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Abstract
This paper presents a new model-free algorithm for episodic finite-horizon Markov Decision

Processes (MDP), Adaptive Multi-step Bootstrap (AMB), which enjoys a stronger gap-dependent
regret bound. The first innovation is to estimate the optimalQ-function by combining an optimistic
bootstrap with an adaptive multi-step Monte Carlo rollout. The second innovation is to select the
action with the largest confidence interval length among admissible actions that are not dominated
by any other actions. We show when each state has a unique optimal action, AMB achieves a gap-
dependent regret bound that only scales with the sum of the inverse of the sub-optimality gaps. In
contrast, Simchowitz and Jamieson (2019) showed all upper-confidence-bound (UCB) algorithms
suffer an additional Ω

(
S

∆min

)
regret due to over-exploration where ∆min is the minimum sub-

optimality gap and S is the number of states. We further show that for general MDPs, AMB suffers
an additional |Zmul|

∆min
regret, where Zmul is the set of state-action pairs (s, a)’s satisfying a is a non-

unique optimal action for s. We complement our upper bound with a lower bound showing the
dependency on |Zmul|

∆min
is unavoidable for any consistent algorithm. This lower bound also implies a

separation between reinforcement learning and contextual bandits.
Keywords: reinforcement learning, Markov Decision Process, gap-dependent bounds

1. Introduction

In reinforcement learning (RL), an agent iteratively interacts with an unknown environment with the
goal of maximizing the reward. The state-of-the-art algorithms and analyses for tabular Markov De-
cision Process (MDP) achieve regret bounds that scale with

√
K whereK is the number of episodes.

These regret bounds hold for worst-case MDPs and are conservative—if a specific problem instance
has benign structures, a much smaller regret is possible. One such structure is a nontrivial sub-
optimality gap for the optimal Q-function—for every state s, the best action (or the set of best
actions) is better than other actions by a margin. This structure exists in many real-world scenarios
such as board games (tic-tac-toe, Chess) and Atari games (e.g., Freeway) (Mnih et al., 2013).

Researchers have extensively studied leveraging the suboptimality gap in the contextual bandits,
which is a simplification of RL with horizon H = 1. It is well-known that the standard upper-

confidence-bound (UCB) algorithm can achieve an optimal O

((∑
(s,a)∈S×A:
∆(s,a)>0

1
∆(s,a)

)
logK

)
gap-dependent regret bound (Bubeck and Cesa-Bianchi, 2012; Lattimore and Szepesvári, 2020;
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Slivkins, 2019). Here, S is the state space with |S| = S, A is the action space with |A| = A, and
∆(s, a) is the suboptimality gap of action a at the state s (that is, the advantage function at (s, a)).
Notably, this regret only scales with logK instead of

√
K as in the formulation without the gap

condition. One fruitful direction is to develop similar gap-dependent regret bounds for RL.
Previous gap-dependent RL regret bounds are mostly asymptotic (Jaksch et al., 2010; Tewari

and Bartlett, 2008; Ok et al., 2018). Recently, Simchowitz and Jamieson (2019); Lykouris et al.
(2019); Yang et al. (2020) have developed non-asymptotic gap-dependent regret bounds for tabular
MDPs. In particular, Simchowitz and Jamieson (2019) showed that a UCB-based algorithm can
achieve an

Õ


 ∑

(s,a,h)∈S×A×[H]:
∆h(s,a)>0

1

∆h(s, a)
+
|Zopt|
∆min

+ S2A

poly (H) logK

 1 (1.1)

regret bound where ∆h(s, a) is the sub-optimality gap of state-action pair (s, a) at the h-th level
(that is, h-th step), ∆min is the smallest gap among all state-action pairs at all levels, and Zopt is
the set of all optimal state-action pairs which satisfies S ≤ |Zopt| ≤ SA. Comparing with gap-
dependent regret bound of contextual bandits, there is an additional |Zopt| /∆min term.

Interestingly, Simchowitz and Jamieson (2019) constructed an intriguing example in whichA =
2, H = 2 and every state has a unique optimal action. They proved that all UCB algorithms will
suffer an Ω (S/∆min) regret on this example. See Section 1.2 for more expositions. One open
question asked by Simchowitz and Jamieson (2019) is

Can we develop a non-UCB algorithm whose regret does not depend on S/∆min?

The answer to this question has an important conceptual message. Recall in the contextual bandits
setting, the regret does not depend on S/∆min. Therefore, if the answer to the above question is
negative, it demonstrates a formal separation between contextual bandits and RL.2 On the other
hand, if the answer is positive, then RL may not be more difficult than contextual bandits in terms
of the gap-dependent regret.

1.1. Our Contributions

In this paper, we give both positive and negative results.

An Improved Algorithm. First, we design a new algorithm, Adaptive Multi-step Bootstrap (AMB),
which enjoys the following gap-dependent regret guarantee.

Theorem 1.1 For fixed K, AMB algorithm enjoys a gap-dependent regret upper bound with high
probability

Õ


 ∑

(s,a,h)∈S×A×[H]:
∆h(s,a)>0

1

∆h(s, a)
+
|Zmul|
∆min

+ SA

poly (H) logK


2. For the worst-case regret bound, it is still unclear whether there is a separation between contextual bandits and RL.

See Jiang and Agarwal (2018); Wang et al. (2020); Zhang et al. (2020a).
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where Zmul is the set of state-action pairs (s, a)’s satisfying a is an non-unique optimal action for
s.

The main difference between our bound and those in Simchowitz and Jamieson (2019) is about
the second term in (1.1)—ours scales with |Zmul| /∆min whereas theirs scales with |Zopt| /∆min,
although our H dependency is worse than theirs. The following corollary illustrates the main im-
provement of our result in the special case where every state has a unique optimal action, that is,
|Zmul| = 0 but |Zopt| = S.

Corollary 1.2 For a fixedK, if every state of a MDP has a unique optimal action, then AMB enjoys
a gap-dependent regret bound with high probability

Õ


 ∑

(s,a,h)∈S×A×[H]:
∆h(s,a)>0

1

∆h(x, a)
+ SA

 poly (H) log (K)

 .

In this case, the regret of the UCB-based algorithm in Simchowitz and Jamieson (2019) has
an S/∆min term because |Zopt| = S, but ours does not. Therefore, when ∆min is small, the im-
provement of our bound is significant. More importantly, this improvement is not only from a better
analysis, but also from fundamental algorithmic innovations. Simchowitz and Jamieson (2019)
show that Ω (S/∆min) regret is necessary for all UCB algorithms. AMB, instead, bypasses this
technical barrier by considering both upper and lower confidence bounds of the Q-values (instead
of only upper bounds as in UCB).

Another advantage is that our algorithm is model-free, which is more memory- and time-
efficient than the model-based algorithms in Simchowitz and Jamieson (2019).3 Comparing with
the previous Õ (SA · poly(H) · (logK)/∆min) model-free gap-dependent regret bound in Yang
et al. (2020), ours is more fine-grained as ours depends on the sum of the inverse of gaps and |Zmul|,
which in many instances are significantly tighter.

We note that our algorithm also enjoys a worst-case regret bound that scales with
√
K. See

Corollary B.10 in Section B for the formal statement and proofs.

A New Lower Bound. Now we turn to the negative result. Note for some MDPs, the quantity
|Zmul| can be as large as SA. The next natural question is whether the dependency on |Zmul| /∆min

is necessary. Our negative result shows that this is unavoidable.

Theorem 1.3 (Informal) There is no algorithm ALG that can achieve a regret such that for all
MDP M and K approaching infinity,

E [RegretK(M,ALG)] = O


 ∑

(s,a,h)∈S×A×[H]:
∆h(s,a)>0

1

∆h(x, a)

 log (K)


3. For tabular MDPs, a model-free algorithm’s space complexity scales at most linearly in S, and a model-based algo-

rithm’s space complexity scales quadratically with S (Strehl et al., 2006; Jin et al., 2018).
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This lower bound shows that it is not possible to achieve a regret bound that solely depends
on the sum of the inverse of the gaps. This lower bound also conveys a conceptual message that
there is a separation between RL and contextual bandits because we know the UCB algorithm can
achieve a regret bound that solely depends on O

(∑ 1
∆(s,a)

)
. As will be clear in Section 5, the

transition operator in MDP allows us to construct harder problem instance that cannot be constructed
in contextual bandits.

1.2. Main Challenges and Technique Overview

Figure 1: A simplified H = 2 hard instance that make all UCB algorithms incur an Ω (S/∆min)
regret. There are n states and two actions, a1 and a2. a1 is always the optimal action.
The reward distribution satisfies R(s2, a1) = 1/2 + ∆min + η and r(si, a1) = 1/2 + η
for i = 3, . . . , n, where η is a zero-mean noise with variance 1. All other state-action
pairs have reward 0. ∆(s1, a2) = ∆min, ∆(s2, a2) = 1/2 + ∆min, and ∆(si, a2) = 1/2
for i = 3, . . . , n. s1 is the starting state. (s1, a1) will transit to s2 deterministically, and
(s1, a2) will transit to s3, . . . , sn, each with probability 1

n−2 .

1.2.1. THE HARD EXAMPLE IN SIMCHOWITZ AND JAMIESON (2019)

We first review the intuition about the hard instance in Simchowitz and Jamieson (2019) (cf. Fig-
ure 1) that makes all UCB algorithms suffer an Ω (S/∆min) regret. In the hard instance, there
are two actions a1 and a2. At the starting state s1, a1 is the optimal action with Q∗(s1, a1) =
1/2 + ∆min, and a2 is the suboptimal action with Q∗(s1, a2) = 1/2. In order to find the optimal
action a1, the agent needs to estimate Q∗(s1, a2) within ∆min error. To estimate Q∗(s1, a2) =
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1
n−2

∑n
i=3 V

∗(si), all UCB algorithms rely on optimistic bootstrap, i.e., they maintain exploration
bonuses, b(s3), . . . , b(sn) for V ∗(s3), . . . , V ∗(sn), and the over-estimation of Q∗(s1, a2) will have
a term ≈ 1

n−2

∑n
i=3 b(si). To make this term smaller than ∆min, these algorithms essentially need

b(si) = O (∆min) for all i = 3, . . . , n, which leads to an Ω (S/∆min) regret.

1.2.2. GAP-DEPENDENT UPPER BOUND

Monte Carlo V.S. Optimistic Bootstrap To bypass the Ω (S/∆min) lower bound in Simchowitz
and Jamieson (2019)’s example, our main technique is to collapse paths. Notice we only need to
pay Õ(S) regret to find the optimal action a1, for s3, . . . , sn because these states have an Ω (1)
gap. Now, to estimate Q∗(s1, a2), instead of using the optimistic bootstrap in UCB algorithms, we
use Monte Carlo. Since we know the optimal policy π∗ for {s3, . . . , sn}, just by executing π∗,
we can directly estimate Q∗(s1, a2). This estimator only needs to pay Õ (1/∆min) regret in order
to estimate Q∗(s1, a2) within error O(∆min), in sharp contrast to UCB algorithms which need to
pay Ω (S/∆min) regret. The intuition is that Monte Carlo is estimating the mean of one random
variable, whereas the optimistic bootstrap needs to estimate the means of S random variables.

This example shows the power of Monte Carlo for the scenario when subsequent states’ optimal
actions are known. This observation natural leads to a new estimator for Q∗, which adaptively
combines optimistic bootstrap and Monte Carlo. We note that algorithmically, combining bootstrap
and Monte Carlo is not new (see e.g., Sutton and Barto (1998)). However, to our knowledge, our
algorithm is the first that adaptively combines optimistic bootstrap and Monte Carlo, and enjoys
provable theoretical gains. See Section 4 for more details. Besides this new estimator, we also need
some additional technical ingredients to obtain the improved gap-dependent bound.

Maximal Confidence Interval The estimator requires to identify a set of states whose the best
action has been found. Identifying the best action inevitably involves the action elimination opera-
tion. Unfortunately, the existing UCB algorithms have no such operation. Our algorithm maintains
an upper and a lower bound of eachQ∗ value. Importantly, at each episode, we select the action that
1) has not been eliminated and 2) has the largest uncertainty (measured by the difference between
the upper and the lower confidence bound). Our action selection scheme is crucial because it has
been shown in Lykouris et al. (2019) that the naive action selection scheme, randomly sampling
one action from the remaining action set, suffers an exponential regret. Also note that selecting
the action based on UCB may not work, because UCB never chooses actions which do not have
the highest optimistic value, which makes their confidence bounds not tight. However, the action
elimination operation requires accurate estimation for all un-eliminated actions.

1.2.3. GAP-DEPENDENT LOWER BOUND

The construction of our hard instance for Ω (SA/∆min) lower bound relies on simple intuition:
A tabular MDP can simulate a multi-armed bandits with SA arms, in which

∑
∆h(s,a)>0

1
∆h(s,a)

is much smaller than SA
∆min

. Therefore, we can construct a multi-armed bandits example that has
Ω (SA) arms with gap ∆min, while the MDP has only a few (O(logS)) state-action pairs gap
∆min. This is in sharp contrast to contextual bandits with S states and A actions, which cannot
simulate a multi-armed bandits with SA arms.
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2. Related Work

There is a long line of results about worst-case regret bound of tabular RL. An incomplete list
includes Kearns and Singh (2002); Brafman and Tennenholtz (2003); Strehl et al. (2006); Jaksch
et al. (2010); Dann and Brunskill (2015); Azar et al. (2017); Dann et al. (2017); Jin et al. (2018);
Dann et al. (2019); Zhang et al. (2020b); Yang et al. (2020); Wang et al. (2020); Zhang et al. (2020a).
Algorithmically, we use the same step size for the model-free update in Jin et al. (2018). The state-
of-the-art result by Zhang et al. (2020a) showed one can achieve Õ

(√
SAK + S2A

)
regret bound.4

Contextual bandits can be viewed as an episodic RL problem with H = 1, and its worst-case regret
bound is Θ(

√
SAK). Till today, it is still unclear whether there is a separation between RL and

contextual bandits for the worst-case regret bound.
When there is a strictly positive sub-optimality gap, it is possible to achieve logK-type regret

bounds. This type of results have been widely studied in the bandit literature. In RL, earlier work
obtained asymptotic logarithmic regret bounds Auer and Ortner (2007); Tewari and Bartlett (2008).
Recently, non-asymptotic logarithmic regret bounds were obtained (Jaksch et al., 2010; Simchowitz
and Jamieson, 2019; Yang et al., 2020). Specially, Jaksch et al. (2010) developed a model-based
algorithm, and their bound depends with the policy gap instead of the action gap studied in this pa-
per. Simchowitz and Jamieson (2019) extended the model-based algorithm by Zanette and Brunskill
(2019) and obtained logarithmic regret bounds. Yang et al. (2020) showed the model-free algorithm,
the optimisticQ-learning algorithm by Jin et al. (2018) enjoyed a logarithmic regret. More recently,
logarithmic regret bounds are obtained in linear function approximation settings (He et al., 2020).
Lastly, Ok et al. (2018) derived problem-specific logK-type lower bounds for both structured and
unstructured MDPs.

3. Preliminary

We denote a tabular episodic Markov Decision Process (MDP) by M = (S,A, H,R,P, µ) where
S is the state space with |S| = S, A is the action space with |A| = A, H is the episode length
(horizon), R : S × A → [0, 1] is the reward distribution, P : S × A → ∆(S) is the transition
probability distribution, and µ ∈ ∆(S) is the initial state probability distribution. To streamline our
analysis, we make a standard assumption for episodic settings that S can be partitioned into disjoint
sets Sh, h ∈ [H], such that P (· | s, a) is supported on Sh+1 whenever s ∈ Sh.5 A deterministic
policy, π, assigns an action for each state, and can be seen as a function π : S → A. Playing a
policy π on a MDP M will induce a trajectory: s1, a1, r1, s2, a2, r2, ...sh, ah, rh, where s1 ∼ µ,
a1 = π(s1), r1 ∼ R(s1, a1), s2 ∼ P(s1, a1), etc.

For a given policy π, at each level h = 1, . . . ,H , we define the the value function V π
h : Sh → R

and the Q-function Qπh : Sh ×A → R as

V π
h (x) = Eπ

[
H∑

h′=h

r(sh′ , ah′)
∣∣sh = x

]
, Qπh(x, a) = Eπ

[
H∑

h′=h

r(sh′ , ah′)
∣∣sh = x, ah = a

]

4. Their result holds for the setting where the reward is non-negative and the total reward is bounded by 1. This is a fair
scaling when comparing with contextual bandits. See more expositions in Jiang and Agarwal (2018).

5. One can always augment the state space of the original episodic MDP to satisfy this assumption. The augmented
state space is H times larger than the original one.
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For simplicity, we define V π
0 = E [V π

1 (s1)] to denote the value of a policy π. We use π∗ to denote
the optimal policy and a∗(x) to denote the optimal action at state x (arbitrarily break tie if there are
multiple optimal actions). This implies π∗(x) = a∗(x). We write V ∗h (x) in short for V π∗

h (x) and
Q∗h(x, a) for Qπ

∗
h (x, a).

The agent interacts with the environment forK episodes. On each episode k ∈ [1,K], the agent
uses a policy πk. We use cumulative simple regret RegretK =

∑K
k=1 V

∗
0 − V

πk
0 to measure the

performance.
We focus on gap-dependent regret. For (x, a, h) ∈ S × A × [H], the gap is defined

as: ∆h(x, a) = V ∗h (x) − Q∗h(x, a). Note the optimal action at a state has the gap equals to
zero. Following Simchowitz and Jamieson (2019), we let Zhopt(x) denote the set of optimal ac-
tions for a state x on level h ∈ [H], i.e., Zhopt(x) = {a ∈ A : ∆h(x, a) = 0}. We use
Zopt = {(h, x, a) | ∆h(x, a) = 0} to denote the set of optimal state-action pairs. We also define
the local minimal gap: ∆h,min(x) = mina6=a∗(x) ∆h(x, a) which should be 0 if |Zhopt(x)| > 1, and
global minimal gap: ∆min = min

(x,a,h)∈S×A×[H]∧∆h(x,a)>0
∆h(x, a). Our paper gives a fine-grained

characterization of gap-dependent bounds, which rely on the following set

Zmul =
{

(h, x, a)
∣∣∆h(x, a) = 0 ∧ |Zhopt(x)| > 1

}
. (3.1)

This is the set of state-action pairs whose states have multiple optimal actions. Note we always have
|Zmul| ≤ |Zopt|. Furthermore, under the following assumption, |Zmul| = 0 whereas |Zopt| = S.
In the analysis below, we may drop the subscript h for some quantities because, by our assumption,
any chosen state x implicitly contains the information of the level h which it belongs to.

Assumption 3.1 (Unique Optimal Action) We say a MDP satisfies the unique optimal action as-
sumption if for any state x ∈ S, it has a unique optimal action, i.e. ∀x ∈ S, h ∈ [H],

∣∣Zhopt(x)
∣∣ = 1.

4. Algorithm and Analysis Sketch

We will first describe the main algorithm and then in subsection 4.1 we will provide a proof sketch.
Pseudocodes are listed in Algorithm 1.

Our algorithm maintains valid upper bounds and lower bounds of the Q-function at every
episode k, denoted by Qk(x, a) and Q

k
(x, a), respectively. Given these bounds, for every state

x, it maintains a set of candidate optimal actions, denoted by Ak(x), by eliminating every action
a whose Q-value upper bound is lower than another action’s lower bound. Once only a single
action survives for a state x, that is, |Ak(x)| = 1, we know that we have found the optimal ac-
tion, and we call the state x a “decided” state. Otherwise we call x an “undecided” state. Let
Gk = {x

∣∣ |Ak(x)| = 1} represent the subset of all decided states.
The key idea of the paper is to construct the upper and lower bounds of theQ-function by spliting

the Q-function into two parts: the rewards from the decided states and those from the undecided
states. This allows us to estimate the former part with more accurate sampling. Concretely, given
the decided states Gk at episode k, we have

Q∗(x, a) = Q∗bk (x, a) +Q∗rk (x, a) (4.1)

where Q∗bk (x, a) is the expected reward received by playing π∗ after (x, a) until arriving a state that
does not belong to Gk, and the Q∗rk (x, a) is the expected reward of the rest of the steps after seeing

7
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Algorithm 1: Adaptive Multi-step Bootstrap (AMB)
Input: δ ∈ (0, 1/3) (failure probability), H,A,S,K ≥ 1

1 ∀x, a, Q0(x, a)← H , Q
0
(x, a)← 0, G1 = ∅, and A1(x)← A. ∀k, V k(⊥) = V k(⊥) = 0

2 ∀k, let αk = H+1
H+k .

3 for k = 1, 2, ... do
4 Collect data:
5 Rollout from a random initial state sk,1 ∼ µ using the policy πk, defined as

πk(x) ,

{
argmaxa∈Ak(x)Qk−1(x, a)−Q

k−1
(x, a) if |Ak(x)| > 1

the element in Ak(x) if |Ak(x)| = 1
,

and obtain an episode sk,1, . . . , sk,H .
6 Update Q-function:
7 for h = H,H − 1, ...1 do
8 if sk,h 6∈ Gk then
9 Let n = nk(sk,h, ak,h) be the number of visits to (sk,h, ak,h).

10 Suppose sk,h′ be the first state in the episode after sk,h that is not in Gk. (If such a
state does not exist, let h′ = H + 1 and sk,h′ = ⊥.)

11 Set the bonus bn = c
√
H3 log(SAK/δ)/n for some universal constant c.

12 Let Q̂∗bk (sk,h, ak,h) =
∑

h≤i<h′ rk,i

13 Qk(sk,h, ak,h) = min
{
H, (1− αn)Qk−1(sk,h, ak,h) + αn

(
Q̂∗bk (sk,h, ak,h) + V k−1(sk,h′) + bn

)}
14 Q

k
(sk,h, ak,h) = max

{
0, (1− αn)Q

k−1
(sk,h, ak,h) + αn

(
Q̂∗bk (sk,h, ak,h) + V k−1(sk,h′)− bn

)}
15 V k(sk,h) = maxa∈Ak(sk,h)Qk(sk,h, a)

16 V k(sk,h) = maxa∈Ak(sk,h)Qk(sk,h, a)

17 end
18 end
19 for (x, a) ∈ {S ×Ak(x)}\{(sk,h, ak,h)}Hh=1 do
20 Qk(x, a) = Qk−1(x, a), Q

k
(x, a) = Q

k−1
(x, a), V k(x) = V k−1(x), and

V k(x) = V k−1(x).
21 end
22 Eliminate the sub-optimal actions:
23 ∀x ∈ S, set Ak+1(x) = {a ∈ Ak(x) : Qk(x, a) ≥ V k(x)}
24 Let Gk+1 = {x ∈ S : |Ak+1(x)| = 1}.
25 end

any state that does not belong to Gk. Formally, suppose the state x is on the level h, and after taking
the optimal actions, we arrive at the sequence of states xh+1, . . . , xH . Let h′ be the smallest index
(that is at least h + 1) such that xh′ 6∈ Gk, then we can decompose Q∗(x, a) into the sum of the

8
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following two quantities:

Q∗bk (x, a) , E
[ h′−1∑
`=h

r(x`, a
∗(x`))

]
and Q∗rk (x, a) , E [V ∗(xh′)] . (4.2)

For Q∗bk (x, a), the summation of observed empirical rewards can serve as an unbiased estimate,
because we have taken the optimal action for states a∗(x`) for h+ 1 ≤ ` < h′:

Q̂∗bk (sk,h, ak,h) =
h′−1∑
`=h

rk,` (4.3)

On the other hand, for Q∗rk (x, a), we can use the exiting V -values estimates on xh′ to perform the
bootstrapping, similarly to standard Bellman updates (Szepesvári, 2010). We will add a reward
bonus term to counterbalance the stochasticity introduced in the estimation (4.2), so that finally we
maintain valid upper and lower bounds in the sense that Q

k
(x, a) ≤ Q∗(x, a) ≤ Qk(x, a) and

V k(x) ≤ V ∗(x) ≤ V k(x). Concretely, the target value of the new Q-value is

Q̂∗bk (x, a) + V k−1(xh′) + bonus (4.4)

To make the update stable, following the standard framework proposed in Jin et al. (2018), we
linearly interpolate the target value in (4.4) and the existing Q value with a learning rate αk. We
can derive a lower bound for the Q-values similarly and the resulting upper and lower bounds for
the V -values. This part of the algorithm is described between Line 13 and Line 14 in Algorithm 1.

Our Bellman update is very reminiscent to the multi-step rollout Bellman updates that have been
used successfully in practice (Sutton and Barto, 1998). However, in contrast to them, the Monte-
Carlo rollout horizon in our algorithms adaptively depends on whether we have found the optimal
actions in the following states.

As alluded before, given the upper and lower bounds, we can potentially eliminate more sub-
optimal actions and build a small set of viable actions Ak+1(x) (See Line 23 and Line 24 in Algo-
rithm 1.)

The obtained new upper bound Qk(x, a) and lower bound Q
k
(x, a) will induce a new policy

πk+1. Instead of using UCB, we take actions that maximizes the length of the confidence interval

πk+1(x) = argmaxa∈Ak+1(x)Qk(x, a)−Q
k
(x, a) (4.5)

We rollout with policy πk+1 in the next episode as in Line 5 of Alg. 1.

Comparison to previous algorithms. Compared with the existing model-free algorithms with
regret guarantees, such as the one in Jin et al. (2018), there are two main differences between our
algorithm and UCB-based algorithms:

(1) In estimating Q and V , through a Q-function decomposition, we give tighter estimation for
the first part Q∗bk (x, a), instead of directly summing up next level states’ upper bounds.

(2) Instead of choosing actions with the largest upper bounds as in UCB, we choose the actions
with largest confidence interval lengths and eliminate an action when it can be excluded from
the potential optimal actions.

9
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Technical nuances. For notational convenience, we use ⊥ to denote a special termination state,
and consider it to be on the level of H + 1. The value functions for this state is set to be zero in all
cases, and we consider ⊥ 6∈ Gk for all k. We also note that once x ∈ Gk for some k, it will remain
there for forever, and we will no longer update Qk(x, a) anymore—we will always take the unique
optimal action as soon as x ∈ Gk and the Q-values are no longer relevant anymore.

4.1. Proof Outline

In this section, we listed several key components of the proof for the case where each state has a
unique optimal action (c.f. Corollary 1.2). Technical proofs are deferred to Appendix A. The proof
for the general case (c.f. Theorem 1.1) is deferred to Appendix B. We first introduce some of the
key notations and concepts in the analysis of the algorithm.

Key notations and concepts. We use nk(x, a) to denote the number of visits to the state-action
pair (x, a) before and including episode k. For any t, let k[t](x, a) be the episode number of the
t-th visit to the state-action pair (x, a). We will only use this notation when the algorithm indeed
visits (x, a) for at least t times. When the pair (x, a) is clear in some context, we oftentimes omit
(x, a) and just write k[t] for simplicity. For any state x, let x′k[t] denotes the first undecided state
(according to Gk[t]) in the episode k[t] after the state x.

4.1.1. BACKGROUNDS ON LEARNING RATES AND CONCENTRATION PROPERTIES.

Our general framework follows the recent analysis of Q-learning algorithms (Jin et al., 2018), in
terms of the choice of learning rates. We first define the quantity αit that shows up in the analysis
frequently when we expand the update rules for the Q-functions:

α0
n ,

n∏
j=1

(1− αj) and αtn , αt

n∏
j=t+1

(1− αj) (4.6)

Intuitively, αtn effectively measures how the update of Q(x, a) at the n-visit to (x, a) depends on
the past Q-value at the t-th visit of (x, a), as characterized in the following statement:

Qk[n](x, a) = α0
nH +

n∑
t=1

αtn

(
Q̂∗bk[t](x, a) + V k[t]−1(x′k[t]) + bt (x, a)

)
(4.7)

The statement (4.7) can be obtained by a straightforward recursive expansion of the update rule
in Line 13 of Alg. 1. (For a complete proof, see Section A.)

Similarly to the standard analysis of Q-learning, we will control V k[t]−1(x′k[t]) on the RHS of

equation (4.7) by recursion and Q̂∗bk[t](x, a) on the RHS by concentration inequality. The former part
requires innovations but the latter part follows standard concentration inequality.

Lemma 4.1 (Concentration) With probability at least 1 − δ over the randomness of the environ-
ment, for all episodes k ∈ [K], the following concentration inequalities hold:

∀x ∈ S \Gk, a ∈ Ak(x),

∣∣∣∣∣
nk∑
t=1

αtnk

(
Q̂∗bk[t](x, a)−Q∗bk[t](x, a)

)∣∣∣∣∣ ≤ 1

2
bnk (x, a) (4.8)

10



FINE-GRAINED GAP-DEPENDENT BOUNDS FOR TABULAR MDP

∀x ∈ S \Gk, a ∈ Ak(x),

∣∣∣∣∣
nk∑
t=1

αtnk

(
V ∗(x′k[t])−Q

∗r
k[t](x, a)

)∣∣∣∣∣ ≤ 1

2
bnk (x, a) (4.9)

For the sake of simplicity, in the following analysis, we use EBj to denote the union of those inequal-
ities’ validity in (4.8) over episode k = 1, . . . , j, ERj the union of those inequalities’ validity in (4.9)
over episode k = 1, . . . , j, and let Ej , EBj ∩ ERj . We also write EB for EBK , ER for ERK , and E for
EB ∩ ER.

4.1.2. KEY STEPS IN THE PROOFS

Now we list several key lemmas in the proof. The following lemma shows our confidence intervals
about the Q-function and the V -function are valid.

Lemma 4.2 (Valid Confidence Interval) For all (x, a) ∈ S × A and at any episode k, when
event Ek happens, the upper and lower confidence bounds in Algorithm 1 are valid:

V k(x) ≥ V ∗(x) ≥ V k(x) and Qk(x, a) ≥ Q∗(x, a) ≥ Q
k
(x, a) (4.10)

With this lemma, we can easily show that we never eliminate the optimal action.

Proposition 4.3 (Action Elimination) When the event Ek−1 happens, for all x ∈ S , all the
optimal actions for x are in the set Ak(x). As a direct consequence, ∀x ∈ Gk, the set Ak(x)
contains the unique optimal action for x.

Now we turn to bounding the regret. The following lemma shows the length of the confidence
interval is an upper bound of the regret, conditioned on the event Ek.

Lemma 4.4 (Bounding Regret By the Confidence Interval Length) For any episode k, condi-
tioning on the event Ek−1, the regret can be bounded by the confidence interval length of those
undecided states that are not in Gk:

(V ∗0 − V
πk

0 )

∣∣∣∣Ek−1,Fk−1 ≤ 2E

[
H∑
h=1

(
Qk−1(sk,h, ak,h)−Q

k−1
(sk,h, ak,h)

)
· I [sk,h /∈ Gk]

∣∣∣∣Ek−1,Fk−1

]

We note this lemma is different from the decomposition for the UCB-based algorithms, which admit
the property that Qk(sk,h, ak,h) ≥ Qk(sk,h, a

∗(sk,h)) ≥ V ∗(sk,h) and then use the estimation
error, Qk(sk,h, ak,h) − Q∗(sk,h, ak,h), as an upper bound for regret. However, since we do not
always choose the action that maximizes the estimated Q-value, we need a new upper bound on
the regret. Fortunately, for our analysis, with the action elimination mechanism, the regret can be
simply bounded by the maximal confidence interval.

With Lemma 4.4 at hand, it suffices to bound the above the confidence intervals. Our analysis
relies on the clip function

clip
[
x
∣∣y] , x · I [x ≥ y] .

We obtain the following recursion.

11



XU MA DU

Proposition 4.5 (Confidence Interval Length Recursion) Suppose Ek−1 happens. Suppose
(x, a) = (sk,h, ak,h) is a state-action pair visited in the k-th episode where x 6∈ Gk is an unde-
cided state. Let ∆Qpast be a shorthand for

∆Qpast ,
nk−1∑
t=1

αtnk−1

(
Qk[t]−1(x′k[t], a

′
k[t])−Qk[t]−1

(x′k[t], a
′
k[t])
)
· I
[
x′k[t] /∈ Gk[t]

]
(4.11)

We have the following recursion bound for the confidence interval length of an undecided state:(
Qk−1(x, a)−Q

k−1
(x, a)

)
· I [x /∈ Gk] (4.12)

≤α0
nk−1

H + (1 +
1

H
)∆Qpast +

 clip
[
4bnk−1

(x, a)
∣∣∆(x,a)

4H

]
if a 6= a∗(x)

clip
[
4bnk−1

(x, a)
∣∣∆min(x)

4H

]
if a = a∗(x)

(4.13)

The clipping operation was proposed in Simchowitz and Jamieson (2019) to derive gap-dependent
logarithmic regret bounds. We use one particular property about this opreation (c.f. Claim A.13).
The main difference between their use and ours is that for the second case, a = a∗(x), in Propo-
sition 4.5, Simchowitz and Jamieson (2019) introduce half-clipping trick and results in O( 1

∆min
)

regret for each state, while we use action elimination mechanism to give O( 1
∆min(x)) regret. This is

crucial to avoid the S/∆min dependency.
To proceed, we can solve the recursion by induction, and obtain the follwing lemma.

Lemma 4.6 (Solving Recursion) We define clipped reward function as

b̌nk (sk,h, ak,h) , clip
[
4bnk (sk,h, ak,h)

∣∣max

(
∆(sk,h, ak,h)

4H
,
∆min(sk,h)

4H

)]
(4.14)

When event E happens, we can upper bound the regret by a linear combination of clipped reward:

K∑
k=1

H∑
h=1

(
Qk−1(sk,h, ak,h)−Q

k−1
(sk,h, ak,h)

)
· I [sk,h /∈ Gk] (4.15)

≤e2H2SA+ e2H
K∑
k=1

H∑
h=1

b̌nk−1
(sk,h, ak,h) · I [sk,h /∈ Gk] (4.16)

To finish the proof of Corollary 1.2, we use the upper bound of the failure probability and
property of the clipping trick (Claim A.13) . See details in Section A.

5. Lower Bound

Here we present our formal lower bound.
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Figure 2: A family of hard instances that make all consistent algorithms incur an
Ω (SA logK/∆min) regret. M is the base MDP and Mij is another MDP we
wish to distinguish from M .

Theorem 5.1 Given integers S, A, H ≥ log2(S), 0 < ∆min < min(1
8 , 1/H), and S ≤

|Zmul| ≤ SA
2 , there exists an MDP which has S states, A actions, H levels, and satisfies∑

(s,a,h)∈S×A×[H]:
∆h(s,a)>0

1
∆h(x,a) = c1 log(S)/∆min for some absolute constants c1 > 0. On this MDP,

there exists an absolute constant c2 > 0 such that as K → ∞, any consistent algorithm suffers a
regret at least c2 |Zmul| logK/∆min.

In this section we describe our main ideas for proving Theorem 5.1. A graphical illustration of
our hard-instance construction is shown in Figure 2. At a high level, we use an MDP to simulate
a multi-armed bandit problem with SA arms, and then we choose the canonical hard instance in
multi-armed bandit to prove the lower bound.

We construct an MDPM whose states form a complete binary tree, where there are |S| = 2n−1
states and n leaves. We label their last horizon’s states with {x1, ...xn}. All states previous to the last
horizon have two actions {a1, a2}, while states on the last level have |A| = A actions {a1, ...aA}.
All transitions are deterministic and follow the binary tree structure. The actions taken in states on
the last level drawn on the rightest column is the only place where non-zero rewards are given to
the agent. Following the standard proof of the lower bound for multi-armed bandits, we assume all
rewards follow a Bernoulli distribution, whose mean is labeled on the top of the action. Only one
state x1 has one 1

2 +γ reward action. All x1’s other actions and all other states’ actions have reward

13
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mean 1
2 . Equivalently, this is a multi-armed bandit problem with SA arms and the only non-zero

reward is on (x1, a1).
Now we construct a set of MDPs {Mij}i∈{2,...,|S|},j∈{1,...,A}. For MDP Mi,j , all transitions and

rewards are the same with M , except that one action aj of state xi has reward 1
2 + 2γ. We note that

these MDPs only have four possible rewards {0, 1
2 ,

1
2 + γ, 1

2 + 2γ}.
To prove the lower bound, we follow the standard technique in multi-armed bandits (e.g., Latti-

more and Szepesvári (2020)) to show Ω (SA logK/∆min) regret. See Section C for details.

6. Conclusion

In this paper, we design a new algorithm enjoying an improved gap-dependent regret bound for
episodic finite-horizon MDPs. This new regret bound is significant tighter than previous bounds
when all states have a unique optimal action. The two innovations involved are the use of adaptive
multi-step bootstrap in Q-value estimation and choosing the action that has the largest confidence
interval. We also prove a new regret lower bound showing that achieving the tighter regret bound
for general MDPs is impossible.
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Appendix A. Missing Proofs in Section 4.1

In this section we prove the following result under Assumption 3.1. Note Theorem A.1 implies
Corollary 1.2.

Theorem A.1 (Main Result Under Assumption 3.1) Under Assumption 3.1, for fixed K, with
probability at least 1− δ, we have the following regret upper bound

RegretK ≤ O

H2SA+
∑
x∈S

 ∑
a6=a∗(x)

H5

∆(x, a)

 log

(
SAK

δ

) (A.1)

Here we also briefly summarize why we have H5 the bound. First, since we use αi as the

learning rate in Line 13 of Algorithm 1, we need to set bonus as large as Ω(
√

H3

n ). Second, we use

the clipping trick to clip the bonus at Ω( ∆
H ) (Lemma 4.5), so the summation over bonus until it is

clipped will yield O(H
4

∆ ). Finally, our use of confidence interval to decompose regret (Lemma 4.4)
and solving the recursion (Lemma 4.6) incurs another factor of H . We leave it as a future direction
is to improve the dependency on H .

Proposition A.2 (Lemma 4.1 of Jin et al. (2018)) Recall that αt = H+1
H+t . Define α0

t ,∏t
j=1 (1− αj), and αit , αi

∏t
j=i+1 (1− αj). Then, we have the following properties:

(1)

{∑t
i=1 α

i
t = 1 and α0

t = 0 ∀t ≥ 1∑t
i=1 α

i
t = 0 and α0

t = 1 for t = 0

(2) ∀t ≥ 1, 1√
t
≤
∑t

i=1
αit√
i
≤ 2√

t

(3) ∀i ≥ 1,
∑∞

t=i α
i
t = 1 + 1

H

(4) ∀i ≥ 1,
∑t

i=1(αit)
2 ≤ 2H

t

A.1. Proof of lemma 4.2

Here we prove an extended version of Lemma 4.2, where we additionally prove an upper bound of
V k(x)−Q

k
(x, a). This inequality is useful for bounding regret in later analysis.

Lemma A.3 (Extended version of Lemma 4.2) For all (x, a) ∈ S \ Gk × Ak(x) and at any
episode k, when event Ek happens, the upper and lower confidence bounds are valid:

V k(x) ≥ V ∗(x) ≥ V k(x) (A.2)

Qk(x, a) ≥ Q∗(x, a) ≥ Q
k
(x, a) (A.3)

Moreover, for any k, x and a ∈ Ak+1(x), we have that

V k(x)−Q
k
(x, a) ≤ 2 max

a′∈Ak+1(x)

(
Qk(x, a

′)−Q
k
(x, a′)

)
(A.4)
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Proof [Proof of lemma A.3]
We first use induction to prove this inequality (A.2). The induction proceeds in two dimensions,

episode k and horizon h. We first check that the initialization in Algorithm 1 is valid. Then we
assume that the induction is valid from episode 0 to k − 1. In the following, we prove that the
argument is correct for a fixed episode k.

We consider the other induction dimension, horizon h, in a reversed order. For the base case
h = H + 1, where there is only one state ⊥. By the initialization in Algorithm 1, we have V k(⊥
) = V k(⊥) = 0. Therefore the induction argument is valid for the base case. Now, we assume that
for state x ∈ {Si}i>h, the induction argument is valid. Then, we want to prove that the argument is
valid for x ∈ Sh.

For the sake of simplicity, we denote nk to be an abbreviation for nk(xk, ak), the number of
times we have visited the state action pair (x, a), k[t] to be the episode of the t-th arrival to the
specified state x, x′k[t] to be the first not in Gk[t] state arrived starting at x on episode k[t].

According to the update rule in Algorithm 1, line (13), we have the following expression for
Qk(x, a):

Qk(x, a) = min

(
H,α0

nk
H +

nk∑
t=1

αtnk

(
Q̂∗bk[t](x, a) + V k[t]−1(x′k[t]) + bt (x, a)

))
(A.5)

Because by definition Q∗(x, a) ≤ H , the argument is true when the minimum of the two value
equals H . Now we assume that the minimum takes the second term.

Then, we have the following:

Qk(x, a)−Q∗(x, a) (A.6)

= α0
nk
H +

nk∑
t=1

αtnk

(
Q̂∗bk[t](x, a) + V k[t]−1(x′k[t]) + bt (x, a)

)
−Q∗(x, a) (A.7)

= α0
nk
H +

nk∑
t=1

αtnk

(
Q̂∗bk[t](x, a) + V k[t]−1(x′k[t]) + bt (x, a)−Q∗(x, a)

)
− I [nk = 0]Q∗(x, a)

(By property (1) in Proposition A.2)

= α0
nk
H +

nk∑
t=1

αtnk

(
Q̂∗bk[t](x, a) + V k[t]−1(x′k[t])−Q

∗(x, a)
)

+

nk∑
t=1

αtnkbt (x, a)− I [nk = 0]Q∗(x, a)

(A.8)

≥ α0
nk
H +

nk∑
t=1

αtnk

(
Q̂∗bk[t](x, a) + V k[t]−1(x′k[t])−Q

∗(x, a)
)

+ I [nk > 0] bnk (x, a)− I [nk = 0]Q∗(x, a)

(By the definition of bk (x, a) and property (2) in Proposition A.2)

When nk = 0, the first term above equals H , the last term equals Q∗(x, a), and the second and
third term becomes zero, so the RHS is greater than 0. Now, we consider the case when nk > 0,
then only the second and third term are non-zero. Next, we want to show that the second term is
larger than −bk (x, a).
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nk∑
t=1

αtnk

(
Q̂∗bk[t](x, a) + V k[t]−1(x′k[t])−Q

∗(x, a)
)

(A.9)

=

nk∑
t=1

αtnk

(
Q̂∗bk[t](x, a) + V k[t]−1(x′k[t])− V

∗(x′k[t]) + V ∗(x′k[t])−Q
∗b
k[t](x, a)−Q∗rk[t](x, a)

)
(By the decomposition of Q∗(x, a) defined in Line (4.1))

=

nk∑
t=1

αtnk

(
Q̂∗bk[t](x, a)−Q∗bk[t](x, a) + V k[t]−1(x′k[t])− V

∗(x′k[t]) + V ∗(x′k[t])−Q
∗r
k[t](x, a)

)
(A.10)

=

nk∑
t=1

αtnk

(
Q̂∗bk[t](x, a)−Q∗bk[t](x, a)

)
︸ ︷︷ ︸

Bounded by event EBk

+

nk∑
t=1

αtnk

(
V k[t]−1(x′k[t])− V

∗(x′k[t])
)

︸ ︷︷ ︸
Bounded by the induction argument

+

nk∑
t=1

αtnk

(
V ∗(x′k[t])−Q

∗r
k[t](x, a)

)
︸ ︷︷ ︸

Bounded by event ERk

(A.11)

≥ −1

2
bk (x, a)− 0− 1

2
bk (x, a) (A.12)

≥ −bk (x, a) (A.13)

A similar argument shows Q
k
(x, a) ≤ Q∗(x, a) as well.

Next we prove that for x ∈ Sh, V k(x) ≥ V ∗(x) and V k(x) ≤ V ∗(x). By the updating rule in
(15), and (16) of Algorithm 1, we have

V k(x) = max
a∈Ak(x)

Qk(x, a) ≥ max
a∈Ak(x)

Q∗(x, a) = V ∗(x, a) (A.14)

V k(x) = max
a∈Ak(x)

Q
k
(x, a) ≤ max

a∈Ak(x)
Q∗(x, a) = V ∗(x, a) (A.15)

Finally we will show equation (A.4). Recall that by Line 16 of Alg. 1, we have that V k(x) =
maxa∈Ak(x)Qk(x, a). Assume that the max is attend at a∗. Then, for all a ∈ Ak+1(x):

V k(x)−Q
k
(x, a) = Qk(x, a

∗)−Q
k
(x, a)

=
(
Qk(x, a

∗)−Q
k
(x, a∗)

)
+
(
Q
k
(x, a∗)−Qk(x, a)

)
+
(
Qk(x, a)−Q

k
(x, a)

)
≤ 2 max

a′∈Ak+1(x)

(
Qk(x, a

′)−Q
k
(x, a′)

)
(A.16)

where in the last inequality we use the fact that Q
k
(x, a∗) ≤ V k(x) ≤ Qk(x, a) for all a ∈

Ak+1(x).
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A.2. Proof of proposition 4.3

Restatement of Proposition 4.3 (Action Elimination)
When the event Ek−1 happens, for all x ∈ S , all the optimal actions for x are in the set Ak(x).

As a direct consequence, ∀x ∈ Gk, the set Ak(x) contains the unique optimal action for x.

Proof [Proof of proposition 4.3]
Suppose an action a was excluded from the set Ak(x) at episode k by Alg. 1. It implies that

Qk(x, a) < V k(x). By Lemma 4.2, we have Qk(x, a) < V k(x) ≤ V ∗(x), which indicates a is
not an optimal action. Therefore, all actions that are eliminated are suboptimal and the set Ak(x)
always contain all the optimal actions.

Finally because any state x in Gk satisfies |Ak(x)| = 1, the set Ak(x) must contain the unique
optimal action.

A.3. Proof of lemma 4.4

Restatement of Lemma 4.4 (Bounding Regret By the Confidence Interval Length)
For any episode k, conditioning on the event Ek−1, the regret can be bounded by the confidence

interval length of those undecided states that are not in Gk:

(V ∗0 − V
πk

0 )

∣∣∣∣Ek−1,Fk−1 ≤ 2E

[
H∑
h=1

(
Qk−1(sk,h, ak,h)−Q

k−1
(sk,h, ak,h)

)
· I [sk,h /∈ Gk]

∣∣∣∣Ek−1,Fk−1

]

Proof [Proof of lemma 4.4] Conditioning on the event Ek−1 and the filtrationFk−1 of all the random
variables generated until the beginning of epoch k, we can bound the V -value of policy πk.

(V ∗0 − V
πk

0 )
∣∣Ek−1,Fk−1 = E

[
H∑
h=1

V ∗(sk,h)−Q∗(sk,h, ak,h)

∣∣∣∣Ek−1,Fk−1

]

= E

[
H∑
h=1

(V ∗(sk,h)−Q∗(sk,h, ak,h)) · I [sk,h /∈ Gk]
∣∣∣∣Ek−1,Fk−1

]
(By Lemma 4.3, for all sk,h ∈ Gk, πk(sk,h) = as,h ∈ Zopt(x) and V ∗(sk,h) = Q∗(sk,h, ak,h))

≤ E

[
H∑
h=1

(
V k−1(sk,h)−Q

k−1
(sk,h, ak,h)

)
· I [sk,h /∈ Gk]

∣∣∣∣Ek−1,Fk−1

]
(A.17)

where the last inequality follows from by Lemma 4.2
Invoking equation (A.4) of Lemma 4.2 with episode k, x = sh,k, and a = ak,h, noting that in

Line 5 of Alg. 1, we chose ak,h = argmaxa′∈Ak(x)

(
Qk−1(sk,h, a

′)−Q
k−1

(sk,h, a
′)
)

, we have

V k−1(sk,h)−Q
k−1

(sk,h, ak,h) ≤ 2
(
Qk−1(sk,h, ak,h)−Q

k−1
(sk,h, ak,h)

)
(A.18)

Plugging in (A.18) into equation (A.17) completes the proof.
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A.4. Proofs of Proposition 4.5

Lemma A.6 Suppose (x, a) is visited at the episode k. Conditioning on the event Ek, letting
nk = nk(x, a) and k[t] = k[t](x, a), we have,

Qk(x, a)−Q
k
(x, a) ≤ α0

nk
H + 4I [nk > 0] · bk (x, a) +

nk∑
t=1

αtnk

(
V k[t]−1(x′k[t])− V k[t]−1(x′k[t])

)
(A.19)

Lemma A.7 Suppose sequences un and wn satisfy

un = (1− αn)un−1 + αnwn (A.20)

for all n ≥ 1 and u0 = H . Then,

un = α0
nH +

∑
1≤t≤n

αtnwt (A.21)

Proof [Proof of lemma A.7] We recursively expand un according to line (A.20) and get a linear
combination of wt. We can use induction to prove that the coefficient of wt in the expansion of un
is αtn. For the base case t = n, we have αn = αnn. Supposing the coefficient of wt in un−1 is αtn−1,
then we can deduce that the coefficient in un is (1 − αn) · αtn−1 = αtn, according to the definition
of learning rate introduced in Line (4.6).

Proof [Proof of lemma A.6] Recall that Qk(sk,h, ak,h) is updated in Line (13) of Algorithm 1.
Fixing (x, a) = (sk,h, ak,h) and let ut = Qk[t](x, a) andwt = Q̂∗bk[t](x, a)+V k[t]−1(x′k[t])+bt (x, a),
then all the historical Q-value update for (sk,h, ak,h) can be abstracted as

ut = min{H, (1− αt)ut−1 + αtwt} (A.22)

Expanding the update recursively (using Lemma A.7), we obtain that

unk = α0
nk
H +

∑
1≤t≤nk

αtnkwt (A.23)

which can be rewritten as

Qk(x, a) ≤ α0
nH +

nk∑
t=1

αtnk

(
Q̂∗bk[t](x, a) + V k[t]−1(x′k[t])

)
+

nk∑
t=1

αtnkbt (x, a) (A.24)

Because bt (x, a) is decreasing in t and by the second property of α in Proposition A.2, we have

nk∑
t=1

αtnkbt (x, a) ≤ 2I [nk > 0] bnk (x, a) (A.25)

Therefore,

Qk(x, a) ≤ α0
nk
H + 2I [nk > 0] · bnk (x, a) +

nk∑
t=1

αtnkQ̂
∗b
k[t](x, a) +

nk∑
t=1

αtnkV k[t]−1(x′k[t])

(A.26)
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At last, a similar argument can be applied to obtain a lower bound for Q
k
(x, a). Subtracting the

lower bound for Q
k
(x, a) from Line (A.24) will complete the proof.

Claim A.8 For any three positive numbers a, b, and c satisfying a+ b ≥ c, and for any x ∈ (0, 1),
the following holds:

a+ b ≤ clip
[
a
∣∣xc

2

]
+ (1 + x)b (A.27)

We recall that clip
[
x
∣∣y] , I [x ≥ y]x is defined at the beginning of section 4.1.

Proof If a ≥ xc
2 , then clip

[
a
∣∣xc

2

]
≥ a and (1 + x)b ≥ b and the claim follows. Otherwise, assume

a < xc
2 . Then, because a+ b ≥ c and x ≤ 1, we have xb ≥ x(c− a) ≥ x(c− xc

2 ) = x(1− x
2 )c ≥

xc
2 ≥ a. It follows that a+ b ≤ (1 + x)b ≤ clip

[
a
∣∣xc

2

]
+ (1 + x)b.

Restatement of Proposition 4.5 (Confidence Interval Length Recursion)
Suppose Ek−1 happens. Suppose (x, a) = (sk,h, ak,h) is a state-action pair visited in the k-th

episode where x 6∈ Gk is an undecided state. Let ∆Qpast be a shorthand for

∆Qpast ,
nk−1∑
t=1

αtnk−1

(
Qk[t]−1(x′k[t], a

′
k[t])−Qk[t]−1

(x′k[t], a
′
k[t])
)
· I
[
x′k[t] /∈ Gk[t]

]
(A.28)

We have the following recursion bound for the confidence interval length of an undecided state:(
Qk−1(x, a)−Q

k−1
(x, a)

)
· I [x /∈ Gk] (A.29)

≤α0
nk−1

H + (1 +
1

H
)∆Qpast +

 clip
[
4bnk−1

(x, a)
∣∣∆(x,a)

4H

]
if a 6= a∗(x)

clip
[
4bnk−1

(x, a)
∣∣∆min(x)

4H

]
if a = a∗(x)

(A.30)

Proof [Proof of proposition 4.5]
For a fixed (x, a) = (sk,h, ak,h) and x /∈ Gk, note that if nk−1(x, a) = 0, then α0

nk−1
= 1 and

the inequality is true because the confidence interval has a trivial upperboundH . Otherwise, we can
ignore the first term on (A.31), which will make the further analysis simpler. We first consider the
case a 6= a∗(x). We have the following upper bound for gap using confidence interval.

∆(x, a) = Q∗(x, a∗(x))−Q∗(x, a) (By the definition of gap)

= V ∗(x)−Q∗(x, a) (By the definition of V function)

≤ V k−1(x)−Q
k−1

(x, a) (By Lemma 4.2)

≤ 2 max
a′∈Ak(x)

(
Qk−1(x, a′)−Q

k−1
(x, a′)

)
(By equation (A.4) of Lemma A.3)
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≤ 2
(
Qk−1(x, a)−Q

k−1
(x, a)

)
(Because a = πk(x) maximizes confidence interval)

Next, we decompose confidence interval using Lemma A.6.

∆(x, a)

2
≤ Qk−1(x, a)−Q

k−1
(x, a) (A.31)

≤ α0
nk−1

H + 4bnk−1
(x, a) +

nk−1∑
t=1

αtnk−1

(
V k[t]−1(x′k[t])− V k[t]−1(x′k[t])

)
(A.32)

Then we can apply the clipping trick.

Qk−1(x, a)−Q
k−1

(x, a)

≤ α0
nk−1

H + clip
[
4bnk−1

(x, a)
∣∣∆(x, a)

4H

]
+

(
1 +

1

H

) nk−1∑
t=1

αtnk−1

(
V k[t]−1(x′k[t])− V k[t]−1(x′k[t])

)
(By Claim A.8)

≤ α0
nk−1

H + clip
[
4bnk−1

(x, a)
∣∣∆(x, a)

4H

]
+

(
1 +

1

H

) nk−1∑
t=1

αtnk−1

(
Qk[t]−1(x′k[t], a

′
k[t])−Qk[t]−1

(x′k[t], a
′
k[t])
)

(Because a′k[t] = πk[t](x
′
k[t]) maximizes the confidence interval)

= α0
nk−1

H + clip
[
4bnk−1

(x, a)
∣∣∆(x, a)

4H

]
+

(
1 +

1

H

) nk−1∑
t=1

αtnk−1

(
Qk[t]−1(x′k[t], a

′
k[t])−Qk[t]−1

(x′k[t], a
′
k[t])
)
· I
[
x′k[t] /∈ Gk[t]

]
(Because, by definition, x′k[t] /∈ Gk[t])

At last, we can add the indicator to LHS too, because the proposition’s statement only considers
“undecided” state x /∈ Gk.

To apply similar proof of the a 6= a∗(x) case, we need to get a similar lower bound for the
confidence interval of the selected state action pair like Line (A.31). We note that x /∈ Gk means
that |Ak(x)| > 1, so according to our unique optimal action assumption 3.1, at least one sub-optimal
action is still in Ak(x). Similarly, we have the following:

∆min(x) ≤ 2 max
a′∈Ak(x)

(
Qk−1(x, a′)−Q

k−1
(x, a′)

)
(A.33)

= 2
(
Qk−1(x, a∗(x))−Q

k−1
(x, a∗(x))

)
(Because πk(x) = a∗(x) maximizes the confidence interval)

The remaining deduction follows the a 6= a∗(x) case.
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A.5. Proof of lemma 4.6

Restatement of Lemma 4.6 (Solving Recursion)
We define clipped reward function as

b̌nk (sk,h, ak,h) , clip
[
4bnk (sk,h, ak,h)

∣∣max

(
∆(sk,h, ak,h)

4H
,
∆min(sk,h)

4H

)]
(A.34)

When event E happens, we can upper bound the regret by a linear combination of clipped reward:

K∑
k=1

H∑
h=1

(
Qk−1(sk,h, ak,h)−Q

k−1
(sk,h, ak,h)

)
· I [sk,h /∈ Gk] (A.35)

≤e2H2SA+ e2H
K∑
k=1

H∑
h=1

b̌nk−1
(sk,h, ak,h) · I [sk,h /∈ Gk] (A.36)

Proof [Proof of lemma 4.6] We repeatedly use Proposition 4.5 to expand the confidence interval.
For the summation of confidence intervals over episodes 1, · · · ,K at a fixed horizon h, we want to
express it as the sum of clipped reward at later horizons’ states and prove the coefficient before each
state has a desired upper bound. The expression below is the format of linear combination for the
summation of confidence intervals at a fixed level h. Instead of calculating the exact coefficient, we
will prove a coefficient upper bound only related with h, h′: w(h, h′).∑

k

(
Qk−1(sk,h, ak,h)−Q

k−1
(sk,h, ak,h)

)
· I [sk,h /∈ Gk]

≤
∑
k′,h′

w(h, h′) · b̌nk′−1

(
sk′,h′ , ak′,h′

)
· I
[
sk′,h′ /∈ Gk′

]
(A.37)

Considering a fixed bonus on the RHS, b̌nk′−1
(x′, a′) on level h′, according to the last term in

Proposition 4.5, it will be contained in some previous state’s confidence interval. We suppose
the previous not in Gk′ state on episode k′ lied on horizon h1, which has notation sk′,h1 , and we
chose action ak′,h1 there. We can observe that only the expansion of (x, a) = (sk′,h1 , ak′,h1)’s
confidence interval on episode k(k ≥ k′), i.e. Qk(x, a) − Q

k
(x, a), will contain b̌nk′−1

(x′, a′).
From property (3) of proposition A.2, we know

∑∞
n=t α

t
n ≤ 1 + 1

H , so we can have the following
reduction w(h, h′) ≤ w(h, h1) · (1 + 1

H )2 and w(h, h) = 1. The square here comes from the
property of α and the leading coefficient in the last term of Proposition 4.5. By induction, we can
prove that w(h, h′) ≤ (1 + 1

H )2(h′−h). Therefore the contribution of b̌nk′−1
(x′, a′) to the whole

regret summation is upper bounded by
∑

h≤h′ w(h, h′) ≤ e2H . The calculation of α0
nH is similar.

Combining these two parts will produce the desired result.

A.6. Proof of Theorem A.1

Restatement of Theorem A.1 (Main Result Under Assumption 3.1)
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Under Assumption 3.1, for fixed K, with probability at least 1− δ, we have the following regret
upper bound

RegretK ≤ O

H2SA+
∑
x∈S

 ∑
a6=a∗(x)

H5

∆(x, a)

 log

(
SAK

δ

) (A.38)

Proof [Proof of theorem A.1] We use the notation clip
[
x
∣∣y] as defined in Proposition 4.5 and

b̌k (x, a) as defined in Lemma 4.6. Recall E ⊆ Ek−1 and Pr{E} ≥ 1−δ. Therefore, with probability
at least 1− δ, we have the following relations on regret:

K∑
k=1

(V ∗0 − V
πk

0 )
∣∣∣Ek−1 (A.39)

≤
K∑
k=1

2E

[
H∑
h=1

(
Qk−1(sk,h, ak,h)−Q

k−1
(sk,h, ak,h)

)
· I [sk,h /∈ Gk]

∣∣∣∣Ek−1

]
(By Lemma 4.4)

= 2E

[
K∑
k=1

H∑
h=1

(
Qk−1(sk,h, ak,h)−Q

k−1
(sk,h, ak,h)

)
· I [sk,h /∈ Gk]

∣∣∣∣E
]
(Transform Ek−1 to E)

≤ 2e2H2SA+ 2e2HE

[
K∑
k=1

H∑
h=1

b̌nk−1
(sk,h, ak,h) · I [sk,h /∈ Gk]

∣∣∣∣E
]

(A.40)

≤ 2e2H2SA+ 2e2HE

[
K∑
k=1

H∑
h=1

b̌nk−1
(sk,h, ak,h)

∣∣∣∣E
]

(A.41)

≤ 2e2H2SA+ 128e2H
∑
x∈S

∑
a6=a∗

H4

∆(x, a)

+
H4

∆min(x)

 log

(
SAK

δ

)
(By Claim A.13 proving that

∑∞
n=1 clip

[
c√
n

∣∣ε] ≤ 4c2

ε for any constant c)

≤ O

H2SA+
∑
x∈S

∑
a6=a∗

H5

∆(x, a)

 log

(
SAK

δ

) (A.42)

where in line A.40, we use Lemma 4.6.

A.7. Supporting claims

Restatement of Lemma 4.1 (Concentration)
With probability at least 1−δ over the randomness of the environment, for all episodes k ∈ [K],

the following concentration inequalities hold:

∀x ∈ S \Gk, a ∈ Ak(x),

∣∣∣∣∣
nk∑
t=1

αtnk

(
Q̂∗bk[t](x, a)−Q∗bk[t](x, a)

)∣∣∣∣∣ ≤ 1

2
bnk (x, a) (A.43)
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∀x ∈ S \Gk, a ∈ Ak(x),

∣∣∣∣∣
nk∑
t=1

αtnk

(
V ∗(x′k[t])−Q

∗r
k[t](x, a)

)∣∣∣∣∣ ≤ 1

2
bnk (x, a) (A.44)

Proof [Proof of lemma 4.1] We prove Line (A.43) first. We can observe that Q̂∗bk[t](x, a)−Q∗bk[t](x, a)
is a martingale difference sequence w.r.t the filtration being the sigma field generated by all the
random variables until episode k[t]. By the property of αit(see Proposition A.2) and according to
Azuma-Hoeffding inequality, we have for fixed x, a, k, w.p. 1− δ

SAK ,∣∣∣∣∣
nk∑
t=1

αtnk

(
Q̂∗bk[t](x, a)−Q∗bk[t](x, a)

)∣∣∣∣∣ ≤
√√√√2H2

nk∑
t=1

(
αtnk
)2

log

(
SAK

δ

)
≤ 2

√
H3

nk
log

(
SAK

δ

)
(A.45)

Next, we prove Line (A.44). By definition, x′k[t] represents the reward division between Q∗bk[t](x, a)

and Q∗rk[t](x, a), so we know that the expected V ∗ function of x′k[t] equals the Q∗r function of x on
episode k[t], where the randomness comes from the uncertainty of x′k[t]. Therefore E[V ∗(x′k)] =

Q∗rk (x, a). The remaining proof is similar to proving Line (A.43).

Claim A.13 (bounded summation for clipped function) The summation of a clipped function
which scales proportionally to the inverse of the square root of the variable n has the following
bound:

∞∑
n=1

clip
[ c√

n

∣∣ε] ≤ 4c2

ε
(A.46)

Proof When n ≥ dc2ε−2e, clip
[
c√
n

∣∣ε] = 0, so we only calculate the first dc2ε−2e terms. Then we
have:

dc2ε−2e∑
n=1

c√
n
≤ 4c2

ε
(A.47)

Appendix B. Regret Analysis for General MDPs

In this section we prove Theorem 1.1.

Theorem B.1 (Main Regret Bound) For fixed K, with probability at least 1 − δ, we have the
following regret upper bound for our algorithm:

RegretK ≤ O

H2SA+

∑
x∈S

∑
a/∈Zopt(x)

H5

∆(x, a)
+
H5|Zmul|

∆min

 log

(
SAK

δ

) (B.1)
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Note Theorem B.1 implies Theorem 1.1 in Section 1

Definition B.2 (Range Function) For each episode k ∈ [K] and state action pair (x, a) ∈ S \
Gk × Ak(x), nk represents abbreviation for nk(x, a), we define the following quantities as range
function.

∆Qk−1(x, a) = α0
nk−1

H + 4bnk−1
(x, a) +

nk−1∑
t=1

αtnk−1
∆Vk[t]−1(x′k[t]) (B.2)

Similarly, for each episode k ∈ [K] and state x ∈ S \Gk, we define

∆Vk−1(x) = ∆Qk−1(x, ak) where ak = argmaxa∈Ak(x)Qk−1(x, a)−Q
k−1

(x, a) (B.3)

We want to show that the range function ∆Q and ∆V defined above are valid upper bound for
original confidence interval.

Lemma B.3 (Valid Upper Bound for Confidence Interval) For any episode k, state x, and ac-
tion a, we have the following lower bound for the range function:

∆Qk(x, a) ≥ Qk(x, a)−Q
k
(x, a) (B.4)

∆Vk(x) ≥ V k(x)− V k(x) (B.5)

Proof [Proof of Lemma B.3] We use induction to prove this lemma. For the base case where we
denote any transition destination after horizon H to be ⊥, we define ∆Vk(⊥) = 0 for any k ∈ [K]
and the argument is valid. Now, we assume that for x ∈ {Si}i>h∪ ⊥, we have ∆Qk(x, a) ≥
Qk(x, a)−Q

k
(x, a) for any k, a and ∆Vk(x) ≥ V k(x)− V k(x) for any k. We want to prove that

the argument is also valid for x ∈ Sh.

Qk(x, a)−Q
k
(x, a) ≤ α0

nk
H + I [n > 0] 4bk (x, a) +

nk∑
t=1

αtnk

(
V k[t]−1(x′k[t])− V k[t]−1(x′k[t])

)
(By Lemma A.6)

≤ α0
nk
H + 4bk (x, a) +

nk∑
t=1

αtnk∆Vk[t]−1(x′k[t])

(By the induction argument)

= ∆Qk(x, a) (B.6)

According to the updating rule of upper and lower bound of V function in Alg.1, we have

∆Vk(x) = ∆Qk(x, a
′
k+1) (By Definition B.2, a′k+1 = argmaxa∈Ak+1(x)Qk(x, a)−Q

k
(x, a))

≥ Qk(x, a′k)−Qk(x, a
′
k) (B.7)

= max
a∈Ak(x)

Qk(x, a)−Q
k
(x, a) (B.8)

≥ max
a∈Ak(x)

Qk(x, a)− V k(x) (B.9)
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=

(
max

a∈Ak(x)
Qk(x, a)

)
− V k(x) (B.10)

= V k(x)− V k(x) (B.11)

Therefore the induction argument is also valid for x ∈ Sh.

We next utilize the half-clipping trick to clip bnk (x, a∗(x)) at Ω(∆min
H ) and get a gap-dependent

regret upper bound for our algorithm.

Definition B.4 (Half-Clipped Range Function) ∀k ∈ [K], x ∈ S \ Gk, a ∈ Ak(x), we define
half-clipped range functions by directly clipping bnk−1

(x, a) at Ω(∆min
H ):

∆Q̈k−1(x, a) = α0
nk−1

H + clip
[
4bnk−1

(x, a)
∣∣∆min

4H

]
+

nk−1∑
t=1

αtnk−1
∆V̈k−1(x′k[t]) (B.12)

∆V̈k−1(x) = ∆Q̈k−1(x, ak) where ak = argmaxa∈Ak(x)Qk−1(x, a)−Q
k−1

(x, a) (B.13)

The half-clipped range function defined above only lose at most O(∆min) compared with their
unclipped counterparts ∆Q and ∆V .

Proposition B.5 (lower bound for half-clipped range function) ∀k ∈ [K], x ∈ S, a ∈ A, we
have the following lower bound for half-clipped range function defined in Definition B.4 :

∆Q̈k(x, a) ≥ ∆Qk(x, a)− ∆min

4
(B.14)

∆V̈k(x, a) ≥ ∆Vk(x, a)− ∆min

4
(B.15)

Proof According to Definition B.4, one step expansion will lose at most ∆min
4H because of the clipping

function. Our MDP has horizon H , so any half-clipped range function will lose at most ∆min
4

compared with its corresponding range function.

Recall that in Lemma 4.4, we use the sum of Q-functions’ confidence intervals to upper bound
regret. Now, we will prove that this upper bound is still valid if we replace actual confidence interval
with half-clipped range function.

Lemma B.6 (decompose regret into sum of half-clipped range function) ∀k ∈ [K], condition-
ing on event Ek−1, our algorithm’s regret can be upper bounded by half-clipped range functions.

V ∗0 − V
πk

0

∣∣∣∣Ek−1,Fk−1 ≤ 4E

[
H∑
h=1

∆Q̈k−1(sk,h, ak,h) · I [sk,h /∈ Gk]
∣∣∣∣Ek−1,Fk−1

]
(B.16)
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Proof We use Fk−1 to denote the filtration generated by all the random variables before episode k.
By similar expansion used in the proof of Lemma 4.4, we have

V ∗k,0 − V
πk
k,0

∣∣∣∣Ek−1,Fk−1 (B.17)

≤ 2E

[
H∑
h=1

(
Qk−1(sk,h, ak,h)−Q

k−1
(sk,h, ak,h)

)
· I [ak,h /∈ Zopt(sk,h)]

∣∣∣∣Ek−1,Fk−1

]
(B.18)

≤ 2E

[
H∑
h=1

∆Qk−1(sk,h, ak,h) · I [ak,h /∈ Zopt(sk,h)]

∣∣∣∣Ek−1,Fk−1

]
(B.19)

For the selected sub-optimal action on episode k, it satisfies

∆Qk−1(sk,h, ak,h) ≥ Qk−1(sk,h, ak,h)−Q
k−1

(sk,h, ak,h) ≥
∆(sk,h, ak,h)

2
(By Line (A.31))

According to the previous Proposition B.5 that the half-clipped range function decreases by at most
∆min

4 , when ak,h /∈ Zopt(sk,h), we have

∆Q̈k−1(sk,h, ak,h) ≥ 1

2
∆Qk−1(sk,h, ak,h) (B.20)

Finally, ∀k, h, x, a, we have I [ak,h /∈ Zopt(sk,h)] ≤ I [sk,h /∈ Gk](i.e. our algorithm never recom-
mends a sub-optimal action after it has found the best action). Replacing ∆Qk−1 with ∆Q̈k−1 and
I [sk,h /∈ Gk] with I [ak,h /∈ Zopt(sk,h)] will yield the desired result.

In the following proposition, we incorporate previous clipping trick for suboptimal actions and
unique best action into current range function analysis.

Proposition B.7 (upper bound for range function) Suppose Ek−1 happens. Suppose (x, a) =
(sk,h, ak,h) is a state-action pair visited in the k-th episode where x 6∈ Gk is an undecided state.
Let ∆Q̈past be a shorthand for

∆Q̈past ,
nk−1∑
t=1

αtnk−1
∆Q̈k[t]−1(x′k[t], a

′
k[t]) · I

[
x′k[t] /∈ Gk[t]

]
(B.21)

Then, we have the recursion for the CI length of undecided state:

∆Q̈k−1(x, ak) · I [x /∈ Gk]

≤ α0
nk−1

H + (1 +
1

H
)∆Q̈past +

 clip
[
4bnk−1

(x, a)
∣∣max

(
∆(x,a)

8H , ∆min
4H

) ]
if a /∈ Zhopt(x)

clip
[
4bnk−1

(x, a)
∣∣max

(
∆min(x)

8H , ∆min
4H

) ]
if a ∈ Zopt(x)

(B.22)

Proof We first prove the a /∈ Zopt(x) for (B.22). To use the clipping trick here, we need to prove a
lower bound for ∆Q̈k−1(x, a) like Line (A.31).

∆Q̈k−1(x, a) ≥ 1

2
∆Qk−1(x, a) (By Line (B.20))
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≥ 1

2

(
Qk−1(x, a)−Q

k−1
(x, a)

)
(By Lemma B.3)

≥ ∆(x, a)

4
(By Line (A.31))

Then, we can apply the clipping trick used in Proposition 4.5:

∆Q̈k−1(x, a) = α0
nk−1

H + clip
[
4bnk−1

(x, a)
∣∣∆min

4H

]
+

nk−1∑
t=1

αtnk−1
∆V̈k−1(x′k[t]) (B.23)

≤ α0
nk−1

H + clip
[
4bnk−1

(x, a)
∣∣max

(
∆(x, a)

8H
,
∆min

4H

)]
(B.24)

+

(
1 +

1

H

) nk−1∑
t=1

αtnk−1
∆V̈k[t]−1(x′k[t]) (B.25)

= α0
nk−1

H + clip
[
4bnk−1

(x, a)
∣∣max

(
∆(x, a)

8H
,
∆min

4H

)]
(B.26)

+

(
1 +

1

H

) nk−1∑
t=1

αtnk−1
∆Q̈k[t]−1(x′k[t], a

′
k[t]) · I

[
x′k[t] /∈ Gk[t]

]
(B.27)

where in the last line we can use ∆Q̈k[t]−1(x′k[t], a
′
k[t]) to replace ∆V̈k[t]−1(x′k[t]) because by Defi-

nition B.4 that ∆V̈k−1(x) = ∆Q̈k−1(x, ak) where ak = argmaxa∈Ak(x)Qk−1(x, a)−Q
k−1

(x, a).
Finally, adding an indicator to LHS will produce the desired result.
Proof for the second case a ∈ Zopt(x) of (B.22) is similar to Proposition 4.5. Note ∆min(x) = 0

if |Zopt(x)| > 1

Lemma B.8 (iterated clipping) Conditioning on event E , we can upper bound the regret by a
linear combination of clipped reward defined as:

b̈k (sk,h, ak,h) = clip
[
4bk (sk,h, ak,h)

∣∣max

(
∆(sk,h, ak,h)

8H
,
∆min(sk,h)

8H
· I [|Zopt(sk,h)| = 1] ,

∆min

4H

)]
(B.28)

which is a generalized version of the clipped reward defined in Lemma 4.6 :

K∑
k=1

H∑
h=1

∆Q̈k−1(sk,h, ak,h) · I [sk,h /∈ Gk] ≤ e2H2SA+ e2H
K∑
k=1

H∑
h=1

b̈k−1 (sk,h, ak,h) · I [sk,h /∈ Gk]

(B.29)

Proof The proof idea follows the same as Lemma 4.6.

Now we are ready to bound the regret.
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Restatement of Theorem B.1 (Main Regret Bound)
For fixed K, with probability at least 1 − δ, we have the following regret upper bound for our

algorithm:

RegretK ≤ O

H2SA+

∑
x∈S

∑
a/∈Zopt(x)

H5

∆(x, a)
+
H5|Zmul|

∆min

 log

(
SAK

δ

) (B.30)

Proof First, we transform regret into the summation of clipped reward. Recall E ⊆ Ek−1 and
Pr{E} ≥ 1− δ. With probability at least 1− δ, we have the following relations on regret:

K∑
k=1

(V ∗0 − V
πk

0 )|Ek−1 (B.31)

≤
K∑
k=1

4E

[
H∑
h=1

∆Q̈k−1(sk,h, ak,h) · I [sk,h /∈ Gk]
∣∣∣∣Ek−1

]
(By Lemma B.6)

= 4E

[
K∑
k=1

H∑
h=1

∆Q̈k−1(sk,h, ak,h) · I [sk,h /∈ Gk]
∣∣∣∣E
]

(Transform Ek−1 to E)

≤ 4e2H2SA+ 4e2HE

[
K∑
k=1

H∑
h=1

b̈k−1 (sk,h, ak,h) · I [sk,h /∈ Gk]
∣∣∣∣E
]

(By Lemma B.8)

≤ 4e2H2SA+ 4e2HE

[
K∑
k=1

H∑
h=1

b̈k−1 (sk,h, ak,h)

∣∣∣∣E
]

(B.32)

Next, we use Claim A.13 to upper bound E
[∑K

k=1

∑H
h=1 b̈k−1 (sk,h, ak,h)

∣∣∣∣E].

E

[
K∑
k=1

H∑
h=1

b̈k−1 (sk,h, ak,h)

∣∣∣∣E
]

(B.33)

≤ 128
∑
x∈S

 ∑
a/∈Zopt(x)

H4

∆(x, a)

+
H4I [|Zopt(x)| = 1]

∆min(x)
+
H4 |Zopt(x)| I [|Zopt(x)| > 1]

∆min

 log

(
SAK

δ

)
(By Claim A.13)

≤ O

∑
x∈S

 ∑
a/∈Zopt(x)

H4

∆(x, a)

+
H4|Zopt(x)|I [|Zopt(x)| > 1]

∆min

 log

(
SAK

δ

) (B.34)

≤ O

∑
x∈S

∑
a/∈Zopt(x)

H4

∆(x, a)
+
H4|Zmul|

∆min

 log

(
SAK

δ

) (B.35)

Plugging Line (B.35) into Line (B.32) will produce the wanted result.

By discarding the clipping, we can also get a gap independent expected regret upper bound for
our algorithm. We remark that the dependency on H in our bounds are not tight. We leave it as a
future work to obtain a bound with a tight dependency on H .
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Corollary B.10 (Gap-independent Bound) For general MDPs and fixed K, with probability at
least 1− δ, our algorithm has the following gap independent regret upper bound:

RegretK ≤ O
(
H2SA+

√
H5SAT log(SAK/δ)

)
(B.36)

Proof Starting at Line (B.32), we use another way to upper bound Line (B.33).

E

[
K∑
k=1

H∑
h=1

b̈k (sk,h, ak,h)

∣∣∣∣E
]
≤ E

[
K∑
k=1

H∑
h=1

bk (sk,h, ak,h)

∣∣∣∣E
]

(B.37)

≤ E

 ∑
(x,a)∈S×A

nK(x,a)∑
n=1

√
H3 log(SAKδ )

n

∣∣∣∣E
 (B.38)

≤ S ·A ·

√
H3 log

(
SAK

δ

)
T

S ·A
(B.39)

≤ 2

√
H3 log

(
SAK

δ

)
SAT (B.40)

Plugging Line (B.40) into Line (B.32) will produce the desired result.

Appendix C. New Instance Dependent Lower Bound Regarding Minimal Gap:
Proof of Theorem 5.1

In this section, we prove our new lower bound. We first introduce some necessary definitions.

Definition C.1 (consistent algorithm) We say an algorithm ALG is consistent if for ∀0 < α < 1
and any MDP M , when K approaches infinity, its incurred regret satisfies

lim
K→+∞

RegretK(M,ALG)

Kα
= 0 (C.1)

Definition C.2 Let P and Q be probability measures on the same measurable space (Ω, F ). Rela-
tive entropy is defined as

D(P,Q) = E
[
log

(
dP
dQ

)]
(C.2)

Lemma C.3 (Divergence Decomposition) Let one MDPM has transition probability and reward
distribution {Ps,a,Rs,a} and another MDP M ′ has the same transition probability but different
reward {Ps,a,R′s,a}. We fix an algorithm ALG, and let PM,ALG and PM ′,ALG be the probability
measure over state-action pairs of running algorithm ALG on modelM and M ′. Then, we have the
following equality:

D(PM,ALG,PM ′,ALG) =
∑

(s,a)∈S×A

EM,ALG[nK(s, a)]D
(
Rs,a,R′s,a

)
(C.3)
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Proof [Proof of Lemma C.3] The proof mostly follows that of Lemma 15.1 in Lattimore and
Szepesvári (2020). We use P,R,R′ to denote these distributions’ respective probability density
function and let πk be the policy inducced by ALG. According to our MDP’s procedure, we write
down the expression for distribution PM,ALG’s density function. To make the expression compact,
we concatenate K episodes and use subscript sk,h, ak,h, and rk,h to represent the variables on the
episode k, horizon h.

PM,ALG(s1,1, a1,1, r1,1, ...sK,H , aK,H , rK,H) (C.4)

=
K∏
k=1

P0(sk,1)
H∏
h=1

πk(sk,h, ak,h)Rsk,h,ak,h(rk,h)Psk,h,ak,h(sk,h+1) (C.5)

We can similarly get the expression for PM ′,ALG, using its R′. By canceling out the shared
function, we have the following equality:

log

(
dPM,ALG

dPM ′,ALG

)
=

K∑
k=1

H∑
h=1

log

(
Rsk,h,ak,h(rk,h)

R′sk,h,ak,h(rk,h)

)
(C.6)

D(PM,ALG,PM ′,ALG) = EM,ALG

[
log

(
dPM,ALG

dPM ′,ALG

)]
(By Definition C.2)

= EM,ALG

[
K∑
k=1

H∑
h=1

log

(
Rsk,h,ak,h(rk,h)

R′sk,h,ak,h(rk,h)

)]
(By Line (C.6))

=

K∑
k=1

H∑
h=1

EM,ALG

[
log

(
Rsk,h,ak,h(rk,h)

R′sk,h,ak,h(rk,h)

)]
(C.7)

=
K∑
k=1

H∑
h=1

EM,ALG

[
D(Rsk,h,ak,h ,R

′
sk,h,ak,h

)
]

(C.8)

=
∑

(s,a)∈S×A

EM,ALG

[
K∑
k=1

H∑
h=1

I[(sk,h, ak,h) = (s, a)]D(Rsk,h,ak,h ,R
′
sk,h,ak,h

)

]
(C.9)

=
∑

(s,a)∈S×A

EM,ALG[nK(s, a)]D
(
Rs,a,R′s,a

)
(C.10)

We also need the following inequality.

Lemma C.4 (Bretagnolle–Huber inequality) Let P and Q be probability measures on the same
measurable space (Ω, F ), and let A ∈ F be an arbitrary event, Ac = Ω \ A be its complement.
Then we have the following inequality:

P(A) + Q(Ac) ≥ 1

2
e−D(P,Q) (C.11)
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Claim C.5 For two Bernoulli distribution B(1
2) and B(1

2 + x) with x ≤ 1/4, their relative entropy
satisfies D

(
B(1

2),B(1
2 + x)

)
≤ 8x2

3

Proof

D (B (1/2) ,B (1/2 + x)) =
1

2

(
ln

1/2

(1/2 + x)
+ ln

1/2

(1/2− x)

)
(C.12)

= −1

2
ln 4(1/2 + x)(1/2− x) (C.13)

= −1

2
ln 1− 4x2 (C.14)

≤ −1

2
· −4x2

1− 4x2
( x

1+x < ln 1 + x < x for x > −1)

=
2x2

1− 4x2
(C.15)

≤ 8x2

3
(x ≤ 1

4 )

Now we are ready to show this hard instance gives us the desired lower bound.

Theorem C.6 (Regret Lower Bound for a Hard Instance) For the hard instance described
above Figure 2, any consistent algorithm incurs expected regret at least 3(n−1)A lnK

32γ , larger than
SA lnK
32∆min

in terms of S,A,K,∆min.

Proof [Proof of Theorem C.6] In Figrure 2, we construct our family of hard instance for |Zmul| ≈
SA
2 . For other S ≤ |Zmul| ≤ SA

2 , we can similarly construct their instance family by reducing the
number of state action pairs on the last layer. For any consistent algorithm ALG, any fixed i ∈ [2, n],
we define event Ai,j = {nK(xi, aj) ≥ K

2 }. We use a∗(x) to denote the optimal action for state x.
By Bretagnolle–Huber inequality in Lemma C.4, we have

PM,ALG(Ai,j) + PMi,j ,ALG(Aci,j) ≥
1

2
e
−D(PM,ALG,PMi,j ,ALG) (C.16)

≥ 1

2
e−E[nK(xi,aj)]·D(B(1/2),B(1/2+2γ)) (C.17)

≥ 1

2
e−E[nK(xi,aj)]· 32γ

2

3 (C.18)

By our assumption that ALG is consistent, we have the following inequality

RegretK(M,ALG) + RegretK(Mi,j ,ALG) ≥ PM,ALG(Ai,j) ·
K

2
· γ + PMi,j ,ALG(Aci,j) ·

K

2
· γ

(C.19)

=
Kγ

2

(
PM,ALG(Ai,j) + PMi,j ,ALG(Aci,j)

)
(C.20)

≥ Kγ

4
e−EM,ALG[nK(xi,aj)]· 32γ

2

3 (C.21)
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In line C.19, visiting (xi, aj) in M incurs regret γ and not visiting (xi, aj) in Mi,j incurs regret
γ, so the two terms on the RHS lower bounds the cumulative regret in M and Mi,j . Now, let’s
lower bound the value EM,ALG [nK(xi, aj)] starting from an algebraic manipulations on line C.21
and then divide it by lnK.

lim inf
K→+∞

EM,ALG [nK(xi, aj)]

lnK
≥ lim inf

K→+∞

3

32γ2 lnK
ln

Kγ

4 (RegretK(M,ALG) + Regretk(Mi,j ,ALG))

(C.22)

≥ 3

32γ2
lim inf
K→+∞

ln Kγ
4Kα

lnK
(Valid for any 0 < α < 1)

≥ 3

32γ2
lim inf
K→+∞

(1− α) lnK + ln γ
4

lnK
(C.23)

≥ 3(1− α)

32γ2
(C.24)

≥ 3

32γ2
(C.25)

Line C.25 is valid because we can arbitrarily set 0 < α < 1. Moreover, Line C.25 works for any
i ∈ [2, n], j ∈ [1, A]. Then we have the lower bound for algorithm ALG’s regret on MDP M .

E [RegretK(M,ALG)] ≥
n∑
i=2

A∑
j=1

EM,ALG [nK(xi, aj)] · γ (C.26)

≥
n∑
i=2

A∑
j=1

3 lnK

32γ2
· γ (C.27)

=
3(n− 1)A lnK

32γ
(C.28)

≥ SA lnK

32∆min
(C.29)

Note Theorem 5.1 follows from Theorem C.6 directly because the instance in Theorem C.6
satisfies the requirements in Theorem 5.1.
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