A Regret Minimization Approach to Iterative Learning Control

Naman Agarwal 1 Elad Hazan 1, 2 Anirudha Majumdar 1, 2 Karan Singh 3

Abstract
We consider the setting of iterative learning control, or model-based policy learning in the presence of uncertain, time-varying dynamics. In this setting, we propose a new performance metric, planning regret, which replaces the standard stochastic uncertainty assumptions with worst case regret. Based on recent advances in non-stochastic control, we design a new iterative algorithm for minimizing planning regret that is more robust to model mismatch and uncertainty. We provide theoretical and empirical evidence that the proposed algorithm outperforms existing methods on several benchmarks.

1. Introduction
Consider a robotic system learning to perform a novel task, e.g., a quadrotor learning to fly to a specified goal, a manipulator learning to grasp a new object, or a fixed-wing airplane learning to perform a new maneuver. We are particularly interested in settings where (i) the task requires one to plan over a given time horizon, (ii) we have access to an inaccurate model of the world (e.g., due to unpredictable external disturbances such as wind gusts or misspecification of physical parameters such as masses, inertias, and friction coefficients), and (iii) the robot is allowed to iteratively refine its control policy via multiple executions (i.e., rollouts) on the real world. Motivated by applications where real-world rollouts are expensive and time-consuming, our goal in this paper is to learn to perform the given task as rapidly as possible. More precisely, given a cost function that specifies the task, our goal is to learn a low-cost control policy using a small number of rollouts.

The problem described above is challenging due to a number of factors. The primary challenge we focus on in this paper is the existence of unmodeled deviations from nominal dynamics, and external disturbances acting on the system. Such disturbances may either be random or potentially even adversarial. In this paper we adopt a regret minimization approach coupled with a recent paradigm called non-stochastic control to tackle this problem in generality. Specifically, consider a time-varying dynamical system given by the equation

$$x_{t+1} = f_t(x_t, u_t) + w_t,$$

where x_t is the state, u_t is the control input, and w_t is an arbitrary disturbance at time t. Given a horizon T, the performance of a control algorithm A may be judged via the aggregate cost it suffers on a cost function sequence c_1, \ldots, c_T along its state-action trajectory (x_1^A, u_1^A, \ldots).

$$J(A|w_1:T) = \frac{1}{T} \sum_{t=1}^{T} c_t (x_t^A, u_t^A).$$

For deterministic systems, an optimal open-loop control sequence $u_1 \ldots u_T$ can be chosen to minimize the cost sequence. The presence of unanticipated disturbances often necessitates the superposition of a closed-loop correction policy π to obtain meaningful performance. Such closed-loop policies can modify the open-loop control sequence $u_1 \ldots u_T$ to $u_t' = \pi(u_{1:t}, x_{1:t})$ which is a function of the observed history till time t, and facilitate adaptation to realized disturbances. To capture this, we define a comparative performance metric, which we call Planning Regret. In an episodic setting, for every episode i, an algorithm A adaptively selects control inputs while the rollout is performed under the influence of an arbitrary disturbance sequence $w_{1:T}^i$. Planning regret is the difference between the total cost of the algorithm’s actions and that of the retrospectively optimal open-loop plan coupled with episode-specific optimal closed-loop policies (from a policy class Π). Regret, therefore, is the relative cost of not knowing the to-be-realized disturbances in advance. Formally for a total of N rollouts, each of horizon T, it is defined as:

$$\sum_{i=1}^{N} J(A|w_{1:T}^i) - \min_{u_1:T} \sum_{i=1}^{N} \min_{\pi_i \in \Pi} J(u_{1:T}^i, \pi_i|w_{1:T}^i).$$

A Regret Minimization Approach to Iterative Learning Control

Naman Agarwal 1 Elad Hazan 1, 2 Anirudha Majumdar 1, 2 Karan Singh 3

Abstract
We consider the setting of iterative learning control, or model-based policy learning in the presence of uncertain, time-varying dynamics. In this setting, we propose a new performance metric, planning regret, which replaces the standard stochastic uncertainty assumptions with worst case regret. Based on recent advances in non-stochastic control, we design a new iterative algorithm for minimizing planning regret that is more robust to model mismatch and uncertainty. We provide theoretical and empirical evidence that the proposed algorithm outperforms existing methods on several benchmarks.

1. Introduction
Consider a robotic system learning to perform a novel task, e.g., a quadrotor learning to fly to a specified goal, a manipulator learning to grasp a new object, or a fixed-wing airplane learning to perform a new maneuver. We are particularly interested in settings where (i) the task requires one to plan over a given time horizon, (ii) we have access to an inaccurate model of the world (e.g., due to unpredictable external disturbances such as wind gusts or misspecification of physical parameters such as masses, inertias, and friction coefficients), and (iii) the robot is allowed to iteratively refine its control policy via multiple executions (i.e., rollouts) on the real world. Motivated by applications where real-world rollouts are expensive and time-consuming, our goal in this paper is to learn to perform the given task as rapidly as possible. More precisely, given a cost function that specifies the task, our goal is to learn a low-cost control policy using a small number of rollouts.

The problem described above is challenging due to a number of factors. The primary challenge we focus on in this paper is the existence of unmodeled deviations from nominal dynamics, and external disturbances acting on the system. Such disturbances may either be random or potentially even adversarial. In this paper we adopt a regret minimization approach coupled with a recent paradigm called non-stochastic control to tackle this problem in generality. Specifically, consider a time-varying dynamical system given by the equation

$$x_{t+1} = f_t(x_t, u_t) + w_t,$$

where x_t is the state, u_t is the control input, and w_t is an arbitrary disturbance at time t. Given a horizon T, the performance of a control algorithm A may be judged via the aggregate cost it suffers on a cost function sequence c_1, \ldots, c_T along its state-action trajectory (x_1^A, u_1^A, \ldots).

$$J(A|w_1:T) = \frac{1}{T} \sum_{t=1}^{T} c_t (x_t^A, u_t^A).$$

For deterministic systems, an optimal open-loop control sequence $u_1 \ldots u_T$ can be chosen to minimize the cost sequence. The presence of unanticipated disturbances often necessitates the superposition of a closed-loop correction policy π to obtain meaningful performance. Such closed-loop policies can modify the open-loop control sequence $u_1 \ldots u_T$ to $u_t' = \pi(u_{1:t}, x_{1:t})$ which is a function of the observed history till time t, and facilitate adaptation to realized disturbances. To capture this, we define a comparative performance metric, which we call Planning Regret. In an episodic setting, for every episode i, an algorithm A adaptively selects control inputs while the rollout is performed under the influence of an arbitrary disturbance sequence $w_{1:T}^i$. Planning regret is the difference between the total cost of the algorithm’s actions and that of the retrospectively optimal open-loop plan coupled with episode-specific optimal closed-loop policies (from a policy class Π). Regret, therefore, is the relative cost of not knowing the to-be-realized disturbances in advance. Formally for a total of N rollouts, each of horizon T, it is defined as:

$$\sum_{i=1}^{N} J(A|w_{1:T}^i) - \min_{u_1:T} \sum_{i=1}^{N} \min_{\pi_i \in \Pi} J(u_{1:T}^i, \pi_i|w_{1:T}^i).$$
The motivation for our performance metric arises from the setting of Iterative Learning Control (ILC), where one assumes access to an imperfect (differentiable) simulator of real-world dynamics as well as access to a limited number of rollouts in the real world. In such a setting the disturbances capture the model-mismatch between the simulator and the real-world. The main novelty in our formulation is the fact that, under vanishing regret, the closed-loop behavior of A is almost instance-wise optimal on the specific trajectory, and therefore adapts to the passive controls, dynamics and disturbance for each particular rollout. Indeed, worst-case regret is a stronger metric of performance than commonly considered in the planning/learning for control literature.

Our main result is an efficient algorithm that guarantees vanishing average planning regret for non-stationary linear systems and disturbance-action policies. We experimentally demonstrate that the algorithm yields substantial improvements over ILC in linear and non-linear control settings.

Paper structure. We present the relevant definitions including the setting in Section 2. The algorithm and the formal statement of the main result can be found in Section 3. In Section 4 we provide an overview of the algorithm and the proof via the proposal of a more general and abstract nested online convex optimization (OCO) game. This formulation can be of independent interest. Finally in Section 5, we provide the results and details of the experiments. Proofs and other details are deferred to the Appendix.

1.1. Related Work

The literature on planning and learning in partially known MDPs is vast, and we focus here on the setting with the following characteristics:

1. We consider model-aided learning, which is suitable for situations in which the learner has some information about the dynamics, i.e. the mapping f_t in Equation (1.1), but not the disturbances w_t. We further assume that we can differentiate through the model. This enables efficient gradient-based algorithms.

2. We focus on the task of learning an episodic-agnostic control sequence, rather than a policy. This is aligned with the Pontryagin optimality principle (Pontryagin et al., 1962; Ross, 2015), and differs from dynamic programming approaches (Sutton & Barto, 2018).

3. We accommodate arbitrary disturbance processes, and choose regret as a performance metric. This is a significant deviation from the literature on optimal and robust control (Zhou et al., 1996; Stengel, 1994), and follows the lead of the recent paradigm of non-stochastic control (Agarwal et al., 2019a; Hazan et al., 2020; Simchowitz et al., 2020).

4. Our approach leverages multiple real-world rollouts. This access model is most similar to the iterative learning control (ILC) paradigm (Owens & Hätönen, 2005; Ahn et al., 2007). For comparison, the model predictive control (MPC) paradigm allows for only one real-world rollout on which performance is measured, and all other learning is permitted via access to a simulator.

Optimal, Robust and Online Control. Classic results (Bertsekas, 2005; Zhou et al., 1996; Tedrake, 2020) in optimal control characterize the optimal policy for linear systems subject to i.i.d. perturbations given explicit knowledge of the system in advance. Beyond stochastic perturbations, robust control approaches (Zhou & Doyle, 1998) compute the best controller under worst-case noise.

Recent work in machine learning (Abbasi-Yadkori & Szepesvári, 2011; Dean et al., 2018; Mania et al., 2019; Cohen et al., 2018; Agarwal et al., 2019b) study regret bounds vs. the best linear controller in hindsight for online control with known and unknown linear dynamical systems. Online control was extended to adversarial perturbations, giving rise to the nonstochastic control model. In this general setting regret bounds were obtained for known/unknown systems as well as partial observation (Agarwal et al., 2019a; Hazan et al., 2020; Simchowitz et al., 2020; Simchowitz, 2020).

Planning with inaccurate models. Model predictive control (MPC) (Mayne, 2014) provides a general scheme for planning with inaccurate models. MPC operates by applying model-based planning, (eg. iLQR (Li & Todorov, 2004; Todorov & Li, 2005)), in a receding-horizon manner. MPC can also be extended to robust versions (Bemporad & Morari, 1999; Mayne et al., 2005; Langson et al., 2004) that explicitly reason about the parametric uncertainty or external disturbances in the model. Recently, MPC has also been viewed from the lens of online learning (Wagener et al., 2019). The setting we consider here is more general than MPC, allowing for iterative policy improvement across multiple rollouts on the real world.

An adjacent line of work on learning MPC (Hewing et al., 2020; Rosolia & Borrelli, 2017) focuses on constraint satisfaction and safety considerations while learning models simultaneously with policy execution.

Iterative Learning Control (ILC). ILC is a popular approach for tackling the setting considered. ILC operates by iteratively constructing a policy using an inaccurate model, executing this policy on the real world, and refining the policy based on the real-world rollout. ILC can be extended to use real-world rollouts to update the model (see, e.g., (Abbeel et al., 2006)). For further details regarding ILC, we
refer the reader to the text (Moore, 2012). Robust versions of ILC have also been developed in the control theory literature (de Roover, 1996), using H-infinity control to capture bounded disturbances or uncertainty in the model.

However, most of the work in robust control, typically account for worst-case deviations from the model and can lead to extremely conservative behavior. In contrast, here we leverage the recently-proposed framework of non-stochastic control to capture instance-specific disturbances. We demonstrate both empirically and theoretically that the resulting algorithm provides significant gains in terms of sample efficiency over the standard ILC approach.

Meta-Learning. Our setting, analysis and, in particular, the nested OCO setup bears similarity to formulations for gradient-based meta-learning (see Finn et al., 2017) and references therein. In particular, as we detail in the Appendix (Section A), the nested OCO setting we consider is a generalization of the setting considered in (Balcan et al., 2019). We further detail certain improvements/advantages our algorithm and analysis provides over the results in (Balcan et al., 2019). We believe this connection with Meta-Learning to be of independent interest.

2. Problem Setting

2.1. Notation

The norm $\|\cdot\|$ refers to the ℓ_2 norm for vectors and spectral norm for matrices. For any natural number n, the set $[n]$ refers to the set $\{1, 2, \ldots, n\}$. We use the notation $v_{a:b} \triangleq \{v_a, \ldots, v_b\}$ to denote a sequence of vectors/matrices. Given a set S, we use $v_{a:b} \in S$ to represent element wise inclusion, i.e. $\forall j \in \{a, b\}, v_j \in S$; $\text{proj}_S(v_{a:b})$ represents the element-wise ℓ_2 projection onto the set S. $v_{a:b,c:d}$ denotes a sequence of sequences, i.e. $v_{a:b,c:d} = \{v_{a,c}, \ldots, v_{b,d}\}$.

2.2. Basic Definitions

A dynamical system is specified via a start state $x_0 \in \mathbb{R}^d$, a time horizon T and a sequence of transition functions $f_{1:T} = \{f_t: \mathbb{R}^{d_x} \times \mathbb{R}^{d_u} \rightarrow \mathbb{R}^n\}$. The system produces a T-length sequence of states $\{x_1, \ldots, x_{T+1}\}$ subject to an T-length sequence of actions $\{u_1, \ldots, u_T\}$ and disturbances $\{w_1, \ldots, w_T\}$ according to the following dynamical equation

$$x_{t+1} = f_t(x_t, u_t) + w_t.$$

Through the paper the only assumption we make about the disturbance w_t is that it is supported on a set of bounded diameter W. We assume full observation of the system, i.e.

The states x_t are visible to the controller. We also assume the passive transition function to be known beforehand. These assumptions imply that we fully observe the instantiation of the disturbances $w_{1:T}$ during runs of the system.

The actions above may be adaptively chosen based on the observed state sequence, i.e. $u_t = \pi_t(x_1, \ldots, x_t)$ for some non-stationary policy $\pi_{1:T} = \{\pi_1, \ldots, \pi_T\}$. We consider the policy to be deterministic (a restriction made for convenience). Therefore the state-action sequence $\{x_t, u_t\}_{t=1}^T$, defined as $x_{t+1} = f_t(x_t, u_t) + w_t, u_t = \pi_t(x_1, \ldots, x_t)$, thus produced is a sequence determined by $w_{1:T}$, fixing the policy, and the system.

A rollout of horizon T on $f_{1:T}$ refers to an evaluation of the above sequence for T time steps. When the dynamical system will be clear from the context, for the rest of the paper, we drop it from our notation. Given a cost function sequence $\{c_t\}: \mathbb{R}^n \times \mathbb{R}^d \rightarrow \mathbb{R}$ the loss of executing a policy π on the dynamical system f with a particular disturbance sequence given by $w_{1:T}$ is defined as

$$J(\pi_{1:T}|f_{1:T}, w_{1:T}) \triangleq \frac{1}{T} \sum_{t=1}^T c_t(x_t, u_t).$$

Assumption 2.1. We will assume that the cost c_t is a twice differentiable convex function and that the value, gradient and hessian of the cost function c_t is available. Further we assume,

- Lipschitzness: There exists a constant G such that if $\|x\|, \|u\| \leq D$ for some $D > 0$, then $\|\nabla c_t(x, u)\|, \|\nabla^2 c_t(x, u)\| \leq GD$.

- Smoothness: There exists a constant β such that for all x, u, $\nabla^2 c_t(x, u) \preceq \beta I$.

When the dynamical system and the noise sequence are clear from the context we suppress them from the notation for the cost denoting it by $J(\pi_{1:T})$. A particular sub-case which will be of special interest to us is the case of linear dynamic systems (LDS). Formally, a (non-stationary) linear dynamical system is described by a sequence of matrices $AB_{1:T} = \{(A_t, B_t) \in \mathbb{R}^{d_x, d_c} \times \mathbb{R}^{d_u, d_c}\}_{t=1}^T$ and the transition function is defined as $x_{t+1} = A_t x_t + B_t u_t$.

Assumption 2.2. We will assume that the linear dynamical system $AB_{1:T}$ is (κ, δ)- strongly stable for some $\kappa > 0$ and $\delta \in (0, 1]$, i.e. for every t, we have that $\|A_t\| \leq 1 - \delta, \|B_t\| \leq \kappa$.

We note that all the results in the paper can be easily generalized to a weaker notion of strong stability where the linear dynamical system is (κ, δ)- strongly stable if there exists a sequence of matrices $K_{1:T}$, such that for every t, we have that $\|A_t - B_t K_t\| \leq 1 - \delta, \|B_t\|, \|K_t\| \leq \kappa$. A
system satisfying such an assumption can be easily transformed to a system satisfying Assumption 2.2 by setting $A_t = A_t - B_t K_t$. This redefinition is equivalent to appending the linear policy K_t on top of the policy being executed. While we present the results for the case when $K_T = 0$, the only difference the non-zero case makes to our analysis is potentially increasing the norm of the played actions which can still be shown to be bounded. Overall this nuance leads to a difference to our main result only in terms of factors polynomial in the system parameters. Hence for convenience, we state our results under Assumption 2.2. The assumption of strong-stability (in a weaker form as discussed) can be included with no change in results across the paper.

2.3. Policy Classes

Open-Loop Policies. Given a convex set $\mathcal{U} \in \mathbb{R}^{d_u}$, consider a sequence of control actions, $u_{1:T} \in \mathcal{U}$. We define (by an overload of notation), the open-loop policy $u_{1:T}$ as a policy which plays at time t, the action u_t. The set of all such policies is defined as $\Pi_{OL} = \mathcal{U}^\otimes T$.

Given two policies we define the sum of the two (denoted by $\pi_1 + \pi_2$) as the policy for which the action at time t is the sum of the action recommended by policy π_1 and π_2.

Linear Policies. Given a matrix $K \in \mathbb{R}^{d_u \times d_x}$, a linear policy π denoted (via an overload of notation) by K is a policy that plays action $u_t = K x_t$. Such linear state-feedback policies are known to be optimal for the LQR problem and for H_∞ control (Zhou et al., 1996).

Disturbance Action Controllers (DAC). A generalization of the class of linear policies can be obtained via the notion of disturbance-action policies (see (Agarwal et al., 2019a)) defined as follows. A disturbance action policy $\pi_{M_1:L}$ of memory length L is defined by a sequence of matrices $M_{1:L} = \{M_1, \ldots, M_L\}$ where each $M_t \in \mathcal{M} \subseteq \{\mathbb{R}^{d_u \times d_x}\}$, with the action at time step t given by

$$[\pi_{M_1:L}]_t \triangleq \sum_{j=1}^L M_j w_{t-j}. \quad (2.1)$$

A natural class of matrices from which the above feedback matrices can be picked is given by fixing a number $\gamma > 0$ and picking matrices spectrally bounded by γ, i.e. $\mathcal{M}_\gamma = \{M | M \in \mathbb{R}^{d_u \times d_x}, \|M\| \leq \gamma\}$. We further overload the notation for a disturbance action policy to incorporate an open-loop control sequence $u_{1:T}$, defined as $\pi_{M_1:L}(u_{1:T}) \triangleq \{u_t + \sum_{j=1}^L M_j w_{t-j}\}_{t=1}^T$.

2.4. Planning Regret With Disturbance-Action Policies

As discussed, a natural idea to deal with adversarial process disturbance is to plan (potentially oblivious to it), producing a sequence of open loop $(u_{1:T})$ actions and appending an adaptive controller to correct for the disturbance online. However the disturbance in practice could have structure across rollouts, which can be leveraged to improve the plan $(u_{1:T})$, with the knowledge that we have access to an adaptive controller. To capture this, we define the notion of an online planning game and the associated notion of planning regret below.

Definition 2.3 (Online Planning). It is defined as an N round/rollout game between a player and an adversary, with each round defined as follows:

- At every round i the player given the knowledge of a new dynamical system $f_{1:T}^i = \{f_1^i \ldots f_T^i\}$, proposes a policy $\pi_{1:T}^i = \{\pi_1^i \ldots \pi_T^i\}$.
- The adversary then proposes a noise sequence $w_{1:T}^i$, and a cost sequence $c_{1:T}^i$.
- A rollout of policy $\pi_{1:T}^i$ is performed on the system $f_{1:T}^i$ with disturbances $w_{1:T}^i$ and the cost suffered by the player $J_i(\pi_{1:T}^i) \triangleq J(\pi_{1:T}^i, f_{1:T}^i, w_{1:T}^i)$.

The task of the controller is to minimize the cost suffered. We measure the performance of the controller via the following objective, defined as Planning-Regret, which measures the performance against the metric of producing the best-in-hindsight open-loop plan, having been guaranteed the optimal adaptive control policy for every single rollout. The notion of adaptive control policy we use is the disturbance-action policy class defined in (2.1). In the Appendix (Section B), we discuss the expressiveness of the disturbance-actions policies. In particular, they generalize linear policies for stationary systems and lend convexity.

Formally, planning regret is defined as follows:

$$\sum_{i=1}^N J_i(\pi_{1:T}^i) - \min_{u_{1:T}} \sum_{i=1}^N \left(\min_{\Pi_{M_1:L}} J_i(\pi_{M_1:L}(u_{1:T})) \right)$$

3. Main Algorithm and Result

In this section we propose the algorithm iGPC (Iterative Gradient Perturbation Controller; Algorithm 1) to minimize Planning Regret. The algorithm at every iteration given an open-loop policy $u_{1:T}$ performs a rollout overlaying an online DAC adaptive controller GPC (Algorithm 2). Further
the base policy \(u_{1:T} \) is updated by performing gradient descent (or any other local policy improvement) on \(w_1 \) fixing the offsets suggested by GPC. \(^3\) We show the following guarantee on average planning regret for Algorithm 1 for linear dynamical systems.

Theorem 3.1. Let \(\mathcal{U} \subseteq \mathbb{R}^{d_u} \) be a bounded convex set with diameter \(U \). Consider the online planning game (Definition 2.3) with linear dynamical systems \(\{ AB_i \}_{i=1}^N \) satisfying Assumption 2.2 and cost functions \(\{ c_{1,T} \}_{i=1}^N \) satisfying Assumption 2.1. Then we have that Algorithm 1 (when executed with appropriate parameters), for any sequence of disturbances \(\{ w_{1,T}^i \}_{i=1}^N \) with each \(\| w_{1,T}^i \| \leq W \) and any \(\gamma \geq 0 \), produces a sequence of actions with planning regret bounded as

\[
\frac{1}{N} \left(\sum_{i=1}^N J_i(\pi^{1:T}_{1,T}) \right)
\leq \min_{u_{1:T} \in \mathcal{U}} \left(\sum_{i=1}^N \min_{M_i \in \mathcal{M}_\gamma} J_i(\pi_{M_i,L}(u_{1:T})) \right)
\leq O\left(\frac{1}{\sqrt{T}} + \frac{1}{\sqrt{N}} \right),
\]

where \(\mathcal{M}_\gamma = \{ M | M \in \mathbb{R}^{d_u,d_s}, \| M \| \leq \gamma \} \).

The \(\tilde{O} \) notation above subsumes factors polynomial in system parameters \(\kappa, \gamma, \delta^{-1}, U, W, G \) and \(\log(T) \). A restatement of the theorem with all the details is present in the Appendix (Section C).

Algorithm 1 iGPC Algorithm

Require: [Online] \(f_{1:T}^{1:N} : \) Dynamical Systems, \(w_{1:T}^{1:N} : \) Disturbances, \(c_{1:T}^{1:N} \)

Parameters: Set \(\mathcal{U} \), \(\eta_{out} : \) Learning Rate

1. Initialize \(u_{1,T}^1 \in \mathcal{U} \) arbitrarily.
2. for \(i = 1 \ldots N \) do
3. \hspace{1em} Receive a dynamical system \(f_{1:T}^i \).
4. \hspace{1em} Rollout the policy \(u_{1:T}^i \) with GPC \(\triangleright \) (Alg. 2),
5. \hspace{1em} \{ \(x_{1:T}^i, a_{1:T}^i, w_{1:T}^i, o_{1:T}^i \) \} = GPCRollout\((f_{1:T}^i, u_{1:T}^i) \).
6. Update: Compute the update to the policy,
7. \hspace{1em} \(\nabla_i = \nabla_{u_{1:T}} J(u_{1:T}^i + a_{1:T}^i | f_{1:T}^i, w_{1:T}^i) \)
8. \hspace{1em} \(u_{1:T}^{i+1} \) = Proj\(\mathcal{U} (u_{1:T}^i - \eta_{out} \nabla_i) \).
9. end for

Algorithm 2 GPC Rollout

Require: \(f_{1:T} : \) Dynamical system, \(u_{1:T} : \) input policy, \([\text{Online}] w_{1:T} : \) disturbances, \(c_{1:T} : \) costs.

Parameters: \(L : \) Window, \(\eta_{in} : \) Learning rate, \(\gamma : \) Feedback bound, \(S : \) Lookback

1. Initialize \(M_{1:1:L} = \{ M_{1,j} \}_{j=1}^L \in \mathcal{M}_\gamma \).
2. Set \(w_t = 0 \) for all \(i \leq 0 \).
3. for \(t = 1 \ldots T \) do
4. \hspace{1em} Compute Offset: \(a_t = \sum_{r=1}^L M_{t,r} \cdot w_{t-r} \).
5. \hspace{1em} Play action: \(u_t = u_t + a_t \).
6. \hspace{1em} Suffer Cost: \(c_t(x_t, a_t) \).
7. \hspace{1em} Observe state: \(x_{t+1} \).
8. Compute perturbation:
9. \hspace{1em} \(w_t = x_{t+1} - f_t(x_t, a_t) \).
10. end for
11. return \(x_{1:T}, a_{1:T}, w_{1:T}, o_{1:T} \).

4. Algorithm and Analysis

In this section we provide an overview of the derivation of the algorithm and the proof for Theorem 3.1. The formal proof is deferred to Appendix (Section C). We introduce an online learning setting that is the main building block of our algorithm. The setting applies more generally to control/planning and our formulation of planning regret in linear dynamical systems is a specification of this setting.

4.1. Nested OCO and Planning Regret

Setting: Consider an online convex optimization (OCO) problem (Hazan, 2016), where the iterations have a nested structure, divided into inner and outer iterations. Fix two convex sets \(K_1 \) and \(K_2 \). After every one out of \(N \) outer iterations, the player chooses a point \(x_t \in K_1 \). After that there is a sequence of \(T \) inner iterations, where the player chooses \(y_t \in K_2 \) at every iteration. After this choice, the adversary chooses a convex cost function \(f_t \in \mathcal{F} \subseteq K_1 \times K_2 \rightarrow \mathbb{R} \), and the player suffers a cost of \(f_t(x_t, y_t) \). The goal of the player is to minimize Planning Regret:

\[
\sum_{i=1}^N \sum_{t=1}^T \frac{f_t^i(x_t, y_t)}{T} - \min_{x^* \in K_1} \sum_{i=1}^N \min_{y^* \in K_2} \sum_{t=1}^T \frac{f_t^i(x^*, y^*)}{T}
\]
To state a general result, we assume access to two online learners denoted by A_1, A_2, that are guaranteed to provide sub-linear regret bounds over linear cost functions on the sets K_1, K_2 respectively in the standard OCO model. We denote the corresponding regrets achieved by $R_N(A_1), R_T(A_2)$. A canonical algorithm for online linear optimization (OLO) is online gradient descent (Zinkevich, 2003), which is what we use in the sequel. The theory presented here applies more generally. Algorithm 3 lays out a general algorithm for the Nested-OCO setup.

Algorithm 3 Nested-OCO Algorithm

Require: Algorithms A_1, A_2.

1. Initialize $x_1 \in K_1$ arbitrarily.
2. for $i = 1 \ldots N$ do
3. Initialize $y_i^0 \in K_2$ arbitrarily.
4. for $t = 1 \ldots T$ do
5. Define loss function over K_2 as
 \[h_t^i(y) \triangleq \nabla_y f_t^i(x_t, y_t^i) : y. \]
6. Update $y_{t+1} \leftarrow A_2(h_0^i \ldots h_t^i)$.
7. end for
8. Define loss function over K_1 as
 \[g_i(x) \triangleq \sum_{t=1}^{T} \nabla_x f_t^i(x_t, y_t^i) : x. \]
9. Update $x_{t+1} \leftarrow A_1(g_1, \ldots, g_i)$.
10. end for

Theorem 4.1. Algorithm 3 with sub-algorithms A_1, A_2 with regrets $R_N(A_1), R_T(A_2)$ ensures the following regret guarantee on the average planning regret,

\[
\text{PlanningRegret} = \frac{R_N(A_1) + R_T(A_2)}{N}.
\]

When using Online Gradient Descent as the base algorithm, the average regret scales as $O\left(\frac{1}{\sqrt{N}} + \frac{1}{\sqrt{T}} \right)$.

Proof of Theorem 4.1. Let $x^* \in K_1$ be any point and let $y_{1:T}^i \in K_2$ be any sequence. We have

\[
\begin{align*}
\sum_{i=1}^{N} \sum_{t=1}^{T} f_t^i(x_t, y_t^i) - f_t^i(x^*, y_t^i) \\
\leq \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_x f_t^i(x_t - x^*) \\
+ \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_y f_t^i(y_t^i - y^*) \\
= \sum_{i=1}^{N} \left[g_t(x_t) - g_t(x^*) \right] \\
+ \sum_{i=1}^{N} \sum_{t=1}^{T} \left[h_t^i(y_t^i) - h_t^i(y_t^*) \right] \\
\leq \frac{R_N(A_1)}{N} + \frac{R_T(A_2)}{T},
\end{align*}
\]

where the first inequality follows by convexity and the last inequality follows by the regret guarantees and noting that the functions g_t are naturally scaled up by a factor of T. □

4.2. Proof Sketch for Theorem 3.1

The main idea behind the proof is to reduce to the setting of Theorem 4.1. In the reduction the x variable corresponds to the open loop controls $u_{1:T} \in U$ and the variables y_t^i correspond to the closed-loop disturbance-action policy $M_{1:L}^i \in M_L$. The algorithms A_1 and A_2 are instantiated as Online Gradient Descent with appropriately chosen learning rates.

We begin the reduction by using the observation in (Agarwal et al., 2019a) that costs are convex with respect to the variables u, M, for linear dynamical systems with convex costs. With convexity, prima-facie the reduction seems immediate, however this is impeded by the counterfactual notion of policy regret which implies that cost at any time is dependent on previous actions. This nuance in the reduction from Theorem 4.1 is only applicable to the closed loop policies M, the open loop part $u_{1:T}$ on the other hand, follows according to the reduction and hence direct OGD is applied (Line 6, Algorithm 1).

To resolve the issue of the counterfactual dependence, we use the techniques introduced in the OCO with memory framework proposed by (Anava et al., 2015) and recently employed in the work of (Agarwal et al., 2019a). We leverage the underlying stability of the dynamical system to ensure that cost at time t depends only on a bounded number of previous rounds, say S. We then define a proxy loss denoted by GPCLoss, corresponding to the cost incurred by a stationary closed-loop policy executing for the previous S time steps. Formally, given a dynamical system $f_{1:S}$, perturbations $u_{1:S}$, a cost function c, a non-stationary open-loop policy $u_{1:S}$, GPCLoss is a function of closed-loop transfer $M_{1:L}$ defined as follows. Consider the following iterations
A Regret Minimization Approach to Iterative Learning Control

We briefly review the methods that we compare to: The Iterative Linear Quadratic Regulator algorithm (ILQR) and its oracle ILQG (Todorov & Li, 2006) directly via Jacobians of the real-world dynamics that execute the policy thus obtained. This approach does not learn from multiple rollouts and, if the dynamics are fixed, provides a constant (across rollouts) baseline.

The Iterative Learning Control (ILC) agent (Abbeel et al., 2006) learns from past trajectories to refine its actions on the next real-world rollout. We provide more details in the Appendix (Section E). Finally, the IGPC agent adapts Algorithm 1 by replacing the policy update step (Line 5) with a LQR step on locally linearized dynamics.

In all our experiments, the metric we compare is the number of real-world rollouts required to achieve a certain loss value on the real dynamics. For further details on the setups and hyperparameter tuning please see Appendix (Section E).

5.2. Linear Control

This section considers a discrete-time Double Integrator (detailed below), a basic kinematics model well studied in control theory. This linear system (described below) is subject to a variety of perturbations that vary either within or across episodes,

\[A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}. \]

We pick three instructive perturbation models: First, as a sanity check, we consider constant offsets. While both ILC and IGPC adapt to this change, IGPC is quicker in doing so as evident by the cost on the first rollout itself. In the second, we treat constant offsets that gradually increase in magnitude from zero with rollouts/episodes. While gradual inter-episodic changes are well suited to ILC, IGPC still offers consistently better performance. The final scenario considers time-varying sinusoidal perturbations subject to rollout-varying phase shifts. In contrast to the former setups, such conditions make intra-episodic learning crucial for good performance. Indeed, IGPC outperforms alternatives here by a margin, reflecting the benefit of rollout-adaptive feedback policy in the regret bound.

5.3. Non-linear Control with Approximate Models

Here, we consider the task of controlling non-linear systems whose real-world characteristics are only partially known. In the cases presented below, the proposed algorithm IGPC either converges to the optimal cost with fewer rollouts (for Quadrotor), or, even disregarding speed of convergence, offers a better terminal solution quality (for Reacher). These effects are generally more pronounced in situations where the model mismatch is severe.

Concretely, consider the following setup: the agent is scored on the cost incurred on a handful of sequentially executed real-world rollouts on a dynamical system \(g(x, u) \); all the while, the agent has access to an inaccurate simulator \(f(x, u) \neq g(x, u) \). In particular, while limited to simply observing its trajectories in the real world \(g \), the agent is permitted to compute the function value and Jacobian of the simulator \(f(x, y) \) along arbitrary state-action pairs. The disturbances here are thus the difference between \(g \) and \(f \) along the state-action pairs visited along any given real-world rollout. Here, we also consider a statistically-omnipotent infeasible agent ILQR (oracle) that executes the Iterative Linear Quadratic Regulator algorithm (Li & Todorov, 2004) directly via Jacobians of the real-world dynamics \(g \) (a cheat), indicating a lower bound on the best possible cost.

Quadrotor with Wind The simulator models an underactuated planar quadrotor (6 dimensional state, 2 dimensional control) attempting to fly to \((1, 1)\) from the origin. The real-world dynamics differ from the simulator in the presence of a dispersive force field \((x\dot{y} + y\dot{x})\), to accommodate wind. The cost is measured as the distance squared from the origin along with a quadratic penalty on the actions.
A Regret Minimization Approach to Iterative Learning Control

Figure 1. On top is a linear system, Double Integrator, setup subject to: (L) constant offset, (M) offset that increments with rollout count, (R) phase-shifted sinusoidal perturbations. The middle section displays results on the quadrotor environment for varying magnitudes of wind. Bottom figure captures performance on the reacher environment with varying magnitudes of periodic impulses. ILQR (oracle) is an infeasible agent with access to Jacobians on the real world.

Reacher with Impulse The simulator dynamics model a 2-DOF arm (6 dimensional state, 2 dimensional control) attempting to place its end-effector at a pre-specified goal. The true dynamics g differs from the simulator in the application of periodic impulses to the center of mass of the arm links. The cost involves a quadratic penalty on the controls and the distance of the end effector from the goal.

In both scenarios, JAX-based (Bradbury et al., 2018) differentiable implementations of the underlying dynamics were adapted from (Gradu et al., 2021). The implementations along with some further experiments are present at https://github.com/MinRegret/deluca-igpc.
6. Conclusion

In this work, we cast the task of disturbance-resilient planning into a regret minimization framework. We outline a gradient-based algorithm that refines an open loop plan in conjunction with a near instance-optimal closed loop policy. We provide a theoretical justification for the approach by proving a vanishing average regret bound. We also demonstrate our approach on simulated examples and observe empirical gains compared to the popular iterative learning control (ILC) approach.

A particularly exciting direction for future work is to theoretically and empirically explore the benefits in terms of sim-to-real transfer conferred by our approach. Note that while we consider state-independent perturbations, our regret analysis also extends to affine state-dependent perturbations. Nevertheless, we experimentally demonstrate the potential of our algorithm in the non-linear case. Establishing regret-like theoretical guarantees for non-linear state-dependent perturbations is a challenging avenue for future work.

Acknowledgements

Elad Hazan was supported in part by National Science Foundation Award 1704860. Anirudha Majumdar was partially supported by the Office of Naval Research [Award Number: N00014-18-1-2873].

References

A Regret Minimization Approach to Iterative Learning Control

Ross, I. M. *A primer on Pontryagin’s principle in optimal control*. Collegiate publishers, 2015.

