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Abstract
1 Episodic reinforcement learning and contextual bandits are two widely studied sequential

decision-making problems. Episodic reinforcement learning generalizes contextual bandits and is
often perceived to be more difficult due to long planning horizon and unknown state-dependent tran-
sitions. The current paper shows that the long planning horizon and the unknown state-dependent
transitions (at most) pose little additional difficulty on sample complexity.

We consider the episodic reinforcement learning with S states, A actions, planning horizon
H , total reward bounded by 1, and the agent plays for K episodes. We propose a new algorithm,
Monotonic Value Propagation (MVP), which relies on a new Bernstein-type bonus. Compared to
existing bonus constructions, the new bonus is tighter since it is based on a well-designed mono-
tonic value function. In particular, the constants in the bonus should be subtly setting to ensure
optimism and monotonicity.

We show MVP enjoys an O
⇣⇣p

SAK + S2A
⌘
poly log (SAHK)

⌘
regret, approaching the

⌦
⇣p

SAK
⌘

lower bound of contextual bandits up to logarithmic terms. Notably, this result 1)
exponentially improves the state-of-the-art polynomial-time algorithms by Dann et al. [2019] and
Zanette et al. [2019] in terms of the dependency on H , and 2) exponentially improves the running
time in [Wang et al. 2020] and significantly improves the dependency on S, A and K in sample
complexity.
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