
Supplementary Material for GP-Tree: A Gaussian Process Classifier for
Few-Shot Incremental Learning

A. Variational Bound & Updates
In Section 3.2 we presented the following variational lower
bound for the log marginal likelihood at each node:

C(c, µ̃, Σ̃) = Ep(f |f̄)q(f̄)q(ω)[log p(y|ω,f)]−
KL(q(f̄ ,ω) || p(f̄ ,ω)).

Here, we present the closed-form expression of it and the
update rules for the variational parameters µ̃, Σ̃ and c. In
the following constants are omitted for conciseness.

A.1. Explicit Form for the Variational Bound

We begin with the expectation term:

Ep(f |f̄)q(f̄)q(ω)[log p(y|ω,f)]

∝ Ep(f |f̄)q(f̄)q(ω)[(y − 1/2)Tf − 1

2
fTΩf]

= Eq(f̄)q(ω)[(y − 1/2)TKnmK
−1
mmf̄ −

1

2
Tr(ΩQnn)

− 1

2
f̄TK−1

mmKmnΩKnmK
−1
mmf̄]

=
1

2
{2(y − 1/2)TKnmK

−1
mm − Tr(ΛQnn)

− Tr(K−1
mmKmnΛKnmK

−1
mmΣ̃)

− µ̃TK−1
mmKmnΛKnmK

−1
mmµ̃},

where λi = Eq(ωi)[ωi] = 1
2ci
tanh(ci2), Λ = diag(λi).

Now, we move to the KL divergence term. Due to inde-
pendence between p(ω) and p(f̄), and the mean-field as a
variational family assumption we have:

KL(q(f̄ ,ω) || p(f̄ ,ω))

= KL(q(f̄)q(ω) || p(f̄)p(ω))

= KL(q(f̄) || p(f̄)) +KL(q(ω) || p(ω)).

The first KL term is between two Gaussian distributions and
has the following closed-form expression:

KL(q(f̄) || p(f̄))

= KL(N (µ̃, Σ̃) || N (0, Kmm)) ∝
1

2
{Tr(K−1

mmΣ̃) + µ̃TK−1
mmµ̃− log |Σ̃|+ log |Kmm|}.

The second KL term is between two Pólya-Gamma (PG) dis-
tributions, each of a mutually independent random variable,

and has a closed-form expression as well:

KL(q(ω)||p(ω)) =

n∑
i=1

KL(q(ωi) || p(ωi))

=

n∑
i=1

KL(PG(1, ci) || PG(1, 0))

=

n∑
i=1

log cosh
ci
2
− ci

4
tanh(

ci
2

).

The variational lower bound is obtained by summing all
these terms according to Eq. 13.

A.2. Variational Parameters Update

The update rules for the variational parameters are given
by taking the derivative of Eq. 13 w.r.t each of c, µ̃, Σ̃. At
each iteration, based on a mini-batch of samples B, we first
update the parameters cB ⊆ c corresponding to the samples
seen in the batch using coordinate ascent scheme while
holding µ̃, Σ̃ fixed. Then, µ̃, Σ̃ are updated according to a
stochastic natural gradient ascent scheme.

The parameters c have a unique maximum which is given
in a closed-form:

ci = (Qii +KimK
−1
mmΣ̃K−1

mmKmi+

µ̃TK−1
mmKmiKimK

−1
mmµ̃)

1
2 ,

(16)

where the subscript i denotes a specific row/column corre-
sponding to the ith sample.

For the parameters µ̃, Σ̃, the natural parameterization of the
variational Gaussian distribution can be used: η = Σ̃−1µ̃
andH = − 1

2Σ̃−1. The update at each batch then becomes:

∇̃ηC =
n

2|B|
K−1
mmK

B
mn(yB − 1/2)− η,

∇̃HC = −1

2
(K−1

mm +
n

2|B|
K−1
mmK

B
mnΛBKBnmK

−1
mm)−H.

(17)
Where we used the superscript B to denote only the
rows/columns of samples in the batch. Note that the natural
gradient updates maintain the positive-definiteness of Σ̃.

B. Learning Algorithm with VI
Algorithm 1 summarizes GP-Tree learning with VI and
DKL.

GP-Tree: A Gaussian Process Classifier for Few-Shot Incremental Learning

Algorithm 1 GP-Tree Inference with VI

Input: Data D = (X,y), I1 number of training iterations
with a NN, I2 Number of training iterations with GP-Tree
Init: gθ a NN parameterized by θ
For i = 1, ..., I1:

- Sample a mini-batch of data from D
- Learn gθ with a classification loss

End for
Build GP-Tree T as described in Section 3.1
Init: GP hyper-parameters φ, variational parameters
c,η,H , and inducing locations X̄ in the embedded space
For i = 1, ..., I2:

- Sample a mini-batch of data from D
- Obtain embedding forX with gθ(X)
- Traverse the tree (e.g., via in-order traversal)
For each node in the path:

- Update c according to Eq. 16
- Update η,H according to Eq. 17

End for
- Update θ, φ and X̄ using Eq. 15 and by replacing the
marginal likelihood terms with the variational lower
bound C(c, µ̃, Σ̃) per node

End for
Return gθ, T , X̄

C. Experimental Setup
This section provides further details about the experiments
shown in Section 5.

C.1. Inference With Gibbs Sampling - Sec. 5.1

Data. We used the pre-trained features extracted by Xian
et al. (2018) for the CUB 200-2011 dataset (Welinder et al.,
2010). The CUB 200-2011 dataset contains 200 classes of
bird species in 11,788 images with approximately 30 exam-
ples per class in the training set. Here, since the training set
size is limited, we used all 5994 training instances according
to the official split and we split the predefined test set to
2897 samples for validation and 2897 for testing.

Hyperparameter tuning. For all baselines, in all experi-
ments, we applied a grid search over the kernel type, either
normalized linear kernel or normalized RBF kernel (Snell &
Zemel, 2021). We consistently found that under this setting
the linear kernel generated better results (this was not true
in other settings). The output scale for the linear kernel
was chosen based on a grid search in {1, 4, 9, 18}. We used
20 Gibbs chains for the experiments with {4, 6, 8, 10, 20}
classes, 10 Gibbs chains for the experiments with 30 classes,
and 1 Gibbs chain for the experiments with {40, 50, 60}
classes. For the OVE baseline, we were able to use only 10
chains for the experiments with 8 classes and 3 chains for
the experiments with 10 classes. These experiments were

done on an NVIDIA V100 32GB GPU. We applied 1 Gibbs
sampling step before taking ω for the predictive distribution
calculations. In these experiments, we often found it useful
to make predictions with a single sample at the expected
value location instead of using the 1D Gaussian-Hermite
quadrature.

C.2. GPC With DKL - Sec. 5.2

In all experiments we trained from scratch a ResNet-18
(He et al., 2016) adjusted for CIFAR images size with a
final embedding layer size of 1024. The Batch size was
set to 256. We used SGD with a momentum of 0.9 and a
scheduler that decays the learning rate by a factor of 0.1 at
epochs 100 and 150. We allocated 10% from the training
set for validation using stratified sampling. We applied a
grid search over the initial learning rate in {0.1, 0.01} for
all methods. We found that an initial learning rate of 0.01
was preferred for our method. We used natural gradient de-
scent with a learning rate of 0.05 for learning the variational
parameters. In GPDNN experiments we also searched for
an initial learning rate in {0.001, 0.0005} and experimented
with the Adam optimizer (Kingma & Ba, 2014). In all meth-
ods, we applied pre-training using a NN with a softmax
layer after the last embedding layer and the cross-entropy
loss. We searched over the number of pre-training epochs in
{0, 20, 40, 60, 80}. For GP-Tree, 80 epochs yielded the best
results. We used 40 inducing points per class in both GP-
Tree and GPDNN experiments. For the SV-DKL baseline,
we experimented with a grid size of {64, 128, 256}. In all
experiments of all methods, we used the RBF kernel over L2
normalized input vectors. In CIFAR-100 experiments of the
GPDNN baseline, we also applied an extensive grid search
for the probability of labeling error without any success to
achieve reasonable accuracy. In GP-Tree experiments, we
found it beneficial to assign a weight to the loss term at each
node that is inversely proportional to the amount of data
used by that node for inference. It is achieved by dividing
the loss at each node by the total number of training samples
relevant for that node.

C.3. Few-Shot Class-Incremental Learning - Sec. 5.3

Experimental protocol. The experiments in this part
largely followed the protocol suggested in (Tao et al., 2020)
for comparability. We adopted the 10- way 5-shot setting
for CUB, the first 100 classes were set as base classes, the
remaining 100 classes were split into 10 incremental ses-
sions. For mini-ImageNet, we followed the 5-way 5-shot,
with 60 base classes, and 40 novel classes for a total of nine
sessions. We used the official train/test split published by
Tao et al. (2020). We pre-allocated a small portion from the
training set of the base classes for a validation set. From the
CUB dataset, we took 2 samples per class. From the mini-
ImageNet dataset, we allocated 5% using stratified sampling.

GP-Tree: A Gaussian Process Classifier for Few-Shot Incremental Learning

Table 4. Class-incremental few-shot learning on CUB-200-2011. Tree construction variants. Test accuracy averaged over 10 runs.

Method Sessions

1 2 3 4 5 6 7 8 9 10 11

Session Tree 72.84 67.00 62.64 57.98 54.28 50.95 48.79 46.65 44.38 42.65 40.87
Rebuild Tree 72.84 65.98 61.76 57.19 53.85 51.04 48.79 47.06 44.61 43.26 41.72
GP-Tree 72.84 67.00 62.98 58.19 54.84 51.77 49.40 47.57 45.47 44.05 42.72

In CUB experiments we fine-tuned a pre-trained ResNet-
18 on ImageNet while in mini-ImageNet experiments we
trained it from scratch. The final embedding layer size was
set to 512. The mini-batch size at the first session was set to
128 in all experiments and, in later sessions, it included all
available samples. We used SGD with a momentum of 0.9.

Hyperparameter tuning. In the experiments of GP-Tree,
SDC (Yu et al., 2020) and PODNet (Douillard et al., 2020),
we applied a grid search over the initial learning rate at the
first session in {0.1, 0.01, 0.001}. In CUB experiments it
was set to 0.01. In mini-ImageNet experiments, it was set
to 0.1. At the first session, we trained the models for 100
epochs with a scheduler that decreased the learning rate by
a factor of 0.1 at epochs 40 and 60. At later sessions, for our
method, there was nothing to set, as it doesn’t require any
learning. In SDC and PODNet experiments we trained for
100 epochs and followed the training protocols suggested by
each. For SDC, we applied a grid search over the embedding
network in {LwF,MAS}, and γ, the hyper-parameter that
controls the trade-off between the metric learning loss and
the other losses, in {5e − 5, 5e − 4, 5e − 3, 5e − 2, 5e −
1, 1e4, 1e6}. For this baseline, we found it beneficial to start
with a few epochs of training using a softmax layer and the
cross-entropy loss and only afterward train with the triplet
loss as advocated in the paper. When training with the triplet
loss, we also needed to optimize the ratio of positive and
negative examples at each batch to make it work.

GP-Tree configurations. In GP-Tree experiments, at the
initial session, we first applied a few epochs of training
using a NN only with a softmax layer and the cross-entropy
loss. Then, after 20 epochs in CUB experiments, and 40
epochs in mini-ImageNet experiments, we transitioned to
learning with GP-Tree as described in Section 3. We used
5 inducing points per class and the RBF kernel on all GPs
with an initial length-scale of 1 and an initial output-scale
of 4. We learned the variational parameters with natural
gradient descent and a learning rate of 0.05. Here, as well,
the inputs to the kernel were normalized by their L2 norm.
During training, we assigned a weight to the loss term at
each node that is inversely proportional to the amount of
data used by that node for inference. During novel sessions,
we used the RBF kernel with a fixed length-scale of 1 and a
fixed output-scale of 8. At the end of each few-shot session,

(a) Gibbs vs VI (b) # of Gibbs Chains

Figure 4. Test accuracy when varying the number of classes. Left
Gibbs sampling vs variational inference, Right varying the number
of Gibbs chains. Results are the average over 10 runs (± SEM) on
pre-trained features of samples from the CUB 200-2011 dataset.

we saved the 512 dimensional representation of the samples
for later sessions.

D. Additional Experiments
D.1. GP-Tree Inference

The performance of GP-Tree depends on several factors.
Here, we test (1) the effect of using VI against using a
Gibbs sampler and, (2) the effect of the number of Gibbs
chains. Both analyses were made by observing the test
accuracy on the CUB-200-2011 dataset under the setup
presented in Section 5.1. The results are shown in Figure 4.
Figure 4(a) shows a large performance gap in favor of the
Gibbs sampling. This result is not surprising since the Gibbs
sampler, asymptotically, samples from the correct posterior
while in VI we use an approximate one. The figure also
shows that the gap is amplified as the number of classes
increases. This result is another justification for using Gibbs
sampling when learning novel classes under the incremental
learning setup. Figure 4(b) shows that as we increase the
number of chains the accuracy increase as well; however,
the difference is marginal when using four chains or more.

D.2. Sensitivity Analysis for FSCIL

When we adjusted GP-Tree to the few-shot class-
incremental learning setting, we made several design
choices. Here, we examine some of them. We will show
that GP-Tree is fairly robust to these choices.

GP-Tree: A Gaussian Process Classifier for Few-Shot Incremental Learning

(a) # of Rep. Samples (b) Kernel Choice

Figure 5. Test accuracy for few-shot class-incremental learning as
a function of the number of representative samples per class (left)
and the kernel choice (right). Results are the average over 10 runs
on the CUB 200-2011 dataset.

Tree construction. You may recall that under the FSCIL
setup, after learning on the base classes, we retain the orig-
inal tree intact, and at each novel session t, we build a
sub-tree from samples’ representations that appeared in ses-
sions D2, ..., Dt. We then connect this sub-tree to the base
classes tree with a shared root node. In Table 4 we present
two alternatives for the tree construction used for inference
during novel sessions (t > 1). (1) Session Tree, instead of
building a tree from samples in all sessions D2, ..., Dt, in
each session we build a tree from classes that appeared at
the current session only. Then, we connect this sub-tree with
the tree that is already built via a shared root; (2) Rebuild
Tree, building the entire tree at each new session and fitting
the Gibbs sampling variant of our approach to each node. To
account for base classes we use the inducing inputs. Table 4
shows that both alternatives yield good results; however, the
approach chosen for GP-Tree is superior.

Kernel analysis. The results presented in the main paper
for few-shot class-incremental learning were with the RBF
kernel and 5 representative samples per class. Here we in-
vestigate both choices in Figure 5. Figure 5(a) compares
between 1− 5 representative samples per class. The figure
shows that all alternatives achieve high accuracy across all
sessions; however, as expected, when using less represen-
tative samples there is a slight degradation in performance.
The impact becomes more severe in later sessions. Fig-
ure 5(b) shows a comparison between the RBF, Matern and
Linear kernels. Similar to (Snell & Zemel, 2021) we found
gain in normalizing the inputs to the kernels by their L2
norm. Therefore, we applied this method in all settings and
for all kernel choices. However, unlike in the few-shot learn-
ing case presented in (Snell & Zemel, 2021), in which the
normalized linear kernel (also referred to as cosine kernel
in that study) yielded the best results, in our case either the
RBF kernel or the Matern kernel are preferred by a large
margin, especially on novel sessions. We hypothesis that on
the base classes the NN outputs a representation that is more
linearly separable. Therefore, all kernels perform similarly
on them. However, the representation of novel classes is

Figure 6. Average forgetting across sessions. Results are the aver-
age over 5 runs on the CUB 200-2011 dataset.

more mixed in the embedding space. Therefore, a stronger
kernel that generates non-linear decision boundaries is re-
quired.

D.3. Forgetting Across Sessions

In this part, we examine how GP-Tree performance varies
across sessions through the average forgetting (Chaudhry
et al., 2018). The average forgetting was designed to esti-
mate the forgetting of prior tasks. Let αkj denote the accu-
racy of the learner on the jth task at session k > j. The for-
getting of the jth task is defined as gkj = max

l∈{1,...,k−1}
αlj −

αkj . This quantity is measured for every task j seen thus far
at each new session. Then, to get an estimate of the average
forgetting we may use: 1

k−1

∑k−1
j=1 g

k
j . Figure 6 shows the

average forgetting across all classes and sessions on the
CUB 200-2011 dataset for GP-Tree, SDC (Yu et al., 2020),
and PODNet (Douillard et al., 2020). From the figure, we
notice a minor forgetting for GP-Tree. When comparing the
performance of the three methods across all sessions, we
noticed that GP-Tree and SDC showed better performance
on the base classes while PODNet was more balanced with
a slight advantage to the novel classes.

