
Supplementary Material
Towards Rigorous Interpretations: a Formalisation of Feature Attribution

Darius Afchar 1 2 Romain Hennequin 1 Vincent Guigue 2

Supplementary Material
We list some general notations we use throughout this paper:

Symbol Meaning

∧ Logical AND
X ,Y input and output space
X,Y input and target random variable (r.v.)
x, y input and target sample
pX , pY |X distribution of X; Y conditional to X
U uniform distribution
N multivariate normal distribution
B Bernoulli distribution
~ei i-th canonical vector of Rn
[n] set of integer from 1 to n
I subset of integer
f , fi, ... denotes a function
R, Ri, ... denotes a binary relation (b.r.)
D denotes a dataset (hence defines a b.r.)
XI r.v. X projected to the input features with

indexes I
RI b.r. R with its domain projected to I
fI function with its domain projected to I
EY |X mean equipped with the distribution of Y |

X = x
δA indicator function of set A

A. fANOVA instance-wise selection failure
We detail our claim that the fANOVA is indicative of a
global feature dependence, but not an instance-wise one,
with a simple example.

Let us take a binary bidimensional problem with input X =
(X1, X2) ∈ {0, 1}2 following a uniform probability and we
try to compute the subset dependence of a AND function f –
i.e. Y = f(X) = X1 ∧X2. The fANOVA gives the unique

1Deezer, Paris, France 2LIPS, Paris, France. Correspondence
to: Darius Afchar <research@deezer.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

decomposition:

f∅ = 1/4 = µ =

[
µ µ
µ µ

]
f1 =

[
−µ µ

]
=

[
−µ µ
−µ µ

]
f2 =

[
−µ
µ

]
=

[
−µ −µ
µ µ

]
f1,2 =

[
µ −µ
−µ µ

]
For convenience, we have represented the functions as ma-
trices indicating their four possible values for X , where X1

varies along the columns and X2 along the rows. We check
that the value given by f1 (resp. f2) only depends on X1

(resp. X2). Then we check the identifiability constraint that
each function other than f∅ is zero-centered, and that we
indeed obtain a decomposition of f :

f = f∅ + f1 + f2 + f1,2

=

[
0 0
0 4µ

]
=

[
0 0
0 1

]
= X1 ∧X2

Meanwhile, the selection solution is the following:

attr(f) =

[
{{1}, {2}} {{1}}
{{2}} {{1, 2}}

]
which can be found by testing all four possible restrictions.
For instance, for p0 = (0, 0), we have p0 ∈ A1(f) and
p0 ∈ A2(f) as the value of f is constant and equal to zero
in their respective complementary directions, and those two
solutions are minimal – i.e. p0 6∈ A∅(f) as we have a
different 1 value on the complementary direction

−−−→
(1, 1).

This solution is not translated from the strong symmetry of
the ANOVA. For instance, the bivariate term only appear
when X = (1, 1), but f1,2 is non-null everywhere. The
same discussion applies for X = (0, 0) for which two so-
lutions co-exist, but this is not obvious only looking at the

Supplementary Material: Towards Rigorous Attribution

ANOVA decomposition. As mentioned, this is due to the
centering constraint that creates ”artifacts” in all subfunc-
tions – we say this from the standpoint of instance-wise
attribution.

B. Selector-predictor degenerate selection
solutions

We show with a constructive counter-example that selector-
predictor methods have degenerate solutions that are optimal
relative to their objective function, but with meaningless
selected features. Our main point will be that, contrary to the
intuition behind selector-predictor, splitting the model into
a selector and a predictor does not enable to split the joint
prediction and selection task between the two: predictions
abilities may percolate to the selector and vice-versa. We
show an extreme solution where the full prediction work is
done by the selector.

We study the model L2X (Chen et al., 2018) for which the
selector uses a reparametrisation trick to sample k selections
of features. We do not fully detail the method since most of
the difficult labor is related to finding a relevant relaxation
allowing to train the selector model Sel with its discretised
output through a gradient-descent. We skip training and
directly study theoretical optimal parameters. The objective
function of the model on each target sample (x, y) is the
cross-entropy loss l (y; Pred(x� v(x))), where v is a fea-
ture mask sampled for each x with a predefined and fixed
number k of non-null values.

During training, sampled v are relaxed to [0, 1]n and have
to explore different values for a given x around logit pre-
dictions of the selector Sel(x). Again, we ignore these
details as after the training phase Sel is trained and frozen,
v is not longer sampled, it is binary and deterministically
mapped from x as the top-k logit values of Sel(x). For
simplicity, we absorb the top-k filtering into Sel and directly
denote with Sel(x) the binary mask of the k selected fea-
tures. For our selector and predictor model parametrised
by θ, we will thus write the expected loss after training
L(θ) = E[l(Y ; Predθ(X � Selθ(X)))]. We denote the min-
imal theoretical loss L̂ = min

θ
L(θ).

We can compare this loss with the unmasked case where
we would simply predict Y without restricting the num-
ber of usable input features in the predictor: L̂u =
min
θ

E[l(Y ; Predθ(X))]. In general, we have L̂ ≥ L̂u as

the expressive power of the predictor is superior when hav-
ing access to any order of interaction between variables.

Here, we assume that our task admits a unique instance-
wise selection solution everywhere with exactly k fea-
tures, i.e. the parameter k in the selector is well tuned
and the problem well-posed. This means that given the

ground-truth selection random variable S∗, we have that
L∗ = min

θ
E[l(Y ; Predθ(X � S∗))] will be equal to the

optimal loss in the unmasked case L̂u as S∗ only captures
features that are relevant to predict Y . Now, if the selec-
tor could approximate S∗ with a set of parameters θ∗, we
would thus have L(θ∗) tends to L∗, and consequently L(θ∗)
tends to L̂u. However, we do not have access to S∗ and
cannot evaluate how good the approximation is, we can
only compare L(θ) to its theoretical bound L∗, that, when
we assume that k is well chosen, is equal to the observ-
able unmasked bound L̂u. The question we should now ask
ourselves is whether having found parameters θ̂ such that
L(θ̂) = L̂ = L̂u = L∗ means that we have Selθ̂(X) = S∗?

This is critical as selector-predictor models are evaluated
in comparison to their non-input-restricted counterpart as a
proxy of their approximation of S∗: it is often shown that
there is no significant drop in performances while selecting
a minimal number of input features. We now show that
there exists many equivalent and optimal solutions θ′ such
that L(θ′) = L∗ and Selθ′(X) verifies the constraint of
selecting k features but while being nowhere close to S∗ or
to having any interpretation value.

For that we consider the case of a categorical task, and
assume that Y is one-hot encoded as g(Y) ∈ {0, 1}C onto
the C possible classes in Y , where g denotes the one-hot-
encoding function. Additionally, we introduce a random
permutation σ of [C], and its inverse permutation σ−1. We
assume we know the ground-truth value of k. Finally, we
assume that the input dimension n is greater than C+k−1,
which is quite common, and we denote a padding operator
p : RC 7→ Rn that completes any vector of size C with
k − 1 ones and n− (k − 1) zeros to fit in Rn.

Now, as in L2X, we assume that the predictor and selector
are parametrised with two families of neural networks with
comparable number of parameters. We denote fθ a member
of the selector neural network family and delete n− C neu-
rons in the output layer to obtain a C-dimensional output.
Though fθ belongs to the selector family, we use it to ap-
proximate Y : we denote by θ̂f some optimal parameter asso-
ciated with the optimal loss L̂s = min

θ
E[l(g(Y); fθ(X))]1.

And we have,

L̂s ' L̂u

The ' holds if the selector and predictor families have a
comparable expressive power. We have an equality with the
default implementation of L2X.

Then, we come back to the selector-predictor objective and

1We assume that fθ outputs probability vectors, e.g. using
a softmax in its last layer. Before this expression the one-hot
encoding operations g(Y) were eluded in the losses.

Supplementary Material: Towards Rigorous Attribution

the trick is to study the solution given by

Selσ(x) = p(σ(fθ̂f (x)))

Predσ(x) = σ−1

δ|x1|>0

...
δ|xC |>0

We check that this solution is indeed part of the parametrised
family for the predictor and selector. We have built fθ
to have the right selector architecture, except for n − C
missing neurons in its last layer; the composed permutation
σ can be crafted by permuting the C output neurons of fθ;
composing by p is done by adding n− C constant neurons
in the output layer and we thus obtain the right architecture.
As for the predictor, the only new element is the non-null
indicator functions on theC first input feature. If we were to
assume the activation were the step function H , this would
be straight-forward to approximate with three neurons, e.g.

δ|xi|>ε = H(H(xi ≥ ε) +H(−xi ≥ −ε) ≥ 2)

With sigmoid and ReLU activations, this can be done using
big multiplicative coefficients. Overall, we need O(C) neu-
rons on two layers to approximate the function Predσ. The
other n−C input features of the predictor are ignored using
zero weights in the neurons parameters. It is reasonable to
think that with neural network architectures used in practice,
Predσ is indeed part of the predictor parametrised family, or
can be closely approximated.

We denote the found parameters θ̂σ . This particular solution
enables us to have

Predθ̂σ (x� Selθ̂σ(x)) = fθ̂f (x)

L(θ̂σ) ' L̂u

In essence, we are estimating Y in the selector and en-
coding this information in the selection mask we pass to
the predictor. We check that the found selector returns a
binary mask with exactly k non-null components: one in
the C first components that encodes the label, k − 1 in the
padding operator for the remaining features.

What about the found selections? We have C! possible
optimal set of parameters θ̂σ , all of them maximal according
to the L2X objective function, with them, all first C features
ofX can be made equally maximally important for selection,
regardless of data. We conclude that the selector solution
does not translate any truth about dependence between Y
and X . A even more efficient label-passing degenerate
case can be obtained by replacing g with a function that
encodes labels with binary numbers, only requiring n >
log2(C) + k − 1 instead of n > C + k − 1.

INVASE (Yoon et al., 2019) is similar to L2X with a La-
grangian penalty instead of constraining to have exactly k

non-null selected features; it is similarly prone to degenerate
selection solutions, but it goes even further. It must be no-
ticed that we only require to output one non-null component
in the selector to pass the true label and have an optimal
prediction. This means that with a ground-truth selection
cardinality k > 1, our degenerate solutions yield an opti-
mal prediction loss with a lower regularisation penalty
than when using S∗, since S∗ may have more than one re-
quired features for selection. We have observed such effect
in practice: INVASE has good prediction performances and
returns very sparse selection masks correlated with ground-
truth labels and having nothing to do with ground-truth
selection.

One way to avoid label-passing issues is to verify the prop-
erties 1 and 2 we propose.

C. Tasks generation
In this section we explain in detail how the centroids
(c1, ...cm), their label yj and ground-truth selection s∗j are
chosen. The unifying condition of these latter variables
is that s∗j ⊂ [n] should be the unique subset of minimal
cardinality verifying cj ∈ As∗j (f), with f = p(y = 1|x).

C.1. Binary Hypercube

We first propose to study the case of centroids forming
the vertices of an hypercube. For that, we choose a sub-
set of indexes Jk ⊂ [n] and study a set Qk that contains
the vertices coordinates of an hypercube of dimension |Jk|
placed in X with its edges aligned with the canonical vec-
tors {~ei | i ∈ Jk}. Since hypercube graphs are bipartite
(Foldes, 1977), we can assign a binary label to each vertex
with the nice property that for a given point x ∈ Qk and
associated label y, each single coordinate change to x to
find another point x′ ∈ Qk will yield a neighbor associated
to an opposite label ȳ (i.e. we can color the graph with
labels y and ȳ). This is illustrated in figure 1, we display
a generated distribution pX,Y with centroids defined using
two hypercubes: one of dimension 2 (also known as the
XOR problem) and another of dimension 1 oriented along
~e1. We have added dotted lines to highlight the edges of the
considered hypercubes. Therefore, for all x ∈ Qk, for all
i ∈ Jk we have x ∈ Bi(f): all points of Qk have neighbors
with contradicting labels along the dimensions indexed in
Jk. Using the property 2 on hierarchy, for H ⊂ [n] such
that H ∩ Jk 6= ∅, i.e. if H contains at least one index of Jk,
we have x ∈ BH(f). By defining H ′ (Jk and choosing
H = [n] \H ′, we check that H ∩ Jk = Jk \H ′ 6= ∅, and
we obtain x ∈ BH(f) thus x 6∈ AH′(f) for all H ′ (Jk.
Since the hypercube is defined on the dimensions of Jk,
we have x ∈ AJk(f) and know that it is no use select-
ing dimensions outside of Jk. We conclude that Jk is the
unique minimal subset verifying the functionality property,

Supplementary Material: Towards Rigorous Attribution

and in general that any set of centroids forming an hy-
percube defined on the dimensions indexes J and with
labels corresponding to the coloring of the graph will
have the unique selection solution J for all its vertices.

−0.4 −0.2 0.0 0.2 0.4
x1

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

x2

p'(x,y)

Figure 1. Distribution of task 2 14 The centroid cj are indicated
with colored dots – red for yj = 1 and blue for yj = 0. Dotted
lines connect centroids with opposite labels and that differ by only
one coordinate, i.e. that will be superposed if projected on the
other coordinate. The corresponding Gaussian mixture for the
distribution with imperfect dependence is hinted in black contours.

C.2. Hypercubes superposition

We have found a way to create global unique selection
solution using hypercubes. We can then superpose sev-
eral different hypercubes in X . We avoid interactions
between hypercubes by storing the coordinates occupied
by each hypercube k on each dimensions (e.g. in figure
1, the bidimensional hypercubes occupies the coordinates
{−0.375,−0.125} on the axis x1 and {0, 0.25} on axis x2),
and ensuring that others allocate different coordinates (e.g.
in figure 1, the univariate hypercube occupies the coordi-
nates {0.125, 0.375} on x1 and {−0.25} on x2, which does
not collide with the other hypercube).

C.3. Centroids minimum relative distance

To create the distribution with imperfect dependencies, we
also ensure that all occupied coordinates are equally spaced
with a minimum distance σ. Thus, when defining the Gaus-
sian mixture p′X,Y using the centroids as means, we are
able to choose the global standard-deviation as a multiple
of σ (typically σ/2) to control the superposition ratio of
the Gaussian distributions. With our previous example, the
obtained optimal mapping f is shown in figure 2.

−0.4 −0.2 0.0 0.2 0.4
x1

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

x2

p'(y|x)

Figure 2. Optimal mapping for task 2 14 We plot the condi-
tional probability corresponding to figure 1 with variance σ/2.

C.4. Hypercube erosion

Lastly, we wanted to create more diversity and break the
global ground-truth selection within each hypercube. For
that, we randomly erase some centroids in each hyper-
cube with a fixed probability Pe. For each centroids cj
we denote the set of its remaining hypercube neighbors
Nj . Note that for all c ∈ Nj , c differs from cj by only
one coordinate and has an opposite label. Within its hy-
percube k, cj has its neighbors located on the dimensions
Jj = {i | ∃c ∈ Nj , Picj 6= Pic}. By construction,
Jj ⊂ Jk. Then, by the same reasoning as before, we know
that for all i ∈ Jj , cj ∈ Bi(f) and that cj ∈ AJj (f); and
thus deduce that Jj is the minimal dependence subset for
cj and hence its selection solution s∗j . From this last result,
a simple principle emerges to visually deduce instance-
wise selection for centroids: we only have to find the set
of their hypercube neighbors to deduce the set dimensions
indexes containing contradicting labels, then Jj = s∗j . We
have conveniently drawn all neighbor relations in our fig-
ures with dotted lines. This last principle is only valid while
working with hypercubes.

We found this ”erosion” procedure that deletes random
points from an hypercube to be quite interesting as from an
initial global selection solution Jk we create many diverse
solutions s∗j ⊂ Jk. An example is given in figure 3 where
one point was erased from a bidimensional hypercube (i.e.
a XOR). Instead of having a global selection S∗ = {1, 2},
we end up with s∗−0.125,0.125 = {1}, s∗0.125,0.125 = {1, 2}
and s∗0.125,−0.125 = {2}.

Supplementary Material: Towards Rigorous Attribution

−0.2 −0.1 0.0 0.1 0.2
x1

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

x2
p'(x,y)

−0.2 −0.1 0.0 0.1 0.2
x1

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

x2

p'(y|x)

Figure 3. Task 2 6 The legend is similar to figure 1 and 2.

C.5. Full generative process

To create a collection of tasks, we sample a number of hy-
percubes to create, generate each one by sampling Jk that
gives its orientation along the dimensions, and its occupied
coordinates, and finally, we randomly erase some points of
the hypercube and update S∗ accordingly. The correspond-
ing algorithm is provided in Python in the code repository.
More generated examples are given in figures 4 and 5, as
well as examples for X ⊂ R3 in figure 6 and 8.

D. Experimental details
We list more implementation details, configurations and
tuned parameters for the methods we evaluate.

LIME (Ribeiro et al., 2016)

We set the sampling number to 1000 and the ridge regression
parameter to 1, as in the official implementation. Everything
else is similar to the official repository.

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
x1

−0.2

0.0

0.2

x2

p'(x,y)

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
x1

−0.2

0.0

0.2

x2

p'(y|x)

Figure 4. Task 2 23 The legend is similar to figures 1 and 2.

Shapley Sampling

We set the maximum sampling number to 128, meaning
that up to dimension 7, we compute exact shapley values,
and sample permutations otherwise. We tried augmenting
this number to 512, which did yield a non-significative 0.2
accuracy improvement that we chose not to report due to
the important trade-off in computation time. We wanted to
keep the table clear with a computation budget comparable
to GA∞M that achieved similar performances.

GAM, ... GA∞M

No hyper-parameter. These methods directly use the condi-
tional probabilities p(y = 1 | xI), for which we have access
to an analytical form, to estimate each restricted expert fI .
Then we use the categorical attribution measure (3), which
translates in our case as attrI(x) = max(fI(x), 1− fI(x)).

Grad, Grad × Input (Simonyan et al., 2014)

No hyper-parameter. We use noise-free analytical expres-
sions for f and ∇f .

Integrated Gradient (Sundararajan et al., 2017)

We set the sampling number to 50 for the integral estima-
tion. The baseline point is chosen as the mean of the task
centroids.

Supplementary Material: Towards Rigorous Attribution

Expected Gradient (Erion et al., 2019)

We set the sampling number to 500 for tuples of α interpo-
lation coefficients and background points taken among the
task centroids.

SHAP (Lundberg and Lee, 2017)

We implement SHAP similarly to Shapley Sampling, the
only difference is in the choice of the baseline value. With
the original paper notation, fS(x) = f(xS ,ES̄ [xS̄]). Then
we directly use attrI(x) = φI(x).

Archipelago (Tsang et al., 2020)

No hyper-parameter.

InterpretableNN (Afchar and Hennequin, 2020)

With the original paper notation, we choose giθ(x) =
4(F iθ(x)− 0.5)2, with F our model output in [0, 1].

L2X (Chen et al., 2018)

We instantiate two three-layer neural network identical in
architecture with selu activations, and 100 neurons in their
hidden layers. For the concrete sampler, we chose τ = 0.1,
as in the official implementation. We train the predictor
with a cross-entropy loss. The whole model is trained for a
maximum of 500 epochs of 100 steps with a batch-size 512.
We add an early stopping after 200 epochs with patience 10
on the selection solution for the task centroids.

INVASE (Yoon et al., 2019)

We instantiate two three-layer neural network with selu ac-
tivations, and 100 neurons in their hidden layers. Following
the official implementation, we add batch-normalisation lay-
ers in the predictor model. For the selector – referred to as
”actor” in the original paper, we grid-searched the regulari-
sation parameter in [0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1]
and found the value λ∗ = 0.01. The whole model is trained
with the same epoch configuration as L2X.

Tuning λ is quite difficult as performances between tasks
tend to vary widely with INVASE. As illustrated in figure
9, there is no clear significantly better parameter choice.
With small λ values, the predictor performances increase
as the selector tend to select almost all input features; with
higher values the selector sparsity constraint dominates and
the predictor quickly collapses to a random 50% accuracy.
Most of the time though, INVASE does not return the correct
selection solution, no matter the value of λ, we suspect that
the method falls into the label-passing trap we covered in
section B. As we had decided to only grid-search one λ
value for all tasks – which worked reasonably well with
other methods – we did not try to further tune this method.

Attribution threshold

For all methods returning feature attributions i.e. n val-

ues for the n input features, given values for each point,
we select all features with an attribution value higher than
µ times the maximum attribution on this point. We tune
this multiplicative coefficient by evaluating the methods on
100 tasks, generated and used only for tuning, on a range
[0.1, 0.95] with step 0.01. Except for selector-predictors,
we have observed rather convex curves of performances and
clear maximums for each method, as displayed in figure
10. The obtained parameters are given in table 1. We must
underline that the variety in the found coefficients support
the specificity and task-dependence we mentioned for each
method in the definition of their attribution relative values:
some yield sparse attributions values, others do not.

Method µ∗

LIME (Cat.) 0.23
LIME (Cont.) 0.61

GAM 0.18
Shapley (E(f)) 0.73
SHAP (f(E)) 0.28

Gradient 0.67
Gradient x Input 0.73

Integrated Gradient 0.52
Expected Gradient 0.56

L2X 0.82
INVASE 0.55

Table 1. Tuned multiplicative coefficient µ to estimate subset se-
lection from feature attribution.

The remaining methods return subset attribution values – i.e.
2n values. They provide estimations of many conditional
means E(Y | XI = xI), up to a fixed cardinality for I –
two for GA2M, three for GA3M, etc. In our case, this last
quantity is directly equal to P(Y = 1 | XI = xI), and we
thus obtain the simple attribution measure (3) we derived
by applying the function g(p) = max(p, 1 − p) on each
subfunction output. Then, we use a threshold parameter
η and find the subset I with lowest cardinality such that
attrI(x) > η. As we have a binary problem, η is bounded
in [1/2, 1], we tune η in this range with 0.01 steps. For
InterpretableNN, a custom function is applied over the prob-
ability and yield a method-specific attribution value in [0, 1],
we tune η in this range with steps 0.01. The results are given
in table 2.

Training

Most models use analytical expressions of p′X,Y and can be
evaluated on a consumer grade computer on CPU in less
than an hour for each task set. Selector-predictors require
a full training procedure and were trained in parallel on
four GeForce GTX 1080 GPUs. Reported running times are
aggregated.

Supplementary Material: Towards Rigorous Attribution

Method η∗

fANOVA 0.76
GA2M 0.75
GA3M 0.75
GA4M 0.76

Archipelago 0.66
InterpretableNN 0.26

Table 2. Tuned multiplicative coefficient µ to estimate subset se-
lection from feature attribution.

E. Issues with model-based interpretations
Following the reviewing process of our paper, we have de-
cided to add a discussion on the comparison/applicability of
our formalisation to feature-based interpretations methods
that rely on the inspection of the internal of trained models.

As first remark, though we only work on synthetic data
distribution p′(y|x) in our experiment section, our frame-
work is perfectly applicable to a model induced distribution
pθ(y|x). As mentioned in introduction, this can make eval-
uation trickier with the added difficulty of disentangling
model prediction errors from interpretation errors on un-
labeled data, and requires to manage out-of-distribution
artifacts impacting the produced interpretations, which is
also the case of models architecture and hyperparameters
choice (Dombrowski et al., 2019; Kumar et al., 2020; Slack
et al., 2020). The approach in itself would however remain
model-agnostic and solely inspect the learnt input-output
association. This is arguably a common principle in the
interpretation field (e.g. (Ribeiro et al., 2016; Lundberg and
Lee, 2017)), but a concern was raised of whether inspecting
trained weights would not simplify the attribution problem.

For instance, in the case of a decision tree – that are often
considered one of the models with the highest transparency
level (Arrieta et al., 2020) – a commonly used principle to
find responsible features is to aggregate encountered fea-
tures on which the branching are done from root to leaf to
form a prediction rationale. The interpretability of trees
and other simple models has already been disputed before
(Lipton, 2018; Dinu et al., 2020); here, to fix ideas, we
highlight an example where the two explanation principles
would differ. Consider figure 3: on one side, we have seen
that our method allows to derive a unique minimal instance-
wise selection solution. Conversely, though the tree-based
suggestion seems reasonable at first glance, there exists two

optimal trees classifying all three clusters perfectly,

T1(x) := if x1 < 0 then 0

else (if x2 > 0 then 1 else 0)

T2(x) := if x2 < 0 then 0

else (if x1 > 0 then 1 else 0)

leading to two contradicted selections that may be equiprob-
ably returned on several runs:

(x1, x2) T1 T2 Our
-0.125, 0.125 {1} {1, 2} {1}
0.125, 0.125 {1, 2} {1, 2} {1, 2}
0.125, -0.125 {1, 2} {2} {2}

Trees suffer from identifiability issues leading to unstable
explanations, which seems unsuitable to gain general knowl-
edge. The clusters symmetry between X1 and X2 also
seems a good argument in favor of our solution.

Leveraging model inner mechanisms for interpretation has
lead to many well performing algorithms, but this also paves
the ways to many undesired side-effects that are not immedi-
ately visible when working with a high-performing trained
model. Our message is that prediction performance and
computation transparency does not necessarily translate into
interpretation performance. Optimistically, we believe that
the study we have conducted on synthetic data helps find
those inconsistencies and failure points and may lead to
better behaved interpretable models.

Supplementary Material: Towards Rigorous Attribution

−2 −1 0 1 2
x1

−2

−1

0

1

2

x2

p'(x,y)

−2 −1 0 1 2
x1

−2

−1

0

1

2

x2

p'(y|x)

Figure 5. Task 2 100 The legend is similar to figures 1 and 2.

x1
0

x2
0

x30

Figure 6. Task 3 12 We only display centroids and neighbors

x1
0x2

0

x3 0

Figure 7. Task 3 27

x1
0

x2
0

x30

Figure 8. Task 3 100

Supplementary Material: Towards Rigorous Attribution

0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0
0.4

0.5

0.6

0.7

0.8

0.9

P
re

di
ct

io
n

ac
c

0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

S
el

ec
tio

n
ac

c

0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0
Tuning param

0.04

0.06

0.08

0.10

0.12

S
el

ec
tio

n
ac

c

Figure 9. Tuning curves for INVASE We plot the predictor per-
formances at predicting centroid labels in red, and the selector
estimated selection mask accuracies in blue. We superpose the
tuning curves from each task in the tuning task set and display a
clearer aggregated selection accuracy curve with 95% confidence
intervals. Our chosen λ∗ maximises upper confidence bound.

Figure 10. Tuning curves of subset attribution methods

Supplementary Material: Towards Rigorous Attribution

References
Afchar, D. and Hennequin, R. (2020). Making neural

networks interpretable with attribution: Application to
implicit signals prediction. In RecSys 2020: Four-
teenth ACM Conference on Recommender Systems, Vir-
tual Event, Brazil, September 22-26, 2020, pages 220–
229. ACM.

Arrieta, A. B., Dı́az-Rodrı́guez, N., Del Ser, J., Bennetot, A.,
Tabik, S., Barbado, A., Garcı́a, S., Gil-López, S., Molina,
D., Benjamins, R., et al. (2020). Explainable artificial
intelligence (xai): Concepts, taxonomies, opportunities
and challenges toward responsible ai. Information Fusion,
58:82–115.

Chen, J., Song, L., Wainwright, M. J., and Jordan, M. I.
(2018). Learning to explain: An information-theoretic
perspective on model interpretation. In Proceedings of
the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018, volume 80, pages 882–891. PMLR.

Dinu, J., Bigham, J., and Kolter, J. Z. (2020). Challeng-
ing common interpretability assumptions in feature attri-
bution explanations. NeurIPS 2020 ML-Retrospectives,
Surveys & Meta-Analyses Workshop.

Dombrowski, A., Alber, M., Anders, C. J., Ackermann,
M., Müller, K., and Kessel, P. (2019). Explanations can
be manipulated and geometry is to blame. In Advances
in Neural Information Processing Systems 32, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 13567–13578.

Erion, G., Janizek, J. D., Sturmfels, P., Lundberg, S., and
Lee, S.-I. (2019). Learning explainable models using
attribution priors. arXiv preprint arXiv:1906.10670.

Foldes, S. (1977). A characterization of hypercubes. Dis-
crete Mathematics, 17(2):155–159.

Kumar, I. E., Venkatasubramanian, S., Scheidegger, C., and
Friedler, S. A. (2020). Problems with shapley-value-
based explanations as feature importance measures. In
Proceedings of the 37th International Conference on Ma-
chine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119, pages 5491–5500. PMLR.

Lipton, Z. C. (2018). The mythos of model interpretability.
Queue, 16(3):31–57.

Lundberg, S. M. and Lee, S. (2017). A unified approach to
interpreting model predictions. In Advances in Neural
Information Processing Systems 30, December 4-9, 2017,
Long Beach, CA, USA, pages 4765–4774.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ”why
should I trust you?”: Explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, San Francisco, CA, USA, August 13-17,
2016, pages 1135–1144. ACM.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2014). Deep
inside convolutional networks: Visualising image classifi-
cation models and saliency maps. Workshop, ICLR.

Slack, D., Hilgard, S., Jia, E., Singh, S., and Lakkaraju,
H. (2020). Fooling lime and shap: Adversarial attacks
on post hoc explanation methods. In Proceedings of the
AAAI/ACM Conference on AI, Ethics, and Society, pages
180–186.

Sundararajan, M., Taly, A., and Yan, Q. (2017). Axiomatic
attribution for deep networks. In Proceedings of the 34th
International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017, vol-
ume 70, pages 3319–3328. PMLR.

Tsang, M., Rambhatla, S., and Liu, Y. (2020). How does this
interaction affect me? interpretable attribution for feature
interactions. Advances in Neural Information Processing
Systems.

Yoon, J., Jordon, J., and van der Schaar, M. (2019). INVASE:
instance-wise variable selection using neural networks.
In 7th International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

