
Deep kernel processes

A. DKPs are kernel processes

We define a kernel process to be a distribution over positive (semi) definite matrices, K(K), parameterised by a postive

(semi) definite matrix, K ∈ R
P×P . For instance, we could take,

K(K) = W (K, N) or K(K) = W−1(K, δ + (P + 1)) , (35)

whereN is a positive integer and δ is a positive real number. A kernel process is defined by consistency under marginalisation

and row/column exchangeability. Consistency under marginalisation implies that if we define K∗ and G∗ as principle

submatrices of K and G, dropping the same rows and columns, then G being distributed according to a kernel process

implies that G∗ is distributed according to that same kernel process,

G ∼ K(K) implies G∗ ∼ K(K∗). (36)

row/column exchangeability means,

G ∼ K(K) implies Gσ ∼ K(Kσ) (37)

where σ is a permutation of the rows/columns. Note that both the Wishart and inverse Wishart as defined in Eq. (35) are

consistent under marginalisation and are row/column exchangeable.

A deep kernel process, D, is the composition of two (or more) underlying kernel processes, K1 and K2,

G ∼ K1(K), H ∼ K2(G), (38a)

H ∼ D(K). (38b)

We define K∗, G∗ and H∗ as principle submatrices of K, G and H respectively, dropping the same rows and columns, and

again, Kσ, Gσ and Hσ are those matrices with the rows and columns permuted. To establish that D is consistent under

marginalisation, we use the consistency under marginalisation of K1 and K2

G∗ ∼ K1(K
∗), H∗ ∼ K2(G

∗), (39a)

and the definition of the D as the composition of K1 and K2 (Eq. 38)

H∗ ∼ D(K∗). (39b)

Likewise, to establish row/column exchangeability, we use row/column exchangeability of K1 and K2,

Gσ ∼ K1(Kσ), Hσ ∼ K2(Gσ), (40a)

and the definition of the D as the composition of K1 and K2 (Eq. 38)

Hσ ∼ D(Kσ). (40b)

The deep kernel process D is thus consistent under marginalisation and has exchangeable rows/columns, and hence a deep

kernel process is indeed itself a kernel process.

Further, note that we can consider K to be a deterministic distribution that gives mass to only a single G. In that case, K can

be thought of as a deterministic function which must satisfy a corresponding consistency property,

G = K(K), G∗ = K(K∗), Gσ = K(Kσ), (41)

and this is indeed satisfied by all deterministic transformations of kernels considered here. In practical terms, as long as G is

always a valid kernel, it is sufficient for the elements of Gi 6=j to depend only on Kij , Kii and Kjj and for Gii to depend

only on Kjj , which is satisfied by e.g. the squared exponential kernel (Eq. 17) and by the ReLU kernel (Cho & Saul, 2009).

Deep kernel processes

B. The first layer of our deep GP as Bayesian inference over a generalised lengthscale

In our deep GP architecture, we first sample F1 ∈ R
P×N1 from a Gaussian with covariance K0 = 1

N0
XXT (Eq. 5a). This

might seem odd, as the usual deep GP involves passing the input, X ∈ R
P×N0 , directly to the kernel function. However, in

the standard deep GP framework, the kernel (e.g. a squared exponential kernel) has lengthscale hyperparameters which can

be inferred using Bayesian inference. In particular,

kparam(
1√
N0

xi,
1√
N0

xj) = exp
(

− 1
2N0

(xi − xj)Ω (xi − xj)
T
)

. (42)

where kparam is a new squared exponential kernel that explicitly includes hyperparmeters Ω ∈ R
N0×N0 , and where xi is the

ith row of X. Typically, in deep GPs, the parameter, Ω, is diagonal, and the diagonal elements correspond to the inverse

square of the lengthscale, li, (i.e. Ωii = 1/l2i). However, in many cases it may be useful to have a non-diagonal scaling. For

instance, we could use,

Ω ∼ W
(

1
N1

I, N1

)

, (43)

which corresponds to,

Ω = WWT , where Wiλ ∼ N
(

0, 1
N1

)

, W ∈ R
N0×N1 . (44)

Under our approach, we sample F = F1 from Eq. (5b), so F can be written as,

F = XW, fi = xiW, (45)

where fi is the ith row of F. Putting this into a squared exponential kernel without a lengthscale parameter,

k(1√
N0

fi,
1√
N0

fj) = exp
(

− 1
2N0

(fi − fj) (fi − fj)
T
)

,

= exp
(

− 1
2N0

(xiW − xjW) (xiW − xjW)
T
)

,

= exp
(

− 1
2N0

(xi − xj)WWT (xi − xj)
T
)

,

= exp
(

− 1
2N0

(xi − xj)Ω (xi − xj)
T
)

,

= kparam(
1√
N0

xi,
1√
N0

xj). (46)

We find that a parameter-free squared exponential kernel applied to F is equivalent to a squared-exponential kernel with

generalised lengthscale hyperparameters applied to the input.

C. BNNs as deep kernel processes

Here we show that standard, finite BNNs, infinite BNNs and infinite BNNs with bottlenecks can be understood as deep

kernel processes.

C.1. Stanard finite BNNs (and general DGPs)

Standard, finite BNNs are deep kernel processes, albeit ones which do not admit an analytic expression for the probability

density. In particular, the prior for a standard Bayesian neural network (Fig. 3 top) is,

P (Wℓ) =
∏Nℓ

λ=1N
(

wℓ
λ;0, I/Nℓ−1

)

, Wℓ ∈ R
Nℓ−1×Nℓ , (47a)

Fℓ =

{

XW1 for ℓ = 1,

φ (Fℓ−1)Wℓ otherwise,
Fℓ ∈ R

P×Nℓ , (47b)

where wℓ
λ is the λth column of Wℓ. In the neural-network case, φ is a pointwise nonlinearity such as a ReLU. Integrating

out the weights, the features, Fℓ, become Gaussian distributed, as they depend linearly on the Gaussian distributed weights,

Wℓ,

P (Fℓ|Fℓ−1) =
∏Nℓ

λ=1N
(

f ℓλ;0,Kℓ

)

= P (Fℓ|Kℓ) , (48)

Deep kernel processes

X

W1

F1

W2

F2

W3

F3

W4

F4 Y

X K1 F1 K2 F2 K3 F3 K4 F4 Y

X K1 K2 K3 K4 F4 Y

Layer 1 Layer 2 Layer 3 Output Layer

Figure 3. A series of generative models for a standard, finite BNN. Top. The standard model, with features, Fℓ, and weights Wℓ (Eq. 47).

Middle. Integrating out the weights, the distribution over features becomes Gaussian (Eq. 50), and we explicitly introduce the kernel,

Kℓ, as a latent variable. Bottom. Integrating out the activations, Fℓ, gives a deep kernel process, albeit one where the distributions

P (Kℓ|Kℓ−1) cannot be written down analytically, but where the expectation, E [Kℓ|Kℓ−1] is known (Eq. 51).

where

Kℓ =
1

Nℓ−1
φ(Fℓ−1)φ

T (Fℓ−1). (49)

Crucially, Fℓ depends on the previous layer activities, Fℓ−1 only through the kernel, Kℓ. As such, we could write a

generative model as (Fig. 3 middle),

Kℓ =

{

1
N0

XXT for ℓ = 1,
1

Nℓ−1
φ(Fℓ−1)φ

T (Fℓ−1) otherwise,
(50a)

P (Fℓ|Kℓ) =
∏Nℓ

λ=1N
(

f ℓλ;0,Kℓ

)

, (50b)

where we have explicitly included the kernel, Kℓ, as a latent variable. This form highlights that BNNs are deep GPs, in

the sense that Fℓ
λ are Gaussian, with a kernel that depends on the activations from the previous layer. Indeed note that any

deep GP (i.e. including those with kernels that cannot be written as a function of the Gram matrix) as a kernel, Kℓ, is by

definition a matrix that can be written as the outer product of a potentially infinite number of features, φ(Fℓ) where we

allow φ to be a much richer class of functions than the usual pointwise nonlinearities (Hofmann et al., 2008). We might now

try to follow the approach we took above for deep GPs, and consider a Wishart-distributed Gram matrix, Gℓ =
1
Nℓ

FℓF
T
ℓ .

However, for BNNs we encounter an issue: we are not able to compute the kernel, Kℓ just using the Gram matrix, Gℓ: we

need the full set of features, Fℓ.

Instead, we need an alternative approach to show that a neural network is a deep kernel process. In particular, after integrating

out the weights, the resulting distribution is chain-structured (Fig. 3 middle), so in principle we can integrate out Fℓ to

obtain a distribution over Kℓ conditioned on Kℓ−1, giving the DKP model in Fig. 3 (bottom),

P (Kℓ|Kℓ−1) =

∫

dFℓ−1 δD

(

Kℓ −
1
Nℓ

φ(Fℓ−1)φ
T (Fℓ−1)

)

P (Fℓ−1|Kℓ−1) , (51)

where P (Fℓ−1|Kℓ−1) is given by Eq. (50b) and δD is the Dirac-delta function consisting of a point-mass at zero. Using this

integral to write out the generative process only in terms of Kℓ gives the deep kernel process in Fig. 3 (bottom). While

this distribution exists in principle, it cannot be evaluated analytically. But we can explicitly evaluate the expected value of

Kℓ given Kℓ−1 using results from Cho & Saul (2009). In particular, we take Eq. 50a, write out the matrix-multiplication

explicitly as a series of vector outer products, and note that as f ℓλ is IID across ℓ, the empirical average is equal to the

expectation of a single term, which is computed by Cho & Saul (2009),

E [Kℓ+1|Kℓ] =
1
Nℓ

∑Nℓ

λ=1 E
[

φ(f ℓλ)φ
T (f ℓλ)|Kℓ

]

= E
[

φ(f ℓλ)φ
T (f ℓλ)|Kℓ

]

,

=

∫

df ℓλ N
(

f ℓλ;0,Kℓ

)

φ(f ℓλ)φ
T (f ℓλ) ≡ K(Kℓ). (52)

Finally, we define this expectation to be K(Kℓ) in the case of NNs.

Deep kernel processes

C.2. Infinite NNs

We have found that for standard finite neural networks, we were not able to compute the distribution over Kℓ conditioned on

Kℓ−1 (Eq. (51)). To resolve this issue, one approach is to consider the limit of an infinitely wide neural network. In this

limit, the Kℓ becomes a deterministic function of Kℓ−1, as Kℓ can be written as the average of Nℓ IID outer products, and

as Nℓ grows to infinity, the law of large numbers tells us that the average becomes equal to its expectation,

lim
Nℓ→∞

Kℓ+1 = lim
Nℓ→∞

1
Nℓ

∑Nℓ

λ=1φ(f
ℓ
λ)φ

T (f ℓλ) = E
[

φ(f ℓλ)φ
T (f ℓλ)|Kℓ

]

= K(Kℓ). (53)

C.3. Infinite NNs with bottlenecks

In infinite NNs, the kernel is deterministic, meaning that there is no flexibility/variability, and hence no capability for

representation learning (Aitchison, 2019). Here, we consider infinite networks with bottlenecks that combine the tractability

of infinite networks with the flexibility of finite networks (Aitchison, 2019). The trick is to separate flexible, finite linear

“bottlenecks” from infinite-width nonlinearities. We keep the nonlinearity infinite in order to ensure that the output kernel is

deterministic and can be computed using results from Cho & Saul (2009). In particular, we use finite-width Fℓ ∈ R
P×Nℓ

and infinite width F′
ℓ ∈ R

P×Mℓ , (we send Mℓ to infinity while leaving Nℓ finite),

P (Wℓ) =
∏Nℓ

λ=1N
(

wℓ
λ;0, I/Mℓ−1

)

M0 = N0, (54a)

Fℓ =

{

XWℓ if ℓ = 1,

φ(F′
ℓ−1)Wℓ otherwise,

(54b)

P (Mℓ) =
∏Mℓ

λ=1N
(

mℓ
λ;0, I/Nℓ

)

, (54c)

F′
ℓ = FℓMℓ. (54d)

This generative process is given graphically in Fig. 4 (top).

Integrating over the expansion weights, Mℓ ∈ R
Nℓ×Mℓ , and the bottleneck weights, Wℓ ∈ R

Mℓ−1×Nℓ , the generative

model (Fig. 4 second row) can be rewritten,

Kℓ =

{

1
N0

XXT for ℓ = 1,
1

Mℓ−1
φ
(

F′
ℓ−1

)

φT
(

F′
ℓ−1

)

otherwise,
(55a)

P (Fℓ|Kℓ) =
∏Nℓ

λ=1N
(

f ℓλ;0,Kℓ

)

, (55b)

Gℓ =
1
Nℓ

FℓF
T
ℓ , (55c)

P (F′
ℓ|Gℓ) =

∏Mℓ

λ=1N
(

f ′ℓλ ;0,Gℓ

)

. (55d)

Remembering that Kℓ+1 is the empirical mean of Mℓ IID terms, as Mℓ → ∞ it converges on its expectation

lim
Mℓ→∞

Kℓ+1 = lim
Mℓ→∞

1
Mℓ

∑Nℓ

λ=1φ
(

f ′ℓλ
)

φT
(

f ′ℓλ
)

= E
[

φ(f ′ℓλ)φT (f ′ℓλ)|Gℓ

]

= K(Gℓ). (56)

and we define the limit to be K(Gℓ). Note if we use standard (e.g. ReLU) nonlinearities, we can use results from Cho &

Saul (2009) to compute K(Gℓ). Thus, we get the following generative process,

Kℓ =

{

1
N0

XXT for ℓ = 1,

K(Gℓ−1) otherwise,
(57a)

P (Gℓ) = W
(

Gℓ;
1
Nℓ

Kℓ, Nℓ

)

. (57b)

Finally, eliminating the deterministic kernels, Kℓ, from the model, we obtain exactly the deep GP generative model in Eq. 8

(Fig. C.3 fourth row).

D. Standard approximate posteriors over features and weights fail to capture symmetries

We have shown that it is possible to represent DGPs and a variety of NNs as deep kernel processes. Here, we argue that

standard deep GP approximate posteriors are seriously flawed, and that working with deep kernel processes may alleviate

these flaws.

Deep kernel processes

X

W1

F1

M1

F′
1

W2

F2

M2

F′
2

W3

F3 Y

X K1 F1 G1 F′
1 K2 F2 G2 F′

2 K3 F3 Y

X K1 G1 K2 G2 K3 F3 Y

X G1 G2 F3 Y

Layer 1 Layer 2 Output Layer

Figure 4. A series of generative models for an infinite network with bottlenecks. First row. The standard model. Second row. Integrating

out the weights. Third row. Integrating out the features, the Gram matrices are Wishart-distributed, and the kernels are deterministic.

Last row. Eliminating all deterministic random variables, we get a model equivalent to that for DGPs (Fig. 1 bottom).

In particular, we show that the true DGP posterior has rotational symmetries and that the true BNN posterior has permutation

symmetries that are not captured by standard variational posteriors.

D.1. Permutation symmetries in DNNs posteriors over weights

Permutation symmetries in neural network posteriors were known in classical work on Bayesian neural networks (e.g.

MacKay, 1992). Here, we spell out the argument in full. Taking P to be a permutation matrix (i.e. a unitary matrix with

PPT = I with one 1 in every row and column), we have,

φ(F)P = φ(FP). (58)

i.e. permuting the input to a nonlinearity is equivalent to permuting its output. Expanding two steps of the recursion defined

by Eq. (47b),

Fℓ = φ(φ(Fℓ−2)Wℓ−1)Wℓ, (59)

multiplying by the identity,

Fℓ = φ(φ(Fℓ−2)Wℓ−1)PPTWℓ, (60)

where P ∈ R
Nℓ−1×Nℓ−1 , applying Eq. (58)

Fℓ = φ(φ(Fℓ−2)Wℓ−1P)PTWℓ, (61)

defining permuted weights,

W′
ℓ−1 = Wℓ−1P, W′

ℓ = PTWℓ, (62)

the output is the same under the original or permuted weights,

Fℓ = φ(φ(Fℓ−2)W
′
ℓ−1)W

′
ℓ = φ(φ(Fℓ−2)Wℓ−1)Wℓ. (63)

Introducing a different perturbation between every pair of layers we get a more general symmetry,

W′
1 = W1P1, (64a)

Wℓ = PT
ℓ−1WℓPℓ for ℓ ∈ {2, . . . , L}, (64b)

W′
L+1 = PLWL+1, (64c)

where Pℓ ∈ R
Nℓ−1×Nℓ−1 . As the output of the neural network is the same under any of these permutations the likelihoods

for original and permuted weights are equal,

P (Y|X,W1, . . . ,WL+1) = P
(

Y|X,W′
1, . . . ,W

′
L+1

)

, (65)

Deep kernel processes

and as the prior over elements within a weight matrix is IID Gaussian (Eq. 47a), the prior probability density is equal under

original and permuted weights,

P (W1, . . . ,WL+1) = P
(

W′
1, . . . ,W

′
L+1

)

. (66)

Thus, the joint probability is invariant to permutations,

P (Y|X,W1, . . . ,WL+1) P (W1, . . . ,WL+1) = P
(

Y|X,W′
1, . . . ,W

′
L+1

)

P
(

W′
1, . . . ,W

′
L+1

)

, (67)

and applying Bayes theorem, the posterior is invariant to permutations,

P (W1, . . . ,WL+1|Y,X) = P
(

W′
1, . . . ,W

′
L+1|Y,X

)

. (68)

Due in part to these permutation symmetries, the posterior distribution over weights is extremely complex and multimodal.

Importantly, it is not possible to capture these symmetries using standard variational posteriors over weights, such as

factorised posteriors, but it is not necessary to capture these symmetries if we work with Gram matrices and kernels, which

are invariant to permutations (and other unitary transformations; Eq. 14).

D.2. Rotational symmetries in deep GP posteriors

To show that deep GP posteriors are invariant to unitary transformations, Uℓ ∈ R
Nℓ×Nℓ , where UℓU

T
ℓ = I, we define

transformed features, F′
ℓ,

F′
ℓ = FℓUℓ. (69)

To evaluate P
(

F′
ℓ|F

′
ℓ−1

)

, we begin by substituting for F′
ℓ−1,

P
(

F′
ℓ|F

′
ℓ−1

)

=
∏Nℓ

λ=1N
(

f ′ℓλ ;0,K
(

1
Nℓ−1

F′
ℓ−1F

′T
ℓ−1

))

, (70)

=
∏Nℓ

λ=1N
(

f ′ℓλ ;0,K
(

1
Nℓ−1

Fℓ−1Uℓ−1U
T
ℓ−1F

T
ℓ−1

))

, (71)

=
∏Nℓ

λ=1N
(

f ′ℓλ ;0,K
(

1
Nℓ−1

Fℓ−1F
T
ℓ−1

))

, (72)

= P (F′
ℓ|Fℓ−1) . (73)

To evaluate P (F′
ℓ|Fℓ−1), we substitute for F′

ℓ in the explicit form for the multivariate Gaussian probability density,

P (F′
ℓ|Fℓ−1) = − 1

2 Tr
(

F′T
ℓ K−1

ℓ−1F
′
ℓ

)

+ const, (74)

= − 1
2 Tr

(

K−1
ℓ−1F

′
ℓF

′T
ℓ

)

+ const, (75)

= − 1
2 Tr

(

K−1
ℓ−1FℓUℓU

T
ℓ F

T
ℓ

)

+ const, (76)

= − 1
2 Tr

(

K−1
ℓ−1FℓF

T
ℓ

)

+ const, (77)

= P (Fℓ|Fℓ−1) . (78)

where Kℓ−1 = K
(

1
Nℓ−1

Fℓ−1F
T
ℓ−1

)

, and the constant depends only on Fℓ−1. Combining these derivations, each of these

conditionals is invariant to rotations of Fℓ and Fℓ−1,

P
(

F′
ℓ|F

′
ℓ−1

)

= P (F′
ℓ|Fℓ−1) = P (Fℓ|Fℓ−1) . (79)

The same argument can straightforwardly be extended to the inputs, P (F1|X),

P (F′
1|X) = P (F1|X) , (80)

and to the final probability density, for output activations, FL+1 which is not invariant to permutations,

P (FL+1|F
′
L) = P (FL+1|F

′
L) , (81)

Deep kernel processes

Therefore, we have,

P (F′
1, . . . ,F

′
L,FL+1,Y|X) = P (Y|FL+1) P (FL+1|F

′
L)

(

L
∏

ℓ=2

P
(

F′
ℓ|F

′
ℓ−1

)

)

P (F′
1|X) , (82)

= P (Y|FL+1) P (FL+1|FL)

(

L
∏

ℓ=2

P (Fℓ|Fℓ−1)

)

P (F1|X) , (83)

= P (F1, . . . ,FL,FL+1,Y|X) . (84)

Therefore, applying Bayes theorem the posterior is invariant to rotations,

P (F′
1, . . . ,F

′
L,FL+1|X,Y) = P (F1, . . . ,FL,FL+1|X,Y) . (85)

Importantly, these posterior symmetries are not captured by standard variational posteriors with non-zero means (e.g.

Salimbeni & Deisenroth, 2017).

D.3. The true posterior over features in a DGP has zero mean

We can use symmetry to show that the posterior of Fℓ has zero mean. We begin by writing the expectation as an integral,

E [Fℓ|Fℓ−1,Fℓ+1] =

∫

dF FP (Fℓ=F|Fℓ−1,Fℓ+1) . (86)

Changing variables in the integral to F′ = −F, and noting that the absolute value of the Jacobian is 1, we have

=

∫

dF′ (−F′) P (Fℓ=(−F′) |Fℓ−1,Fℓ+1) , (87)

using the symmetry of the posterior,

=

∫

dF′ (−F′) P (Fℓ=F′|Fℓ−1,Fℓ+1) , (88)

= −E [Fℓ|Fℓ−1,Fℓ+1] , (89)

the expectation is equal to minus itself, so it must be zero

E [Fℓ|Fℓ−1,Fℓ+1] = 0. (90)

E. Difficulties with VI in deep Wishart processes

The deep Wishart generative process is well-defined as long as we admit nonsingular Wishart distributions (Uhlig, 1994;

Srivastava et al., 2003). The issue comes when we try to form a variational approximate posterior over low-rank positive

definite matrices. This is typically the case because the number of datapoints, P is usually far larger than the number of

features. In particular, the only convenient distribution over low-rank positive semidefinite matrices is the Wishart itself,

Q (Gℓ) = W
(

Gℓ;
1
Nℓ

Ψ, Nℓ

)

. (91)

However, a key feature of most variational approximate posteriors is the ability to increase and decrease the variance,

independent of other properties such as the mean, and in our case the rank of the matrix. For a Wishart, the mean and

variance are given by,

E
Q(Gℓ)

[Gℓ] = Ψ, (92)

V
Q(Gℓ)

[

Gℓ
ij

]

= 1
Nℓ

(

Ψ2
ij +ΨiiΨjj

)

. (93)

Initially, this may look fine: we can increase or decrease the variance by changing Nℓ. However, remember that Nℓ is the

degrees of freedom, which controls the rank of the matrix, Gℓ. As such, Nℓ is fixed by the prior: the prior and approximate

Deep kernel processes

posterior must define distributions over matrices of the same rank. And once Nℓ is fixed, we no longer have independent

control over the variance.

To go about resolving this issue, we need to find a distribution over low-rank matrices with independent control of the mean

and variance. The natural approach is to use a non-central Wishart, defined as the outer product of Gaussian-distributed

vectors with non-zero means. While this distribution is easy to sample from and does give independent control over the rank,

mean and variance, its probability density is prohibitively costly and complex to evaluate (Koev & Edelman, 2006).

F. Singular (inverse) Wishart processes at the input layer

In almost all cases of interest, our the kernel functions K(G) return full-rank matrices, so we can use standard (inverse)

Wishart distributions, which assume that the input matrix is full-rank. However, this is not true at the input layer as

K0 = 1
N0

XXT will often be low-rank. This requires us to use singular (inverse) Wishart distributions which in general are

difficult to work with (Uhlig, 1994; Srivastava et al., 2003; Bodnar & Okhrin, 2008; Bodnar et al., 2016). As such, instead

we exploit knowledge of the input features to work with a smaller, full-rank matrix, Ω ∈ R
N0×N0 , where, remember, N0 is

the number of input features in X. For a deep Wishart process,

1
N0

XΩXT = G1 ∼ W
(

1
N1

K0, N1

)

, where Ω ∼ W
(

1
N1

I, N1

)

, (94)

and for a deep inverse Wishart process,

1
N0

XΩXT = G1 ∼ W−1(δ1K0, δ1 + P + 1) , where Ω ∼ W−1(δ1I, δ1 +N0 + 1) . (95)

Now, we are able to use the full-rank matrix, Ω rather than the low-rank matrix, G1 as the random variable for variational

inference. For the approximate posterior over Ω, in a deep inverse Wishart process, we use

Q (Ω) = W−1
(

δ1I+V1V
T
1 , δ1 + γ1 + (N0 + 1)

)

. (96)

Note in the usual case where there are fewer inducing points than input features, then the matrix K0 will be full-rank, and

we can work with G1 as the random variable as usual.

G. Approximate posteriors over output features

To define approximate posteriors over inducing outputs, we are inspired by global inducing point methods (Ober & Aitchison,

2020). In particular, we take the approximate posterior to be the prior, multiplied by a “pseudo-likelihood”,

Q (FL+1|GL) ∝ P (FL+1|GL)
∏NL+1

λ=1 N
(

vλ; f
L+1
λ ,Λ−1

λ

)

. (97)

This is valid both for global inducing inputs and (for small datasets) training inputs, and the key thing to remember is that in

either case, for any given input (e.g. an MNIST handwritten 2), there is a desired output (e.g. the class-label “2”), and the

top-layer global inducing outputs, vλ, express these desired outcomes. Substituting for the prior,

Q (FL+1|GL) ∝
∏NL+1

λ=1 N
(

fL+1
λ ;0,K(GL)

)

N
(

vλ; f
L+1
λ ,Λ−1

λ

)

, (98)

and computing this value gives the approximate posterior in the main text (Eq. 21).

H. Using eigenvalues to compare deep Wishart, deep residual Wishart and inverse Wishart

priors

One might be concerned that the deep inverse Wishart processes in which we can easily perform inference are different to

the deep Wishart processes corresponding to BNNs (Sec. C.1) and infinite NNs with bottlenecks (App. C.3). To address

these concerns, we begin by noting that the (inverse) Wishart priors can be written in terms of samples from the standard

(inverse) Wishart

G = LΩLT , G′ = LΩ′LT , (99)

Deep kernel processes

0

100

200

300
fr

e
q
u
e
n
c
y

W
(

1
N

I, N
)

ResW(N, 1) ResW(N, 2) ResW(N, 3)

0 1 2 3

eigenvalue

0

100

200

300

fr
e
q
u
e
n
c
y

W
−1(NI, N)

0 1 2 3

eigenvalue

W
−1(NI, 3N)

0 1 2 3

eigenvalue

W
−1(NI, 5N)

0 1 2 3

eigenvalue

W
−1(NI, 10N)

Figure 5. Eigenvalue histograms for a single sample from the labelled distribution, with N = 2000.

where K = LLT such that,

Ω ∼ W
(

1
N
I, N

)

, Ω′ ∼ W−1(NI, λN) , (100)

G ∼ W
(

1
N
K, N

)

, G′ ∼ W−1(NK, λN) . (101)

Note that as the standard Wishart and inverse Wishart have uniform distributions over the eigenvectors (Shah et al., 2014),

they differ only in the distribution over eigenvalues of Ω and Ω′. We plotted the eigenvalue histogram for samples from a

Wishart distribution with N = P = 2000 (Fig. 5 top left). This corresponds to an IID Gaussian prior over weights, with

2000 features in the input and output layers. Notably, there are many very small eigenvalues, which are undesirable as

they eliminate information present in the input. To eliminate these very small eigenvalues, a common approach is to use

a ResNet-inspired architecture (which is done even in the deep GP literature, e.g. Salimbeni & Deisenroth, 2017). To

understand the eigenvalues in a residual layer, we define a ResW distribution by taking the outer product of a weight matrix

with itself,

WWT = Ω′′ ∼ ResW (N,α) , (102)

where the weight matrix is IID Gaussian, plus the identity matrix, with the identity matrix weighted as α,

W = 1√
1+α2

(

√

1
N
ξ + αI

)

, ξi,λ ∼ N (0, 1) . (103)

With α = 1, there are still many very small eigenvalues, but these disappear as α increases. We compared these distributions

to inverse Wishart distributions (Fig. 5 bottom) with varying degrees of freedom. For all degrees of freedom, we found that

inverse Wishart distributions do not produce very small eigenvalues, which would eliminate information. As such, these

eigenvalue distributions resemble those for ResW with α larger than 1.

I. Doubly stochastic variational inference in deep inverse Wishart processes

Due to the doubly stochastic results in Sec. 5.3, we only need to compute the conditional distribution over a single test/train

point (we do not need the joint distribution over a number of test points). As such, we can decompose G and Ψ as,

Gℓ =

(

Gℓ
ii gℓT

it

gℓ
it gℓtt

)

, Ψ =

(

Ψii ψT
it

ψit ψtt

)

, (104)

Deep kernel processes

-4

-2

0

2

4

y

−4 −2 0 2 4

x

-4

-2

0

2

4

y

-4 -2 0 2 4

x

-4 -2 0 2 4

x

-4 -2 0 2 4

x

-4 -2 0 2 4

x

one-layer GP

two-layer GP

one-layer IW process

two-layer IW process with fixed first layer

Figure 6. Samples from a one-layer (top) and a two-layer (bottom) deep IW process prior (Eq. 18). On the far left, we have included a set

of samples from a GP with the same kernel, for comparison. This GP is equivalent to sending δ0 → ∞ in the one-layer deep IW process

and additionally sending δ1 → ∞ in the two-layer deep IW process. All of the deep IW process panels use the same squared-exponential

kernel with bandwidth 1. and δ0 = δ1 = 0. For each panel, we draw a single sample of the top-layer Gram matrix, GL, then draw

multiple GP-distributed functions, conditioned on that Gram matrix.

where Gℓ
ii,Ψii ∈ R

Pi×Pi , gℓ
it ∈ R

Pi×1 and ψit ∈ R
Pi×1 are column-vectors, and gℓtt and ψtt are scalars. Taking the results in

Eq. (34) to the univariate case,

gℓtt·i = gℓtt − gTℓ
it

(

Gℓ
ii

)−1
gℓ

it, ψtt·i = ψtt −ψ
T
it Ψ

−1
ii ψit. (105)

As gℓtt·i is univariate, its distribution becomes Inverse Gamma,

gℓtt·i|G
ℓ
ii,Gℓ−1 ∼ InverseGamma

(

α = 1
2 (δℓ + Pt + Pi + 1) , β = 1

2ψtt·i
)

. (106)

As gℓ
it is a vector rather than a matrix, its distribution becomes Gaussian,

(

Gℓ
ii

)−1
gℓ

it|g
ℓ
tt·i,G

ℓ
ii,Gℓ−1 ∼ N

(

Ψ−1
ii ψit, g

ℓ
tt·iΨ

−1
ii

)

. (107)

J. Samples from the 1D prior and approximate posterior

First, we drew samples from a one-layer (top) and two-layer (bottom) deep inverse Wishart process, with a squared-

exponential kernel (Fig. 6). We found considerable differences in the function family corresponding to different prior

samples of the top-layer Gram matrix, GL (panels). While differences across function classes in a one-layer IW process can

be understood as equivalent to doing inference over a prior on the lengthscale, this is not true of the two-layer process, and to

emphasise this, the panels for two-layer samples all have the same first layer sample (equivalent to choosing a lengthscale),

but different samples from the Gram matrix at the second layer. The two-layer deep IW process panels use the same, fixed

input layer, so variability in the function class arises only from sampling G2.

Next, we exploited kernel flexibilities in IW processes by training a one-layer deep IW model with a fixed kernel bandwidth

on data generated from various bandwidths. The first row in Figure 7 shows posterior samples from one-layer deep IW

processes trained on different datasets. For each panel, we first sampled five full G1 matrices using Eq.(34a) and (34b).

Then for each G1, we use Gaussian conditioning to get a posterior distribution on testing locations and drew one sample

from the posterior plotted as a single line. Remarkably, these posterior samples exhibited wiggling behaviours that were

consistent with training data even outside the training range, which highlighted the additional kernel flexibility in IW

processes. On the other hand, when model bandwidth was fixed, samples from vanilla GPs with fixed bandwidth in the

second row displayed almost identical shapes outside the training range across different sets of training data.

Deep kernel processes

-4

-2

0

2

4

y

-10 0 10

x

-4

-2

0

2

4

y

-10 0 10

x

-10 0 10

x

-10 0 10

x

-10 0 10

x

one-layer IW process

one-layer GP

Figure 7. The additional flexibility in a one-layer deep IW process can be used to capture mismatch in the kernel. We plot five posterior

function samples from trained IW processes in the first row, and samples from trained GPs below. We generate different sets of training

data from a GP with different kernel bandwidths (0.5, 1, 2, 5, 10) across columns, while we keep the kernel bandwidth in all models being

1.

K. Why we care about the ELBO

While we have shown that DIWP offers some benefits in predictive performance, it gives much more dramatic improvements

in the ELBO. While we might think that predictive performance is the only goal, there are two reasons to believe that the

ELBO itself is also an important metric. First, the ELBO is very closely related to PAC-Bayesian generalisation bounds

(e.g. Germain et al., 2016). In particular, the bounds are generally written as the average training log-likelihood, plus the

KL-divergence between the approximate posterior over parameters and the prior. This mirrors the standard form for the

ELBO,

L = E
Q(z)

[log P (x|z)]−DKL (Q (z) ||P (z)) , (108)

where x is all the data (here, the inputs, X and outputs, Y), and z are all the latent variables. Remarkably, Germain et al. (e.g.

2016) present a bound on the test-log-likelihood that is exactly the ELBO per data point, up to additive constants. As such,

in certain circumstances, optimizing the ELBO is equivalent to optimizing a PAC-Bayes bound on the test-log-likelihood.

Similar results are available in Rivasplata et al. (2019). Second, we can write down an alternative form for the ELBO as the

model evidence, minus the KL-divergence between the approximate and true posterior,

L = log P (x)−DKL (Q (z) ||P (z|x)) ≤ log P (x) . (109)

As such, for a fixed generative model, and hence a fixed value of the model evidence, log P (x), the ELBO measures

the closeness of the variational approximate posterior, Q (z) and the true posterior, P (z|x). As we are trying to perform

Bayesian inference, our goal should be to make the approximate posterior as close as possible to the true posterior. If, for

instance, we can set Q (z) to give better predictive performance, but be further from the true posterior, then that is fine in

certain settings, but not when the goal is inference. Obviously, it is desirable for the true and approximate posterior to be as

close as possible, which corresponds to larger values of L (indeed, when the approximate posterior equals the true posterior,

the KL-divergence is zero, and L = log P (x)).

Deep kernel processes

L. Differences with Shah et al. (2014)

For a one-layer deep inverse Wishart process, using our definition in Eq. (18)

K0 = 1
N0

XXT , (110a)

P (G1|K0) = W−1(δ1K0, δ1 + (P + 1)) , (110b)

P (yλ|K1) = N (yλ;0,K (G1)) . (110c)

Importantly, we do the nonlinear kernel transformation after sampling the inverse Wishart, so the inverse-Wishart sample

acts as a generalised lengthscale hyperparameter (App. B), and hence dramatically changes the function family.

In contrast, for Shah et al. (2014), the nonlinear kernel is computed before, the inverse Wishart is sampled, and the inverse

Wishart sample is used directly as the covariance for the Gaussian,

K0 = K
(

1
N0

XXT
)

, (111a)

P (G1|K0) = W−1(δ1K0, δ1 + (P + 1)) , (111b)

P (yλ|K1) = N (yλ;0,G1) . (111c)

This difference in ordering, and in particular, the lack of a nonlinear kernel transformation between the inverse-Wishart and

the output is why Shah et al. (2014) were able to find trivial results in their model (that it is equivalent to multiplying the

covariance by a random scale).

