingly, the approach of precisely specifying the implicit bias of gradient flow
via a regularization function is not feasible in single-neuron networks.

• On the positive side, we show that while the implicit bias of a ReLU neuron cannot be speci-
fied exactly by a regularization function, it can be expressed approximately, within a factor of
2, by the `2 norm. That is, let w∗ be a zero-loss solution with a minimal `2 norm, and assume
that gradient flow converges to some point w(∞), then ‖w(∞)‖2 ≤ 2 ‖w∗‖2. Assuming
‖w∗‖ is not too large, such a bound on the `2 norm can be used to derive good statistical gen-
eralization guarantees, via standard techniques (cf. Shalev-Shwartz and Ben-David (2014)).

• We extend our study to depth-2 ReLU networks. For such networks, an important implicit
bias property shown in Du et al. (2018) is that gradient flow enforces the differences between
square norms across different layers to remain invariant. Starting from a point close to zero,
it implies that the magnitudes of all layers are automatically balanced. Thus, gradient flow
induces a bias toward “balanced” layers. However, this bias is rather weak and is not related
to properties that may allow us to obtain generalization guarantees, such as small norms,
sparsity, or low rank. We consider networks with one hidden ReLU neuron, i.e., x 7→ v ·
σ(〈x,w〉) (where v,w are the trained parameters), which is the simplest case of a depth-2
ReLU network. We show that the only bias which can be specified by a function R of the
model parameters is the balancedness property: Namely,R is constant in the set of parameters
that satisfy this property. Thus, no other implicit bias property can be expressed by such a
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function for single-hidden-neuron networks. This also has implications for general depth-
2 ReLU networks: If R is a function that specifies the implicit regularization of depth-2
networks, then in the special case of single-hidden-neuron networks, it does not induce bias
except for enforcing the balancedness property. Hence, the implicit regularization function
of depth-2 ReLU networks cannot be generally related to properties such as small norms or
sparsity, which should apply also to single-hidden-neuron networks.

We again emphasize that since our results show the impossibility of characterizing the implicit
regularization already for very simple networks, similar difficulties will be encountered in more
general cases (such as ReLU networks of any depth and width).

Overall, our results suggest that the implicit regularization for ReLU networks with the square
loss may not be expressible by an explicit function R of the model parameters. On the positive
side, they also suggest how this can be overcome by changing the model: Instead of looking for
such an R which captures the bias exactly, we might try to capture it approximately, as we did in
the single ReLU neuron case. Another possible direction is to find a regularization function R that
is data-dependent in some simple way2, and does not depend just on the model parameters. We
believe these are both interesting directions for further research.

Related Work

As we already discussed, implicit regularization in matrix factorization and linear neural networks
was extensively studied, as a first step toward understanding implicit regularization in more complex
models (see, e.g., Gunasekar et al. (2018c); Razin and Cohen (2020); Arora et al. (2019); Belabbas
(2020); Eftekhari and Zygalakis (2020); Li et al. (2018); Ma et al. (2018); Woodworth et al. (2020);
Gidel et al. (2019); Li et al. (2020); Yun et al. (2020)). In Razin and Cohen (2020) it was shown that
gradient flow in matrix factorization may approach a global minimum at infinity rather than con-
verging to a global minimum with a finite norm. This result suggests that the implicit regularization
in matrix factorization may not be expressible by norms. The main conceptual differences from our
paper are that we rule out all regularization functions, and that our result holds already if we assume
that gradient flow converges to some global minimum with a finite norm.

Oymak and Soltanolkotabi (2019) studied the implicit bias of gradient descent in certain nonlin-
ear models. They showed that under some assumptions, gradient descent is guarranteed to converge
to a zero-loss solution with a bounded `2 norm. Their results have implications on the implicit regu-
larization of single-neuron networks with a strictly monotonic activation function, which we discuss
in Remark 2. Williams et al. (2019) and Jin and Montúfar (2020) studied the dynamics and implicit
bias of gradient descent in wide depth-2 ReLU networks with input dimension 1.

The conceptually closest works to ours are Dauber et al. (2020); Suggala et al. (2018), which
show that variants of gradient descent on some (specially crafted) convex optimization problems
do not converge to a closest Euclidean solution, or cannot be explained by any reasonable implicit
regularization function. These works, as well as ours, consider the limitations of implicit regulariza-
tion, but our results apply to a standard learning problem, namely, learning neural networks. Thus,
while the results of Dauber et al. (2020); Suggala et al. (2018) demonstrate that there are learn-
ing problems that cannot be explained by any reasonable regularization function, we show that this
phenomenon occurs already for simple ReLU networks.

2. Otherwise, a trivial solution is to define R(θ,X ) (where X is the dataset) to be 0 if θ are the parameters returned by
gradient flow given X , and 1 otherwise.

3



VARDI SHAMIR

The implicit bias of gradient descent in classification tasks is also widely studied. Soudry et al.
(2018) showed that gradient descent on linearly-separable binary classification problem with an
exponentially-tailed loss (e.g., the exponential loss and the logistic loss), converges to the maximum
margin direction. This analysis was extended to other loss functions, tighter convergence rates,
nonseparable data, and variants of gradient-based optimization algorithms (Nacson et al., 2019; Ji
and Telgarsky, 2018b; Ji et al., 2020; Gunasekar et al., 2018a; Shamir, 2020). The problem was also
studied for more complex models, such as linear neural networks (Gunasekar et al., 2018b; Ji and
Telgarsky, 2018a; Moroshko et al., 2020; Yun et al., 2020), and neural networks with homogeneous
activation functions (Lyu and Li, 2019; Chizat and Bach, 2020; Xu et al., 2018).

2. Preliminaries

Notations. We use bold-faced letters to denote vectors, e.g., x = (x1, . . . , xd). For x ∈ Rd we
denote by ‖x‖ the Euclidean norm.

Single-neuron networks. Let {(xi, yi)}ni=1 be a training dataset, where for every i we have
xi ∈ Rd and yi ∈ R. We consider empirical-loss minimization of a single-neuron network, with
respect to the square loss. Thus, the objective is given by

L(w) :=
1

2

n∑
i=1

(σ(〈xi,w〉)− yi)2 , (1)

where σ : R → R is a nonlinear activation function. Let X ∈ Rn×d denote the data matrix, i.e.,
the rows of X are x>1 , . . . ,x

>
n , and let y = (y1, . . . , yn). We have L(w) = 1

2 ‖σ(Xw)− y‖2,
where σ is applied component-wise. We assume that the data is realizable, that is, minw L(w) = 0.
Moreover, we focus on settings where the network is overparameterized, in the sense that L has
multiple (or even infinitely many) global minima.

We analyze the implicit regularization of gradient flow on the objective given by Eq. 1. This
setting captures the behaviour of gradient descent with infinitesimally small step size. Let w(t)
be the trajectory of gradient flow, where w(0) is the initial point. The dynamics of w(t) is given
by the differential equation ẇ(t) := dw(t)

dt = −∇L(w(t)). If limt→∞w(t) exists then we denote
it by w(∞). We note that gradient flow is not guaranteed to converge to a global minimum (cf.
Yehudai and Shamir (2020)). In the overparameterized setting there can be infinitely many global
minima, and we study to which one gradient flow converges, assuming that it converges to a global
minimum.

3. Warm up – strictly monotonic activation functions

We first analyze the implicit regularization of gradient flow on the objective given by Eq. 1, where
the activation function σ is strictly monotonic. In this case, we show that the implicit bias is simply
the `2 norm: Namely, the point w closest to w(0) on which L(w) = 0.

Theorem 1 Consider gradient flow on the objective given by Eq. 1, where σ : R → R is a
strictly monotonic activation function. If w(∞) exists and L(w(∞)) = 0, then we have w(∞) ∈
argminw ‖w −w(0)‖ s.t. L(w) = 0.
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Proof Since σ is strictly monotonic, then for every 1 ≤ i ≤ n we have σ(〈xi,w〉) = yi iff
〈xi,w〉 = σ−1(yi). The KKT optimality conditions for the problem minw ‖w −w(0)‖2 s.t.
〈xi,w〉 = σ−1(yi), i = 1, . . . , n, are

∃λ1, . . . , λn s.t. w = w(0) +
n∑
i=1

λixi

∀1 ≤ i ≤ n, 〈xi,w〉 = σ−1(yi) .

Note that since the constraints are affine functions, then the conditions are both necessary and suf-
ficient. The second condition holds in w(∞) since L(w(∞)) = 0. Moreover, we have ẇ(t) =
−∇L(w(t)) = −

∑n
i=1

(
σ(x>i w(t))− yi

)
σ′(x>i w(t))xi. Thus, ẇ(t) is always spanned by the

vectors x1, . . . ,xn, and hence the first condition also holds.

Remark 2 By Oymak and Soltanolkotabi (2019), if σ is continuously differentiable and there are
positive constants γ,Γ such that 0 < γ ≤ σ′(z) ≤ Γ for every z ∈ R, then w(t) is guaranteed to
converge to a global optimum w(∞) that is closest to w(0). In Theorem 1, our assumption on σ is
weaker, but we assume that w(∞) exists and L(w(∞)) = 0 (which is a common assumption when
considering implicit regularization).

4. The implicit regularization of a ReLU neuron is not expressible by w

In this section we study the implicit regularization of gradient flow on the objective given by Eq. 1,
where w(0) = 0 and σ : R→ R is the ReLU function. We impose the convention that even though
the ReLU function is not differentiable at 0, we take σ′(0) > 0. This convention is required for
analyzing gradient flow with w(0) = 0, since if σ′(0) = 0 then w(t) would stay at 0 indefinitely.
For simplicty, in our proofs we assume that σ′(0) = 1, but our results hold for every positive value.

Assume that the implicit regularization can be expressed as a function R : Rd → R, namely, if
gradient-flow converges to a global minimum w∗, then we have w∗ ∈ argminwR(w) s.t. L(w) =
0. We will first show that unlike the case of strictly monotonic activations, the implicit bias of R is
not the `2 norm, and in fact, data-dependent in a nontrivial way. Then, we will extend this result, and
show thatR is trivial, namely, constant in Rd \ {0}. Thus, the behavior of w(∞) has a complicated
data-dependent behavior, and cannot be written down as minimizing some function dependent only
on w, among all zero-loss solutions.

4.1. R is not the `2 norm

We show that the implicit regularization of a single ReLU neuron is not the `2 norm. Thus, the
implicit regularization of ReLU is different than that of strictly monotonic activation functions con-
sidered in Section 3. Specifically, in the following theorem we analyze the behavior of gradient flow
for some family of inputs. The theorem considers a datasets of the form (Xγ ,y) ∈ R3×3 × R3,
where γ is a parameter. We show that gradient flow starting from w(0) = 0 with the input (Xγ ,y),
converges to a zero-loss solution which is not a minimal-norm zero-loss solution, and that the pa-
rameter γ controls the ratio between ‖w(∞)‖ and the minimal-norm of a zero-loss solution. Hence,
the implicit regularization is not the `2 norm. We will also use this theorem later in order to show
additional results.
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Theorem 3 Let γ ≥ 0, and let

Xγ =

3 −1 0
4 2 0
0 γ γ

 .

Let α > 0 and let yα = α · (16, 18, 0)>. Consider gradient flow with input (Xγ ,yα), starting
from w(0) = 0, on the objective given by Eq. 1, where σ : R → R is the ReLU function. Let
Wα = {(5α,−α, s)> : s ≤ 0} ⊆ R3. Note that for every w ∈ Wα we have σ(Xγw) = yα, and
thus L(w) = 0. Moreover, note that the global optimum with the minimal `2 norm is α ·(5,−1, 0)>.
We have:

• If γ = 0 then w(∞) = α · (5,−1, 0)>.

• If γ = 1 then w(∞) = α · (5,−1, s)> for some s ∈ (−0.045,−0.035) independent of α.

• If γ = 2 then w(∞) = α · (5,−1, s)> for some s ∈ (−0.12,−0.1) independent of α.

• If γ = 5 then w(∞) = α · (5,−1, s)> for some s ∈ (−0.22,−0.2) independent of α.

Proof [Proof sketch (for complete proof see Appendix A)] The trajectory w(t) is the solution of the
initial value problem defined by the differential equation

ẇ(t) = −∇L(w(t)) = −
3∑
i=1

(
σ(x>i w(t))− yi

)
σ′(x>i w(t))xi , (2)

and the initial condition w(0) = 0. Here, x>i are the rows of the matrix Xγ , and yi are the compo-
nents of yα.

In Figure 1, we show the trajectories w(t) of gradient descent (an empirical simulation), for
α = 1 and γ ∈ {0, 1, 2, 5, 20}. The grey line denotes the setWα, and the hyperplane corresponds
to x>3 w = 0 (where γ > 0). Note that the trajectories for γ > 0 consist of two parts. In the first part
x>3 w(t) ≥ 0, and in the second part x>3 w(t) ≤ 0. We note that in the second part, the component
w3(t) remains constant. Indeed, by Eq. 2, the change in w(t) is spanned by x1,x2,x3, and if
x>3 w(t) ≤ 0 then it is spanned only by x1,x2 (note that if x>3 w(t) = 0 then σ(x>3 w(t))− y3 = 0).
Since x1,x2 have 0 as their third component, then w3(t) does not change. Intuitively, the parameter
γ controls the extent to which w3(t) decreases during the first part, before reaching the second part
in which it stays constant. In the proof we analyze these trajectories formally.

For γ = 0, we show that the solution to Eq. 2 is w(t) = (w1(t), w2(t), 0), where w̃(t) =

(w1(t), w2(t)) is given by w̃(t) = X̃−1ỹ − exp
(
−tX̃>X̃

)
X̃−1ỹ. Here, X̃ ∈ R2×2 is obtained

from X0 by omitting the third column and third row, ỹ = (y1, y2)>, and exp(·) denotes the matrix
exponential. Note that w̃(∞) = X̃−1ỹ = α · (5,−1)>. Moreover, note that in order to show
that this trajectory satisfies Eq. 2, it suffices to show that x>i w(t) ≥ 0 for every i ∈ {1, 2, 3} and
t ≥ 0, and that w(t) satisfies the linear differential equation obtained form Eq. 2 by plugging in
σ(x>i w(t)) = x>i w(t) and σ′(x>i w(t)) = 1.

For γ > 0, we show that the solution to Eq. 2 consists of two parts: The first part is where
t ∈ [0, t1] for some t1 > 0, and second part is where t ∈ [t1,∞). In the first part, we have
w(t) = α(5,−1, 1)>− exp

(
−tX>γ Xγ

)
α(5,−1, 1)>, and x>i w(t) ≥ 0 for every i ∈ {1, 2, 3} and

t ∈ [0, t1]. Then, in the second part, w3(t) remains constant, and w̃(t) = (w1(t), w2(t)) is given by
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Figure 1: The trajectories for γ = 0 (purple), γ = 1 (red), γ = 2 (green), γ = 5 (blue), and γ = 20
(yellow).

w̃(t) = α(5,−1)>+exp
(
−(t− t1)X̃>γ X̃γ

) (
w̃(t1)− α(5,−1)>

)
. Here, X̃γ ∈ R2×2 is obtained

from Xγ by omitting the third column and third row. Note that w̃(∞) = α · (5,−1)>. In this part,
we have x>i w(t) ≥ 0 for i ∈ {1, 2} and x>3 w(t) ≤ 0.

In the proof, we show for both parts, that the trajectories satisfy Eq. 2. Moreover, we investigate
the value of w3(∞) = w3(t1) in order to obtain the required bounds for each γ ∈ {1, 2, 5}.

Remark 4 Theorem 3 shows that by modifying the parameter γ we can control the ratio ‖w(∞)‖
‖w∗‖ ,

where w∗ is a minimal-norm zero-loss solution. In Section 5 we will show that this ratio is bounded.

4.2. R is trivial

We now prove the following theorem, which implies thatR is trivial and does not induce bias.

Theorem 5 Consider gradient flow starting from w(0) = 0, on the objective given by Eq. 1,
where σ : R → R is the ReLU function. Let R : R3 → R, such that for every input (X,y) ∈
R3×3 × R3 where gradient flow converges to w(∞) with L(w(∞)) = 0, we have w(∞) ∈
argminwR(w) s.t. L(w) = 0. Then,R is constant in R3 \ {0}.

Let X ∈ R3×3 and y ∈ R3. Let x>1 ,x
>
2 ,x

>
3 be the rows of X . Suppose that given input (X,y),

gradient flow with w(0) = 0 converges to w(∞). Note that by rotating x1,x2,x3, the trajectory
w(t) is rotated accordingly Thus, for every rotation matrix M ∈ SO(3), given input (XM>,y)
gradient flow converges to Mw(∞).

Let α > 0. By Theorem 3, all points in Wα are global minima for all inputs {(Xγ ,yα) :
γ ≥ 0}, but gradient-flow converges to different points wγ ∈ Wα, depending on γ. Hence, we
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have R(wγ) = minw∈Wα R(w). Thus, Theorem 3 implies that R(w0) = R(w1) = R(w2) =
R(w5) = minw∈Wα R(w). We use this property in order to prove Theorem 5.

Let M ∈ SO(3). We denote MWα = {Mw : w ∈ Wα}. By changing the input Xγ in
Theorem 3 to XγM

>, we deduce that R(Mw0) = R(Mw1) = minw∈MWα R(w). Indeed,
all points in MWα are global minima for all inputs {(XγM

>,yα) : γ ≥ 0}, but gradient-flow
converges to different points Mwγ ∈ MWα, depending on γ. Let c > 0 be such that w1 =
α · (5,−1,−c). For every w ∈ R3 with ‖w‖ =

∥∥w0
∥∥ = ‖α · (5,−1, 0)‖ = α

√
26, and v ∈ R3

such that 〈w,v〉 = 0 and ‖v‖ = α · c, by choosing an appropriate rotation M we obtain R(w) =
R(w + v) = minβ≥0R(w + βv). Finally, as we show in the following lemma, this property
implies thatR is constant over R3 \ {0}, and thus we complete the proof of Theorem 5.

Lemma 6 Let q, c > 0 be constants. Let d ≥ 3, and let R : Rd → R be a function such that
for every α > 0, vector w ∈ Rd with ‖w‖ = αq, and vector v ∈ Rd such that ‖v‖ = αc and
〈w,v〉 = 0, we haveR(w) = R(w + v) = minβ≥0R(w + βv). Then,R(w) = R(w′) for every
w,w′ ∈ Rd \ {0}.

Proof [Proof sketch (for complete proof see Appendix B)] First, we show that R is radial, namely,
there exists a function f : R+ → R such that R(w) = f(‖w‖) for every w ∈ Rd. Assume that
w,w′ ∈ Rd \ {0} are such that ‖w‖ = ‖w′‖ = αq for some α > 0, and ‖w −w′‖ is sufficiently
small. We show that there exists u∗ ∈ Rd such that u∗ = w + v = w′ + v′ for some v,v′

with ‖v‖ = ‖v′‖ = αc and 〈w,v〉 = 〈w′,v′〉 = 0. By our assumption on R, it implies that
R(w) = R(u∗) = R(w′), and henceR is radial.

Thus, it suffices to show that f(r) = f(r′) for every 0 < r < r′. Using our assumption on

R, we show that for every m ∈ N we have f(r) = f

(
r
(

1 + c2

q2

)m/2)
. The assumption on

R also implies that f(r) = minr′′≥r f(r′′) ≤ f(r′), and that f(r′) ≤ f

(
r
(

1 + c2

q2

)m/2)
for a

sufficiently large m. Therefore, we have f(r) ≤ f(r′) ≤ f

(
r
(

1 + c2

q2

)m/2)
= f(r), and hence

f(r) = f(r′) as required.

Remark 7 (R is trivial also for d > 3) Theorem 5 implies that the implicit regularization function
R : Rd → R is trivial for d = 3. By padding the inputs x1,x2,x3 from Theorem 3 with zeros, we
can obtain a d-dimensional version of Theorem 3 for d > 3. Then, using the same arguments as
above, it implies that Theorem 5 holds for every d ≥ 3.

5. The implicit regularization of a ReLU neuron is approximately the `2 norm

While the implicit regularization of ReLU neuron cannot be expressed as a function R(w), in this
section we show that it can be expressed approximately, within a factor of 2, by the `2 norm. This
implies that even without early stopping, if the data can be labeled by a ReLU neuron with small `2
norm, then gradient flow will converge to a ReLU neuron whose `2 norm is not much larger. Since
a ReLU neuron is just a linear function composed with a fixed nonlinearity, this can be used to
derive good statistical generalization guarantees, via standard techniques (cf. Shalev-Shwartz and
Ben-David (2014)).
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Theorem 8 Consider gradient flow on the objective given by Eq. 1, where σ : R→ R is a monoton-
ically non-decreasing activation function (e.g., ReLU). Assume that w(∞) exists and L(w(∞)) =
0. Let w∗ ∈ argminw ‖w −w(0)‖ s.t. L(w) = 0. Then, ‖w(∞)−w(0)‖ ≤ 2 · ‖w∗ −w(0)‖.

Proof First, note that

〈∇L(w(t)),w(t)−w∗〉 =

〈
n∑
i=1

(
σ(x>i w(t))− σ(x>i w

∗)
)
σ′(x>i w(t))xi,w(t)−w∗

〉

=
n∑
i=1

(
σ(x>i w(t))− σ(x>i w

∗)
)
σ′(x>i w(t))(x>i w(t)− x>i w

∗) .

Since σ is monotonically non-decreasing then
(
σ(x>i w(t))− σ(x>i w

∗)
)

(x>i w(t) − x>i w
∗) ≥ 0,

and σ′(x>i w(t)) ≥ 0. Hence, 〈∇L(w(t)),w(t)−w∗〉 ≥ 0. Therefore, we have

d

dt

(
1

2
‖w(t)−w∗‖2

)
= 〈w(t)−w∗, ẇ(t)〉 = 〈w(t)−w∗,−∇L(w(t))〉 ≤ 0 .

Thus, ‖w(∞)−w∗‖ ≤ ‖w(0)−w∗‖. Hence,

‖w(∞)−w(0)‖ = ‖w(∞)−w∗ + w∗ −w(0)‖ ≤ ‖w(∞)−w∗‖+ ‖w∗ −w(0)‖
= 2 · ‖w∗ −w(0)‖ .

Remark 9 Note that Theorem 8 implies that if w(0) = 0 then ‖w(∞)‖ ≤ 2 · ‖w∗‖. By Theorem 5,
the implicit regularization cannot be expressed as a function of w. Hence, while the implicit reg-
ularization of a ReLU neuron cannot be expressed exactly as a function of w, it can be expressed
approximately, within a factor of 2, by the `2 norm.

6. Depth-2 ReLU networks

In Section 4, we showed that the implicit regularization of a single ReLU neuron is not expressible
by any nontrivial function of w. In this section we will show an analogous result for networks with
one hidden ReLU neuron (namely, x 7→ v · σ(〈x,w〉)), which is the simplest case of a depth-2
ReLU network. Since our focus here is on impossibility results, then our results for this simple case
imply impossibility results also for more general cases.

By Du et al. (2018), in feed-forward ReLU networks, gradient flow enforces the differences be-
tween square norms across different layers to remain invariant. Thus, if gradient flow starts from a
point close to 0, then the magnitudes of all layers are automatically balanced. In the case of single-
hidden-neuron networks, it implies that ‖w‖ (the norm of the weights vector of the first layer) is
roughly equal to |v| (the weight in the second layer). Hence, gradient flow induce a bias toward
balanced layers. However, this bias is considered weak and does not allow us to derive general-
ization guarantees. Hence, there has been much effort to characterize the implicit regularization
and to understand whether it is related to properties such as small norms, sparsity, or low ranks (cf.
Gunasekar et al. (2018c); Razin and Cohen (2020); Arora et al. (2019); Woodworth et al. (2020);

9
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Belabbas (2020); Li et al. (2020)). We show that in single-hidden-neuron networks, the only bias
which can be specified by a regularization function R(θ) (where θ are the network parameters) is
the balancedness property described above. Namely, R(θ) is constant in the set of parameters that
satisfy the balacedness property.

Recall that in our study of single-neuron networks in Section 4, we first analyzed the behavior
of gradient flow for some specific inputs (Theorem 3), and then used this result in order to show that
the implicit regularization functionR is trivial (Theorem 5). Here, we proceed in a similar manner,
but the first part is based on empirical results rather than on a theoretical proof. Thus, we first run
gradient descent for some specific inputs, and observe empirically that it converges to points that
clearly satisfy a certain technical property. Then, making the explicit assumption that the technical
property holds, we prove that the regularization function R(θ) is constant in the set of parameters
that satisfy the balacedness property.

We now proceed to the formal results. Let θ = (w, v) ∈ Rd × R, and consider the neural
network Nθ(x) = v · σ(〈x,w〉), where σ : R → R is the ReLU function. Let {(xi, yi)}ni=1 be
a training dataset, and let X ∈ Rn×d be the corresponding data matrix. We analyze the implicit
regularization of gradient flow on the objective

LX,y(θ) :=
1

2

n∑
i=1

(Nθ(xi)− yi)2 . (3)

We assume that the data is realizable, i.e., minθ LX,y(θ) = 0. The run of gradient flow starts from
θ(0) = (w(0), v(0)), where w(0) = 0, and v(0) is a small number3. Let θε(t) be the trajectory
of gradient flow where θε(0) = (0, ε) for some ε > 0, and let θε(∞) = (wε(∞), vε(∞)) :=
limt→∞ θε(t) (assuming that the limit exists). In addition, we define the limit point of gradient flow
(on inputs (X,y)) as θ∗ = (w∗, v∗) := limε→0+ θε(∞), assuming the limit exists. This follows
a standard practice in analyzing the implicit regularization of gradient flow, where we consider the
flow’s limit assuming it starts infinitesimally close to 0 (see, e.g., Gunasekar et al. (2018c); Razin
and Cohen (2020); Arora et al. (2019); Woodworth et al. (2020); Li et al. (2020)).

We are interested in understanding the properties of any possible implicit regularization function
R : Rd × R → R: Namely, a function that for every input (X,y) ∈ Rn×d × Rn to gradient flow,
if θ∗ exists and LX,y(θ∗) = 0, then we have θ∗ ∈ argminθR(θ) s.t. LX,y(θ) = 0. Whereas for
a single ReLU neuron, we showed that R is necessarily constant, the situation for a single hidden-
neuron is more complex, because gradient flow is already known to induce the following nontrivial
balacedness property4:

Lemma 10 (Du et al. (2018)) Let θ(t) = (w(t), v(t)) be the trajectory of gradient flow on Eq. 3,
starting from some θ(0) ∈ Rd × R. Then, d

dt

(
‖w‖2 − v2

)
= 0.

As a consequence, we have the following corollary.

Corollary 11 Let ε > 0 and let θε(t) = (w(t), v(t)). For every t ≥ 0 we have (v(t))2 =
‖w(t)‖2 + ε2 > 0.

3. Note that if we start from (0, 0) then gradient flow stays at this point indefinitely, since the gradient there is 0. This
is avoided by making either the scalar v(0) or the vector w(0) non-zero, and we focus on the former as it makes the
analysis cleaner.

4. Du et al. (2018) showed the lemma for the more general case of fully-connected networks with homogeneous activa-
tion functions. See Appendix C for a simpler proof for our setting.

10



IMPLICIT REGULARIZATION IN RELU NETWORKS WITH THE SQUARE LOSS

By Corollary 11, we have vε(∞) =
√
‖wε(∞)‖2 + ε2, and hence v∗ = ‖w∗‖. As a result,

not all parameters (w∗, v∗) can be reached by gradient flow – only those which satisfy the “bal-
ancedness” property above. However, this property in itself is rather weak, and does not necessarily
induce bias towards properties which may aid in generalization, such as small norms or sparsity. Is
there any stronger implicit regularization at play here? To answer that, it is natural to consider the
behavior of the implicit regularization functionR on the set S := {(w, v) ∈ Rd×R : ‖w‖ = v} of
“balanced” parameters. In what follows, we will argue thatR is constant on S \ {0}. Thus,R may
induce a bias toward S, namely, enforce the “balancedness” of w∗ and v∗, but it does not induce
any additional bias within S .

In order to show that R is constant in S \ {0}, we start with an empirical study of gradient
descent for some specific inputs. Then, under a mild assumption based on the empirical results, we
prove thatR is constant.

6.1. Empirical results

In Theorem 3 we showed that the implicit regularization of a single ReLU neuron is not the `2 norm.
We now demonstrate an analogous behavior in single-hidden-neuron networks.

Let Xγ ∈ R3×3 be the matrix from Theorem 3. Let y ∈ R3 be the vector from Theorem 3 with
α = 1, i.e., y = (16, 18, 0)>. Let Q = {(5,−1, q)> : q ≤ 0}. Note that for every u ∈ Q and
γ ≥ 0 we have σ(Xγu) = y. By Theorem 3, for different values of γ ≥ 0, gradient flow on a
single neuron with the input (Xγ ,y) converges to different points wγ in a set of global minima. We
now show empirically that a similar behavior appears also in single-hidden-neuron networks: For
different values of γ ≥ 0, gradient descent with the input (Xγ ,y), starting from (0, ε) for a fixed
ε > 0, converges to different points θγ = (wγ , vγ) with vγwγ ∈ Q. We denote uγ = vγwγ .

In Figure 2 (left), we show the trajectories u(t) = v(t) ·w(t) of gradient descent starting from
θ(0) = (0, 0.001), for γ ∈ {0, 1, 2, 5, 20}. The grey line denotes the set Q. We note that while the
trajectories in Figure 2 (left) have similar shapes to the trajectories shown in Figure 1 for the case of
a single-neuron network, they are not identical. Indeed, the dynamics of the problems are different.
This experiment demonstrates that for ε = 0.001 and different values of γ ≥ 0, gradient descent
converges to different points uγ ∈ Q.

Since we are interested in gradient flow starting from (0, ε) for ε → 0, we need to consider uγ

where ε→ 0. Consider γ ∈ {0, 5}, and let u0 = (u0
1, u

0
2, u

0
3) and u5 = (u5

1, u
5
2, u

5
3). We now show

empirical evidence that strongly supports the following assumption, which will be the key used to
prove that the implicit regularization function is constant as discussed earlier:

Assumption 12 For every sufficiently small ε > 0, gradient flow starting from (0, ε) on the inputs
(X0,y) and (X5,y), converges to zero loss. Moreover, limε→0+ u

5
3 exists and is negative.

We turn to present this empirical evidence. Since we are interested in simulating gradient flow,
we used gradient descent with a small learning rate of 10−5. We ran gradient descent starting from
(0, ε), for γ ∈ {0, 5} and ε ∈ {10−i : i = 0, . . . , 5}. In all cases we reached loss smaller than
10−15, which suggests that the first part of the assumption holds. We now turn to the second part
of the assumption. In Figure 2 (right) we show for different values of ε, the value of u5

3 in the
last iteration of gradient descent starting from (0, ε) and reaching loss smaller than 10−15. This
experiment suggests that limε→0+ u

5
3 exists and is negative.

Finally, we show that Assumption 12 easily implies the following corollary:

11
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(a) The trajectories u(t) for the input (Xγ ,y)
starting from θ(0) = (0, 0.001), for γ = 0
(purple), γ = 1 (red), γ = 2 (green), γ = 5
(blue), and γ = 20 (yellow).

(b) The value of u5
3 in the last iteration of gradi-

ent descent starting from (0, ε) and reaching
loss smaller than 10−15.

Figure 2: Experiments on single-hidden-neuron networks.

Corollary 13 Under Assumption 12, for the inputs (X0,y) and (X5,y), the limit points of gradient
flow are θ∗ = (w∗, v∗) and θ̃

∗
= (w̃∗, ṽ∗) (respectively), such that v∗w∗ = (5,−1, 0)> and

ṽ∗w̃∗ = (5,−1, s)> for some s < 0.

Proof First, since by Assumption 12 for every sufficiently small ε > 0 the loss converges to zero,
then for every sufficiently small ε > 0 we have (u0

1, u
0
2) = (u5

1, u
5
2) = (5,−1), and hence we also

have limε→0+(u0
1, u

0
2) = limε→0+(u5

1, u
5
2) = (5,−1). Clearly, for every ε > 0 we have u0

3 = 0,
since if γ = 0 then the third component of u(t) is 0 for every t ≥ 0. Therefore, limε→0+ u

0
3 = 0.

Finally, by Assumption 12, limε→0+ u
5
3 exists and is negative. Overall, we have limε→0+ u5 =

(5,−1, s)> for some s < 0, and limε→0+ u0 = (5,−1, 0)>.

6.2. R is constant in the set of balanced parameters

We now show that the regularization function R is constant in the set S of balanced parameters.
Since the limit point θ∗ = (w∗, v∗) ∈ Rd×R of gradient flow is in S , then it is uniquely determined
by the point v∗w∗ ∈ Rd, and hence, intuitively, we can think about θ∗ as a point in Rd. More

formally, let Ψ : Rd → S be such that Ψ(u) =

(
u√
‖u‖

,
√
‖u‖

)
for u 6= 0, and Ψ(0) = (0, 0).

Note that for every (w, v) ∈ S we have Ψ(vw) = (w, v), and that Ψ is bijective. LetR′ : Rd → R
be such thatR′(u) = R(Ψ(u)). We state our main theorem on single-hidden-neuron networks:

Theorem 14 Under Assumption 12, the functionR′ : R3 → R is constant in R3 \ {0}. Therefore,
R : R3 × R→ R is constant in S \ {0}.

We prove the theorem in Appendix D. Intuitively, the theorem follows from the following ar-
gument. By Corollary 13, for the input (X0,y), gradient flow converges to θ∗ such that u∗ :=

12
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Ψ−1(θ∗) = (5,−1, 0)>, even though every u ∈ Q = {(5,−1, q)> : q ≤ 0} corresponds to a zero-
loss solution. Hence, gradient flow prefers u∗ over all other points in Q. Similarly, for the input
(X5,y) gradient flow converges to θ̃

∗
such that ũ∗ := Ψ−1(θ̃

∗
) = (5,−1, s)> for some s < 0,

even though every u ∈ Q corresponds to a zero-loss solution. Hence, it prefers ũ∗ over all other
points in Q. It implies that R′(u∗) = R′(ũ∗) = minu∈QR′(u). Then, by rotating and scaling the
inputs to gradient flow, and by using Lemma 6, we show thatR′ is constant in R3 \ {0}.

Remark 15 (R is constant in S \ {0} also for d > 3) Theorem 14 implies that R′ : Rd → R is
trivial for d = 3. By padding the inputs from Assumption 12 with zeros, we can obtain a d-
dimensional version of Assumption 12 for d > 3. Then, using the same arguments as above, it
implies that Theorem 14 holds for every d ≥ 3.
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Appendix A. Proof of Theorem 3

Lemma 16 Let A ∈ Rd×d be an invertible matrix, and let y ∈ Rd. Consider the dynamics of w(t)
given by the differential equation

ẇ(t) = −A>(Aw(t)− y) .

Then, we have
w(t) = exp(−tA>A)

(
w(0)−A−1y

)
+A−1y , (4)

where exp(·) denotes the matrix exponential.

The proof of Lemma 16 follows easily by differentiating the expression in Eq. 4.
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A.1. Proof for γ = 0

The trajectory w(t) obeys the dynamics

ẇ(t) = −∇L(w(t)) = −
3∑
i=1

(
σ(x>i w(t))− yi

)
σ′(x>i w(t))xi

= −
2∑
i=1

(
σ(x>i w(t))− yi

)
σ′(x>i w(t))xi ,

where the last equality is since x3 = 0. Hence, since we also have w(0) = 0, then w(t) is spanned
by x1,x2. Note that the third components in x1,x2 are 0, and therefore the third component in
w(t) is 0 for all t ≥ 0. For a vector v ∈ {w(t),x1,x2,y}, we denote ṽ = (v1, v2) ∈ R2. We
also denote by X̃ ∈ R2×2 the matrix whose rows are x̃>1 and x̃>2 . Note that for i ∈ {1, 2} we have
x>i w(t) = x̃>i w̃(t). Thus, we have

˙̃w(t) = −
2∑
i=1

(
σ(x̃>i w̃(t))− yi

)
σ′(x̃>i w̃(t))x̃i . (5)

If x̃>i w̃(t) ≥ 0 for i ∈ {1, 2} then the above equals

−
2∑
i=1

(x̃>i w̃(t)− yi)x̃i = −X̃>(X̃w̃(t)− ỹ) .

By Lemma 16, the solution to the above equation is

w̃(t) = exp
(
−tX̃>X̃

)
(w̃(0)− X̃−1ỹ) + X̃−1ỹ . (6)

Let B̃ = {w̃ ∈ R2 : x̃>1 w̃ ≥ 0, x̃>2 w̃ ≥ 0}. We will show that the trajectory from Eq. 6
satisfies w̃(t) ∈ B̃ for every t ≥ 0. Therefore, it satisfies Eq. 5 for every t ≥ 0. It implies that
w̃(∞) = X̃−1ỹ = α · (5,−1)>, and therefore w(∞) = α · (5,−1, 0)> as required.

Lemma 17 The trajectory from Eq. 6 satisfies w̃(t) ∈ B̃ for every t ≥ 0.

Proof The eigenvalues of X̃>X̃ are λ̃1 = 15 + 5
√

5 and λ̃2 = 15− 5
√

5. Let D̃ = diag(λ̃1, λ̃2),
and let Ũ ∈ R2×2 such that X̃>X̃ = ŨD̃Ũ>. By Eq. 6 and since w̃(0) = 0, we have

w̃(t) = Ũ exp
(
−tD̃

)
Ũ>

(
0− α(5,−1)>

)
+ α(5,−1)> ,

where exp
(
−tD̃

)
= diag(e−λ̃1t, e−λ̃2t).

By straightforward calculations we obtain

1

α
· x̃>1 w̃(t) = −(3,−1)Ũ exp

(
−tD̃

)
Ũ>(5,−1)> + (3,−1)(5,−1)>

= −
(

8 + 2
√

5
)
e−λ̃1t −

(
8− 2

√
5
)
e−λ̃2t + 16

≥ −
(

8 + 2
√

5
)
−
(

8− 2
√

5
)

+ 16 = 0 .
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Moreover, we have

1

α
· x̃>2 w̃(t) = −(4, 2)Ũ exp

(
−tD̃

)
Ũ>(5,−1)> + (4, 2)(5,−1)>

= −
(

5
√

5 + 9
)
e−λ̃1t +

(
5
√

5− 9
)
e−λ̃2t + 18 .

Since λ̃1 ≥ λ̃2 ≥ 0, then the above is at least

−
(

5
√

5 + 9
)
e−λ̃1t +

(
5
√

5− 9
)
e−λ̃1t + 18 = −18e−λ̃1t + 18 ≥ 0 .

A.2. Proof for γ > 0

We show that the trajectory w(t) consists of two parts. In the first part, where t ∈ [0, t1] for some
t1 > 0, we have x>i w(t) ≥ 0 for every 1 ≤ i ≤ 3. Then, for t ∈ [t1,∞), we have x>1 w(t) ≥ 0,
x>2 w(t) ≥ 0, and x>3 w(t) ≤ 0.

A.2.1. PART 1

Recall that the trajectory w(t) obeys the dynamics

ẇ(t) = −∇L(w(t)) = −
3∑
i=1

(
σ(x>i w(t))− yi

)
σ′(x>i w(t))xi . (7)

If x>i w(t) ≥ 0 for every 1 ≤ i ≤ 3 then the above equals

−
3∑
i=1

(x>i w(t)− yi)xi = −X>(Xw(t)− y) .

By Lemma 16, the solution to the above equation is

w(t) = exp
(
−tX>X

) (
w(0)−X−1y

)
+X−1y . (8)

Let B = {w ∈ R3 : x>i w ≥ 0, i = 1 . . . 3}. We will show that the trajectory from Eq. 8
satisfies w(t) ∈ B for every t ∈ [0, t1] for some t1 > 0. Therefore, it satisfies Eq. 7 for t ∈ [0, t1].
Hence, gradient flow follows the trajectory from Eq. 8 where t ∈ [0, t1]. We will also investigate the
values of the components of w(t1), since it is the starting point of the second part of the trajectory.

Note that for every γ we have Xα(5,−1, 1)> = α(16, 18, 0)> = y, and therefore X−1y =
α(5,−1, 1)>. Since we also have w(0) = 0, then Eq. 8 implies

w(t) = α(5,−1, 1)> − exp
(
−tX>X

)
α(5,−1, 1)> .

Let λ1, λ2, λ3 be the eigenvalues of X>X , let D = diag(λ1, λ2, λ3), and let U ∈ R3×3 such that
X>X = UDU>. Thus, we have

w(t) = α(5,−1, 1)> − U exp(−tD)U>α(5,−1, 1)> , (9)

where exp(−tD) = diag
(
e−λ1t, e−λ2t, e−λ3t

)
.
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Lemma 18 Let w(t) be the trajectory from Eq. 9. For every γ ∈ {1, 2, 5}, there exists t1 > 0,
such that w(t) ∈ B for every t ∈ [0, t1], x>3 w(t1) = 0, and w(t1) = α · (a, b,−b) for some a, b
(independent of α), where a ∈ (4, 5) and b satisfies the following:

• If γ = 1 then b ∈ (0.035, 0.045).

• If γ = 2 then b ∈ (0.1, 0.12).

• If γ = 5 then b ∈ (0.2, 0.22).

We defer the proof of Lemma 18 to later sections (the proof for γ = 1 is given in Section A.2.3,
for γ = 2 in Section A.2.4, and for γ = 5 in Section A.2.5).

A.2.2. PART 2

In Lemma 18 we established the trajectory for t ∈ [0, t1]. We need to find the trajectory that satisfies
the dynamics in Eq. 7 for t ∈ [t1,∞), with the initial value w(t1) obtained in Lemma 18 .

Let B′ = {w ∈ R3 : x>1 w ≥ 0,x>2 w ≥ 0,x>3 w ≤ 0}. Consider the dynamics from Eq. 7,
where w(t) ∈ B′. Since σ(x>3 w(t)) = 0 and y3 = 0, and since x>i w(t) ≥ 0 for i ∈ {1, 2}, then
we have

ẇ(t) = −
3∑
i=1

(
σ(x>i w(t))− yi

)
σ′(x>i w(t))xi

= −
2∑
i=1

(
σ(x>i w(t))− yi

)
σ′(x>i w(t))xi

= −
2∑
i=1

(x>i w(t)− yi)xi .

We will find the trajectory w(t) that satisfies

ẇ(t) = −
2∑
i=1

(x>i w(t)− yi)xi , (10)

with the initial value w(t1), and show that w(t) ∈ B′ for every t ∈ [t1,∞). Such a trajectory obeys
the dynamics in Eq. 7 for t ∈ [t1,∞), with the initial value w(t1), as required.

For a vector v ∈ {w(t),x1,x2,y}, we denote ṽ = (v1, v2) ∈ R2. We also denote by X̃ ∈ R2×2

the matrix whose rows are x̃>1 and x̃>2 . Since both x1 and x2 have 0 as their third components, then
w(t) satisfies Eq. 10 iff the third component w3(t) satisfies

ẇ3(t) = 0 , (11)

and the first two components w̃(t) satisfy

˙̃w(t) = −
2∑
i=1

(x̃>i w̃(t)− yi)x̃i = −X̃>(X̃w̃(t)− ỹ) . (12)

18
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By Lemma 16, the trajectory that follows from Eq. 12 is

w̃(t) = exp
(
−(t− t1)X̃>X̃

)(
w̃(t1)− X̃−1ỹ

)
+ X̃−1ỹ

= exp
(
−(t− t1)X̃>X̃

)(
w̃(t1)− α(5,−1)>

)
+ α(5,−1)> . (13)

Consider the trajectory w(t) for t ≥ t1, such that the first two components follow the trajectory
w̃(t) from the above equation, and the third component is constant, i.e., w3(t) = w3(t1) for all
t ≥ t1. Note that this trajectory satisfies Eq. 11 and Eq. 12, and hence satisfies Eq. 10. It also
satisfies the initial condition w(t1). Thus, it remains to show that w(t) ∈ B′ for every t ∈ [t1,∞).
Since by Eq.13 we have w̃(∞) = α(5,−1)>, then we have w(∞) = (5α,−α,w3(t1))>. By
Lemma 18, it follows that w3(t1) is in the required interval, and thus it completes the proof of the
theorem.

The eigenvalues of X̃>X̃ are λ̃1 = 15 + 5
√

5 and λ̃2 = 15− 5
√

5. Let D̃ = diag(λ̃1, λ̃2), and
let Ũ ∈ R2×2 such that X̃>X̃ = ŨD̃Ũ>. By Eq. 13, we have

w̃(t) = Ũ exp
(
−(t− t1)D̃

)
Ũ>

(
w̃(t1)− α(5,−1)>

)
+ α(5,−1)> , (14)

where exp
(
−(t− t1)D̃

)
= diag

(
e−λ̃1(t−t1), e−λ̃2(t−t1)

)
.

From the following two lemmas it follows that w(t) ∈ B′ for all t ≥ t1.

Lemma 19 For every t ≥ t1 and i ∈ {1, 2}, we have x>i w(t) ≥ 0.

Proof Since x1 and x2 have 0 in their third components, then it suffices to show that x̃>i w̃(t) ≥ 0
for every i ∈ {1, 2} and t ≥ t1. By Lemma 18, we have w(t1) = α · (a, b,−b)>, where a ∈ (4, 5)
and b ∈ (0, 1).

For every t ≥ t1, by straightforward calculations we obtain

1

α
· x̃>1 w̃(t) = (3,−1)Ũ exp

(
−(t− t1)D̃

)
Ũ>(a− 5, b+ 1)> + (3,−1)(5,−1)>

=

(
(3 +

√
5)a

2
+

(
√

5− 1)b

2
− 8− 2

√
5

)
e−λ̃1(t−t1)

+

(
(3−

√
5)a

2
− (
√

5 + 1)b

2
− 8 + 2

√
5

)
e−λ̃2(t−t1) + 16 .

Since a ∈ (4, 5) and b ∈ (0, 1), the above is at least(
(3 +

√
5) · 4

2
+

(
√

5− 1) · 0
2

− 8− 2
√

5

)
e−λ̃1(t−t1)

+

(
(3−

√
5) · 4

2
− (
√

5 + 1) · 1
2

− 8 + 2
√

5

)
e−λ̃2(t−t1) + 16

= −2e−λ̃1(t−t1) −

(
2 +

√
5 + 1

2

)
e−λ̃2(t−t1) + 16

≥ −2− 2−
√

5 + 1

2
+ 16 ≥ 0 .

19



VARDI SHAMIR

Next, we have

1

α
· x̃>2 w̃(t) = (4, 2)Ũ exp

(
−(t− t1)D̃

)
Ũ>(a− 5, b+ 1)> + (4, 2)(5,−1)>

=
(

(
√

5 + 2)a+ b− 9− 5
√

5
)
e−λ̃1(t−t1) +

(
−(
√

5− 2)a+ b− 9 + 5
√

5
)
e−λ̃2(t−t1) + 18

≥
(

(
√

5 + 2) · 4 + 0− 9− 5
√

5
)
e−λ̃1(t−t1) +

(
−(
√

5− 2) · 5 + 0− 9 + 5
√

5
)
e−λ̃2(t−t1) + 18

= −(
√

5 + 1)e−λ̃1(t−t1) + e−λ̃2(t−t1) + 18 ≥ −(
√

5 + 1) + 18 ≥ 0 .

Lemma 20 For every t ≥ t1, we have x>3 w(t) ≤ 0.

Proof By Lemma 18, we have w(t1) = α · (a, b,−b)>, where a ∈ (4, 5) and b ∈ (0, 1). The first
two components in w(t) are w̃(t), and the third component is −αb. Hence, in order to show that

x>3 w(t) = (0, γ, γ)w(t) = (0, γ)w̃(t)− αbγ ≤ 0 ,

it suffices to show that 1
α · (0, 1)w̃(t) ≤ b.

We have

1

α
· (0, 1)w̃(t) = (0, 1)Ũ exp

(
−(t− t1)D̃

)
Ũ>(a− 5, b+ 1)> + (0, 1)(5,−1)>

=

(√
5a

10
+

(
1

2
−
√

5

5

)
b+

1

2
− 7
√

5

10

)
e−λ̃1(t−t1)

+

(
−
√

5a

10
+

(
1

2
+

√
5

5

)
b+

1

2
+

7
√

5

10

)
e−λ̃2(t−t1) − 1 . (15)

Note that the above equals to

√
5a

10

(
e−λ̃1(t−t1) − e−λ̃2(t−t1)

)
+

((
1

2
−
√

5

5

)
b+

1

2
− 7
√

5

10

)
e−λ̃1(t−t1)

+

((
1

2
+

√
5

5

)
b+

1

2
+

7
√

5

10

)
e−λ̃2(t−t1) − 1 .

Since λ̃1 > λ̃2 > 0, then the above expression is monotonically descreasing w.r.t. a. Also, since
a ∈ (4, 5), then by plugging in a = 4 to Eq. 15 we obtain

1

α
· (0, 1)w̃(t) ≤

(
−3
√

5

10
+

(
1

2
−
√

5

5

)
b+

1

2

)
e−λ̃1(t−t1)

+

(
3
√

5

10
+

(
1

2
+

√
5

5

)
b+

1

2

)
e−λ̃2(t−t1) − 1 .
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Let g(t) denote the r.h.s. of the above inequality. Note that g(t1) = b. Hence, in order to show that
g(t) ≤ b for every t ≥ t1, it suffices to show that g′(t) ≤ 0 for all t ≥ t1.

We denote

C1 = −3
√

5

10
+

(
1

2
−
√

5

5

)
b+

1

2
,

C2 =
3
√

5

10
+

(
1

2
+

√
5

5

)
b+

1

2
.

Thus, g(t) = C1e
−λ̃1(t−t1) + C2e

−λ̃2(t−t1) − 1. Since b ∈ (0, 1), it is easy to verify that C1 < 0
and C2 > 0. Thus,

g′(t) = −λ̃1C1e
−λ̃1(t−t1) − λ̃2C2e

−λ̃2(t−t1)

≤ −λ̃1C1e
−λ̃1(t−t1) − λ̃2C2e

−λ̃1(t−t1)

=
[
−λ̃1C1 − λ̃2C2

]
e−λ̃1(t−t1) .

We have

−λ̃1C1 − λ̃2C2 = −(15 + 5
√

5)

(
−3
√

5

10
+

(
1

2
−
√

5

5

)
b+

1

2

)

− (15− 5
√

5)

(
3
√

5

10
+

(
1

2
+

√
5

5

)
b+

1

2

)
.

Since b ≥ 0 then the above is at most

−(15 + 5
√

5)

(
−3
√

5

10
+

1

2

)
− (15− 5

√
5)

(
3
√

5

10
+

1

2

)
= 0 .

A.2.3. PROOF OF LEMMA 18 FOR γ = 1

Here, we have λ1 = 27
2 +

√
649
2 , λ2 = 5, and λ3 = 27

2 −
√

649
2 . The proof of Lemma 18 for γ = 1

follows from the following lemmas.

Lemma 21 Let w(t) be the trajectory from Eq. 9. For i ∈ {1, 2}, we have x>i w(t) ≥ 0 for every
t ≥ 0.

Proof By straightforward calculations, we obtain

1

α
· x>1 w(t) = (3,−1, 0)(5,−1, 1)> − (3,−1, 0)U exp(−tD)U>(5,−1, 1)>

= 16−

(
58

9
+

1354
√

649

5841

)
e−λ1t − 28

9
e−λ2t −

(
58

9
− 1354

√
649

5841

)
e−λ3t

≥ 16−

(
58

9
+

1354
√

649

5841

)
− 28

9
−

(
58

9
− 1354

√
649

5841

)
= 0 .
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Moreover, we have

1

α
· x>2 w(t) = (4, 2, 0)(5,−1, 1)> − (4, 2, 0)U exp(−tD)U>(5,−1, 1)>

= 18−

(
89

9
+

2357
√

649

5841

)
e−λ1t +

16

9
e−λ2t +

(
2357
√

649

5841
− 89

9

)
e−λ3t .

Since λ1 ≥ λ2 ≥ λ3 ≥ 0, then the above is at least

18−

(
89

9
+

2357
√

649

5841

)
e−λ1t +

16

9
e−λ1t +

(
2357
√

649

5841
− 89

9

)
e−λ1t

= 18− 18e−λ1t ≥ 0 .

Lemma 22 Let w(t) be the trajectory from Eq. 9. There exists t1 ∈ (0.169, 0.17) such that
x>3 w(t1) = 0 and for every t ∈ [0, t1] we have x>3 w(t) ≥ 0.

Proof We have

1

α
· x>3 w(t) = (0, 1, 1)(5,−1, 1)> − (0, 1, 1)U exp(−tD)U>(5,−1, 1)>

= −

(
10

9
+

10
√

649

5841

)
e−λ1t +

20

9
e−λ2t −

(
10

9
− 10

√
649

5841

)
e−λ3t .

Let

g(t) = −

(
10

9
+

10
√

649

5841

)
+

20

9
e(λ1−λ2)t −

(
10

9
− 10

√
649

5841

)
e(λ1−λ3)t

Note that 1
α · x

>
3 w(t) = e−λ1tg(t). Thus, x>3 w(t) = 0 iff g(t) = 0, and x>3 w(t) ≥ 0 iff g(t) ≥ 0.

We will show that there exists t1 ∈ (0.169, 0.17) such that g(t1) = 0 and for every t ∈ [0, t1] we
have g(t) ≥ 0.

Consider the derivative of g(t)

g′(t) =
20

9
(λ1 − λ2)e(λ1−λ2)t −

(
10

9
− 10

√
649

5841

)
(λ1 − λ3)e(λ1−λ3)t .

We have g′(t) = 0 iff

ln

(
20

9
(λ1 − λ2)

)
+ (λ1 − λ2)t = ln

((
10

9
− 10

√
649

5841

)
(λ1 − λ3)

)
+ (λ1 − λ3)t .

Note that this equation has a single solution. Since g(0) = 0, it follows that g has at most one
additional root. It is easy to verify that g(0.169) > 0 and g(0.17) < 0. Hence, g(t) = 0 iff
t ∈ {0, t1} for some t1 ∈ (0.169, 0.17), and g(t) > 0 for every t ∈ (0, t1).
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Lemma 23
(1, 0, 0)w(t1) ∈ α · (4, 5) .

Proof We have

1

α
· (1, 0, 0)w(t1) = (1, 0, 0)(5,−1, 1)> − (1, 0, 0)U exp(−t1D)U>(5,−1, 1)>

= 5−

(
1013

√
649

11682
+

41

18

)
e−λ1t1 − 4

9
e−λ2t1 −

(
41

18
− 1013

√
649

11682

)
e−λ3t1 .

By Lemma 26 we have t1 ∈ (0.169, 0.17), and hence

1

α
·(1, 0, 0)w(t1)

≥ 5−

(
1013
√

649

11682
+

41

18

)
e−λ1·0.169 − 4

9
e−λ2·0.169 −

(
41

18
− 1013

√
649

11682

)
e−λ3·0.169 .

It is easy to verify that the above expression is greater than 4.
We also have

1

α
·(1, 0, 0)w(t1)

≤ 5−

(
1013
√

649

11682
+

41

18

)
e−λ1·1.7 − 4

9
e−λ2·1.7 −

(
41

18
− 1013

√
649

11682

)
e−λ3·1.7 < 5 .

Lemma 24
(0, 1, 0)w(t1) = −(0, 0, 1)w(t1) ∈ α · (0.035, 0.045) .

Proof We have

1

α
· (0, 0, 1)w(t1) = (0, 0, 1)(5,−1, 1)> − (0, 0, 1)U exp(−t1D)U>(5,−1, 1)>

= 1−

(
13

18
− 311

√
649

11682

)
e−λ1t1 +

4

9
e−λ2t1 −

(
13

18
+

311
√

649

11682

)
e−λ3t1 .

By Lemma 26 we have t1 ∈ (0.169, 0.17), and hence

1

α
·(0, 0, 1)w(t1)

≤ 1−

(
13

18
− 311

√
649

11682

)
e−λ1·0.17 +

4

9
e−λ2·0.169 −

(
13

18
+

311
√

649

11682

)
e−λ3·0.17 .

It is easy to verify that the above expression is smaller than −0.035.
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We also have

1

α
·(0, 0, 1)w(t1)

≥ 1−

(
13

18
− 311

√
649

11682

)
e−λ1·0.169 +

4

9
e−λ2·0.17 −

(
13

18
+

311
√

649

11682

)
e−λ3·0.169 .

It is easy to verify that the above expression is greater than −0.045.
Finally, by Lemma 22, we have

0 = x>3 w(t1) = (0, 1, 1)w(t1) = (0, 1, 0)w(t1) + (0, 0, 1)w(t1) ,

and hence (0, 1, 0)w(t1) = −(0, 0, 1)w(t1).

A.2.4. PROOF OF LEMMA 18 FOR γ = 2

Here, we have λ1 = 14 + 2
√

39, λ2 = 10, and λ3 = 14− 2
√

39. The proof of Lemma 18 for γ = 2
follows from the following lemmas.

Lemma 25 Let w(t) be the trajectory from Eq. 9. For i ∈ {1, 2}, we have x>i w(t) ≥ 0 for every
t ≥ 0.

Proof By straightforward calculations, we obtain

1

α
· x>1 w(t) = (3,−1, 0)(5,−1, 1)> − (3,−1, 0)U exp(−tD)U>(5,−1, 1)>

= 16−

(
47

7
+

17
√

39

21

)
e−λ1t − 18

7
e−λ2t −

(
47

7
− 17

√
39

21

)
e−λ3t

≥ 16−

(
47

7
+

17
√

39

21

)
− 18

7
−

(
47

7
− 17

√
39

21

)
= 0 .

Moreover, we have

1

α
· x>2 w(t) = (4, 2, 0)(5,−1, 1)> − (4, 2, 0)U exp(−tD)U>(5,−1, 1)>

= 18−

(
463
√

39

273
+

66

7

)
e−λ1t +

6

7
e−λ2t +

(
463
√

39

273
− 66

7

)
e−λ3t .

Since λ1 ≥ λ2 ≥ λ3 ≥ 0, then the above is at least

18−

(
463
√

39

273
+

66

7

)
e−λ1t +

6

7
e−λ1t +

(
463
√

39

273
− 66

7

)
e−λ1t

= 18− 18e−λ1t ≥ 0 .
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Lemma 26 Let w(t) be the trajectory from Eq. 9. There exists t1 ∈ (0.138, 0.139) such that
x>3 w(t1) = 0, and for every t ∈ [0, t1] we have x>3 w(t) ≥ 0.

Proof We have

1

α
· x>3 w(t) = (0, 2, 2)(5,−1, 1)> − (0, 2, 2)U exp(−tD)U>(5,−1, 1)>

= −

(
15

7
+

40
√

39

273

)
e−λ1t +

30

7
e−λ2t −

(
15

7
− 40

√
39

273

)
e−λ3t .

Let

g(t) = −

(
15

7
+

40
√

39

273

)
+

30

7
e(λ1−λ2)t −

(
15

7
− 40

√
39

273

)
e(λ1−λ3)t .

Note that 1
α · x

>
3 w(t) = e−λ1tg(t). Thus, x>3 w(t) = 0 iff g(t) = 0, and x>3 w(t) ≥ 0 iff g(t) ≥ 0.

We will show that there exists t1 ∈ (0.138, 0.139) such that g(t1) = 0 and for every t ∈ [0, t1] we
have g(t) ≥ 0.

Consider the derivative of g(t)

g′(t) =
30

7
(λ1 − λ2)e(λ1−λ2)t −

(
15

7
− 40

√
39

273

)
(λ1 − λ3)e(λ1−λ3)t .

We have g′(t) = 0 iff

ln

(
30

7
(λ1 − λ2)

)
+ (λ1 − λ2)t = ln

((
15

7
− 40

√
39

273

)
(λ1 − λ3)

)
+ (λ1 − λ3)t .

Note that this equation has a single solution. Since g(0) = 0, it follows that g has at most one
additional root. It is easy to verify that g(0.138) > 0 and g(0.139) < 0. Hence, g(t) = 0 iff
t ∈ {0, t1} for some t1 ∈ (0.138, 0.139), and g(t) > 0 for every t ∈ (0, t1).

Lemma 27
(1, 0, 0)w(t1) ∈ α · (4, 5) .

Proof We have

1

α
· (1, 0, 0)w(t1) = (1, 0, 0)(5,−1, 1)> − (1, 0, 0)U exp(−t1D)U>(5,−1, 1)>

= 5−

(
16

7
+

181
√

39

546

)
e−λ1t1 − 3

7
e−λ2t1 −

(
16

7
− 181

√
39

546

)
e−λ3t1 .

By Lemma 26 we have t1 ∈ (0.138, 0.139), and hence

1

α
·(1, 0, 0)w(t1)

≥ 5−

(
16

7
+

181
√

39

546

)
e−λ1·0.138 − 3

7
e−λ2·0.138 −

(
16

7
− 181

√
39

546

)
e−λ3·0.138 .
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It is easy to verify that the above expression is greater than 4.
We also have

1

α
·(1, 0, 0)w(t1)

≤ 5−

(
16

7
+

181
√

39

546

)
e−λ1·0.139 − 3

7
e−λ2·0.139 −

(
16

7
− 181

√
39

546

)
e−λ3·0.139 < 5 .

Lemma 28
(0, 1, 0)w(t1) = −(0, 0, 1)w(t1) ∈ α · (0.1, 0.12) .

Proof We have

1

α
· (0, 0, 1)w(t1) = (0, 0, 1)(5,−1, 1)> − (0, 0, 1)U exp(−t1D)U>(5,−1, 1)>

= 1−

(
13

14
− 61

√
39

546

)
e−λ1t1 +

6

7
e−λ2t1 −

(
13

14
+

61
√

39

546

)
e−λ3t1 .

By Lemma 26 we have t1 ∈ (0.138, 0.139), and hence

1

α
·(0, 0, 1)w(t1)

≤ 1−

(
13

14
− 61

√
39

546

)
e−λ1·0.139 +

6

7
e−λ2·0.138 −

(
13

14
+

61
√

39

546

)
e−λ3·0.139 .

It is easy to verify that the above expression is smaller than −0.1.
We also have

1

α
·(0, 0, 1)w(t1)

≥ 1−

(
13

14
− 61

√
39

546

)
e−λ1·0.138 +

6

7
e−λ2·0.139 −

(
13

14
+

61
√

39

546

)
e−λ3·0.138 .

It is easy to verify that the above expression is greater than −0.12.
Finally, by Lemma 26, we have

0 = x>3 w(t1) = 2 · (0, 1, 1)w(t1) = 2 ((0, 1, 0)w(t1) + (0, 0, 1)w(t1)) ,

and hence (0, 1, 0)w(t1) = −(0, 0, 1)w(t1).
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A.2.5. PROOF OF LEMMA 18 FOR γ = 5

Here, we have λ1 = 5
√

105
2 + 55

2 , λ2 = 25, and λ3 = 55
2 −

5
√

105
2 . The proof of Lemma 18 for γ = 5

follows from the following lemmas.

Lemma 29 Let w(t) be the trajectory from Eq. 9. For i ∈ {1, 2}, we have x>i w(t) ≥ 0 for every
t ≥ 0.

Proof By straightforward calculations, we obtain

1

α
· x>1 w(t) = (3,−1, 0)(5,−1, 1)> − (3,−1, 0)U exp(−tD)U>(5,−1, 1)>

= 16 +

(
34
√

105

273
− 14

13

)
e−λ1t − 180

13
e−λ2t −

(
34
√

105

273
+

14

13

)
e−λ3t .

Since λ1 ≥ λ2 ≥ λ3 ≥ 0, then the above is at least

16 +

(
34
√

105

273
− 14

13

)
e−λ1t − 180

13
e−λ3t −

(
34
√

105

273
+

14

13

)
e−λ3t

= 16 +

(
34
√

105

273
− 14

13

)
e−λ1t −

(
180

13
+

34
√

105

273
+

14

13

)
e−λ3t .

Let g(t) denote the above expression. It is easy to verify that g(0) = 0. Thus, it suffices to show
that g′(t) ≥ 0 for every t ≥ 0. We have

g′(t) = −λ1

(
34
√

105

273
− 14

13

)
e−λ1t + λ3

(
180

13
+

34
√

105

273
+

14

13

)
e−λ3t

≥ −λ1

(
34
√

105

273
− 14

13

)
e−λ1t + λ3

(
180

13
+

34
√

105

273
+

14

13

)
e−λ1t

=

[
−λ1

(
34
√

105

273
− 14

13

)
+ λ3

(
180

13
+

34
√

105

273
+

14

13

)]
e−λ1t .

By plugging in λ1 and λ2, it is easy to verify that the above expression is positive.
Next, we have

1

α
· x>2 w(t) = (4, 2, 0)(5,−1, 1)> − (4, 2, 0)U exp(−tD)U>(5,−1, 1)>

= 18−

(
37
√

105

273
− 3

13

)
e−λ1t − 240

13
e−λ2t +

(
37
√

105

273
+

3

13

)
e−λ3t

≥ 18−

(
37
√

105

273
− 3

13

)
e−λ3t − 240

13
e−λ3t +

(
37
√

105

273
+

3

13

)
e−λ3t

= 18− 18e−λ3t ≥ 0 .
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Lemma 30 Let w(t) be the trajectory from Eq. 9. There exists t1 ∈ (0.086, 0.087) such that
x>3 w(t1) = 0, and for every t ∈ [0, t1] we have x>3 w(t) ≥ 0.

Proof We have

1

α
· x>3 w(t) = (0, 5, 5)(5,−1, 1)> − (0, 5, 5)U exp(−tD)U>(5,−1, 1)>

= −

(
46
√

105

273
+

30

13

)
e−λ1t +

60

13
e−λ2t −

(
30

13
− 46

√
105

273

)
e−λ3t .

Let

g(t) = −

(
46
√

105

273
+

30

13

)
+

60

13
e(λ1−λ2)t −

(
30

13
− 46

√
105

273

)
e(λ1−λ3)t .

Note that 1
α · x

>
3 w(t) = e−λ1tg(t). Thus, x>3 w(t) = 0 iff g(t) = 0, and x>3 w(t) ≥ 0 iff g(t) ≥ 0.

We will show that there exists t1 ∈ (0.086, 0.087) such that g(t1) = 0 and for every t ∈ [0, t1] we
have g(t) ≥ 0.

Consider the derivative of g(t)

g′(t) =
60

13
(λ1 − λ2)e(λ1−λ2)t −

(
30

13
− 46

√
105

273

)
(λ1 − λ3)e(λ1−λ3)t .

We have g′(t) = 0 iff

ln

(
60

13
(λ1 − λ2)

)
+ (λ1 − λ2)t = ln

((
30

13
− 46

√
105

273

)
(λ1 − λ3)

)
+ (λ1 − λ3)t .

Note that this equation has a single solution. Since g(0) = 0, it follows that g has at most one
additional root. It is easy to verify that g(0.086) > 0 and g(0.087) < 0. Hence, g(t) = 0 iff
t ∈ {0, t1} for some t1 ∈ (0.086, 0.087), and g(t) > 0 for every t ∈ (0, t1).

Lemma 31
(1, 0, 0)w(t1) ∈ α · (4, 5) .

Proof We have

1

α
· (1, 0, 0)w(t1) = (1, 0, 0)(5,−1, 1)> − (1, 0, 0)U exp(−t1D)U>(5,−1, 1)>

= 5−

(
5

26
− 31

√
105

2730

)
e−λ1t1 − 60

13
e−λ2t1 −

(
5

26
+

31
√

105

2730

)
e−λ3t1 .

By Lemma 30 we have t1 ∈ (0.086, 0.087), and hence

1

α
·(1, 0, 0)w(t1)

≥ 5−

(
5

26
− 31

√
105

2730

)
e−λ1·0.086 − 60

13
e−λ2·0.086 −

(
5

26
+

31
√

105

2730

)
e−λ3·0.086 .
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It is easy to verify that the above expression is greater than 4.
We also have

1

α
·(1, 0, 0)w(t1)

≥ 5−

(
5

26
− 31

√
105

2730

)
e−λ1·0.087 − 60

13
e−λ2·0.087 −

(
5

26
+

31
√

105

2730

)
e−λ3·0.087 < 5 .

Lemma 32
(0, 1, 0)w(t1) = −(0, 0, 1)w(t1) ∈ α · (0.2, 0.22) .

Proof We have

1

α
· (0, 0, 1)w(t1) = (0, 0, 1)(5,−1, 1)> − (0, 0, 1)U exp(−t1D)U>(5,−1, 1)>

= 1−

(
25

26
− 31

√
105

546

)
e−λ1t1 +

12

13
e−λ2t1 −

(
25

26
+

31
√

105

546

)
e−λ3t1 .

By Lemma 30 we have t1 ∈ (0.086, 0.087), and hence

1

α
·(0, 0, 1)w(t1)

≤ 1−

(
25

26
− 31

√
105

546

)
e−λ1·0.087 +

12

13
e−λ2·0.086 −

(
25

26
+

31
√

105

546

)
e−λ3·0.087 .

It is easy to verify that the above expression is smaller than −0.2.
We also have

1

α
·(0, 0, 1)w(t1)

≥ 1−

(
25

26
− 31

√
105

546

)
e−λ1·0.086 +

12

13
e−λ2·0.087 −

(
25

26
+

31
√

105

546

)
e−λ3·0.086 .

It is easy to verify that the above expression is greater than −0.22.
Finally, by Lemma 30, we have

0 = x>3 w(t1) = 5 · (0, 1, 1)w(t1) = 5 ((0, 1, 0)w(t1) + (0, 0, 1)w(t1)) ,

and hence (0, 1, 0)w(t1) = −(0, 0, 1)w(t1).
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Appendix B. Proof of Lemma 6

Lemma 33 The function R is radial. That is, there exists a function f : R+ → R such that
R(w) = f(‖w‖) for every w ∈ Rd.

Proof Let w,w′ ∈ Rd \ {0} and α > 0 such that ‖w‖ = ‖w′‖ = αq. We denote r = ‖w‖.
Let c′ = c

q , and let ε = ‖w −w′‖. Assume w.l.o.g. that ε ≤ 2rc′√
1+(c′)2

. We will show that

R(w) = R(w′).
Let u = w+w′

2

(
1 + ε2

4r2−ε2

)
, and let e ∈ Rd be a vector orthogonal to w,w′, such that ‖e‖2 =

r2
(

(c′)2 − ε2

4r2−ε2

)
. Note that

4r2 − ε2 ≥ 4r2 − 4r2(c′)2

1 + (c′)2
=

4r2

1 + (c′)2
≥ ε2

(c′)2
.

Thus, (c′)2 ≥ ε2

4r2−ε2 . Hence r2
(

(c′)2 − ε2

4r2−ε2

)
≥ 0, and therefore e is well-defined.

Let u∗ = u + e. We will show that there is a vector v such that u∗ = w + v, ‖v‖ = αc,
and 〈w,v〉 = 0. It implies that R(u∗) = R(w). Likewise, we will show that there is a vector v′

such that u∗ = w′ + v′, ‖v′‖ = αc and 〈w′,v′〉 = 0. It implies that R(u∗) = R(w′), and hence
R(w) = R(w′), as required.

We first show that ‖u∗ −w‖ = αc. We have

‖u∗ −w‖2 = ‖u + e−w‖2 .

Since e is orthogonal to w,w′, it is also orthogonal to u, and thus the above equals

‖e‖2 + ‖u−w‖2 = r2

(
(c′)2 − ε2

4r2 − ε2

)
+ ‖u−w‖2 . (16)

Moreover,

‖u−w‖2 =

∥∥∥∥w + w′

2

(
1 +

ε2

4r2 − ε2

)
−w

∥∥∥∥2

=

∥∥∥∥w′ −w

2
+

w′ + w

2
· ε2

4r2 − ε2

∥∥∥∥2

.

Since
〈
w′−w

2 , w
′+w
2

〉
= 0, the above equals∥∥∥∥w′ −w

2

∥∥∥∥2

+

∥∥∥∥w′ + w

2
· ε2

4r2 − ε2

∥∥∥∥2

=
ε2

4
+

(
ε2

4r2 − ε2

)2 ∥∥∥∥w′ + w

2

∥∥∥∥2

. (17)

Note that
ε2 =

∥∥w −w′
∥∥2

= 2r2 − 2 · 〈w,w′〉 , (18)

and hence ∥∥w + w′
∥∥2

= 2r2 + 2 · 〈w,w′〉 = 4r2 − ε2 .
Combining the above with Eq. 17 we have

‖u−w‖2 =
ε2

4
+

(
ε2

4r2 − ε2

)2

· 1

4
· (4r2 − ε2) =

1

4

(
ε2 +

ε4

4r2 − ε2

)
=

r2ε2

4r2 − ε2
.
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Plugging the above into Eq. 16, we have

‖u∗ −w‖2 = r2

(
(c′)2 − ε2

4r2 − ε2

)
+

r2ε2

4r2 − ε2
= (rc′)2 =

(
rc

q

)2

= (αc)2 .

We now show that 〈w,u∗ −w〉 = 0. We have

〈w,u∗ −w〉 = 〈w,u + e−w〉 .

Since e is orthogonal to w, the above equals

〈w,u−w〉 = 〈w,u〉 − r2

=
〈w,w + w′〉

2

(
1 +

ε2

4r2 − ε2

)
− r2

=
(
r2 + 〈w,w′〉

)
· 1

2

(
1 +

ε2

4r2 − ε2

)
− r2 .

By Eq. 18, the above equals(
2r2 − ε2

2

)
· 1

2

(
1 +

ε2

4r2 − ε2

)
− r2 =

4r2 − ε2

4
· 4r2

4r2 − ε2
− r2 = 0 .

Finally, the proof that ‖u∗ −w′‖ = αc and that 〈w′,u∗ −w′〉 = 0 is similar.

By Lemma 33, we have R(w) = f(‖w‖) for every w ∈ Rd, for some f : R+ → R. We will
show that for every 0 < r < r′ we have f(r) = f(r′). Let w ∈ Rd such that ‖w‖ = r, and let
α = r

q . By our assumption onR, for a vector v ∈ Rd such that ‖v‖ = αc and 〈w,v〉 = 0, we have
R(w) = R(w + v) = minβ≥0R(w + βv).

SinceR(w) = R(w + v) then we have f(r) = f(‖w‖) = f(‖w + v‖). Note that

‖w + v‖ =

√
‖w‖2 + ‖v‖2 =

√
r2 + (αc)2 = r

√
1 +

c2

q2
.

Hence, we have f(r) = f
(
r
√

1 + c2

q2

)
. By repeating the above steps, we have for everym ∈ N that

f(r) = f
(
r
(√

1 + c2

q2

)m)
. Let m′ be a sufficiently large integer, such that r

(√
1 + c2

q2

)m′
> r′.

SinceR(w) = minβ≥0R(w+βv) then we have f(r) = minr′′≥r f(r′′) ≤ f(r′). By repeating

this argument with w′ ∈ Rd such that ‖w′‖ = r′ we also have f(r′) ≤ f
(
r
(√

1 + c2

q2

)m′)
.

Overall, we have

f(r) ≤ f(r′) ≤ f

r(√1 +
c2

q2

)m′ = f(r) ,

and thus f(r) = f(r′) as required.
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Appendix C. Proof of Lemma 10

We have

d

dt

(
‖w(t)‖2 − (v(t))2

)
= 2w(t)>ẇ(t)− 2v(t)v̇(t)

= −2w(t)>
∂LX,y(θ(t))

∂w
+ 2v(t)

∂LX,y(θ(t))

∂v

= −2w(t)>
n∑
i=1

(
v(t)σ(x>i w(t))− yi

)
v(t)σ′(x>i w(t))xi

+ 2v(t)
n∑
i=1

(
v(t)σ(x>i w(t))− yi

)
σ(x>i w(t))

= −2

n∑
i=1

(
v(t)σ(x>i w(t))− yi

)
v(t)σ′(x>i w(t))w(t)>xi

+ 2
n∑
i=1

(
v(t)σ(x>i w(t))− yi

)
v(t)σ(x>i w(t)) .

Since the ReLU function σ satisfies σ′(x>i w(t))(x>i w(t)) = σ(x>i w(t)), then the above equals 0.

Appendix D. Proof of Theorem 14

We start with some additional notations. For an input (X,y) ∈ Rn×d × Rn to gradient flow,
we denote UX,y = {u ∈ Rd : LX,y(Ψ(u)) = 0}, namely, the vectors in Rd that correspond
to global minima of LX,y. Let u ∈ Rd and let (w, v) = Ψ(u). Note that u ∈ UX,y iff y =
v · σ(Xw) iff y = σ(vXw) = σ(Xu). Therefore, we have UX,y = {u ∈ Rd : σ(Xu) = y}.
Let u∗ = v∗w∗ = Ψ−1(θ∗), namely, the vector that corresponds to the limit point. Since θ∗ ∈
argmin{θ∈S:LX,y(θ)=0}R(θ), then u∗ ∈ argminu∈UX,y R

′(u). Indeed, we have

R′(u∗) = R(Ψ(u∗)) = R(θ∗) = min
{θ∈S:LX,y(θ)=0}

R(θ)

= min
{u∈Rd:LX,y(Ψ(u))=0}

R(Ψ(u)) = min
u∈UX,y

R′(u) ,

and u∗ ∈ UX,y since LX,y(Ψ(u∗)) = LX,y(θ∗) = 0.
Note that by Corollary 13, for the inputs (X0,y) and (X5,y), the limit points of gradient

flow are θ∗ = (w∗, v∗) and θ̃
∗

= (w̃∗, ṽ∗) (respectively), such that u∗ = Ψ−1(θ∗) = v∗w∗ =
(5,−1, 0)> and ũ∗ = Ψ−1(θ̃

∗
) = ṽ∗w̃∗ = (5,−1, s)>, and therefore we have the following. Let

u′ = ũ∗ − u∗ = (0, 0, s)>. We have u∗, ũ∗,u′ 6= 0, and 〈u∗,u′〉 = 0. Moreover, since for every
u ∈ Q = {(5,−1, q)> : q ≤ 0} we have σ(X0u) = σ(X5u) = y, then Q ⊆ UX0,y ∩ UX5,y, and
therefore for every β ≥ 0 we have u∗ + βu′ ∈ UX0,y ∩ UX5,y. Since u∗ ∈ argminu∈UX0,y

R′(u)

and ũ∗ ∈ argminu∈UX5,y
R′(u), then we haveR′(u∗) = R′(ũ∗) = minβ≥0R′(u∗ + βu′).

We now utilize the following lemma, which considers the effect on the limit point of rotating
and scaling the input to gradient flow. The lemma follows by analyzing the trajectories of gradient
flow with the modified inputs. See Section D.1 for a proof.
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Lemma 34 Let (X,y) ∈ Rn×d × Rn be an input to gradient flow, let θ∗ = (w∗, v∗) be its limit
point, and let u∗ = v∗w∗ = Ψ−1(θ∗).

1. Let M ∈ SO(d) be a rotation matrix. The limit point of gradient flow with input (XM>,y)
is θ∗M = (Mw∗, v∗). Thus, Ψ−1(θ∗M ) = Mu∗.

2. Let α > 0. The limit point of gradient flow with input (X,αy) is θ∗α =
√
α · (w∗, v∗). Thus,

Ψ−1(θ∗α) = αu∗.

By rotating and scaling the inputs from Corollary 13, and using Lemma 34, we obtain the
following corollary (see Section D.2 for a formal proof).

Corollary 35 Under Assumption 12, there is a vector u∗ ∈ R3 \ {0} and a constant c > 0, such
that for every α > 0 and u ∈ R3 with ‖u‖ = α·‖u∗‖, and for every u⊥ ∈ R3 such that 〈u⊥,u〉 = 0
and ‖u⊥‖ = αc, we haveR′(u) = R′(u + u⊥) = minβ≥0R′(u + βu⊥).

Finally, Theorem 14 follows immediately from Corollary 35 and Lemma 6.

D.1. Proof of Lemma 34

For the input (X,y), gradient flow obeys the following dynamics.

ẇ(t) = −
∂LX,y((w(t), v(t)))

∂w
= −

n∑
i=1

(
v(t)σ(x>i w(t))− yi

)
v(t)σ′(x>i w(t))xi , (19)

and

v̇(t) = −
∂LX,y((w(t), v(t)))

∂v
= −

n∑
i=1

(
v(t)σ(x>i w(t))− yi

)
σ(x>i w(t)) . (20)

D.1.1. PROOF OF PART (1)

Let ε > 0 be a constant, and let θε(t) = (w(t), v(t)) be the trajectory of gradient flow with the
input (X,y) starting from θε(0) = (0, ε). Let w̃(t) = Mw(t) and ṽ(t) = v(t). By Eq. 19 we have

˙̃w(t) = Mẇ(t) = −M
n∑
i=1

(
v(t)σ(x>i w(t))− yi

)
v(t)σ′(x>i w(t))xi

= −M
n∑
i=1

(
v(t)σ((Mxi)

>(Mw(t)))− yi
)
v(t)σ′((Mxi)

>(Mw(t)))xi

= −
n∑
i=1

(
ṽ(t)σ((Mxi)

>w̃(t))− yi
)
ṽ(t)σ′((Mxi)

>w̃(t))(Mxi)

= −
∂LXM>,y((w̃(t), ṽ(t)))

∂w
.
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Moreover, by Eq. 20 we have

˙̃v(t) = v̇(t) = −
n∑
i=1

(
v(t)σ(x>i w(t))− yi

)
σ(x>i w(t))

= −
n∑
i=1

(
ṽ(t)σ((Mxi)

>w̃(t))− yi
)
σ((Mxi)

>w̃(t))

= −
∂LXM>,y((w̃(t), ṽ(t)))

∂v
.

Hence, θ̃
ε
(t) = (w̃(t), ṽ(t)) is the trajectory of gradient flow with the input (XM>,y) staring from

θ̃
ε
(0) = (w̃(0), ṽ(0)) = (0, ε). Therefore,

lim
ε→0+

θ̃
ε
(∞) = lim

ε→0+
(Mw(∞), v(∞)) = (Mw∗, v∗) .

D.1.2. PROOF OF PART (2)

Let ε > 0 be a constant, and let θε/
√
α(t) = (w(t), v(t)) be the trajectory of gradient flow with the

input (X,y) starting from θε/
√
α(0) =

(
0, ε√

α

)
. Let w̃(t) =

√
αw(αt) and ṽ(t) =

√
αv(αt). By

Eq. 19 we have

˙̃w(t) =
√
α · α · ẇ(αt)

= −α
√
α

n∑
i=1

(
v(αt)σ(x>i w(αt))− yi

)
v(αt)σ′(x>i w(αt))xi

= −
n∑
i=1

(√
αv(αt)σ(x>i

√
αw(αt))− (αyi)

)
(
√
αv(αt))σ′(x>i w(αt))xi .

Since σ′(x>i w(αt)) = σ′(x>i
√
αw(αt)), the above equals

−
n∑
i=1

(
ṽ(t)σ(x>i w̃(t))− (αyi)

)
ṽ(t)σ′(x>i w̃(t))xi = −

∂LX,αy((w̃(t), ṽ(t)))

∂w
.

Moreover, by Eq. 20 we have

˙̃v(t) =
√
α · α · v̇(αt)

= −α
√
α

n∑
i=1

(
v(αt)σ(x>i w(αt))− yi

)
σ(x>i w(αt))

= −
n∑
i=1

(√
αv(αt)σ(x>i

√
αw(αt))− (αyi)

)
σ(x>i

√
αw(αt))

= −
n∑
i=1

(
ṽ(t)σ(x>i w̃(t))− (αyi)

)
σ(x>i w̃(t))

= −
∂LX,αy((w̃(t), ṽ(t)))

∂v
.

34



IMPLICIT REGULARIZATION IN RELU NETWORKS WITH THE SQUARE LOSS

Hence, θ̃
ε
(t) = (w̃(t), ṽ(t)) is the trajectory of gradient flow with the input (X,αy) staring from

θ̃
ε
(0) = (w̃(0), ṽ(0)) =

(
0,
√
α · ε√

α

)
= (0, ε). Therefore,

lim
ε→0+

θ̃
ε
(∞) = lim

ε→0+
(
√
αw(∞),

√
αv(∞)) =

√
α · (w∗, v∗) .

D.2. Proof of Corollary 35

Let X0, X5 ∈ R3×3 and y ∈ R3 from Corollary 13, such that for the corresponding limit points
θ∗, θ̃

∗
, and vectors u∗ = Ψ−1(θ∗), ũ∗ = Ψ−1(θ̃

∗
), and u′ = ũ∗ − u∗, we have ‖u′‖ > 0 and

〈u∗,u′〉 = 0. Furthermore, for every β ≥ 0 we have u∗ + βu′ ∈ UX0,y ∩ UX5,y. We denote
c = ‖u′‖. Let u ∈ R3 and α > 0 such that ‖u‖ = α · ‖u∗‖, and let u⊥ ∈ R3 such that 〈u,u⊥〉 = 0
and ‖u⊥‖ = αc.

Let M ∈ SO(3) be a rotaion matrix such that αMu∗ = u and αMu′ = u⊥. Let θ∗αM and
θ̃
∗
αM be the limit points of gradient flow with inputs (X0M

>, αy) and (X5M
>, αy), respectively.

By Lemma 34, we have Ψ−1(θ∗αM ) = αMu∗ = u, and

Ψ−1(θ̃
∗
αM ) = αM ũ∗ = αM(u∗ + u′) = αMu∗ + αMu′ = u + u⊥ .

Let {x>i }3i=1 and {x̃>i }3i=1 be the rows of X0 and X5 (respectively). Since for every β ≥ 0 we have
u∗ + βu′ ∈ UX0,y ∩ UX5,y, then for every 1 ≤ i ≤ 3 and x ∈ {xi, x̃i}, and every β ≥ 0, we have

αyi = ασ(x>(u∗ + βu′)) = ασ((Mx)>(Mu∗ +Mβu′)) = σ((Mx)>(αMu∗ + αMβu′))

= σ((Mx)>(u + βu⊥)).

Hence, u + βu⊥ ∈ UX0M>,αy ∩ UX5M>,αy. Since u ∈ argminū∈U
X0M

>,αy
R′(ū) and u + u⊥ ∈

argminū∈U
X5M

>,αy
R′(ū), then we haveR′(u) = R′(u + u⊥) = minβ≥0R′(u + βu⊥).
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