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1. Theoretical Proofs
We show our theoretical analysis for both cases of finite X
and infinite X.

1.1. Finite X

Theorem 1

Let Si and Sj be two different source environments with
dissimilar transition dynamics pi and pj respectively. Let
δij , maxs,a |ri(s, a)− rj(s, a)|, where ri(., .) and rj(., .)
are the reward functions of environment Si and Sj respec-
tively. We denote π∗i and π∗j as optimal policies in Si and
Sj . It can be shown that the difference of their action-value
functions is upper bounded as:
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where Q
π∗k
i shows the action-value function in en-

vironment Si by following an optimal policy that
is learned in the environment Sk ∈ {S1, . . . ,SN}.
We also define Pi(s, a) = [pi(s
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and ||.|| to be 2−norm (Euclidean norm). Proof: We start
by following the steps from (Barreto et al., 2018). The left
side of the inequality (1) can be rewritten as:
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For (I), it can be shown that:
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Considering (I) and (II), it leads to the upper bound:
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Lemma 1

Let π∗1 , ..., π
∗
N be N optimal policies for S1, . . . ,SN re-

spectively and Q̃
π∗j
T =

(
ψ̃π
∗
j
)T

w̃T denote the action-value
function of an optimal policy learned in Sj and executed
in the target environment T . Let ψ̃π

∗
j denote the estimated

successor feature function from the combined source and
target observations from Sj and T as defined in Eq. (9)(in
paper), and w̃T is the estimated reward mapper for environ-
ment T by using loss function in Eq. (6)(in paper). It can be
shown that the difference of the true action-value function
and the estimated one through successor feature functions
and reward mapper, is bounded as:
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(∣∣∣QT π∗j (s, a)− Q̃π∗jT (s, a)

∣∣∣ ≤ ε(m) ∀s, a
)
≥ 1− δ,

where ε(m) =
√
2log(|X|um/δ)σm,d(x), x ∈ X δ ∈

(0, 1), um = π2m2

6 , m being the number of observations in
environment T , and x = (s, a). σm,d(x) is the square root
of posterior variance as defined in Eq. (10)(in paper).

Proof: For proving this Lemma, we first follow the proper-
ties of Normal distribution. Let us assume that l ∼ N (0, 1),

and ψ
π∗j
T ,d(x) ∼ N

(
µm,d(x), σ

2
m,d(x)

)
, x ∈ X, x = (s, a),

and d = {1, . . . , D} as defined in Eq. (9) and Eq. (10)(in
paper). m target observations are assumed to be available.
We follow (Srinivas et al., 2009), based on the properties of
Normal distribution, Pr(l > c), c > 0 is calculated as:
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As c > 0, we know e−c(l−c) ≤ 1 for l ≥ c. Ac-
cordingly, Pr
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of modelling successor feature function can be written as:
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If |X|e−βm/2 = δ
um

, the inequality 2 holds for um =

π2m2/6. We follow the assumption in (Barreto et al., 2017;
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w̃T given all di-
mensions of successor feature function, hence Lemma 1
holds for ∀x ∈ X :
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We note ε(m) decreases ε(m) ∈
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)
(Lederer et al., 2019) and√
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)
. This guarantees that the

error of modelling convergence to zero as m→∞. Before
starting the proof of Theorem 2, we present Remark 1 based
on the concept of GPI (Barreto et al., 2018) as follows:

Remark 1 Let π1, ..., πN be N decision policies and
correspondingly Q̃π1 , Q̃π2 , ..., Q̃πN are the respective es-
timated action-value functions (Lemma 1) such that:∣∣∣Qπi(x)− Q̃πi(x)

∣∣∣ ≤ ε(m) ∀x = (s, a),

where m is the number of target observations. Defining:
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We also know that Qπ(x) = limk→∞(Pπ)kmax
i

Q̃πi(x).

Then, it follows:

Qπ(x) ≥ max
i
Qπi(x)− 2

1− γ
ε(m) ∀x = (s, a),x ∈ X.

♠

Theorem 2

Let Si=1...N be N different source environments with dis-
similar transition functions pi=1...N . Let us denote the opti-
mal policy π that is defined based on the GPI as:

π(s) ∈ argmax
a∈A

max
j∈{1...N}

Q̃
π∗j
T (s, a), (3)

where Q̃
π∗j
T =

(
ψ̃π
∗
j
)T

w̃T being the action-value function
of an optimal policy learned in Sj and executed in target
environment T , ψ̃π

∗
j is the estimated successor feature from

the combined source and target observations from Sj and T
as defined in Eq. (9)(in paper), and w̃T is the estimated re-
ward mapper for target environment from Eq. (6)(in paper).
Considering Lemma 1 and Eq. (13)(in paper), the difference
of optimal action-value function in the target environment
and our GPI-derived action value function is upper bounded
as:
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where φmax = maxs,a||φ(s, a)||. We also define PT =
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Proof: Q∗T (s, a)− Q̃
π∈π∗j
T (s, a) is defined as the difference

of the optimal action-value function, and the action-value

function derived from GPI. It can be shown that:
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As explained in Lemma 1, ε(m) → 0 with ε(m) ∈(
Olog(m)−1

)
, as m → ∞ - that is, the number of target

observations tend to infinity. Note that the remaining terms
of the upper bound depends on the amount of dissimilarity
of source and target environments as explained in Section
3.1 of the paper.

1.2. Infinite X

We now continue our analysis on the cases that the action-
state space (X) is infinite - i.e. there may be infinite obser-
vations coming from the target environment. In that case,
Lemma 1 will not hold and further steps need to be taken.

Let us assume Xm ⊂ X represents a subset of infinite
X at time step m, where m target observations are seen.
Clearly, Lemma 1 will hold with this assumption if βm =
2log(|Xm|um/δ). The main question in here is if we can
extend this to the whole search space X.

Following Boole’s inequality - known as union bound, it
can be shown that for some constants a, b, L > 0 (Srinivas
et al., 2009):

Pr
(
∀i = {1, 2},∀x∈ X, |

∂ψ
π∗j
T ,d

∂xi
| < L

)
≥ 1−2ab

L2

b2 ,

that implies:(
∀x ∈ X, |ψπ

∗
j

T ,d(x)−ψ
π∗j
T ,d(x

′)|
)
≤ L|x− x′|, x,x′ ∈ X.

(5)

Eq. (5) enables us to perform a discretisation on the search
space Xm with size of τ2m so that:

|x− [x]m| ≤ 2r/τm,

where [x]m denotes the closest point from Xm to x ∈ X
and τm implies the number uniformly spaced points on both
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coordinates of Xm that is a discretisation factor. We now
proceed to Lemma 2 as an extension of successor feature
function modelling error in infinite X space.

Lemma 2

Let x = (s, a) ∈ X, and X is infinite state-action space.
π∗1 , ..., π

∗
N is N optimal policies for S1, . . . ,SN respec-

tively and Q̃
π∗j
T =

(
ψ̃π
∗
j
)T

w̃T denote the action-value func-
tion of an optimal policy learned in Sj and executed in the
target environment T . Let ψ̃π

∗
j denote the estimated succes-

sor feature function from the combined source and target
observations from Sj and T as defined in Eq. (9)(in paper),
and w̃T is the estimated reward mapper for environment
T by using loss function in Eq. (6)(in paper). It can be
shown that the difference of the true action-value function
and the estimated one through successor feature functions
and reward mapper, is bounded as:

Pr
(∣∣∣QT π∗j (s, a)− Q̃π∗jT (s, a)

∣∣∣ ≤ ε(m) ∀s, a
)
≥ 1− δ,

where
ε(m) =

√
2log(2um/δ) + 8log(2mbr

√
log(4a/δ))

σm,d([x]m) + 1
m2 , x ∈ X δ ∈ (0, 1), um = π2m2

6 , m > 1
being the number of observations in environment T , [x]m
is the closest points in Xm to x ∈ X. σm,d(.) is the square
root of posterior variance as defined in Eq. (10)(in paper).
a, b > 0 are constants.

Proof: As explained in Section 1.2, we know:
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Accordingly, by replacing x′:

∀x ∈ Xm, |ψ
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√
log(4a/δ)/τm.

By selecting the discretisation factor as τm =
4m2br

√
log(4a/δ):
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π∗j
T ,d([x]m)| ≤ 1

m2
.

This implies |Xm| = (4m2br
√

log(4a/δ))2. By replacing
|Xm| in βm defined in Section 1.2, the proof is completed.
♠

Hence, if X is infinite set, Theorem 2 holds with ε(m) =√
2log(2um/δ) + 8log(2mbr

√
log(4a/δ))σm,d([x]m) +

1
m2 .

2. Experimental Details
Maze (navigation problem): For the task of navigation,
we designed a maze environment with following properties:

(1) We set the ε-greedy exploration rate to εe = 0.5 for the
adaptation phase with decay rate of 0.9999, this value is
set to zero in the testing phase. (2) Discount factor value
is set to γ = 0.9. (3) α = 0.05 is the learning rate. Agent
is allowed to reach to the goal in maximum of 100 steps,
otherwise it terminates.

For 12 source environments, 25 obstacles are randomly gen-
erated, the agent always start from top left, and the goal
is also randomly placed in these environments. We used
generic Q-learning with replay buffer size 104 and Adam
optimizer with batch size 64 to find the optimal policies
in all these 12 environments. Algorithm 1 in the paper is
then used to estimate the successor feature functions in the
environment. Figure 2 demonstrates our toy environment
with agent at the top left, red obstacles, and the green goal.
Our proposed feature function for this problem is a MLP
with 4 hidden layers with a linear activation function in the
last hidden layer to represent the reward mapper of the task.
The remaining hidden layers have ReLU activation func-
tion. The output of this network is the predicted value of the
reward for a state and action. Note that this network min-
imises the loss function introduced in Eq. (6)(in paper). We
used SE kernel and maximising the log marginal likelihood
for finding the best set of hyperparameters for GP.

CartPole: As mentioned, to translate the image data into
states, we used a CNN with: (1) First hidden layer with 64
filters of 5× 5 with stride 3 with a ReLU activation, second
hidden layer with 64 filters of 4 × 4 with stride 2 and a
ReLU activation, third hidden layer with 64 filters of 3× 3
with stride 1 and a ReLU activation. The final hidden layer
is “features” we used in an image that is fully connected
Flatten units.

Maximum number of steps for the CartPole problem is set
to 200. We set the ε-greedy exploration rate to εe = 0.5 for
the adaptation phase with decay rate of 0.9999, this value
is set to zero in testing phase. The source learned policy
is with pole’s length of 0.5m and accordingly, using Algo-
rithm 1 in the paper the corresponding successor features are
extracted. We used generic Q-learning with replay buffer
size 105 and Adam optimizer with batch size 64 to find this
optimal policy. The target environment is then modified to
incorporate the change of environment. Figure 1 demon-
strates the change of dynamics. We used the same structure
of feature function in Maze problem for this experiment.

FSF: This environment (Barreto et al., 2020) is a 10× 10
grid with 10 objects and an agent occupying one cell at each
time step. There are 2 types of objects each with a reward
associated with it. We randomly initialise those 10 objects
by sampling both their type and position from a uniform
distributions over the corresponding sets. Likewise, the ini-
tial position of the agent is a uniform sample of all possible
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Figure 1. Illustration of the change in the dynamics for the CartPole problem. (Left) Pole’s length is 0.5m in the source environment and
(Right) Pole’s length changed to 3m in the target environment.

Figure 2. Illustration of the maze environment.

positions in the grid. The reward function is defined by
the object type that has been picked up by the agent. e.g.
Picking up red object is +1 reward and picking up blue is
−1. Agent picks up an object if it occupies that particular
cell in which the object exists. If agent picks up an object,
another one will be generated randomly (in terms of location
and type) in the grid. At each step the agent receives an ob-
servation representing the configuration of the environment
(Barreto et al., 2020). These are 11× 11× (D+ 1) tensors
that can be seen as 11× 11 images with (D+ 1) channels
that are used to identify objects and walls (Barreto et al.,
2020). The observations are shifted so that the the agent is
always at the top-left cell of the grid. Figure 3 shows an ex-
ample of this environment. The two source policies used in
this experiment have w1 = [1, 0],w2 = [1, 0], respectively.
Intuitively, the reward mappers indicate picking up an object
of particular type and ignoring the other type. However, in
the target environment, the change of reward function is to
pick up the first object type and “avoid” the second one with
negative reward - i.e. wT = [1,−1]. For the dissimilarity
of dynamics, we added 5% noise to the transitions of the
agent and also randomly placed a terminal state in the target
environment with -1 reward.

Figure 3. An example of the environment described in FSF (Bar-
reto et al., 2020).

2.1. Additional Experiments

In this section, we compare our results in navigation prob-
lem with generic Q-Learning. We relaxed the assumption
adaptation and testing phase and Q-Learning is allowed to
use all the observations from the target environment. Figure
4 shows Q-Learning also converges to the same amount of
avg. reward, however, since no transfer is involved, it is sig-
nificantly slower than other baselines. For Q-Learning, we
set εe = 0.9 with a decay rate of 0.9999 in 104 iterations.
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