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Abstract
1Episodic reinforcement learning and contextual bandits are two widely studied sequential decision-
making problems. Episodic reinforcement learning generalizes contextual bandits and is often per-
ceived to be more difficult due to long planning horizon and unknown state-dependent transitions.
The current paper shows that the long planning horizon and the unknown state-dependent transi-
tions (at most) pose little additional difficulty on sample complexity.

We consider the episodic reinforcement learning with S states, A actions, planning horizon
H , total reward bounded by 1, and the agent plays for K episodes. We propose a new algorithm,
Monotonic Value Propagation (MVP), which relies on a new Bernstein-type bonus. Compared to
existing bonus constructions, the new bonus is tighter since it is based on a well-designed mono-
tonic value function. In particular, the constants in the bonus should be subtly setting to ensure
optimism and monotonicity.

We show MVP enjoys an O
((√

SAK + S2A
)

poly log (SAHK)
)

regret, approaching the

Ω
(√

SAK
)

lower bound of contextual bandits up to logarithmic terms. Notably, this result 1)
exponentially improves the state-of-the-art polynomial-time algorithms by Dann et al. [2019] and
Zanette et al. [2019] in terms of the dependency on H , and 2) exponentially improves the running
time in [Wang et al. 2020] and significantly improves the dependency on S, A and K in sample
complexity.

1. Introduction

Episodic reinforcement learning (RL) and contextual bandits (CB) are two representative sequential
decision-making problems. RL is a strict generalization of CB and is often perceived to be much
more difficult due to the additional two challenges that are absent in CB: 1) long planning horizon
and 2) unknown state-dependent transitions. These two challenges in RL requires the agent to not
only consider the immediate reward but also the possible transitions into differing states in the long
run. On the other hand, one can view CB as a episodic RL problem with a horizon equal to one.2 In
CB, it is sufficient to act myopically by choosing the action which maximizes the immediate reward.

1. Accepted for presentation at the Conference on Learning Theory (COLT) 2021
2. See Section 2 for the precise correspondence.
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Although RL and CB are widely studied in the literature, somehow surprisingly, the following
fundamental problem remains open:

Does episodic reinforcement learning require more samples than contextual bandits?

Here the sample complexity is measured in terms of regret or the number of episodes to learn a near-
optimal policy. To put it differently, this question asks whether the long planning horizon and/or the
unknown state-dependent transitions pose additional difficulty.

Jiang and Agarwal (2018) conjectured that for tabular, episodic RL problems, under the assump-
tion that the total reward is bounded by 1, 3 there exists an Ω

(
SAH
ε2

)
PAC learning, or analogically,

an Ω
(√

SAHK
)

regret lower bound, where S is the number of states, A is the number of actions,
H is the planning horizon, ε is the target sub-optimality and K is the total number of episodes. In
contrast, it is well know that for CB, one can achieve an Õ

(
SA
ε2

)
PAC learning or an Õ

(√
SAK

)
regret upper bound.4 If this conjecture is true, then there is a formal sample complexity separation
between RL and CB.

However, this conjecture was recently refuted by Wang et al. (2020), who presented a new
method which enjoys an O

(
S5A4poly log(HSA/ε)

ε3

)
PAC learning upper bound, the first bound that

has only a logarithmic dependency on H . This encouraging result gives the hope: episodic rein-
forcement learning is as easy as contextual bandit in terms of the sample complexity. Furthermore,
this claim would convey a conceptual message in a sense that long planning horizon and unknown
state-dependent transitions pose no additional difficulty in sequential decision-making problems.

To formally establish this claim, we need to design an algorithm which enjoys an O
(
SA
ε2

)
PAC learning and an O

(√
SAK

)
regret upper bounds, which match the sample complexity lower

bounds of CB. Ideally, we would also like this algorithm to be computationally efficient. The result
in Wang et al. (2020) is still far from this grand goal, as its dependencies on S, A and ε are subopti-
mal and their algorithm runs in exponential time. See Section 3 for more discussions. Indeed, Wang
et al. (2020) listed two open problems: 1) to develop an algorithm with sample complexity Õ

(
SA
ε2

)
or regret Õ

(√
SAK

)
and 2) to develop a polynomial-time algorithm whose sample complexity

scales logarithmically with H .

1.1. Main Results

In this paper, we take an important step toward this grand goal. We design an upper confidence
bound (UCB)-based algorithm, Monotonic Value Propogation (MVP), which enjoys the following
sample complexity bounds.

Theorem 1 Suppose the reward is non-negative and the total reward at every episode is bounded
by 1. For any K ≥ 1 and δ ∈ (0, 1), we have that with probability 1 − δ, the regret of MVP is
bounded by Regret(K) = O

((√
SAK + S2A

)
poly log (SAHK/δ)

)
.

Using a standard reduction (see Section 2), we can show that we can find an ε-suboptimal policy in
O
((

SA
ε2

+ S2A
ε

)
poly log

(
SAH
εδ

))
episodes.

Our results are significant in the following senses.

3. This assumption is made in order to have a fair comparison with CB. See Section 3 for discussions.
4. Throughout the paper, Õ (·) omits logarithmic factors.
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Algorithm Regret PAC Bound Poly
Time

Non-unif.
Reward Log H

UCBVI-BF
Azar et al. (2017)

Õ
(√

SAK +
√
HK + S2AH

)
Õ
(
SA+H
ε2

+ S2AH
ε

)
Yes No No

UBEV 5

Dann et al. (2017)
Õ
(√

SAH2K + S2AH2
)

Õ
(
SAH2

ε2
+ S2AH2

ε

)
Yes No No

UCB-Q-Bernstein6

Jin et al. (2018)
Õ
(√

SAH2K +
√
S3A3H3

)
Õ
(
SAH2

ε2
+ (SA)3/2H3

ε

)
Yes No No

ORLC
Dann et al. (2019)

Õ
(√

SAK + S2AH2
)

Õ
(
SA
ε2

+ S2AH2

ε

)
Yes No No

EULER
Zanette and Brunskill (2019)

Õ
(√

SAK + S2AH + S3/2AH3/2
)

Õ
(
SA
ε2

+ S2A+S3/2AH3/2

ε

)
Yes Yes No

UCBADV
Zhang et al. (2020a)

Õ
(√

SAHK + S2A3/2H6
)

Õ
(
SAH
ε2

+ S2A3/2H6

ε

)
Yes No No

Trajectory Synthesis
Wang et al. (2020)

- Õ
(
S5A4

ε3

)
No Yes Yes

MVP
This Work

Õ
(√

SAK + S2A
)

Õ
(
SA
ε2

+ S2A
ε

)
Yes Yes Yes

CB Lower Bound Ω
(√

SAK
)

Ω
(
SA
ε2

)
- - -

Table 1: Sample complexity comparisons for state-of-the-art episodic RL algorithms. See Section 3
for discussions on this table. Õ omits logarithmic factors. Regret and PAC Bound are
sample complexity measures defined in Section 2. Non-unif. Reward: Yes means the
bound holds under Assumption 1 (allows non-uniformly bounded reward), and No means
the bound only holds under Assumption 2. Poly Time: Whether the algorithm runs in
polynomial time. Log H: Whether the sample complexity bound depends logarithmically
on H instead of polynomially on H .

1. These bounds match the information theoretical lower bound of CB up to logarithmic factors
in the regime where the number of episodes is moderately large, K = Ω̃

(
S3A

)
or the target

accuracy is moderately small, ε = Õ (1/S). Our result thus significantly closes the gap
between RL and CB.

2. MVP is the first computationally efficient algorithm whose sample complexity scales loga-
rithmically with H , and thus settles the second open problem raised in Wang et al. (2020).
Comparing with the state-of-the-art computationally efficient algorithms for episodic RL, e.g.,
Azar et al. (2017); Zanette and Brunskill (2019); Dann et al. (2019); Jin et al. (2018); Zhang
et al. (2020a), our algorithm enjoys an exponential improvement inH . Comparing with the al-
gorithm in Wang et al. (2020), our algorithm is exponentially faster and achieves significantly
better sample complexity in terms of S,A, ε. See Table 1 for more detailed comparisons.

Our algorithm and its analysis rely on the following new ideas.

5. UBEV and ORLC provide a stronger result called mistake-stype PAC bounds. For more details, we refer readers to
Dann et al. (2019).

6. The model free-algorithms UCB-Q-Bernstein and UCBADV are for the inhomogeneous setting where
P1(·|s, a), P2(·|s, a), ..., PH(·|s, a) are different. This difference necessarily incurs an additional

√
H factor in

the first term and an H factor in the second term in regret. It is still an open problem whether a model-free algorithm
can achieve a regret bound with the leading term scales Õ

(√
SAK

)
.
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1. We design a new exploration bonus based on Bernstein bound to ensure optimism. The key
insight is that constants in the bonus are crucial and helps maintain a monotonic property
which helps propagates the optimism from level H to level 1. This property also leads a
substantially simpler analysis than those in existing approaches.

2. A crucial step in many UCB-based algorithm, including ours, is bounding the sum of vari-
ance of estimated value function across the entire planning horizon. Our technique is to use a
higher order expansion to derive a recursive inequality that relates this sum to its higher mo-
ments. Importantly, this technique does not use any type of induction from H,H − 1, . . . , 1,
which is used in most previous works and is the main technical barrier to obtain the logarith-
mic dependency on H .

See Section 4 and Section 5 for more technical expositions.

2. Preliminaries

Notations. Throughout this paper, we use [N ] to denote the set {1, 2, . . . , N} for N ∈ Z+. We
use 1s to denote the one-hot vector whose only non-zero element is in the s-th coordinate. For an
event E , we use I[E ] to denote the indicator function, i.e., I[E ] = 1 if E holds and I[E ] = 0 other-
wise. For notational convenience, we set ι = ln(2/δ) throughout the paper. For two n-dimensional
vectors x and y, we use xy to denote x>y, use V(x, y) =

∑
i xiy

2
i − (

∑
i xiyi)

2. In particular,
when x is a probability vector, i.e., xi ≥ 0 and

∑
i xi = 1, V(x, y) =

∑
i xi (yi − (

∑
i xiyi))

2 =
minλ∈R

∑
i xi (yi − λ)2. We also use x2 to denote the vector [x21, x

2
2, ..., x

2
n]> for x = [x1, x2, ..., xn]>.

For two vectors x, y, x ≥ y denotes xi ≥ yi for all i ∈ [n] and x ≤ y denotes xi ≤ yi for all i ∈ [n].

Episodic Reinforcement Learning. A finite-horizon stationary Markov Decision Process (MDP)
can be described by a tuple M = (S,A, P,R,H, µ). S is the finite state space with cardinality S.
A is the finite action space with cardinality A. P : S ×A → ∆ (S) is the transition operator which
takes a state-action pair and returns a distribution over states. R : S × A → ∆ (R) is the reward
distribution with a mean function r : S×A → R. H ∈ Z+ is the planning horizon (episode length).
µ ∈ ∆ (S) is the initial state distribution. P , R and µ are unknown.7 For notational convenience,
we use Ps,a and Ps,a,s′ to denote P (·|s, a) and P (s′|s, a) respectively.

A policy π chooses an action a based on the current state s ∈ S and the time step h ∈ [H].
Note even though transition operator and the reward distribution are stationary, i.e., they do not
depend on the level h ∈ [H], the policy can be non-stationary, i.e., at different level h, the policy
can choose different actions for the same state. Formally, we define π = {πh}Hh=1 where for
each h ∈ [H], πh : S → A maps a given state to an action. The policy π induces a (random)
trajectory {s1, a1, r1, s2, a2, r2, . . . , sH , aH , rH}, where s1 ∼ µ, a1 = π1(s1), r1 ∼ R(s1, a1),
s2 ∼ P (·|s1, a1), a2 = π2(s2), etc.

Our target is to find a policy π that maximizes the expected total reward, i.e. maxπ E
[∑H

h=1 rh | π
]

where the expectation is over the initial distribution state µ, the transition operator P and the reward
distribution R. As for scaling, we make the following assumption about the reward. As we will

7. Some previous works consider the non-stationary MDP where P and R can vary on different h ∈ [H] (Jin et al.,
2018; Zhang et al., 2020a). Non-stationarity will incur an

√
H factor in the regret, which is necessary. Transforming

a regret bound for stationary MDP to that for non-stationary MDP is often straightforward (with an additional
√
H

factor), but not vice-versa, because the main difficulty is how to effectively exploit the stationarity.
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discuss in Section 3, this is a more general assumption than the assumption often made in most
previous works.

Assumption 1 (Bounded Total Reward) The reward satisfies that rh ≥ 0 for all h ∈ [H]. Be-
sides, for all policy π,

∑H
h=1 rh ≤ 1 almost surely.

Given a policy π, a level h ∈ [H] and a state-action pair (s, a) ∈ S × A, the Q-function is defined
as: Qπh(s, a) = E

[∑H
h′=h rh′ | sh = s, ah = a, π

]
. Similarly, given a policy π, a level h ∈ [H],

the value function of a given state s ∈ S is defined as: V π
h (s) = E

[∑H
h′=h rh′ | sh = s, π

]
.

Then Bellman equation establishes the following identities for policy π and (s, a, h) ∈ S × A ×
[H]: Qπh(s, a) = r(s, a) + P>s,aV

π
h+1 and V π

h (s) = maxaQ
π
h(s, a). Throughout the paper, we

let VH+1(s) = 0 and QH+1(s, a) = 0 for notational simplicity. We use Q∗h and V ∗h to denote
the optimal Q-function and V -function at level h ∈ [H], which satisfies for any state-action pair
(s, a) ∈ S ×A, Q∗h(s, a) = maxπ Q

π
h(s, a) and V ∗h (s) = maxπ V

π
h (s).

When H = 1, the episodic RL reduces to the problem of finding a policy π : S → A that max-
imizes the expected reward maxπ Es∼µ(·),rCB∼R(s,π(s)) [rCB] . This is called the contextual bandit
(CB) problem. RL is more difficult than CB as we also need to deal with the long planning horizon
H and transition operator P , which are absent in CB. In this paper, we investigate whether the these
two ingredients incur additional hardness in terms of the sample complexity.

Sample Complexity. In this paper we use two measures to quantify sample complexity. The agent
interacts with the environment for K episodes, and it chooses a policy πk at the k-th episode. The
total regret is

Regret(K) =

K∑
k=1

V ∗1 (sk1)− V πk

1 (sk1).

PAC-RL sample complexity is another measure which counts the number of episodes to find an
ε-optimal policy π, i.e.,

Es1∼µ [V ∗1 (s1)− V π(s1)] ≤ ε.

As pointed out in Jin et al. (2018), suppose that one has an algorithm that achieves CK1−α regret
for some α ∈ (0, 1) and some C independent of T , by randomly selecting from policy πk used inK
episodes, π satisfies Es1∼µ [V ∗1 (s1)− V π(s1)] = O (CK−α). This reduction is often near-optimal
to obtain PAC-RL sample complexity guarantee. On the other hand, there is no general near-optimal
reduction that transform a PAC-RL bound to a regret bound.

3. Background and Related Work

We mostly focus on papers that are for the episodic RL setting described in Section 2. A summary
of the most relevant previous regret and PAC bounds, together with the results proved in this paper
is provided in Table 1. We remark that there are also related settings, e.g., infinite-horizon dis-
counted MDP, weakly-communicating MDP, learning with a generative model, etc. These settings
are beyond the scope of this paper , though our techniques may be also applied to these settings.

5



Reward Assumption. In episodic tabular RL, the sample complexity depend on |S|, |A| and H ,
all of which are assumed to be finite. For the reward, the widely adopted assumption is rh ∈ [0, 1]
for all h ∈ [H], which implies the total reward

∑H
h=1 rh ∈ [0, H]. To have a fair comparison with

CB and illustrate the hardness due to the planning horizon and/or unknown transition operator, one
should scale down the reward by an H factor such that the total reward is bounded in [0, 1]. 8 This
leads to the following assumption.

Assumption 2 (Uniformly Bounded Reward) rh ∈ [0, 1/H] for all h ∈ [H].

Clearly, Assumption 1 is more general than Assumption 2, so any upper bound under Assump-
tion 1, also implies an upper bound under Assumption 2. From practical point of view, as argued
in Jiang and Agarwal (2018), since environments under Assumption 1 can have one-step reward as
high as a constant, Assumption 1 is more natural in environments with sparse rewards, which are
often considered to be hard. From a theoretical point view, to design provably efficient algorithms
under Assumption 1 is more difficult, as one needs to consider a more global structure. 9 The
sample complexity bounds in this paper hold under the more general Assumption 1.

Previous Sample Complexity Bounds. There is a long list of sample complexity guarantees for
episodic tabular RL (Kearns and Singh, 2002; Brafman and Tennenholtz, 2003; Kakade, 2003;
Strehl et al., 2006; Strehl and Littman, 2008; Kolter and Ng, 2009; Bartlett and Tewari, 2009; Jaksch
et al., 2010; Szita and Szepesvári, 2010; Lattimore and Hutter, 2012; Osband et al., 2013; Dann
and Brunskill, 2015; Azar et al., 2017; Dann et al., 2017; Osband and Van Roy, 2017; Agrawal
and Jia, 2017; Jin et al., 2018; Fruit et al., 2018; Talebi and Maillard, 2018; Dann et al., 2019;
Dong et al., 2019; Simchowitz and Jamieson, 2019; Russo, 2019; Zhang and Ji, 2019; Cai et al.,
2019; Zhang et al., 2020a; Yang et al., 2020; Pacchiano et al., 2020; Neu and Pike-Burke, 2020).
There are two popular types of algorithms, model-based algorithms and model-free algorithms. In
episodic RL, model-based algorithms’ space complexity scales quadratically with S and model-
free algorithms and model-free algorithms’ space complexity linearly with S. Both types of algo-
rithms often rely on using UCB to ensure optimism and guide exploration. Under Assumption 2,
both the state-of-the-art model-based and model-free algorithms achieve regret bounds of the form
Õ
(√

SAK + poly (SAH)
)

. Recently, Zanette and Brunskill (2019) proposed a model-based al-
gorithm which achieves the regret of the same form under Assumption 1. The first term in these
bounds matches the lower bound, Ω

(√
SAK

)
up to logarithmic factors (Bubeck and Cesa-Bianchi,

2012; Dann and Brunskill, 2015; Osband and Roy, 2016). See Table 1 for specific bounds in these
works and other related ones.

These bounds become non-trivial (regret bound sub-linear in K or PAC bound smaller than 1)
only when K � H or ε � 1

H . However, as explained in Jiang and Agarwal (2018), in many
scenarios with a long planning horizon such as control, this regime is not interesting, and the more
interesting regime is when K � H or ε� 1/H .

The recent work by Wang et al. (2020) bypassed this barrier via a completely different approach
and obtained an Õ

(
S5A4

ε3

)
PAC-RL sample complexity bound, which is the first bound that scales

8. When comparing with existing algorithms, we also scale down their bounds by an H factor.
9. Under Assumption 1, the reward still satisfies rh ∈ [0, 1], so if an algorithms enjoys an sample complexity bound

under Assumption 2, scaling up this bound by an H factor for regret or H2 for PAC bound, one can obtain a bound
under Assumption 1. However, this reduction is suboptimal in terms of H , so we display their original results and
add a column indicating whether the bound is under Assumption 1 or Assumption 2.

6



logarithmically with H . They built an ε-net over for optimal policies and designed a simulator to
evaluate all policies within the ε-net. However, their algorithm runs in exponential time and its
sample complexity’s dependencies on S, A, ε are far from optimal. Furthermore, their work does
not rule out the possibility that long planning horizon and/or unknown state-dependent transitions
force the agent acquire more samples than CB in terms of S and A to learn a near-optimal policy.

In this work, we follow the conventional UCB-based approach. Our algorithm is computation-
ally efficient and achieves Õ

(√
SAK + S2A

)
regret and Õ

(
SA
ε2

+ S2A
ε

)
PAC-RL bound, which

outperform all existing sample complexity bounds, including the additive terms. See Table 1 for
more detail.

4. Main Algorithm

In the section, we introduce the Monotonic Value Prorogation (MVP) algorithm. The pseudo code
is listed in Algorithm 1. The algorithm adopts the doubling update framework proposed in Jaksch
et al. (2010). More precisely, we define a trigger set L = {2i−1|2i−1 ≤ KH, i = 1, 2, . . .}. The
algorithm proceeds through epochs where each epoch ends whenever there exists a state-action pair
(s, a) such that the number of visits of (s, a) falls into L. In each epoch, we use the same policy
induced by the current estimation of Q-function (cf. Line 9).

We update the empirical reward and transition probability of a state-action pair (s, a) only when
the number of visits of (s, a) falls into L. (cf. Line 14). For the transition probability, we use the
standard maximum likelihood estimation. For the reward function, we only use the data collected
in the current epoch to calculate the empirical reward. This will simplify the analysis and save a log
factor. See Lemma 15 and its proof for more detail.

If in an episode, we update the reward and the transition probability of state-action pair, we will
also update theQ-function estimation at the end of this episode. We define the bonus in Equation (1)
and our optimistic estimator of Q-function in Equation (2). Note our bonus function only contains
three terms. The first term and the third term correspond to the upper confidence bound of transition
and the second term corresponds to the upper confidence bound of the reward. The main novelty
is that by setting appropriate c1, c2, c3, the optimism can propagate from level H to level 1 without
adding additional terms. We emphasize all previous results that can achieveO

(√
SAK

)
as the first

term in the regret bound (cf. Table 1) require more sophisticated bonus constructions. See Section 5
for more technical explanations.

5. Technique Overview

An optimistic algorithm needs to guarantee that (with high probability) the estimated Q-function
is always an upper bound of the optimal Q-function, i.e., Qh(s, a) ≥ Q∗h(s, a) for all (s, a, h) ∈
S ×A××[H]. Note this also implies Vh(s) ≥ V ∗h (s). 10 model-based algorithms, including ours,
use the following estimator for the Q-function

Qh(s, a) = r̂(s, a) + P̂s,aVh+1 + bh(s, a) (3)

where bh is the bonus to guarantee Qh is an upper bound of Q∗. The main difference among algo-
rithms is the choice of bh. In the following, we first review existing approaches in constructing bh

10. In this section, we drop the dependency on k for the ease of presentation.
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Algorithm 1 Monotonic Value Propagation (MVP)

1: Input: Trigger set L ← {2i−1|2i ≤ KH, i = 1, 2, . . .}. c1 = 460
9 , c2 = 2

√
2, c3 = 544

9 .
2: for (s, a, s′, h) ∈ S ×A× S × [H] do
3: N(s, a)← 0; θ(s, a)← 0; n(s, a)← 0;
4: N(s, a, s′)← 0; P̂s,a,s′ ← 0, Qh(s, a)← 1; Vh(s)← 1.
5: end for
6: for k = 1, 2, ... do
7: for h = 1, 2, ...,H do
8: Observe skh;
9: Take action akh = arg maxaQh(skh, a);

10: Receive reward rkh and observe skh+1.
11: Set (s, a, s′, r)← (skh, a

k
h, s

k
h+1, r

k
h);.

12: Set N(s, a)← N(s, a) + 1, θ(s, a)← θ(s, a) + r, N(s, a, s′)← N(s, a, s′) + 1.
13: \\ Update empirical reward and transition probability
14: if N(s, a) ∈ L then
15: Set r̂(s, a)← I [N(s, a) ≥ 2] 2θ(s,a)

N(s,a) + I [N(s, a) = 1] θ(s, a) and θ(s, a)← 0.

16: Set P̂s,a,s̃ ← N(s, a, s̃)/N(s, a) for all s̃ ∈ S.
17: Set n(s, a)← N(s, a);
18: Set TRIGGERED = TRUE.
19: end if
20: end for
21: \\ Update Q-function
22: if TRIGGERED then
23: for h = H,H − 1, ..., 1 do
24: for (s, a) ∈ S ×A do
25: Set

bh(s, a)← c1

√
V(P̂s,a, Vh+1)ι

max{n(s, a), 1}
+ c2

√
r̂(s, a)ι

max{n(s, a), 1}
+ c3

ι

max{n(s, a), 1}
,

(1)

Qh(s, a)← min{r̂(s, a) + P̂s,aVh+1 + bh(s, a), 1}, (2)

Vh(s)← max
a

Qh(s, a).

26: end for
27: end for
28: Set TRIGGERED = FALSE
29: end if
30: end for

and why they failed to obtain the logarithmic dependency onH . Then we introduce our construction
of bh and the corresponding analysis to overcome the barrier.

Main Difficulty. Fix a level h. Suppose the estimator for level h + 1 satisfies Qh+1 ≥ Q∗h+1,
and this implies Vh+1 ≥ V ∗h+1. Many previous optimistic algorithms use the following induction
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strategy to construct the bonus for level h:

Qh(s, a) =r̂(s, a) + P̂s,aVh+1 + bh(s, a)

≥ r̂(s, a) + P̂s,aV
∗
h+1 + bh(s, a) (4)

= Q∗h(s, a) + (P̂s,a − Ps,a)V ∗h+1 + (r̂(s, a)− r(s, a)) + bh(s, a), (5)

where the inequality (4) follows from the induction hypothesis Vh+1 ≥ V ∗h+1 and the last equality
follows from Bellman equation. To ensure optimism, existing works design bh(s, a) to be an upper
bound of (P̂s,a − Ps,a)V ∗h+1 + (r̂(s, a)− r(s, a)) using concentration inequalities.

The tricky part is in bounding
(
P̂s,a − Ps,a

)
V ∗h+1. As discussed in Azar et al. (2017), since one

does not know V ∗h+1, one has to replace V ∗h+1 by its estimation Vh+1 and introduce additional terms
in bh(s, a) to ensure optimism. This approach has been used in all previous approaches whose regret
bounds’ first term is Õ

(√
SAK

)
(Azar et al., 2017; Dann et al., 2019; Zanette and Brunskill, 2019;

Zhang et al., 2020a).
Unfortunately, the regret induced by the additional terms lead to (at least) a linear dependency

on H because in the analyses, one needs to make ‖Vh+1− V ∗h+1‖ = O
(
ε
H

)
so that the final error is

O (ε) (via e.g., performance difference lemma (Kakade, 2003)). To make ‖Vh+1−V ∗h+1‖ = O
(
ε
H

)
,

the sample complexity needs to scale at least linearly with H .

Technique 1: Monotonic Value Propagation. In this work, we do not go through inequality (4)
in constructing the bonus. Our main strategy is to view Qh as a function of the variable Vh+1 (cf.
Equation (3)), which we denote asQh(Vh+1) and we design bh such that the functionQh(·) satisfies
two principles:11

• Optimism: Qh(V ∗h+1) ≥ Q∗h;

• Monotonicity: For two variables Vh+1 and V ′h+1 with Vh+1 ≥ V ′h+1,Qh(Vh+1) ≥ Qh(V ′h+1).

If our estimation on Q function satisfies these two properties, under the induction hypothesis that
Vh+1 ≥ V ∗h+1, we have

Qh(Vh+1) ≥ Qh(V ∗h+1) ≥ Q∗h.

While the first principle, optimism, is adopted in most previous algorithms, the second monotonicity
principle is new in the literature and we believe this idea can be useful in algorithm design for other
RL problems.

Now we instantiate this idea. Recall our estimator defined in Equation (1)-(2)

Qh(s, a) , min

r̂(s, a) + P̂s,aVh+1 + c1

√
V(P̂s,a, Vh+1)ι

max{n(s, a), 1}
+ c2

√
r̂(s, a)ι

max{n(s, a), 1}
+ c3

ι

max{n(s, a), 1}
, 1

 .

The optimism principle can be easily implemented using empirical Bernstein inequality (see Lemma
12). For the monotonicity principle, we will carefully tune the constants c1, c2, c3. See Lemma 4
for more details. 12

11. bh can depend on Vh+1 as well.
12. As will be clear in our proof, our actual estimator of Q-function satisfies that Qh ≥ Fh for some function Fh, and

Fh satisfies the two principles mentioned above. We do not discuss this subtlety in detail for the ease of presentation.
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Technique 2: Bounding the Total Variance via Recursion Using a sequence of fairly standard

steps in the literature, we can bound the regret by the square-root of the total variance
√∑H

h=1V(Psh,ah , V
k
h+1)

along with some other lower order terms. To explain our high-level idea, we present analysis for the
total variance in a single episode with estimated value function replaced by the true value function,
i.e.,
∑H

h=1V(Psh,ah , V
∗
h+1)

H∑
h=1

V(Psh,ah , V
∗
h+1) =

H∑
h=1

(
Psh,ah(V ∗h+1)

2 − (Psh,ahV
∗
h+1)

2
)

=
H∑
h=1

(
Psh,ah(V ∗h+1)

2 − (V ∗h+1(sh+1))
2
)

+
H∑
h=1

(
(V ∗h (sh))2 − (Psh,ahV

∗
h+1)

2
)
− (V ∗1 (s1))

2

≤
H∑
h=1

(
Psh,ah(V ∗h+1)

2 − (V ∗h+1(sh+1))
2
)

+ 2

H∑
h=1

(V ∗h (sh)−Q∗h(sh, ah)) + 2

H∑
h=1

r(sh, ah)

≤
H∑
h=1

(
Psh,ah(V ∗h+1)

2 − (V ∗h+1(sh+1))
2
)

+ 2
H∑
h=1

(V ∗h (sh)−Q∗h(sh, ah)) + 2 (6)

≤ Õ


√√√√ H∑

h=1

V(Psh,ah , (V
∗
h+1)

2) +
H∑
h=1

(V ∗h (sh)−Q∗h(sh, ah))

 . (7)

where the first inequality we dropped V ∗1 (s1), the second inequality we used the total reward is
bounded by 1 and the last step holds with high probability due to a simple corollary of Freedman’s
inequality (Freedman, 1975) (see Lemma 13).

We can roughly view the second term in (7) as the regret in this episode. Therefore, Inequal-
ity (7) shows the total variance can be bounded by the square-root of the total variance of the second
moment and the regret. We then apply this argument recursively, i.e., m ≥ 1, 2, . . ., we can bound
the total variance of the 2m-th moment

∑H
h=1V(Ps,a, (V

∗
h+1)

2m) by
∑H

h=1V(Ps,a, (V
∗
h+1)

2m+1
)

and the regret. Also note that
∑H

h=1V(Ps,a, (V
∗
h+1)

2m) is bounded by H almost surely for any m.
Based on the basic lemma below, we can obtain a poly logH bound for

∑H
h=1V(Psh,ah , V

∗
h+1).

Lemma 2 Let λ1, λ2, λ4 ≥ 0, λ3 ≥ 1 and i′ = log2(λ1). Let a1, a2, ..., ai′ be non-negative reals
such that ai ≤ λ1 and ai ≤ λ2

√
ai+1 + 2i+1λ3 + λ4 for any 1 ≤ i ≤ i′. Then we have that

a1 ≤ max{(λ2 +
√
λ22 + λ4)

2, λ2
√

8λ3 + λ4} .

6. Proof Sketch of Theorem 1

In this section, we present the proof sketch of Theorem 1. We first introduce a few notations: we
use Qkh(s, a), V k

h (s) and P̂ ks,a to denote the values of Qh(s, a), Vh(s) and P̂s,a in the beginning of
the k-th episode. Let nk(s, a), bkh(s, a) and r̂kh(s, a) denote the value of max{n(s, a), 1}, bh(s, a)
and r̂(s, a) in (1) used for computingQkh(s, a).Lastly, we define V k

h = [V k
h (s)]Ts∈S for convenience.
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6.1. Proof of Optimism

We define E1 to be the event where

∣∣∣(P̂ ks,a − Ps,a)V ∗h+1

∣∣∣ ≤ 2

√
V(P̂ ks,a, V

∗
h+1)ι

nk(s, a)
+

14ι

3nk(s, a)
(8)

holds for all (s, a, h, k) ∈ S ×A× [H]× [K]. We also define E2 be the event where

∣∣∣r̂kh(s, a)− r(s, a)
∣∣∣ ≤ 2

√
2r̂kh(s, a)ι

nk(s, a)
+

28ι

3nk(s, a)
(9)

holds for any possible (s, a, h, k) ∈ S ×A× [H]× [K].
The following lemma shows E1 and E2 hold with high probability. The analysis will be done

assuming the successful event E1 ∩ E2 holds in the rest of this section.

Lemma 3 P [E1 ∩ E2] ≥ 1− 2SA(log2KH + 1)δ.

By our exploration bonus, the Q-function is always optimistic with high probability.

Lemma 4 Conditioned on E1 ∩ E2, Qkh(s, a) ≥ Q∗h(s, a) for all (s, a, h, k) ∈ S ×A× [H]× [K]

6.2. Bounding the Bellman Error

When the Q-function is optimistic, the major term in the regret of the induced policy is the sum of
the Bellman error (see Lemma 7). So we start with a simple bound for the Bellman error induced
by the Q-function.

Lemma 5 With probability 1 − 3S2AH(log2(KH) + 1)δ, for any 1 ≤ k ≤ K, 1 ≤ h ≤ H and
(s, a), it holds that

Qkh(s, a)− r(s, a)− Ps,aV k
h+1

≤ min{2bkh(s, a) + c4

√
V(Ps,a, V ∗h+1)ι

nk(s, a)
+ c5

√
SV(Ps,a, V k

h+1 − V ∗h+1)ι

nk(s, a)
+ c6

Sι

nk(s, a)
, 1} (10)

for some large enough universal constants c4, c5 and c6.

In the rest of this section, we let βkh(s, a) be a shorthand of RHS of (10), i.e.,

βkh(s, a) := max{2bkh(s, a) + c4

√
V(Ps,a, V ∗h+1)ι

nk(s, a)
+ c5

√
SV(Ps,a, V k

h+1 − V ∗h+1)ι

nk(s, a)
+ c6

Sι

nk(s, a)
, 1}.

(11)

We further define Q̃kh(s, a) := Qkh(s, a)−Q∗h(s, a), Ṽ k
h (s) = V k

h (s)−V ∗h (s) and Ṽ k
h = [Ṽ k

h (s)]>s∈S ,
so by Lemma 5 and Bellman equationQ∗h(s, a) = r(s, a)+Ps,aV

∗
h+1, we have that with probability

1− 3S2AH(log2(KH) + 1)δ, for all (s, a, h, k) ∈ S ×A× [H]× [K]:

Ṽ k
h (skh)− Pskh,akh Ṽ

k
h+1 ≤ Q̃kh(skh, a

k
h)− Pskh,akh Ṽ

k
h+1 ≤ βkh(s, a). (12)

11



6.3. Regret Analysis

Let K be the set of indexes of episodes in which no update is triggered. By the update rule, it is
obvious that |KC | ≤ SA(log2(KH) + 1). Let h0(k) be is the first time an update is triggered in the
k-th episode if there is an update in this episode and otherwiseH+1. Define X0 = {(k, h0(k))|k ∈
KC} and X = {(k, h)|k ∈ KC , h0(k) + 1 ≤ h ≤ H}.

Then we define V̌ k
h (skh, a

k
h) = I [(k, h) /∈ X ]·V k

h (skh, a
k
h). We also set β̌kh(skh, a

k
h) = I [(k, h) /∈ X ]·

βkh(skh, a
k
h) and řkh = I [(k, h) /∈ X ] · r(skh, akh). By Lemma 5, we have that with probability

1− 3S2AH(log2(KH) + 1)δ ,

V̌ k
h (skh, a

k
h) ≤ řkh + β̌kh(skh, a

k
h) + Ps,aV̌

k
h+1, (13)

for any (h, k) /∈ X0 and

V̌ k
h (skh, a

k
h) ≤ řkh + β̌kh(skh, a

k
h) + Ps,aV̌

k
h+1 + 1, (14)

for any (h, k) ∈ X0.

Remark 6 It is hard to analyze the regret in the episodes not in K directly since I[k ∈ K] is not
measurable in Fk1 . Instead, we introduce X and analyze the regret in the steps not in X because
I[(k, h) /∈ X ] is measurable in Fkh .

By Lemma 4 and 5, we have that

Lemma 7 With probability at least 1− 5S2AH(log2(KH) + 1)δ,

Regret(K) :=
K∑
k=1

(
V ∗1 (sk1)− V πk

1 (sk1)
)

≤
K∑
k=1

H∑
h=1

(Pskh,a
k
h
− 1skh+1

)V̌ k
h+1 +

K∑
k=1

H∑
h=1

β̌kh(skh, a
k
h) +

K∑
k=1

(

H∑
h=1

řkh − V πk

1 (sk1)) + |KC |.

(15)

Define M1 =
∑K

k=1

∑H
h=1(Pskh,a

k
h
− 1skh+1

)V̌ k
h+1, M2 =

∑K
k=1

∑H
h=1 β̌

k
h(skh, a

k
h) and M3 =∑K

k=1(
∑H

h=1 ř
k
h − V πk

1 (sk1)). We will bound these three terms separately by the lemmas below.

Lemma 8

P

|M1| > 2

√√√√2
K∑
k=1

H∑
h=1

V(Pskh,a
k
h
, V̌ k

h+1)ι+ 6ι

 ≤ 2(log2(KH) + 1)δ. (16)

Lemma 9 Define imax = max{i|2i−1 ≤ KH} = blog2(KH)c + 1. With probability 1 −(
6S2AH(log2(KH) + 1) + 6(log2(KH) + 1) log2(H)

)
δ,

M2 ≤ O
(√

SAKimaxι+

√
S2Aimax

√
M2ι3/2 +

√
SAimaxKι+ S2Aι log2(KH)

)
≤ O

(√
SAKimaxι+ S2Aι log2(KH)

)
. (17)

Lemma 10

P
[
|M3| > 8

√
Kι+ 6ι

]
≤ 2(log2(KH) + 2)δ. (18)
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Putting All Together By Lemma 7, 8, 9 and 10, we conclude that, with probability 1−
(
10S2AH(log2(KH)+

2) + 6(log2(KH) + 1) log2(KH) + 1
)
δ

Regret(K) ≤M1 +M2 +M3 + |KC |

≤ O
(√

SAKimaxι+ S2Aι log2(KH) +
√
Kι+ SA(log2(KH) + 1)

)
= O

(√
SAK log2(KH)ι+ S2Aι log2(KH)

)
.

We finish the proof by rescaling δ.

7. Conclusion

In this paper, we gave the first computationally efficient algorithm for tabular, episodic RL whose
sample complexity scales logarithmically with H . Furthermore, this algorithm matches the lower
bound of a simpler problem, contextual bandits, up to logarithmic factors and an additive S2A term.
One important open problem is how to get rid of the additive S2A term (also see discussions in
Wang et al. (2020)). We remark that in the generative model setting, the optimal sample complexity
does not have any additive term (Agarwal et al., 2019; Li et al., 2020).
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Appendix A. Technical Lemmas

Lemma 11 (Bennet’s Inequality) Let Z,Z1, ..., Zn be i.i.d. random variables with values in [0, 1]
and let δ > 0. Define VZ = E

[
(Z − EZ)2

]
. Then we have

P

[∣∣∣∣∣E [Z]− 1

n

n∑
i=1

Zi

∣∣∣∣∣ >
√

2VZ ln(2/δ)

n
+

ln(2/δ)

n

]
] ≤ δ.

Lemma 12 (Theorem 4 in Maurer and Pontil (2009) ) Let Z,Z1, ..., Zn (n ≥ 2) be i.i.d. ran-
dom variables with values in [0, 1] and let δ > 0. Define Z̄ = 1

n

∑n
i=1 Zi and V̂n = 1

n

∑n
i=1(Zi −

Z̄)2. Then we have

P

∣∣∣∣∣E [Z]− 1

n

n∑
i=1

Zi

∣∣∣∣∣ >
√

2V̂n ln(2/δ)

n− 1
+

7 ln(2/δ)

3(n− 1)

 ≤ δ.
Lemma 13 (Lemma 10 in Zhang et al. (2020b)) Let (Mn)n≥0 be a martingale such thatM0 = 0
and |Mn−Mn−1| ≤ c for some c > 0 and any n ≥ 1. Let Varn =

∑n
k=1 E

[
(Mk −Mk−1)

2|Fk−1
]

for n ≥ 0, where Fk = σ(M1, ...,Mk). Then for any positive integer n, and any ε, δ > 0, we have
that

P
[
|Mn| ≥ 2

√
2
√

Varn ln(1/δ) + 2
√
ε ln(1/δ) + 2c ln(1/δ)

]
≤ 2(log2(

nc2

ε
) + 1)δ.

Lemma 2 [Restatement] Let λ1, λ2, λ4 ≥ 0, λ3 ≥ 1 and i′ = log2(λ1). Let a1, a2, ..., ai′ be
non-negative reals such that ai ≤ λ1 and ai ≤ λ2

√
ai+1 + 2i+1λ3 + λ4 for any 1 ≤ i ≤ i′. Then

we have that a1 ≤ max{(λ2 +
√
λ22 + λ4)

2, λ2
√

8λ3 + λ4} .
Proof Let i0 be the least integer such that 2iλ3 > λ1 and i1 = max{i|i ≤ i0, ai > 2iλ3} ∪ {0}.
Because λ3 ≥ 1, i0 ≤ i′. If i1 ≤ 1, then we have a2 ≤ 4λ3. Otherwise, by definition, we have

2i1λ3 < ai1 ≤ λ2
√
ai+1 + 2i+1λ3 + λ4 ≤ λ22

i1+2
2

√
λ3 + λ4,

which implies that (
√

2i1λ3)
2 < 2λ2

√
2i1λ3 + λ4, and thus

2i1λ3 < ai1 < ā := (λ2 +
√
λ22 + λ4)

2.

For 1 ≤ i < i1, we have that

ai < λ2
√
ai+1 + ā+ λ4.

Because ai1 < ā, we have ai1−1 < λ2
√

2ā + λ4 ≤ ā. By induction, we have that a2 < ā .
Therefore, a2 ≤ max{ā, 4λ3} and a1 ≤ max{ā, λ2

√
8λ3 + λ4}. The proof is completed.
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Appendix B. Missing Proofs in Section 6.1

B.1. Proof of Lemma 3

Proof Next, we will show that E1 and E2 hold with high probability. For each (s, a), when
nk(s, a) = 1 or 2, (8) and (9) hold trivially. For nk(s, a) = 2i with i ≥ 2, by Lemma 12, we
have that

P

|(P̂ ks,a − Ps,a)V ∗h+1| > 2

√
V(P̂ ks,a, V

∗
h+1)ι

nk(s, a)
+

14ι

3nk(s, a)


≤ P

|(P̂ ks,a − Ps,a)V ∗h+1| >

√
2V(P̂ ks,a, V

∗
h+1)ι

nk(s, a)− 1
+

7ι

3nk(s, a)− 1


≤ δ (19)

and

P

|r̂kh(s, a)− r(s, a)| > 2

√
2r̂kh(s, a)ι

nk(s, a)
+

28ι

3nk(s, a)


≤ P

|r̂kh(s, a)− r(s, a)| > 2

√
V̂ar

k
h(s, a)ι

nk(s, a)− 1
+

14ι

3(nk(s, a)− 1)


≤ δ, (20)

where V̂ar
k
h(s, a) ≤ r̂kh(s, a)13 is the empirical variance of R(s, a) computed by the nk(s, a) sam-

ples. Via a union bound over all (s, a) and i, we obtain that P [E1 ∩ E2] ≥ 1−2SA(log2KH+1)δ.
The proof is completed.

B.2. Proof of Lemma 4

Proof The proof of the two principles, optimism and monotonicity rely on exploiting the properties
of the following f defined in the following lemma.

Lemma 14 Let f : ∆S × RS × R × R → R with f(p, v, n, ι) = pv + max

{
c̄1

√
V(p,v)ι
n , c̄2

ι
n

}
with c̄1 = 20

3 and c̄2 = 400
9 . Then f satisfies

1. f(p, v, n, ι) is non-decreasing in v(s) for all p ∈ ∆S ,‖v‖∞ ≤ 1 and n, ι > 0;

2. f(p, v, n, ι) ≥ pv + 2

√
V(p,v)ι
n + 14ι

3n for all p, v and n, ι > 0.

13. E
[
(Z − E[Z])2

]
≤ E [Z] for Z ∈ [0, 1].
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The proof of the lemma is straightforward. Note the first property is exactly the monotonicity we
want.
Proof To verify the first claim, we fix all other variables but v(s) and view f as a function in

v(s). Because the derivative of f in v(s) does not exist only when c1
√

V(p,v)ι
n = c2

ι
n , where the

condition has at most two solutions, so it suffices to prove ∂f
∂v(s) ≥ 0 when c1

√
V(p,v)ι
n 6= c2

ι
n .

Direct computation gives that

∂f

∂v(s)
= p(s) + c1I

[
c1

√
V(p, v)ι

n
≥ c2

ι

n

]
p(s)(v(s)− pv)ι√

nV(p, v)ι

≥ min{p(s) +
c21
c2
p(s)(v(s)− pv), p(s)}

≥ p(s)(1− c21
c2

)

= 0. (21)

The second claim holds because both
√

V(p,v)ι
n and ι

n are non-negative.

Recall we chose c1 = 460
9 , c2 = 2

√
2 and c3 = 544

9 . Now we prove Qkh(s, a) ≥ Q∗h(s, a) by
backward induction conditioned on the event E1 and E2 hold. Firstly, the conclusion holds for
h = H + 1 because Q∗H+1 = 0. For 1 ≤ h ≤ H , assuming the conclusion holds for h+ 1, by (2),
we have that

Qkh(s, a) (22)

= min{r̂kh(s, a) + P̂ ks,aV
k
h+1 + bkh(s, a), 1}

≥ min{r̂kh(s, a) + P̂ ks,aV
k
h+1 + bkh(s, a), Q∗h(s, a)}

≥ min{r̂kh(s, a) + P̂ ks,aV
k
h+1 + c1

√
V(P̂s,a, V k

h+1)ι

nk(s, a)
+ c2

√
r̂(s, a)ι

nk(s, a)
+ c3

ι

nk(s, a)
, Q∗h(s, a)}

(23)

≥ min{r(s, a) + P̂ ks,aV
k
h+1 + max{c̄1

√
V(P̂ ks,a, V

k
h+1)ι

nk(s, a)
, c̄2

ι

nk(s, a)
}, Q∗h(s, a)} (24)

≥ min{r(s, a) + P̂ ks,aV
∗
h+1 + max{c̄1

√
V(P̂ ks,a, V

∗
h+1)ι

nk(s, a)
, c̄2

ι

nk(s, a)
}, Q∗h(s, a)} (25)

≥ min{r(s, a) + P̂ ks,aV
∗
h+1 + 2

√
V(P̂ ks,a, V

∗
h+1)ι

nk(s, a)
+

14ι

3nk(s, a)
, Q∗h(s, a)} (26)

≥ min{r(s, a) + Ps,aV
∗
h+1, Q

∗
h(s, a)} (27)

= Q∗h(s, a).

(23) is by the definition of bkh(s, a) and nk(s, a). (24) is by the definition of E2 and our choice of

c1, c2, c3 and c̄1, c̄2. (25) is by recognizing f(P̂ ks,a, V
k
h+1, n

k(s, a), ι) = P̂ ks,aV
k
h+1+max{c̄1

√
V(P̂k

s,a,V
k
h+1)ι

nk(s,a)
, c̄2

ι
nk(s,a)

},
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then using the first property in Lemma 14 and the induction that V k
h+1 ≥ V ∗h+1, (26) is by the second

property of Lemma 14 and the definition of E1.

Appendix C. Missing Proofs in Section 6.2

C.1. Proof of Lemma 5

Proof It suffices to verify (10) for the first term in RHS. Under E1∩E2, we have that with probability
1− SAH(log2(KH) + 1)δ, for all (s, a, h, k) ∈ S ×A× [H]× [K]:

Qkh(s, a)− r(s, a)− Ps,aV k
h+1 (28)

≤ r̂kh(s, a)− r(s, a) + bkh(s, a) + (P̂ ks,a − Ps,a)(V k
h+1 − V ∗h+1) + (P̂ ks,a − Ps,a)V ∗h+1

≤ 2bkh(s, a) + (P̂ ks,a − Ps,a)(V k
h+1 − V ∗h+1) + (P̂ ks,a − Ps,a)V ∗h+1. (29)

Fix s, a, h, k. When nk(s, a) = 1, (10) holds trivially. For nk(s, a) = 2i with i ≥ 1, by Bennet’s
inequality (see Lemma 11) we have that for each s′

P

[
|P̂ ks,a,s′ − Ps,a,s′ | >

√
2Ps,a,s′ι

nk(s, a)
+

ι

3nk(s, a)

]
≤ δ.

So with probability 1− Sδ, we have that

(P̂ ks,a − Ps,a)(V k
h+1 − V ∗h+1) =

∑
s′

(P̂ ks,a,s′ − Ps,a,s′)(V k
h+1(s

′)− V ∗h+1(s
′)− Ps,a(V k

h+1 − V ∗h+1))

(30)

≤
∑
s′

√
2Ps,a,s′ι

nk(s, a)
|V k
h+1(s

′)− V ∗h+1(s
′)− Ps,a(V k

h+1 − V ∗h+1)|+
Sι

3nk(s, a)

≤

√
2SV(Ps,a, V k

h+1 − V ∗h+1)

nk(s, a)
+

Sι

3nk(s, a)
, (31)

where (30) holds because
∑

s′ P̂
k
s,a,s′ =

∑
s′ Ps,a,s′ = 1 and (31) holds by Cauchy-Schwartz in-

equality. On the other hand, by Bennet’s inequality (see Lemma 11) again, we obtain that

P

|(P̂ ks,a − Ps,a)V ∗h+1| >

√
2V(Ps,a, V ∗h+1)ι

nk(s, a)
+

ι

3nk(s, a)

 ≤ δ. (32)

Combining (29), (31) and (32) and via a union bound over k, h, s, a, we conclude that (10) holds
with probability 1− 3S2AH(log2(KH) + 1)δ, and with c4 =

√
2, c5 =

√
2 and c6 = 2

3 .
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Appendix D. Missing Proofs in Section 6.3

D.1. Proof of Lemma 7

Proof Direct computation gives that

Regret(K) :=

K∑
k=1

(
V ∗1 (sk1)− V πk

1 (sk1)
)

≤
K∑
k=1

(
V k
1 (sk1)− V πk

1 (sk1)
)

=

K∑
k=1

(
V̌ k
1 (sk1)− V πk

1 (sk1)
)

=
K∑
k=1

(V̌ k
1 (sk1)−

H∑
h=1

řkh) +
K∑
k=1

(
H∑
h=1

řkh − V πk

1 (sk1))

=

K∑
k=1

H∑
h=1

(Pskh,a
k
h
− 1skh+1

)V̌ k
h+1 +

K∑
k=1

H∑
h=1

(V̌ k
h (skh)− řkh − Pskh,akh V̌

k
h+1) +

K∑
k=1

(
H∑
h=1

řkh − V πk

1 (sk1))

≤
K∑
k=1

H∑
h=1

(Pskh,a
k
h
− 1skh+1

)V̌ k
h+1 +

K∑
k=1

H∑
h=1

β̌kh(skh, a
k
h) +

K∑
k=1

(

H∑
h=1

řkh − V πk

1 (sk1)) + |KC |.

(33)

Here the first inequality is due to our optimistic estimation of Q-function, and (33) holds by (13)
and (14) .

D.2. Proof of Lemma 8

Proof We note thatM1 could be viewed as a martingale because V̌ k
h+1 is measurable with respective

to Fkh where Fkh = σ
(
{sk′h′ , ak

′
h′ , r

k′
h′ , s

k′
h′+1}1≤k′<k,1≤h′≤H ∪ {skh′ , akh′ , rkh′}1≤h′≤h−1 ∪ {skh, akh}

)
,

i.e., all past trajectories before skh+1 is rolled out. To avoid polynomial dependence on H , we use a
variance-dependent concentration inequality to bound this term instead of Hoeffding inequality (see
Lemma 13). By Lemma 13 with ε = 1, we have that

P

|M1| > 2

√√√√2

K∑
k=1

H∑
h=1

V(Pskh,a
k
h
, V̌ k

h+1)ι+ 6ι

 ≤ 2(log2(KH) + 1)δ. (34)

To bound M1, it suffices to bound M4 :=
∑K

k=1

∑H
h=1V(Pskh,a

k
h
, V̌ k

h+1). We will deal with this
term later.
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D.3. Proof of Lemma 9

Proof Recall that

βkh(s, a) = O

√V(P̂ ks,a, V
k
h+1ι)

nk(s, a)
+

√
V(Ps,a, V ∗h+1)

nk(s, a)
+

√
SV(Ps,a, V k

h+1 − V ∗h+1)ι

nk(s, a)
+

√
r̂kh(s, a)ι

nk(s, a)
+

Sι

nk(s, a)

 .

By Lemma 12, we have

P
[
P̂ ks,a,s′ >

3

2
Ps,a,s′ +

4ι

3nk(s, a)

]
≤ P

[
P̂ ks,a,s′ − Ps,a,s′ >

√
2Ps,a,s′ι

nk(s, a)
+

ι

3nk(s, a)

]
≤ δ, (35)

which implies that, with probability 1− 2S2AH(log2(KH) + 1)δ, it holds that for each k, h

V(P̂ ks,a, V
k
h+1) =

∑
s′

P̂ ks,a,s′
(
V k
h+1(s

′)− P̂ ks,aV k
h+1

)2
≤
∑
s′

P̂ ks,a,s′
(
V k
h+1(s

′)− Ps,aV k
h+1

)2
≤
∑
s′

(
3

2
Ps,a,s′ +

4ι

3nk(s, a)

)
·
(
V k
h+1(s

′)− Ps,aV k
h+1

)2
≤ 3

2
V(Ps,a, V

k
h+1) +

4Sι

3nk(s, a)
.

Note that V(P,X + Y ) ≤ 2(V(P,X) + V(P, Y )) for any P,X, Y , we then have

βkh(s, a) ≤ O

√V(Ps,a, V k
h+1ι)

nk(s, a)
+

√
SV(Ps,a, V k

h+1 − V ∗h+1)ι

nk(s, a)
+

√
r̂kh(s, a)ι

nk(s, a)
+

Sι

nk(s, a)

 .

(36)

Note that under the doubling epoch update framework, despite those episodes in which an update is
triggered, the number of visits of (s, a) between the i-th update of P̂s,a and the i + 1-th update of
P̂s,a do not exceeds 2i−1. More precisely, recalling the definition ofK, for any (s, a) and any i ≥ 3,
we have

H∑
k=1

H∑
h=1

I
[
(skh, a

k
h) = (s, a), nk(s, a) = 2i−1

]
· I [(k, h) /∈ X ] ≤ 2i−1. (37)

Recall imax = max{i|2i−1 ≤ KH} = blog2(KH)c+ 1. To facilitate the analysis, we first derive a
general deterministic result. Letw = {wkh ≥ 0|1 ≤ h ≤ H, 1 ≤ k ≤ K} be a group of non-negative
weights such that wkh ≤ 1 for any (k, h) ∈ [H] × [K] and wkh = 0 for any (k, h) ∈ X . Later we
will set wkh to be the products of I [(k, h) /∈ X ] with r̂kh(skh, a

k
h), V(Pskh,a

k
h
, V ∗h+1), V(Pskh,a

k
h
, V k

h+1)

and V(Pskh,a
k
h
, V k

h+1 − V ∗h+1).
We can calculate

K∑
k=1

H∑
h=1

√
wkh

nk(skh, a
k
h)
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≤
K∑
k=1

H∑
h=1

∑
s,a

imax∑
i=3

I
[
(skh, a

k
h) = (s, a), nk(s, a) = 2i−1

]√ wkh
2i−1

+ 8SA(log2(KH) + 4)

=
∑
s,a

imax∑
i=3

1√
2i−1

K∑
k=1

H∑
h=1

I
[
(skh, a

k
h) = (s, a), nk(s, a) = 2i−1

]√
wkh + 8SA(log2(KH) + 4)

≤
∑
s,a

imax∑
i=3

√∑K
k=1

∑H
h=1 I

[
(skh, a

k
h) = (s, a), nk(s, a) = 2i−1

]
2i−1

·√√√√( K∑
k=1

H∑
h=1

I
[
(skh, a

k
h) = (s, a), nk(s, a) = 2i−1

]
wkh

)
+ 8SA(log2(KH) + 4) (38)

≤

√√√√SAimax

K∑
k=1

H∑
h=1

wkh + 8SA(log2(KH) + 4). (39)

Here (38) is by Cauchy-Schwarz inequality and (39) is by (37) and Cauchy-Schwarz inequality.
Let I(k, h) be shorthand of I [(k, h) /∈ X ]. It is worth noting that by definition,

∑K
k=1

∑H
h=1 |I(k, h)−

I(k, h + 1)| ≤ |KC |. By plugging respectively wkh = I(k, h)r̂kh(skh, a
k
h), I(k, h)V(Pskh,a

k
h
, V ∗h+1),

I(k, h)V(Pskh,a
k
h
, V k

h+1) and I(k, h)V(Pskh,a
k
h
, V k

h+1−V ∗h+1) into (39), and recalling (36), we obtain
that

M2 =

K∑
k=1

H∑
h=1

β̌kh(skh, a
k
h)

=
K∑
k=1

H∑
h=1

βkh(skh, a
k
h)I(k, h) (40)

≤ O


√√√√SAimaxι

K∑
k=1

H∑
h=1

V(Pskh,a
k
h
, V k

h+1)I(k, h) +

√√√√S2Aimaxι
K∑
k=1

H∑
h=1

V(Pskh,a
k
h
, V k

h+1 − V ∗h+1)I(k, h)


+O


√√√√SAimax

K∑
k=1

H∑
h=1

r̂kh(skh, a
k
h)I(k, h)ι+ S2Aι log2(KH)

 (41)

≤ O


√√√√SAimaxι

K∑
k=1

H∑
h=1

V(Pskh,a
k
h
, V k

h+1)I(k, h) +

√√√√S2Aimaxι
K∑
k=1

H∑
h=1

V(Pskh,a
k
h
, V k

h+1 − V ∗h+1)I(k, h)


+O

(√
SAimaxKι+ S2Aι log2(KH)

)
(42)

where in (42), we used the following lemma whose proof is deferred to appendix.

Lemma 15
∑K

k=1

∑H
h=1 r̂

k
h(skh, a

k
h)I(k, h) ≤ 2

∑K
k=1

∑H
h=1 r

k
h + 4SA ≤ 2K + 4SA.

Proof For any (k, h) and (k′, h′), we define

w̃kh(k′, h′) =
1

nk(skh, a
k
h)
I
[
(skh, a

k
h) = (sk

′
h′ , a

k′
h′)
]
· I
[
nk

′
(sk

′
h′ , a

k′
h′) = 2nk(skh, a

k
h)
]
· I(k′, h′).
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By the update rule, for each (k′, h′) pair with nk
′
(sk

′
h′ , a

k′
h′) ≥ 2, r̂k

′
h′(s

k′
h′ , a

k′
h′) =

∑K
k=1

∑H
h=1 w̃

k
h(h′, k′)rkh.

On the other hand, because w̃kh(h′, k′) ≤ 1
nk(skh,a

k
h)

for any (k′, h′), and
∑K

k′=1

∑H
h′=1 I

[
w̃kh(h′, k′) > 0

]
≤

2nk(skh, a
k
h), we have

K∑
k′=1

H∑
h′=1

w̃kh(h′, k′) ≤ 2.

Therefore, we have
K∑
k=1

H∑
h=1

r̂kh(skh, a
k
h) ≤

∑
k∈K

H∑
h=1

I
[
nk(skh, a

k
h) ≥ 2

]
r̂kh(skh, a

k
h) + 4SA

≤ 2

K∑
k=1

H∑
h=1

rkh + 4SA

≤ 2K + 4SA.

We remark that if we use the standard maximum likelihood estimation, the weight of the a reward
would be 1 · 1 + 2 · 12 + 4 · 14 + .... ≈ log(T ). However, if we update the empirical reward using the
latest half fraction of samples, the weight for each reward is only 2i+1 1

2i
≤ 2. Therefore, we can

save a log(T ) factor.

Recalling the definition of M4, by the fact
∑K

k=1

∑H
h=1 |I(k, h + 1) − I(k, h)| ≤ |KC |, we have

that

M4 =

K∑
k=1

H∑
h=1

V(Pskh,a
k
h
, V̌ k

h+1)

=
K∑
k=1

H∑
h=1

V(Pskh,a
k
h
, V k

h+1)I(k, h+ 1)

≥
K∑
k=1

H∑
h=1

V(Pskh,a
k
h
, V k

h+1)I(k, h)− |KC |. (43)

We further define M5 =
∑K

k=1

∑H
h=1V(Pskh,a

k
h
, V k

h+1− V ∗h+1)I(k, h+ 1). Following similar argu-
ments, we have that

K∑
k=1

H∑
h=1

V(Pskh,a
k
h
, V k

h+1 − V ∗h+1)I(k, h) ≤M5 + |KC |. (44)

Bounding these two terms is one of the main difficulties in this paper, for which we need to use
the recursion-based technique introduced in Section 5. The following two lemmas bound these two
terms.

Lemma 16 With probability 1− 2(log2(KH) + 1) log2(KH)δ, it holds that

M4 ≤ 2M2 + 2|KC |+ 2K + max{46ι, 8
√

(M2 + |KC |+K)ι+ 6ι}. (45)
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Proof Direct computation gives that

M4 =
K∑
k=1

H∑
h=1

V(Pskh,a
k
h
, V k

h+1)I(k, h+ 1)

=

K∑
k=1

H∑
h=1

(
Pskh,a

k
h
(V k
h+1)

2 − (Pskh,a
k
h
V k
h+1)

2
)
I(k, h+ 1)

=
K∑
k=1

H∑
h=1

(Pskh,a
k
h
(V k
h+1)

2 − (V k
h+1(s

k
h+1))

2)I(k, h+ 1)

+

K∑
k=1

H∑
h=1

(
(V k
h (skh))2 − (Pskh,a

k
h
V k
h+1)

2
)
I(k, h+ 1)− (V k

1 (sk1))2

≤
K∑
k=1

H∑
h=1

(Pskh,a
k
h
(V k
h+1)

2 − (V k
h+1(s

k
h+1))

2)I(k, h+ 1) + 2

K∑
k=1

H∑
h=1

max{V k
h (skh)− Pskh,akhV

k
h+1, 0}I(k, h+ 1)

≤
K∑
k=1

H∑
h=1

(Pskh,a
k
h
(V k
h+1)

2 − (V k
h+1(s

k
h+1))

2)I(k, h+ 1) + 2
K∑
k=1

H∑
h=1

(r(skh, a
k
h) + βkh(skh, a

k
h))I(k, h+ 1)

(46)

≤
K∑
k=1

H∑
h=1

(Pskh,a
k
h
(V k
h+1)

2I(k, h+ 1)− (V k
h+1(s

k
h+1))

2) + 2
K∑
k=1

H∑
h=1

βkh(skh, a
k
h)I(k, h) + 2|KC |+ 2K

=

K∑
k=1

H∑
h=1

(Pskh,a
k
h
(V k
h+1)

2 − (V k
h+1(s

k
h+1))

2)I(k, h+ 1) + 2M2 + 2|KC |+ 2K. (47)

Here (46) is by (10) and (47) is by the fact
∑H

h=1 r(s
k
h, a

k
h) ≤ 1.

DefineF (m) =
∑K

k=1

∑H
h=1(Pskh,a

k
h
(V k
h+1)

2m−(V k
h+1(s

k
h+1))

2m)I(k, h+1) =
∑K

k=1

∑H
h=1(Pskh,a

k
h
(V̌ k
h+1)

2m−
(V̌ k
h+1(s

k
h+1))

2m) for 1 ≤ m ≤ log2(H). Because V̌ k
h+1 is measurable in Fkh , F (m) can be viewed

as a martingale. For a fixed m, by Lemma 13 with ε = 1, we have that for each m ≤ log2(H),

P

|F (m)| > 2

√√√√2

K∑
k=1

H∑
h=1

V(Pskh,a
k
h
, (V̌ k

h+1)
2m)ι+ 6ι

 ≤ 2(log2(KH) + 1)δ. (48)

Note that

K∑
k=1

H∑
h=1

V(Pskh,a
k
h
, (V̌ k

h+1)
2m) =

K∑
k=1

H∑
h=1

(
Pskh,a

k
h
(V k
h+1)

2m+1 − (Pskh,a
k
h
(V k
h+1)

2m)2
)
I(k, h+ 1)

=

K∑
k=1

H∑
h=1

(Pskh,a
k
h
− 1skh+1

)(V k
h+1)

2m+1
I(k, h+ 1)

+
K∑
k=1

H∑
h=1

(
(V k
h (skh))2

m+1 − (Pskh,a
k
h
(V k
h+1)

2m)2I(k, h+ 1)
)
−

K∑
k=1

(V k
1 (sk1))2

m+1
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≤ F (m+ 1) +
K∑
k=1

H∑
h=1

(
(V k
h (skh))2

m+1 − (Pskh,a
k
h
V k
h+1)

2m+1
)
I(k, h+ 1) (49)

≤ F (m+ 1) + 2m+1
K∑
k=1

H∑
h=1

max{V k
h (skh)− Pskh,akhV

k
h+1, 0}I(k, h+ 1) (50)

≤ F (m+ 1) + 2m+1
K∑
k=1

H∑
h=1

(
r(skh, a

k
h) + βkh(skh, a

k
h)
)
I(k, h+ 1)

≤ F (m+ 1) + 2m+1(
K∑
k=1

H∑
h=1

βkh(skh, a
k
h)I(k, h) + |KC |+K) (51)

= F (m+ 1) + 2m+1(M2 + |KC |+K) (52)

Here (49) is by convexity of x2
m

and (50) is by the fact ax− bx ≤ xmax{a− b, 0} for a, b ∈ [0, 1].
Via a union bound over m = 1, 2, ..., log2(KH), we have that with probability 1− 2(log2(KH) +
1) log2(KH)δ,

F (m) ≤ 2
√

2(F (m+ 1) + 2m+1(M2 + |KC |+K))ι+ 6ι (53)

holds for any 1 ≤ m ≤ log2(KH). Now we have obtained a recursive formula. In Lemma 2,
we obtain the bound for the class of recursive formulas of the same form as (53). The proof of
Lemma 2 is deferred to appendix. By (47) and Lemma 2 with parameters λ1 = KH , λ2 =

√
8ι,

λ3 = M2+ |KC |+K and λ4 = 6ι, we have that with probability 1−2(log2(KH)+1) log2(KH)δ,

M4 ≤ 2M2 + 2|KC |+ 2K + F (1) ≤ 2M2 + 2|KC |+ 2K + max{46ι, 8
√

(M2 + |KC |+K)ι+ 6ι}.
(54)

Lemma 17 With probability 1− 2(log2(KH) + 1) log2(KH)δ, it holds that

M5 ≤ 2 max{M2, 1}+ 2|KC |+ max{46ι, 8
√

(M2 + |KC |)ι+ 6ι}. (55)

Proof Recall that Ṽ k
h+1 = V k

h+1 − V ∗h+1. We compute

M5 =

K∑
k=1

H∑
h=1

V(Ps,a, Ṽ
k
h+1)I(k, h+ 1)

=

K∑
k=1

H∑
h=1

(
Pskh,a

k
h
(Ṽ k
h+1)

2 − (Pskh,a
k
h
Ṽ k
h+1)

2
)
I(k, h+ 1)

=
K∑
k=1

H∑
h=1

(Pskh,a
k
h
(Ṽ k
h+1)

2 − (Ṽ k
h+1(s

k
h+1))

2)I(k, h+ 1)
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+
K∑
k=1

H∑
h=1

(
(Ṽ k
h (skh))2 − (Pskh,a

k
h
Ṽ k
h+1)

2
)
I(k, h+ 1)−

K∑
k=1

(Ṽ k
1 (sk1))2

≤
K∑
k=1

H∑
h=1

(Pskh,a
k
h
(Ṽ k
h+1)

2 − (Ṽ k
h+1(s

k
h+1))

2)I(k, h+ 1) + 2
K∑
k=1

H∑
h=1

max{Ṽ k
h (skh)− Pskh,akh Ṽ

k
h+1, 0}I(k, h+ 1)

(56)

≤
K∑
k=1

H∑
h=1

(
Pskh,a

k
h
(Ṽ k
h+1)

2 − (Ṽ k
h+1(s

k
h+1))

2
)
I(k, h+ 1) + 2

K∑
k=1

H∑
h=1

βkh(skh, a
k
h)I(k, h+ 1)

≤
K∑
k=1

H∑
h=1

(
Pskh,a

k
h
(Ṽ k
h+1)

2 − (Ṽ k
h+1(s

k
h+1))

2
)
I(k, h+ 1) + 2

K∑
k=1

H∑
h=1

βkh(skh, a
k
h)I(k, h) + 2|KC |

≤
K∑
k=1

H∑
h=1

(
Pskh,a

k
h
(Ṽ k
h+1)

2 − (Ṽ k
h+1(s

k
h+1))

2
)
I(k, h+ 1) + 2 max{M2, 1}+ 2|KC |.

Here (56) is by (12) Define F̃ (m) =
∑K

k=1

∑H
h=1(Pskh,a

k
h
(Ṽ k
h+1)

2m − (Ṽ k
h+1(s

k
h+1))

2m)I(k, h+ 1)

. Following the same arguments in (48) and (52), we obtain that with probability 1−2(log2(KH)+
1) log2(KH)δ,

F̃ (m) ≤ 2

√
2(F̃ (m+ 1) + 2m+1(max{M2, 1}+ |KC |))ι+ 6ι (57)

holds for any 1 ≤ m ≤ log2(KH). By applying Lemma 2 with λ1 = KH , λ2 =
√

8ι, λ3 =
(max{M2, 1}+|KC |) and λ4 = 6ι, we have that with probability 1−2(log2(KH)+1) log2(KH)δ,

M5 ≤ 2 max{M2, 1}+ 2|KC |+ F̃ (1) ≤ 2 max{M2, 1}+ max{46ι, 8
√

(M2 + |KC |)ι+ 6ι}.
(58)

Combining (43) , (44), (41), (45) and (55), we have that with probability 1−
(
6S2AH(log2(KH)+

1) + 6(log2(KH) + 1) log2(H)
)
δ,

M2 ≤ O
(√

SAimax(M4 + |KC |)ι+
√
S2Aimax(M5 + |KC |)ι+

√
SAimaxKι+ S2Aι log2(KH)

)
,

(59)

M4 ≤ 2M2 + 2|KC |+ 2K + max{46ι, 8
√

(M2 + 2K)ι+ 6ι}, (60)

M5 ≤ 2 max{M2, 1}+ 2|KC |+ max{46ι,
√
M2ι+ 6ι}. (61)

These imply that

M2 ≤ O
(√

SAKimaxι+

√
S2Aimax

√
M2ι3/2 +

√
SAimaxKι+ S2Aι log2(KH)

)
≤ O

(√
SAKimaxι+ S2Aι log2(KH)

)
. (62)
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D.4. Proof of Lemma 10

Proof For the term M3, we have

M3 =

K∑
k=1

(
H∑
h=1

řkh − V πk

1 (sk1)

)

=
K∑
k=1

H∑
h=1

(řkh − rkh) +
K∑
k=1

(
H∑
h=1

rkh − V πk

1 (sk1)

)

≤
K∑
k=1

H∑
h=1

(r(skh, a
k
h)− rkh) +

K∑
k=1

(
H∑
h=1

rkh − V πk

1 (sk1)

)
. (63)

For the first term in RHS of (63), by Lemma 13, we have that

P

| K∑
k=1

H∑
h=1

(r(skh, a
k
h)− rkh)| > 2

√√√√2
K∑
k=1

H∑
h=1

Var(s, a)ι+ 6ι

 ≤ 2(log2(KH) + 1)δ, (64)

where Var(s, a) := E
[
(R(s, a)− E[R(s, a)])2

]
. Since for a random variable Z ∈ [0, 1], Var [Z] ≤

E[Z], we have

K∑
k=1

H∑
h=1

Var(s, a) ≤
K∑
k=1

H∑
h=1

r(s, a) ≤
K∑
k=1

H∑
h=1

(r(skh, a
k
h)− rkh) +K,

Define M̄3 :=
∑K

k=1

∑H
h=1(r(s

k
h, a

k
h)− rkh). We then have

P
[
|M̄3| > 2

√
2(M̄3 +K)ι+ 6ι

]
≤ 2(log2(KH) + 1)δ, (65)

which implies that |M̄3| ≤ 6
√
Kι+ 21ι with probability at least 1− 2(log2(KH) + 1)δ.

As for the second term in RHS of (63), we define Yk =
∑H

h=1 r
k
h − V πk

1 (sk1). Because for each k,
|Yk| ≤ 1 and E

[
Yk|Fk−1

]
= 0, by Azuma’s inequality, we have

P

[∣∣∣∣∣
K∑
k=1

Yk

∣∣∣∣∣ > √2Kι

]
≤ δ. (66)

Combining (65) with (66), we have that

P
[
|M3| > 8

√
Kι+ 6ι

]
≤ 2(log2(KH) + 2)δ. (67)
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