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A. Appendix
A.1. Experiment Details

We give details omitted from the manuscript related to the experimentation for reproducibility.

Federated Datasets. We use 100 devices in our experiments. We first assign a fixed number of classes to each of the device.
More specifically, device i has class list as {i mod C, (i+ 1) mod C, . . . , (i+ S − 1) mod C} where C is the total number
of classes and S is the size of the class list. For instance, in CIFAR-10, ACID 5 class per device setting, device 10 has
class list of {0, 1, 2, 3, 4} whereas device 25 has class list of {5, 6, 7, 8, 9}. With this construction we guarantee that many
devices such as device 10 and 25 have non overlapping classes. After fixing the class list, we distribute training and test data
instances for each device based on its class list without replacement from the training and test split of the original dataset.
This construction gives a training set of size 500 datapoints and a test set of size 100 datapoints for each device. Different
from ACID, in ALID setting, we further permute class labels for each device. We use the same label permutation for the
training and test dataset of a device.

Models. We use a convolutional network in our experiments similar to the one in McMahan et al. (2017); Acar et al. (2021a).
Our architecture has two convolutional layers with 64 filter size and 5× 5 kernels. Each convolutional layers are followed
by a max pooling layer. After the second max pooling layer, we use two fully connected layers of size 384 and 192 with
ReLU activation. Finally, we use a softmax layer to get predictions.

Hyperparameters. We fix the batch size as 50, the number of SGD steps as K = 50, the learning rate as β = 0.1 and the
weight decay as 0.001 in our experiments. To avoid divergence, we set a learning rate decay across communication rounds
as 0.997.

MAML adaptation has two hyperpameters. First one is the adaptation learning rate which is used to customize to the device
model (η). Second hyperparameter is the number of gradient steps. This quantifies the number gradient updates to reach a
device model from the meta model. We search the adaptation learning rate in range {0.1, 0.01} and the number of gradient
steps in range {1, 5}.

Different from MAML, Proto adaptation is a non parametric adaptation and it does not have extra hyperparameters.

Lastly, PFLDyn has α parameter. We search this parameters in range {0.1, 0.01}.

We run each method with the aforementioned hyperparameter search list for 100 communication rounds. Then, we pick the
best performing configuration for each method and continue to run them for 1000 communication rounds.

Convergence curves. We give the convergence curves for CIFAR-10 and CIFAR-100 in Figure 2 and 3 respectively. We see
that PFL based methods using Proto adaptation outperforms the baselines.

No personalization baselines strictly under-perform compared to personalization methods which shows a need to do
personalization. We further investigate a case where no personalization methods are given a chance to personalize during
inference time. We note that this does not effect training procedure. In no personalization baselines, the server model is
used as the device model at each device without personalization. We consider another inference where the server model is
personalized at each device using Proto or MAML adaptation. We found out that Proto adaptation gives higher performance
than MAML adaptation. However, the performance is still worse than PFLDyn (Proto). We present no personalization
baselines with using direct server model and Proto adaptation in inference time as well as PFLDyn (Proto) for CIFAR-10
and CIFAR-100 in Figure 4 and 5 respectively. Methods that perform poorly are omitted from the plots. Even though
customization during inference time helps, PFLDyn (Proto) still outperforms the baselines.

The highest and the lowest level of personalization comparison. The Average level personalization metric has been reported
in Table 1 and 2. We report the comparison of methods in the highest and the lowest level of personalization metrics for
ACID and ALID settings in Table 3 and 4 respectively. Similar to Table 1 and 2, PFLDyn (Proto) method outperforms
Fallah et al. (2020).

Implementation best practices. We give some subtle details of the implementation we think as useful practices in the
following.

• No personalization baselines draw one batch of data at each round of SGD steps. Different from no personalization
baselines, we draw two batches of data for P-Avg (MAML), Fallah et al. (2020) and PFL based methods. For MAML
adaptation, first batch is used to customize the meta model into device model and the second batch is used to take gradient
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Table 3. The number of model transmissions relative to one round of Fallah et al. (2020) required to reach the target test accuracy for the
highest and the lowest level personalization performance in the Active Class Induced Diversity (ACID) scenario. Target accuracies are
selected among the highest accuracy of our methods and the highest accuracy of the competing method Fallah et al. (2020). The methods
without personalization are omitted due to their poor performance levels. The best method is highlighted and gain with respect to Fallah
et al. (2020) method is shown.

Test Performance Dataset Accuracy Fallah et al. (2020) PFLDyn (Proto) PFLDyn (MAML) PFLScaf (Proto) PFLScaf (MAML) P-Avg (Proto) Gain

Highest Level
Personalization

3 Classes per Device

CIFAR-10 100.0 381 83 111 118 874 154 4.6×
99.0 106 64 86 106 186 54 2.0×

CIFAR-100 100.0 >1000 144 388 >1000 >1000 539 >7.0×
99.0 312 76 170 990 990 112 4.1×

5 Classes per Device

CIFAR-10 99.0 297 199 265 680 886 352 1.5×
98.0 221 114 199 224 518 170 1.9×

CIFAR-100 99.0 >1000 463 168 148 >1000 294 >6.0×
98.0 121 165 166 92 532 60 2.0×

7 Classes per Device

CIFAR-10 96.0 358 142 134 422 656 170 2.7×
95.0 288 123 128 336 646 161 2.3×

CIFAR-100 98.0 363 286 >1000 532 >1000 397 1.3×
97.0 329 285 320 370 >1000 281 1.2×

Lowest Level
Personalization

3 Classes per Device

CIFAR-10 80.0 >1000 522 638 780 >1000 483 >2.1×
79.0 512 312 211 474 >1000 482 2.4×

CIFAR-100 75.0 >1000 254 949 750 750 714 >3.9×
66.0 950 127 365 660 660 275 7.5×

5 Classes per Device

CIFAR-10 76.0 >1000 240 698 982 >1000 284 >4.2×
75.0 585 207 159 582 892 213 3.7×

CIFAR-100 71.0 857 238 150 674 >1000 848 5.7×
70.0 817 235 148 510 >1000 284 5.5×

7 Classes per Device

CIFAR-10 77.0 782 180 306 708 >1000 487 4.3×
76.0 409 123 305 492 742 393 3.3×

CIFAR-100 73.0 >1000 195 287 616 >1000 825 >5.1×
71.0 307 160 252 362 672 538 1.9×

with respect to the meta model as in (Finn et al., 2017). For Proto adaptation, first batch is used to construct the class
representations ci,kw for all classes k in device i. Then, the second batch is used to calculate the loss of this representation.
The first and second batches corresponds to support and query samples respectively according to (Snell et al., 2017).

• During inference time, we adapt meta model using all available training data data for each device. Namely, if MAML
adaptation is used, the meta model is updated with the gradient using all training data. In case of proto adaptation, class
representations are derived using all available training data. This is for reporting purposes.

• Personalized federated learning is an iterative process where a global meta model is updated over communication rounds.
To increase stability of the algorithm, we perform gradient clipping at each device in each round. This stabilizes the cases
where device meta models diverge.

• Gradient clipping increases stability. However, even with clipping some device meta models can diverge. This failure
in one device causes the server meta model to diverge. To avoid this effect, we check each device before averaging the
parameters. If a device meta model has been diverged, we do not include that device in our server model update. We
found that this is a rare case but it improves the stability of the algorithms.

• We report performance of the meta model in our tables and figures. There are two options for the meta model which are
average of active device meta models and average of all device meta models. We found that having average of all devices
meta models give smoother curves than former one. We note that this is just for reporting purposes and we do not change
the training dynamics.

A.2. Ablative Analysis of PFL

Analysis of α parameter. We test the sensitivity of α hyperparameter in CIFAR-10, 5 class per device ALID
setting using Proto adaptation. By freezing other hyperparameters, we train PFLDyn (Proto) models with α
varies in a logarithmic range as {10−2, 10−1.5, 10−1, 10−0.5, 100}. The highest average test accuracies obtained are
{89.0%, 89.5%, 90.0%, 89.9%, 89.0%}. The performances are close to each other as such they differ within 1% for the α
range.

miniImageNet dataset (Vinyals et al., 2016). We further compare the algorithms in miniImageNet dataset. miniImageNet
dataset is a subset of ImageNet ILSVRC-2012 (Deng et al., 2009). There are a total of 100 classes where each class has 600
images. The images in miniImageNet are more realistic and harder than CIFAR-100. To use miniImageNet in personalized



Debiasing Model Updates for Improving Personalized Federated Training

Table 4. The number of model transmissions relative to one round of Fallah et al. (2020) required to reach the target test accuracy for the
highest and the lowest level personalization performance in the Anonymous Label Induced Diversity (ALID) scenario. Target accuracies
are selected among the highest accuracy of our methods and the highest accuracy of the competing method Fallah et al. (2020). The
methods without personalization are omitted due to their poor performance levels. The best method is highlighted and gain with respect to
Fallah et al. (2020) method is shown.

Test Performance Dataset Accuracy Fallah et al. (2020) PFLDyn (Proto) PFLDyn (MAML) PFLScaf (Proto) PFLScaf (MAML) P-Avg (Proto) Gain

Highest Level
Personalization

3 Classes per Device

CIFAR-10 100.0 >1000 84 92 126 216 173 >11.9×
99.0 153 59 73 86 114 83 2.6×

CIFAR-100 100.0 >1000 133 685 342 >1000 184 >7.5×
97.0 134 30 49 62 126 44 4.5×

5 Classes per Device

CIFAR-10 99.0 >1000 110 641 478 >1000 547 >9.1×
96.0 123 79 99 172 360 78 1.6×

CIFAR-100 100.0 >1000 683 445 >1000 >1000 628 >2.2×
97.0 552 122 143 124 446 41 13.5×

7 Classes per Device

CIFAR-10 98.0 >1000 245 475 432 >1000 350 >4.1×
91.0 343 70 83 138 300 74 4.9×

CIFAR-100 94.0 >1000 185 450 272 968 225 >5.4×
88.0 948 63 144 120 478 82 15.0×

Lowest Level
Personalization

3 Classes per Device

CIFAR-10 73.0 >1000 114 813 350 >1000 278 >8.8×
69.0 710 100 250 280 586 166 7.1×

CIFAR-100 73.0 >1000 192 721 662 >1000 692 >5.2×
61.0 391 78 256 188 846 109 5.0×

5 Classes per Device

CIFAR-10 72.0 >1000 100 245 306 988 263 >10.0×
61.0 349 60 68 142 292 55 6.3×

CIFAR-100 69.0 >1000 330 634 552 >1000 209 >4.8×
64.0 896 258 243 300 898 153 5.9×

7 Classes per Device

CIFAR-10 75.0 >1000 177 423 546 >1000 241 >5.7×
63.0 402 54 74 130 276 60 7.4×

CIFAR-100 65.0 >1000 165 400 206 >1000 155 >6.5×
56.0 934 58 231 104 434 65 16.1×

Table 5. The number of model transmissions relative to one round of Fallah et al. (2020) required to reach the target test accuracy for the
highest, the average and the lowest level personalization performance in miniImageNet, 5 class per device Anonymous Label Induced
Diversity (ALID) scenario. Target accuracies are selected among the highest accuracy of our methods and the highest accuracy of the
competing method Fallah et al. (2020). The methods without personalization are omitted due to their poor performance levels. The best
method is highlighted and gain with respect to Fallah et al. (2020) method is shown.

Test Performance Accuracy Fallah et al. (2020) PFLDyn (Proto) PFLDyn (MAML) PFLScaf (Proto) PFLScaf (MAML) P-Avg (Proto) Gain
Highest Level

Personalization
94.0 > 1000 171 499 370 > 1000 960 >5.8×
90.0 977 73 123 152 332 131 13.4×

Average
Personalization

74.5 > 1000 141 353 338 > 1000 349 >7.1×
66.2 943 63 137 152 386 83 14.9×

Lowest Level
Personalization

53.0 > 1000 140 224 264 > 1000 487 >7.1×
43.0 778 67 151 124 504 66 11.7×

setting, we first split dataset into training and test data points as such it becomes a dataset consists of 50000 training and
10000 test points. Then, we repeat the federated dataset generation procedure as explained in Appendix A.1.

We consider ALID, 5 classes per device setting with 100 deivices and 10% participation ratio. Table 5 shows the performances
of methods. As seen in the table, PFLDyn (Proto) leads to high communication savings.
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Figure 2. Smoothed convergence curves of methods in CIFAR-10 for average test accuracy among devices.
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Figure 3. Smoothed convergence curves of methods in CIFAR-100 for average test accuracy among devices.
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Figure 4. Smoothed convergence curves in CIFAR-10 of PFLDyn (Proto) and no customization baselines without adaptation and with
Proto adaptation in inference time.
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Figure 5. Smoothed convergence curves in CIFAR-100 of PFLDyn (Proto) and no customization baselines without adaptation and with
Proto adaptation in inference time.
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A.3. Proof

In this section, we mainly follow the analysis in Karimireddy et al. (2019) and Acar et al. (2021a) by modifying device
functions so that we now need to consider fi ◦ Ti. Additionally, we set variance to be 0 (σ = 0) and allow for arbitrary SGD
updates to ensure reaching a stationary point at each round. While the proof is straightforward, and follows Karimireddy
et al. (2019) and Acar et al. (2021a), these modifications make it somewhat necessary to write them down in detail. For the
sake of completeness, and for clarity we give the detailed proof here.

We first state our assumptions and the necessary notations, then we give proof of Theorem 1 separately in the following
subsections. A similar analysis can be done for PFLScaf by extending the proof in Karimireddy et al. (2019).

A.3.1. ASSUMPTIONS & NOTATIONS

Assumption 1. (Stationary point) We assume that PFLDyn finds a stationary point of the customized loss it minimizes.
Formally, PFLDyn satisfies

∇fi(wt+1
i ) +∇Rti(wt+1

i ) = 0 =⇒ ∇fi(wt+1
i )− gti + α(wt+1

i −wt) = 0 (6)

where wt+1
i = Ti(w

t+1
i ).

Assumption 2. (Smoothness) {fi ◦ Ti}i∈[m] functions are L smooth .i.e

‖∇fi ◦ Ti(w1)−∇fi ◦ Ti(w2)‖ ≤ L‖w1 −w2‖ ∀w1,w2, i (7)

Smoothness imply the following inequality,

fi ◦ Ti(w2)− fi ◦ Ti(w1) ≤ 〈∇fi ◦ Ti(w1),w2 −w1〉+
L

2
‖w2 −w1|2 ∀w1,w2, i (8)

If {fi ◦ Ti}i∈[m] functions are µ strongly convex and L smooth, they satisfy,

1

2Lm

∑
i∈[m]

‖∇fi ◦ Ti(w1)−∇fi ◦ Ti(w∗)‖2 ≤ F (w1)− F (w∗) ∀w1, (9)

− 〈∇fi ◦ Ti(w1),w3 −w2〉 ≤ −fi ◦ Ti(w3) + fi ◦ Ti(w2) +
L

2
‖w3 −w1‖2 −

µ

2
‖w1 −w2‖2 ∀w1,w2,w3, i

(10)

where w∗= arg min
w

F (w).

Assumption 2 controls {fi ◦ Ti}i∈[m] functions. In MAML transformation, Lemma 4.2 (Fallah et al., 2020) states that this
can be achieved for twice continuously differentiable, smooth and Lipschitz continuous fis. Proto transformation based on
Sigmoid function is smooth. Hence, if {fi}i∈[m] are smooth, {fi ◦ Ti}i∈[m] functions are smooth.

To simplify the analysis, we set some notation prior to proofs. At each round, a set of devices Pt are chosen to be active and
Algorithm 1 does not update stale devices in each round. We define yt+1

i models as the models that satisfy

∇fi ◦ Ti(yt+1
i )− gti + α(yt+1

i −wt) = 0. (11)

If device i is an active device at time t, i ∈ Pt, we have that yt+1
i = wt+1

i , otherwise wt+1
i = wt

i.

Combining Assumption 1 and g state update .i.e gt+1
i = gti − α

(
wt+1
i −wt

)
, we get an important relation as,

gt+1
i = ∇fi ◦ Ti(wt+1

i ) (12)

where we see that gi states store gradient information.

gi state update in local devices and g state update in the server reveals that,

gt+1 =
1

m

∑
i∈[m]

gt+1
i =

1

m

∑
i∈[m]

∇fi ◦ Ti(wt+1
i ) (13)
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where we see that g state store the average gradient information.

We give convergence analysis in terms of the average device meta models. We define average meta model at each round as
mt = 1

P

∑
i∈Pt

wt
i. Using g state update, we can relate mt model to PFLDyn Algorithm as wt+1 = mt+1 − 1

αg
t+1. We

continue to define some control variables for the analysis as,

Et =
1

m

∑
i∈[m]

E‖yti −mt−1‖2, Bt =
1

m

∑
i∈[m]

E‖∇fi◦Ti(wt
i)−∇fi◦Ti(w∗)‖2, Ct =

1

m

∑
i∈[m]

E‖wt
i −mt‖2.

We use Et and Bt variables in convex analysis and Et and Ct in nonconvex analysis. Intuitively, if PFLDyn Algorithm
converges as in Proposition 1, all these variables will converge to 0.

A.3.2. PROOF OF PROPOSITION 1

As stated in Proposition 1, we assume that the device meta models converge. Eq. 12 implies gis converge as, limt→∞wt
i =

w∞i =⇒ limt→∞ gti = ∇fi
(
w∞i,i

)
where w∞i,i = Ti(w

∞
i ).

Convergence of gis and the update rule, gt+1
i = gti − α

(
wt+1
i −wt

)
, imply w∞i = w∞ and w∞i,i = Ti(w

∞) i.e. each de-

vice meta model converges to the same meta model. Rearranging the server update gives gt = α
(
−wt + 1

|Pt|
∑
i∈Pt

wt
i

)
.

Since we have w∞i = w∞ for all is, we get limt→∞ gt = 0. Using Eq. 13 we conclude that limt→∞ gt =
1
m

∑
i∈[m]∇fi (w∞i ) = 0 where w∞i = Ti(w

∞). Hence, PFL eliminates the bias coming from heterogeneity of de-
vices and it converges to a stationary point of the personalized federated learning objective OPT.

A.3.3. STRONGLY CONVEX ANALYSIS

Theorem 2. If {fi ◦ Ti}i∈[m] functions are µ strongly convex & L smooth, PFLDyn Algorithm satisfies

E
[
F (MT )− F (w∗)

]
≤ 1

zT−1
O
(
αD +

m

P
G
)

where MT = 1
Z

∑T
t=1 z

t−1mt is the weighted average of mt meta models, mt = 1
P

∑
i∈Pt

wt
i is the average of active

device meta models at time t, zt =
(
1 + µ

α

)t
weights of the models, Z =

∑T
t=1 z

t−1 is the normalization coefficient,

α = 50
(
m
P µ+ L

)
is the hyperparameter, w∗ = arg min

w
F (w) is the best meta model, D =

∥∥w1 −w∗
∥∥2 is the distance

between the initial model and the best meta model, , G = 1
m

∑
i∈[m] ‖∇fi (w∗i ) ‖2, w∗i = Ti(w

∗) is a problem dependent
constant and the expectation is with respect to randomness due to active device set at each round (Pt).

Due to 1
zT

coefficient on RHS of Theorem 2, we conclude that ε error can be obtained in T = O
(
ln 1

ε

)
communication

rounds. To prove Theorem 2, we start with the following Lemma,

Lemma 1. If {fi ◦ Ti}i∈[m] functions are µ strongly convex & L smooth and α = 50
(
m
P µ+ L

)
, Algorithm 1 satisfies(

1 +
µ

α

) (
E‖mt+1 −w∗‖2 + rBt+1

)
≤ E‖mt −w∗‖2 + rBt − 1

5α
E
[
F (mt)− F (w∗)

]
where r = 16mα

1
Pα+Pµ−mµ .

Multiplying Lemma 1 with
(
1 + µ

α

)t−1
and summing over t give telescoping terms. Rearranging the resulting sum gives,

1

5α

T∑
t=1

(
1 +

µ

α

)t−1
E
[
F (mt)− F (w∗)

]
≤
(
E‖m1 −w∗‖2 + rB1

)
−
(

1 +
µ

α

)T (
E‖mT+1 −w∗‖2 + rBT+1

)
Eliminating the non-negative term and dividing both sides with 1

5αZ where Z =
∑T
t=1

(
1 + µ

α

)t−1
give,

T∑
t=1

E

[(
1 + µ

α

)t−1
Z

F (mt)− F (w∗)

]
≤ 1

Z
5α
(
E‖m1 −w∗‖2 + rB1

)
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Finally, applying Jensen Inq. on LHS gives

E
[
F (MT )− F (w∗)

]
≤ 1

Z
5α
(
E‖m1 −w∗‖2 + rB1

)
where MT = 1

Z

∑T
t=1

(
1 + µ

α

)t−1
mt. This proves bound in Theorem 2.

To prove Lemma 1, we relate ‖mt+1 − w∗‖2 to ‖mt − w∗‖2 by expressing the difference as ‖mt+1 − w∗‖2 =
‖(mt −w∗) + (mt+1 −mt)‖2 similar to gradient descent analysis. We first give a set of Lemmas that are used for the
terms arising in the analysis and prove them at the end.

Lemma 2. (m difference relation)

E
[
mt+1 −mt

]
= − 1

αm

∑
i∈[m]

E
[
∇fi ◦ Ti(yt+1

i )
]
.

Lemma 3. (m difference bound)
E
∥∥mt+1 −mt

∥∥2 ≤ Et+1.

We start expanding the term as,

E‖mt+1 −w∗‖2 =E‖mt −m∗ + mt+1 −mt‖2

=E‖mt −w∗‖2 + 2E
[〈
mt −w∗,m

t+1 −mt
〉]

+ E‖mt+1 −mt‖2

=E‖mt −w∗‖2 +
2

αm

∑
i∈[m]

E
[〈
mt −w∗,−∇fi ◦ Ti(yt+1

i )
〉]

+ E‖mt+1 −mt‖2

≤ 2

αm

∑
i∈[m]

E

[
fi ◦ Ti(w∗)− fi ◦ Ti(mt) +

L

2
‖yt+1

i −mt‖2 − µ

2
‖yt+1

i −w∗‖2
]

+ E‖mt −w∗‖2 + E‖mt+1 −mt‖2

=E‖mt −w∗‖2 −
2

α
E
[
F (mt)− F (w∗)

]
+
L

α
Et+1 − µ

α

1

m

∑
i∈[m]

E‖yt+1
i −w∗‖2 + E‖mt+1 −mt‖2

≤E‖mt −w∗‖2 −
2

α
E
[
F (mt)− F (w∗)

]
+

(
L

α
+ 1

)
Et+1 − µ

α

1

m

∑
i∈[m]

E‖yt+1
i −w∗‖2 (14)

where we use Lemma 2, Inq. 10 and Lemma 3.

We introduce more Lemmas to handle Et+1 and E‖mt+1 −w∗‖2 terms.

Lemma 4. (Et+1 bound) (
1− 4L2

α2

)
Et+1 ≤ 8

α2
Bt +

8L

α2
E
[
F (mt)− F (w∗)

]
.

Lemma 5. (Bt+1 bound)

Bt+1 ≤
(

1− P

m

)
Bt + 2L2 P

m
Et+1 + 4L

P

m
E
[
F (mt)− F (w∗)

]
.

Lemma 6. ( 1
m

∑
i∈[m]E‖y

t+1
i −w∗‖2 bound)

E‖mt+1 −w∗‖2 ≤
1

m

∑
i∈[m]

E‖yt+1
i −w∗‖2.

Let us sum Inq. 14, Lemma 4, 5 and 6 where Lemma 4, 5 and 6 are scaled with 2, 16 mα2
µ+α

Pα+Pµ−mµ and µ
α respectively. Let

α = 50
(
m
P µ+ L

)
and ignore non-positive terms, then we get Lemma 1. �
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We give proof of the Lemmas used above.

Proof of Lemma 2.

E
[
mt+1 −mt

]
= E

[(
1

P

∑
i∈Pt

wt+1
i

)
−wt − 1

α
gt

]
= E

[
1

P

∑
i∈Pt

(
wt+1
i −wt − 1

α
gt
)]

= E

[
1

αP

(∑
i∈Pt

∇fi ◦ Ti(wt
i)−∇fi ◦ Ti(wt+1

i )− gt

)]

= E

[
1

αP

(∑
i∈Pt

∇fi ◦ Ti(wt
i)−∇fi ◦ Ti(yt+1

i )− gt

)]

= E

 1

αm

∑
i∈[m]

∇fi ◦ Ti(wt
i)−∇fi ◦ Ti(yt+1

i )− gt

 = − 1

αm

∑
i∈[m]

E
[
∇fi ◦ Ti(yt+1

i )
]

where we use definition of mt and yt. We then use tower property where we take expectation conditioned on randomness
before time t. In this case, only Pt remains as a random variable. We take expectation noting that the probability of each
device becoming active is P

m . Finally, we use definition of gt in Eq. 13. �

Proof of Lemma 3.

E‖mt+1−mt‖2 = E

∥∥∥∥∥ 1

P

(∑
i∈Pt

wt+1
i −m

t

)∥∥∥∥∥
2

≤ 1

P
E

[∑
i∈Pt

∥∥wt+1
i −mt

∥∥2] =
1

P
E

[∑
i∈Pt

∥∥yt+1
i −mt

∥∥2] = Et+1

where we use definition of mt in the first equality. We then apply Jensen Inq on ‖‖2 function. Finally, we use tower
property and take expectation with respect to randomness prior to time t similar by noting that the probability of each device
becoming active is P

m . We arrive the definition of Et+1. �

Lemma 7.
E
∥∥gt∥∥2 ≤ Bt.

Proof.

E
∥∥gt∥∥2 =E

∥∥∥∥∥∥ 1

m

∑
i∈[m]

∇fi ◦ Ti(wt
i)

∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥ 1

m

∑
i∈[m]

∇fi ◦ Ti(wt
i)−∇fi ◦ Ti(w∗)

∥∥∥∥∥∥
2

≤ 1

m

∑
i∈[m]

E
∥∥∇fi ◦ Ti(wt

i)−∇fi ◦ Ti(w∗)
∥∥2 = Bt

where we use Eq. 13, optimality condition of w∗ as
∑
i∈[m]∇fi ◦ Ti(w∗) = 0 and Jensen Inq. on ‖‖ function. �

Proof of Lemma 4.

Et+1 =
1

m

∑
i∈[m]

E‖yt+1
i −mt‖2 =

1

m

∑
i∈[m]

E

∥∥∥∥yt+1
i −wt − 1

α
gt
∥∥∥∥2

=
1

α2

1

m

∑
i∈[m]

E‖∇fi◦Ti(wt
i)−∇fi◦Ti(yt+1

i )− gt‖2

=
1

α2

1

m

∑
i∈[m]

E‖∇fi◦Ti(wt
i)−∇fi◦Ti(w∗) +∇fi◦Ti(w∗)−∇fi◦Ti(mt) +∇fi◦Ti(mt)−∇fi◦Ti(yt+1

i )− gt‖2

≤ 4

α2

1

m

∑
i∈[m]

E‖∇fi◦Ti(wt
i)−∇fi◦Ti(w∗)‖2 +

4

α2

1

m

∑
i∈[m]

E‖∇fi◦Ti(mt)−∇fi◦Ti(w∗)‖2
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+
4

α2

1

m

∑
i∈[m]

E‖∇fi◦Ti(yt+1
i )−∇fi◦Ti(mt)‖2 +

4

α2
E‖gt‖2

≤ 4

α2

1

m

∑
i∈[m]

E‖∇fi◦Ti(wt
i)−∇fi◦Ti(w∗)‖2 +

4

α2

1

m

∑
i∈[m]

E‖∇fi◦Ti(mt)−∇fi◦Ti(w∗)‖2

+
4

α2

1

m

∑
i∈[m]

E‖∇fi◦Ti(yt+1
i )−∇fi◦Ti(mt)‖2 +

4

α2
Bt

≤ 8

α2
Bt +

4L2

α2
Et+1 +

8L

α2
E
[
F (mt)− F (w∗)

]
where we use definition of mt, Eq. 11, Jensen Inq. on ‖‖2 function, Lemma 7 and smoothness Inq. 7 and Inq. 9. Rearranging
the terms give the statement in the Lemma. �

Proof of Lemma 5.

Bt+1 =
1

m

∑
i∈[m]

E‖∇fi ◦ Ti(wt+1
i )−∇fi ◦ Ti(w∗)‖2

=

(
1− P

m

)
1

m

∑
i∈[m]

E‖∇fi ◦ Ti(wt
i)−∇fi ◦ Ti(w∗)‖2 +

P

m

1

m

∑
i∈[m]

E‖∇fi ◦ Ti(yt+1
i )−∇fi ◦ Ti(w∗)‖2

=

(
1− P

m

)
Bt +

P

m

1

m

∑
i∈[m]

E‖∇fi ◦ Ti(yt+1
i )−∇fi ◦ Ti(mt) +∇fi ◦ Ti(mt)−∇fi ◦ Ti(w∗)‖2

≤
(

1− P

m

)
Bt +

2P

m

1

m

∑
i∈[m]

E‖∇fi ◦ Ti(yt+1
i )−∇fi ◦ Ti(mt)‖2 +

2P

m

1

m

∑
i∈[m]

E‖∇fi ◦ Ti(mt)−∇fi ◦ Ti(w∗)‖2

≤
(

1− P

m

)
Bt +

2L2P

m
Et+1 +

2P

m

1

m

∑
i∈[m]

E‖∇fi ◦ Ti(mt)−∇fi ◦ Ti(w∗)‖2

≤
(

1− P

m

)
Bt +

2L2P

m
Et+1 +

4LP

m
E
[
F (mt)− F (w∗)

]

where we use definition of Bt+1, tower property by taking expectation with respect to randomness prior to time t, Jensen
Inq., smoothness Inq. 7 and Inq. 9. �

Proof of Lemma 6.

E‖mt −w∗‖2 =E

∥∥∥∥∥ 1

P

(∑
i∈Pt

wt
i −w∗

)∥∥∥∥∥
2

≤ 1

P
E

[∑
i∈Pt

∥∥wt
i −w∗

∥∥2] =
1

P
E

[∑
i∈Pt

∥∥yti −w∗
∥∥2] =

1

m

∑
i∈[m]

E
∥∥yti −w∗

∥∥2
where we use definition of mt, Jensen Inq., definition of yti and tower property by conditioning on randomness prior to time
t. Rearranging the terms gives the statement. �

A.3.4. CONVEX ANALYSIS

Theorem 3. If {fi ◦ Ti}i∈[m] functions are convex & L smooth, PFLDyn Algorithm satisfies

E
[
F (MT )− F (w∗)

]
≤ 1

T
O

(√
m

P

(
LD +

1

L
G

))

where MT = 1
T

∑T
t=1 m

t is the weighted average of mt meta models, mt = 1
P

∑
i∈Pt

wt
i is the average of active device

meta models at time t, w∗ = arg min
w

F (w) is the best meta model, D =
∥∥w1 −w∗

∥∥2 is the distance between the initial

model and the best meta model, , G = 1
m

∑
i∈[m] ‖∇fi (w∗i ) ‖2, w∗i = Ti(w

∗) is a problem dependent constant and the
expectation is with respect to randomness due to active device set at each round (Pt).
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We need T = O
(
1
ε

√
m
P

(
LD + 1

LG
))

communication rounds to reach ε expected precision as stated in Theorem 1.

The proof Theorem 3 is similar to strongly convex case. First we state a Lemma in which sum over time gives the statement
in the Theorem.

Lemma 8. If {fi ◦ Ti}i∈[m] functions are convex & L smooth α = 50L
√

m
P , Algorithm 1 satisfies

E‖mt+1 −w∗‖2 +
16

α2

m

P
Bt+1 ≤ E‖mt −w∗‖2 +

16

α2

m

P
Bt − 1

4α
E
[
F (mt)− F (w∗)

]
.

Summing Lemma 8 over time gives,

1

4α

T∑
t=1

E
[
F (mt)− F (w∗)

]
≤
(
E‖m1 −w∗‖2 +

16

α2

m

P
B1

)
−
(
E‖mT+1 −w∗‖2 +

16

α2

m

P
BT+1

)
Eliminating the non-negative term, dividing both sides with T

4α and applying Jensen give,

E
[
F (MT )− F (w∗)

]
≤

T∑
t=1

E

[
1

T
F (mt)− F (w∗)

]
≤ 1

T
α

(
‖m1 −w∗‖2 +

16

α2

m

P
B1

)

where MT = 1
T

∑T
t=1 m

t. We reach to the statement in Theorem 3.

The proof of Lemma 8 follows the same process as in the proof for strongly convex case. Namely, we start with expanding
‖mt+1 − w∗‖2 = ‖(mt − w∗) + (mt+1 −mt)‖2 term and relate ‖mt+1 − w∗‖2 to ‖mt − w∗‖2. We can use the
Lemmas defined for the strongly convex proof by noting that µ = 0. Then, Inq. 14 gives,

E‖mt+1 −w∗‖2 ≤ E‖mt −w∗‖2 −
2

α
E
[
F (mt)− F (w∗)

]
+

(
L

α
+ 1

)
Et+1 (15)

Let us sum Inq. 15, Lemma 4, and 5 where Lemma 4 and 5 are scaled with 2 and 16mp
1
α2 respectively. Let α = 50L

√
m
P

and ignore non-positive terms, then we get Lemma 8. �

A.3.5. NONCONVEX ANALYSIS

Theorem 4. If {fi ◦ Ti}i∈[m] functions are nonconvex & L smooth, PFLDyn Algorithm satisfies

E

[∥∥∥∇F (MT
)∥∥∥2] ≤ O( 1

T

(
L
m

P
∆1 + L2∆2

))
where MT = mτ is a random model, τ is uniformly drawn from {1, 2, . . . , T}, mt = 1

P

∑
i∈Pt

wt
i is the average of

active device meta models at time t, w∗ = arg min
w

F (w) is the best meta model, ∆1=F (w1)− F (w∗) is the distance

between the initial model and the best meta model in the function values, ∆2= 1
m

∑
i∈[m] ‖w1

i −w1‖2 is another problem
dependent constant and the expectation is with respect to randomness due to active device set at each round (Pt) and τ .

We need T = O
(
1
ε

(
LmP ∆1 + L2∆2

))
communication rounds to reach ε expected precision as stated in Theorem 1.

Similar to the previous proofs, we start with a Lemma as,

Lemma 9. If {fi ◦ Ti}i∈[m] functions are nonconvex & L smooth α = 50LmP , Algorithm 1 satisfies

E
[
F (mt+1)− F (w∗)

]
+

8L3

α2

2m− P
P

Ct+1 ≤ E
[
F (mt)− F (w∗)

]
+

8L3

α2

2m− P
P

Ct − 1

4α
E
∥∥∇F (mt)

∥∥2 .
Summing Lemma 9 over time gives,

1

4α

T∑
t=1

E
∥∥∇F (mt)

∥∥2 ≤ (E [F (m1)− F (w∗)
]

+
8L3

α2

2m− P
P

C1

)
−
(
E
[
F (mT+1)− F (w∗)

]
+

8L3

α2

2m− P
P

CT+1

)



Debiasing Model Updates for Improving Personalized Federated Training

E
[
F (mT+1)− F (w∗)

]
+ 8L3

α2
2m−P
P CT+1 term is non-negative. Dividing both sides with 1

4αT and eliminating the
non-negative term give,

T∑
t=1

1

T
E
∥∥∇F (mt)

∥∥2 ≤ 1

T
4α

(
F (m1)− F (w∗) +

8L3

α2

2m

P
C1

)
Consider an mt model from a random time t. Let τ is uniformly drawn from {1, 2, . . . , T} and MT = mτ is the
corresponding random model. Then we can express LHS as,

E
∥∥∇F (mT

)∥∥2 =

T∑
t=1

1

T
E
∥∥∇F (mt)

∥∥2 ≤ 1

T
4α

(
F (m1)− F (w∗) +

8L3

α2

2m

P
C1

)
where the expectation is with respect to randomness due to active device set at each round (Pt) and τ . This inequality is the
statement in Theorem 4.

The proof of Lemma 9 follows a similar idea in gradient descent analysis for nonconvex functions. We use the quadratic
smoothness bound (Inq. 8) on mt models. We start with Inq. 8 as,

E
[
F (mt+1)

]
− E

[
F (mt)

]
≤E

[〈
∇F (mt),mt+1 −mt

〉]
+
L

2
E‖mt+1 −mt‖2

=
1

α
E

〈∇F (mt),
1

m

∑
i∈[m]

−∇fi ◦ Ti(yt+1
i )

〉+
L

2
Et+1

≤ 1

2α
E

∥∥∥∥∥∥ 1

m

∑
i∈[m]

∇fi ◦ Ti(yt+1
i )−∇fi ◦ Ti(mt)

∥∥∥∥∥∥
2

− 1

2α
E
∥∥∇F (mt)

∥∥2 +
L

2
Et+1

≤ 1

2α

1

m

∑
i∈[m]

E
∥∥∇fi ◦ Ti(yt+1

i )−∇fi ◦ Ti(mt)
∥∥2 − 1

2α
E
∥∥∇F (mt)

∥∥2 +
L

2
Et+1

≤
(
L2

2α
+
L

2

)
Et+1 − 1

2α
E
∥∥∇F (mt)

∥∥2 (16)

where we use Lemma 2, 3, inequality 〈w1,w2〉 ≤ 1
2‖w1 + w2‖2 − 1

2‖w1‖2 ∀w1,w2, Jensen Inq. on ‖‖2 and smoothness
7.

We note that we need another set of Lemmas to bound Et+1 terms because Lemma 4 uses convexity. Let us introduce
nonconvex equivalence of the lemmas as,

Lemma 10. (Nonconvex Et+1 bound)(
1− 4L2

α2

)
Et+1 ≤ 8L2

α2
Ct +

4

α2
E
∥∥∇F (mt)

∥∥2 .
Lemma 11. (Nonconvex Ct+1 bound)

Ct+1 ≤ 2
m− P
2m− P

Ct + 2

(
P

2m− P
+
m

P

)
Et+1.

Let us sum Inq. 16, Lemma 10, and 11 where Lemma 10 and 11 are scaled with L and 8L3

α2
2m−P
P respectively. Let

α = 50LmP and ignore non-positive terms, then we get Lemma 9. �

Proof of Lemma 10.

Et+1 =
1

m

∑
i∈[m]

E‖yt+1
i −mt‖2 =

1

m

∑
i∈[m]

E

∥∥∥∥yt+1
i −wt − 1

α
gt
∥∥∥∥2
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=
1

α2

1

m

∑
i∈[m]

E‖∇fi◦Ti(wt
i)−∇fi◦Ti(yt+1

i )− gt‖2

=
1

α2

1

m

∑
i∈[m]

E‖∇fi◦Ti(wt
i)−∇fi◦Ti(wt) +∇fi◦Ti(wt)−∇fi◦Ti(yt+1

i )−∇F (mt) +∇F (mt)− gt‖2

≤ 4

α2

1

m

∑
i∈[m]

E‖∇fi◦Ti(wt
i)−∇fi◦Ti(wt)‖2 +

4

α2

1

m

∑
i∈[m]

E‖∇fi◦Ti(yt+1
i )−∇fi◦Ti(wt)‖2

+
4

α2

1

m

∑
i∈[m]

E‖∇F (mt)‖2 +
4

α2
E‖∇F (mt)− gt‖2

≤ 4

α2

1

m

∑
i∈[m]

E‖∇fi◦Ti(wt
i)−∇fi◦Ti(wt)‖2 +

4

α2

1

m

∑
i∈[m]

E‖∇fi◦Ti(yt+1
i )−∇fi◦Ti(wt)‖2

+
4

α2

1

m

∑
i∈[m]

E‖∇F (mt)‖2 +
4

α2

1

m

∑
i∈[m]

E‖∇fi◦Ti(mt)−∇fi◦Ti(wt
i)‖2

≤ 8

α2
L2Ct +

4L2

α2
Et+1 +

4

α2
E‖∇F (mt)‖2

where we use definition of mt, Eq. 11, Jensen Inq., definition of gt, Jensen Inq. and smoothness Inq. 7 respectively.
Rearranging the terms give the statement in the Lemma. �

Proof of Lemma 11.

Ct+1 =
1

m

∑
i∈[m]

E‖wt+1
i −mt+1‖2 =

1

m

∑
i∈[m]

E‖wt+1
i −mt + mt −mt+1‖2

≤
(

1 +
P

2m− P

)
1

m

∑
i∈[m]

E‖wt+1
i −mt‖2 +

(
1 +

2m− P
P

)
1

m

∑
i∈[m]

E‖mt −mt+1‖2

=

(
1 +

P

2m− P

)P

m

1

m

∑
i∈[m]

E‖yt+1
i −mt‖2 +

(
1− P

m

)
1

m

∑
i∈[m]

E‖wt
i −mt‖2


+

(
1 +

2m− P
P

)
1

m

∑
i∈[m]

E‖mt −mt+1‖2

=
2P

2m− P
Et+1 +

2m− 2P

2m− P
Ct +

2m

P

1

m

∑
i∈[m]

E‖mt −mt+1‖2

≤
(

2P

2m− P
+

2m

P

)
Et+1 +

2m− 2P

2m− P
Ct

where we use definition of Ct+1, inequality ‖w1 + w2‖2 ≤ (1 + k) ‖w1‖2 +
(
1 + 1

k

)
‖w2‖2, ∀z > 0, tower property by

taking expectation with respect to randomness prior to time t, definition of Et and Lemma 3. �


