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Abstract
Good generalization performance across a wide
variety of domains caused by many external and
internal factors is the fundamental goal of any ma-
chine learning algorithm. This paper theoretically
proves that the choice of loss function matters for
improving the generalization performance of deep
learning-based systems. By deriving the general-
ization error bound for deep neural models trained
by stochastic gradient descent, we pinpoint the
characteristics of the loss function that is linked
to the generalization error, and can therefore be
used for guiding the loss function selection pro-
cess. In summary, our main statement in this
paper is: choose a stable loss function, generalize
better. Focusing on human age estimation from
the face which is a challenging topic in computer
vision, we then propose a novel loss function for
this learning problem. We theoretically prove that
the proposed loss function achieves stronger sta-
bility, and consequently a tighter generalization
error bound, compared to the other common loss
functions for this problem. We have supported
our findings theoretically, and demonstrated the
merits of the guidance process experimentally,
achieving significant improvements.

1. Introduction
The human age estimation from a face image has received
increasing attention in a wide variety of applications, in-
cluding advanced video surveillance, age-specific advertis-
ing, demographic statistics collection, customer profiling,
or search optimization in large datasets. Nevertheless, it
is one of the most challenging topics in computer vision
due to the large variations of factors, such as lightening
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conditions, camera quality, head pose, makeup application
and face expression, which have a negative effect on the
estimation accuracy. These factors, mixed with other per-
sonal attributes such as gene, gender, race and personal life
style, make the problem even more challenging. Collecting
large-scale datasets may offer opportunities to advance the
state-of-the-art in the field, however, training datasets can
never represent all the aforementioned factors fully. Con-
sequently, methods with substantial robustness need to be
developed in order to get better accuracy in unseen scenar-
ios.

The ultimate objective of an ideal machine learning algo-
rithm is to build an optimal model being able to general-
ize to any test data that might be distributed differently
than the data used for training. However, deep neural net-
works (DNN) have the tendency to over-fit the training data.
In view of this over-fitting issue, it is very important to
understand the factors, that impact on the generalization
performance of DNNs. In order to link the generalization
performance of a deep neural model to its causal factors, one
approach is to derive an upper bound for the generalization
error, which defines the potential gap between the error on
the training and test data.

One established way to upper-bound the generalization er-
ror is achieved by exploiting form the notion of uniform
stability (Bousquet & Elisseeff, 2002; Shalev-Shwartz et al.,
2010; Hardt et al., 2016; Jakubovitz et al., 2018; Wu et al.,
2020). Roughly speaking, the stability measures the sensitiv-
ity of a learning algorithm to perturbations in the training set.
The pioneering work of Bousquet and Elisseeff (Bousquet &
Elisseeff, 2002; Elisseeff et al., 2005) show that, with high
probability, a tighter generalization bound is achieved by
the help of using a more stable learning algorithm. However,
this result is valid for deterministic learning algorithms. In
a following work, Hardt et al. (Hardt et al., 2016) extend
the notion of uniform stability to randomized learning algo-
rithms in order to derive upper-bounds for the generalization
error of a neural model trained by stochastic gradient de-
scent (SGD). Conceptually, they demonstrate that SGD is
more stable, provided that the number of iterations taken by
SGD is sufficiently small.

It is common in practice to choose an appropriate loss func-



How Does Loss Function Affect Generalization Performance of Deep Learning?

tion to assess each data point during training of DNNs. This
task can be addressed in a heuristic way by trying every
possible loss function, or in a principled way, advocated in
our paper, which guides the selection process. In this paper,
we build on the notion of the algorithmic stability defined
in (Hardt et al., 2016) to develop new insights into designing
loss functions for training deep neural models. To do so,
we link the generalization capability of the trained model to
the loss function. In a nutshell, our result establishes that
the generalization error of any model trained with SGD is
dependent on the properties of the loss adopted function.
More concretely, we identify the properties that define a sta-
ble and effective loss function, by deriving an upper-bound
for the generalization error as a vanishing function of the
loss function attributes. We demonstrate that a tighter bound
on the generalization error of a DNN model could be ex-
pected when using a loss function that follows the guidelines
emerging from the above analysis.

As our second contribution in this paper, we propose a novel
loss function which provides a better generalization perfor-
mance, compared with the commonly used loss functions
for training DNN based age estimation systems. We theo-
retically analyze the generalization performance of a DNN
model trained via SGD using the proposed loss function.
To this end, we first prove that the magnitude value and
Lipschitz constant of the proposed loss function are upper
bounded by the loss function itself. These results help us
to prove that the stability of SGD is directly related to the
rate of change of the adopted loss function. Consequently,
we show that SGD is generally more stable when the speed
of change of the loss function is lower. These results then
build a fundamental connection between the generalization
error and the stability of a DNN model trained by the loss
function. Finally, we experimentally validate our theoreti-
cal findings on real data and show that a DNN based age
estimation system trained via SGD using the proposed loss
function provides a model with a higher generalization capa-
bility across a variety of unseen scenarios. The results hold
true in a broad range of settings, including small and large-
scale datasets and different model architectures. The results
suggest that it might be highly beneficial for practitioners
in other application ?? fields to focus on designing an ef-
fective loss function for which stochastic gradient method
converges to a better model.

2. Related Work
Learning with powerful models such as deep neural net-
works (DNN) has achieved a step change in performance
over recent years across a wide variety of tasks (Khalid
et al., 2020; Akbari et al., 2021b; Bashar et al., 2020a;b;
Akbari et al., 2020b; Khalid et al., 2021). Different learning
algorithms for different applications have been proposed in

literature (Khalid et al., 2021; Akbari et al., 2020c; 2017b;a;
2016). In order to design an effective learning method, a
deep understanding of the impact of various design choices
on the generalization performance is particularly critical.

There is a variety of successful methods in the machine
learning literature, which try to gain theoretical insight into
the factors affecting the generalization performance of learn-
ing algorithms (Bousquet & Elisseeff, 2002; Shalev-Shwartz
et al., 2010; Devroye & Wagner, 1979; Lin, 2019). One clas-
sical approach to assess the generalization performance is to
derive upper bounds for the generalization error. There are
various approaches to set an upper bound on the generaliza-
tion error, including the use of algorithmic stability (Bous-
quet & Elisseeff, 2002; Shalev-Shwartz et al., 2010; Hardt
et al., 2016; Jakubovitz et al., 2018), Vapnik-Chervonenkis
(VC) dimension (Jakubovitz et al., 2018), robustness (Xu &
Mannor, 2012), the PAC-Bayesian theory (Neyshabur et al.,
2018), etc. Each of these approaches reveals some factors
that are critical for analyzing the generalization capability
of the model obtained by a learning algorithm.

The concept of uniform stability which was firstly intro-
duced by Bousquet and Elisseeff (Bousquet & Elisseeff,
2002), has been widely used for analyzing the general-
ization error of deterministic or randomized learning al-
gorithms (Elisseeff et al., 2005; Hardt et al., 2016). The
theory defines the assumptions on regularity or convexity
of the loss function, under which the output of a learning
algorithm is uniformly stable. The key consequence of the
above-mentioned theoretical work is that the generalization
error is upper-bounded by a vanishing function of the num-
ber of training samples. This implies the bound becomes
tighter as the size of the training data increases. However,
there is still a lack of knowledge on how other factors impact
on the generalization error of deep neural networks.

Recently, Hardt et al. (Hardt et al., 2016) derived an upper-
bound on the generalization error as a function of the num-
ber of iterations of SGD. In contrast, our focus in this paper
is on the link between the properties of the loss function
used by SGD for training DNNs and their generalization per-
formance. There are two key differences with the existing
stability analysis derived by Hardt et al. (Hardt et al., 2016).
i) We derive a "high-probability" generalization bound in-
stead of "expected" generalization bound derived by Hardt
et al. (Hardt et al., 2016). High-probability bounds are
stronger than expected ones1. ii) More importantly, Hardt
et al. (Hardt et al., 2016) connect the generalization to
number of SGD iterations, while our work connects the gen-
eralization to properties of loss i.e. its Lipschitzness. Our
derivation of the relationship between loss functions and the
error bound provides a theoretical insight and guidelines on

1http://www.cs.cmu.edu/afs/cs/academic/class/15210-
s15/www/lectures/random-notes.pdf
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how the loss function should be constructed. To the best
of our knowledge, we are the first to adopt this concept for
designing an efficient loss function.

In the rest of the paper, we first present a framework for
the age estimation problem and then introduce the proposed
loss function and its properties. Next, we theoretically ana-
lyze the proposed loss function and validate the theoretical
findings experimentally.

3. Problem Formulation
Let (x, y) represents a training instance, where x represent
the input image of an individual’s face and y is the corre-
sponding age label being a scalar number from the set of
possible age labels L = {1, · · · ,K}. The objective in the
facial age estimation is finding a function which maps the
input face x to its corresponding age label y. Naturally,
there is a semantic similarity between the facial features of
an individual at a certain age and those at the immediately
preceding and following ages. Typical age estimation algo-
rithms adopt regression or classification approaches (Rothe
et al., 2018; Carletti et al., 2019) which might not be efficient.
In fact, it is well-known that regression based methods show
the instability during training phase and classification based
methods ignore the correlation among the neighboring ages
at the training stage.

Recently, an efficient learning framework, namely label dis-
tribution learning (LDL) (Geng, 2016; Gao et al., 2017;
Akbari et al., 2021a), was developed by which the cross-
age correlation is exploited in the training phase. In this
approach, each scalar age label is encoded as a vector
y = [y1, y2, · · · , yK ] ∈ RK , where ∀yk, 0 ≤ yk ≤ 1

and
∑K
k=1 yk = 1 and the expected value of y is set to

equal the true scalar age label. This vector, called label
distribution, shares the same properties with probability dis-
tribution. That means each yk expresses the probability
of the face sample x belonging to the k-th age label in L.
As is standard (Geng, 2016; Gao et al., 2017), the label
vector y is usually assumed to be a normal distribution func-
tion, centered at the true age y with a standard deviation
σ), controlling the shape (width) of the label distribution at
each age. With this kind of label modeling, the objective
of the age estimation problem is to find a mapping function
between x and y.

4. Preliminaries
Our objective is to learn the deep model fθ : X → Y ,
parameterized by θ ∈ H, that maps the input space X to
the corresponding output space Y . Given input pair z =
(x,y) ∈ X×Y , drawn according to an unknown distribution
P, a typical setting for such learning problem is described

as
argmin
fθ∈F

Ez∼P[`(f
θ; z)], (1)

wherein a learning algorithm A : (X × Y)N → YX looks
for a solution fθ ∈ F by minimizing the expected (true)
riskRtrue(f

θ) , Ez∼P[`(f
θ; z)]. ` : Y×Y → R+ denotes

the loss function which evaluates the precision of the hy-
pothesis fθ on the basis of difference between the expected
and true outputs. Throughout the paper, we sometime use
`(fθ(x);y) as `(fθ; z).

As P is unknown, the optimization problem (1) cannot be
solved directly. So, the true risk Rtrue(f

θ) is alternatively
estimated by the empirical risk defined as Remp(f

θ) ,
1
N

∑N
i=1 `(f

θ; zi), where S = {zi, i = 1, 2, · · · , N} de-
notes a finite set of N input pairs zi = (xi,yi), i.i.d. drawn
according to P.

In the context of deep neural models, SGD is the widely
used learning algorithmA for dealing with the minimization
problem (1). It is a randomized algorithm due to either the
random initialization of the model’s weights or the random
order of passing training samples in S through SGD. For
simplicity in notation, throughout this paper, we assume
the only nature of randomness of SGD appears only by the
random choice of training samples. Let R = {r1 · · · rT }
represent the set of random indices of instances in S. Let
fθS,R be the output of SGD applied to a training dataset S
and the setR.

The final aim of SGD is to provide an ideal solution fθ by
adopting a suitably chosen loss function `. The output model
should be able to provide a small gap of performance over
the training set S and any other test set drawn with an un-
known distribution P. One approach to assess the efficiency
of SGD is to derive an upper bound for the generalization
error:

Definition 1 (Generalization Error). Given a training set S
and staring with a set of random indicesR of samples in S ,
the generalization error of the output model fθS,R, trained by
SGD, is defined as the difference between the empirical risk
and true risk, i.e. E(S,R) = Rtrue(f

θ
S,R)−Remp(f

θ
S,R).

It should be noted that due to the randomness of S andR,
fθS,R and consequently E(S,R) are random variable.

Roughly speaking, if SGD provides a tighter bound on the
generalization error, the generalization performance of the
output model would be better. In this paper, our aim is to
express the generalization error bound of the output model
fθS,R achieved by SGD as a function of the properties of
the loss function adopted for training. In this study, we
will use the notion of uniform stability (Hardt et al., 2016)
to uncover the connection between the properties of loss
functions and the generalization error. For brevity, in the fol-
lowing, fS,R, Rtrue(fS,R) and Remp(fS,R) are sometimes
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used as a shorthand for fθS,R, Rtrue(f
θ
S,R) and Remp(f

θ
S,R)

if their meaning is clear from the context.

The bounded difference inequality (BDI), proved by McDi-
armid (McDiarmid, 1989), is central to our analysis:

Definition 2 (BDI). Let Z be some set and G : Zn → R
be any measurable function. Consider two setsQ,Q′ ∈ Zn,
such that Q and Q′ differ in at most one element. If there
exists constant ρ such that the following condition, namely
bounded difference condition (BDC),

sup
Q,Q′∈Zn

|G(Q)−G(Q′)| ≤ ρ, (2)

holds, then ∀ε > 0

PQ
[
G(Q)− EQ[G(Q)] ≥ ε

]
≤ exp(−2ε2/nρ2). (3)

In other words, BDC (2) holds provided that G(·) does not
change much by changing only one element of Q,. Intu-
itively, these types of functions are slightly clustered around
their average, and this intuition is made precise by Eq. (3).

5. Loss Functions
Given a typical face sample x, let y and ŷ = fθ(x) repre-
sent the corresponding ground-truth label distribution and
the label distribution estimated by the the deep model fθ,
respectively. Further, consider yk and ŷk as the k-element
of y and ŷ, respectively. To optimize the model’s parame-
ters within the deep LDL framework, we need to choose an
appropriate loss function to accurately compute the mean-
ingful distance between the predicted and ground-truth label
distributions. The well-known Kullback-Leibler (KL) diver-
gence is widely employed as the loss function to measure
the similarity between the predicted and the ground-truth
label distributions. The KL loss function is defined as

`KL(ŷ,y) =

K∑
k=1

yk log(
yk
ŷk

). (4)

In this section, we propose a novel parametric loss function,
namely Generalized Jeffries-Matusita (GJM) distance, for
use in a deep LDL framework by generalizing the Jeffries-
Matusita distance (Cha, 2007) as

`GJM (ŷ,y) =

K∑
k=1

|yαk − ŷαk |
1
α =

K∑
k=1

yk

∣∣∣∣1− ( ŷkyk
)α∣∣∣∣ 1α ,

(5)
where α is in the range (0, 1]. As will be discussed in Sec-
tion 7, the best performance is achieved when the parameter
α ranges between 0.3 and 0.6. In the rest of this paper, we
consider α as 0.5, unless otherwise stated.

Our generalization error analysis with respect to the KL
and GJM loss functions is explained in the next sections.

Before starting, we first explain some properties of the GJM
loss function in comparison with the other measure, i.e. KL
divergence. Throughout this paper, the model’s architecture
is assumed to be the same. The proofs of the following
statements and theorems are provided in the supplementary
material.

Loss Function Properties

The following definitions and theorems provide the founda-
tion of our generalization error analysis.

Definition 3 (Lipschitzness). A loss function `(ŷ,y) is γ-
Lipschitz with regard to the estimated output vector ŷ, if for
γ ≥ 0 and ∀u,v ∈ RK we have

|`(u,y)− `(v,y)| ≤ γ‖u− v‖, (6)

where ‖ · ‖ denotes the `2-norm of vectors. Intuitively, a
Lipschitz loss function is upper-bounded in terms of its rate
of change.

Definition 4 (Smoothness). A loss function `(ŷ,y) is η-
smooth with regard to the estimated output vector ŷ, if its
gradient ∇`(ŷ,y) is η-Lipschitz, that is for η ≥ 0 and
∀u,v ∈ RK we have

‖∇`(u,y)−∇`(v,y)‖ ≤ η‖u− v‖. (7)

Intuitively, the curvature of the loss function is upper-
bounded by the η-smoothness property.

Theorem 1. Let function h : (0,∞)→ R be convex, such
that h(1) = 0. Let’s define the following function:

I(ŷ,y) =

K∑
k=1

ykh

(
ŷk
yk

)
. (8)

If h(·) is γ-Lipschitz, i.e.

|h(x)− h(z)| ≤ γ|x− z| ∀x, z, (9)

then I(ŷ,y) is also γ-Lipschitz. Furthermore, since h(·)
is convex, I(ŷ,y) is also convex with regard to its first
argument.

Remark. With hKL(x) = − log(x), x > 0, then
it can easily be inferred `KL(ŷ,y) = I(ŷ,y). It is
also straightforward to show that `GJM (ŷ,y) = I(ŷ,y),
if hGJM (x) = |1 − xα| 1α , x > 0. Consequently,
since hKL(x) and hGJM (x) are convex functions, then
`KL(ŷ,y) and `GJM (ŷ,y) are also convex with regard to
the first argument.

Lemma 1. A function h : (0,∞)→ R is γ-Lipschitz, if γ
satisfies the following condition:

γ = sup
x
|h′(x)|. (10)

This implies the value of γ must be equal to the maximum
value of |h′(x)|.
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Figure 1. Absolute value of the derivative of the loss functions at
different points x.

Proof. This lemma can be easily proved from the definition
of the Lipschitz property. �

The practical result is expressed in the following statement
which is the basis for our theoretical analysis in the next
section.

Corollary 1. Let the GJM and KL loss functions are γGJM -
Lipschitz and γKL-Lipschitz, respectively. Then, the follow-
ing inequality holds:

γGJM ≤ γKL. (11)

Fig. 1 shows the absolute value of the derivative for the KL
and GJM loss functions as a function of x. As can be seen
|h′GJM (x)| is smaller than |h′KL(x)|. From Lemma 1, this
implies the inequality in (11) holds. We also theoretically
prove that |h′GJM (x)| ≤ |h′KL(x)| for α = 0.5, i.e.∣∣∣∣1− 1√

x

∣∣∣∣ ≤ ∣∣∣∣ 1x
∣∣∣∣ . (12)

Eq. (12) is equivalent to |x−
√
x| ≤ 1, which results in the

condition x ≤ 2.6 after some mathematical simplification.
We experimentally found that the variable x always satisfies
this condition when the model starts to converge. Note that
|h′GJM (x)| and |h′KL(x)| meet each other at some point.
For instance, for α = 0.2, 0.4, 0.5, 0.8, the intersection
point is xp = 22.06, 3.75, 2.61, 1.42 respectively. After this
point, |h′GJM (x)| starts to be slightly larger than |h′KL(x)|,
but, the difference in this area is very small and negligible
compared with the points smaller than the intersection point.

As the last fundamental statement in this section, we now
provide a connection between the two above-mentioned loss
functions.

Theorem 2. For two distribution y, ŷ ∈ RK , the GJM
loss function with α = 0.5 is upper-bounded by the KL
divergence, i.e. we have the following inequality:

`GJM (ŷ,y) ≤ `KL(ŷ,y). (13)

6. Stability and Generalization Error Bound
In this section, we follow the notion of stability, introduced
by Hardtet al. (Hardt et al., 2016), to analyze the general-
ization error of the DNN model trained by SGD. Roughly
speaking, stability refers to the robustness of the output
model achieved by a learning algorithm with respect to
small changes in its input. The classical result, derived by
Bousquet and Elisseeff (Bousquet & Elisseeff, 2002) shows
that the generalization error of the output model, obtained
by a deterministic learning algorithm A, is upper bounded
by a factor of the stability measure, provided thatA satisfies
the uniform stability condition. This implies the following
statement: a tighter bound on the generalization error can
be expected for the output model, if A satisfies the stability
condition with a stricter stability measure. However, these
results are valid for deterministic learning algorithms and
may not be accurate for the learning algorithms, such as
SGD, which have a random element. Unlike the concept of
stability used by Bousquet and Elisseeff, we rely on the no-
tion of uniform stability presented in (Shalev-Shwartz et al.,
2010; Hardt et al., 2016) to take into account the concerns
regarding the randomness of SGD.

Definition 5 (Uniform Stability). Let S ′ and S denote two
training sets of equal size, following an unknown distribu-
tion P, such that S and S ′ vary in one entity. Let fS,R and
fS′,R be the optimal models obtained by SGD, with the set
of random indices R of the training samples in S and S ′,
respectively. SGD is then β-uniformly stable with regard to
a certain loss function `, if the following inequality holds:

∀ S, S ′ sup
z

ER
[
|`(fS,R; z)− `(fS′,R; z)|

]
≤ β, (14)

where the expectation is taken over the randomness of SGD
which is a function of the random choice of data S for
training.

Intuitively, if SGD is β-uniformly stable, then it has this
property that altering one pair in the training set S and
holding others fixed makes at most β-change in the error of
the output model by SGD with any random permutation of
the training samples in S.

Now, we link the concept of stability with the loss function
and then derive an upper bound for the generalization error
which depends on some attributes of the employed loss
function. This reveals the relation between the loss function
and the generalization error. This renders it amenable for
analyzing the generalization performance of DNNs, trained
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by SGD, with regard to the loss function employed for
training. These assertions are stated in Theorems 3 – 5.

Theorem 3. Consider a loss function ` : Y × Y → [0, L].
Let fS,R denote the optimal model obtained by SGD with
the set of random indices R of the training samples in S.
Let SGD be β-uniformly stable with regard to the employed
loss function `. Furthermore, assume there is a constant ρ
for which `(fS,R, z) satisfies the bounded difference condi-
tion (2) with respect to R. Then, with probability at least
1− δ, the following bounds hold ∀S,R:

Rtrue(fS,R)−Remp(fS,R) ≤

ρ
√
T log(2/δ) + β

(
1 +

√
2N log(2/δ)

)
+ L

√
log(2/δ)

2N
.

(15)

The stability parameter β and the BDI constant ρ depend on
the properties of the loss function used by SGD. We now
state the following theorem which derives the upper bounds
for β and ρ.

Theorem 4. Assume that SGD is run for T iterations with
an annealing learning rate λt to find the optimal solution
of the minimization problem (1). Let `(fθ(x),y) be convex,
γ-Lipschitz and η-smooth with regard to its first argument
for each z = (x,y). Then SGD is β-uniformly stable and
holds the ρ-BDC (2) with regard to `(fS,R, z) andR. Con-
sequently, we have

β ≤ 2γ2

N

T∑
t=1

λt and ρ ≤ 4γ2

T

T∑
t=1

λt. (16)

Combining Theorem 3 and Theorem 4 gets the following
result.

Theorem 5. Consider a loss function ` such that 0 ≤
`(f(·; z) ≤ L for any point z. Suppose that the SGD update
rule is executed for T iterations with an annealing learning
rate λt to solve the optimization problem (1). Then, we have
the following generalization error bound with probability at
least 1− δ:

Rtrue(fS,R)−Remp(fS,R) ≤ L
√

log(2/δ)

2N
+

2γ2
T∑
t=1

λt

(
2

√
log(2/δ)

T
+

√
2 log(2/δ)

N
+

1

N

)
.

(17)

Remark. Theorem 5 implies that the generalization error
diminishes when the number of training samples increases.
On the other hand, both the first and second term in (17),
depend on some attributes of the loss function, including its
Lipschitz constant γ and the maximum value ` can assume.
As a result, using a loss function with a smaller value of γ
give us the ability to control the uniform stability and the
generalization error bound of the trained model.

As proved in Section 5, the GJM and KL loss functions
satisfy the Lipschitzness and smoothness properties. Thus,
Theorem 4 and Theorem 5 are valid when the GJM or KL
are used as the loss function for training2. Following Corol-
lary 1 and Theorem 2, in the following corollary, we link the
generalization error bound of a model trained by the GJM
loss function, to that trained by the KL divergence.

Corollary 2. Consider two models fGJMS,R and fKLS,R trained
under the same settings using the GJM and KL loss func-
tions, respectively using the training set, S. We have the
following inequality:

E(fGJMS,R ) ≤ ECE(fKLS,R), (18)

where E(fS,R) = Rtrue(fS,R)−Remp(fS,R).

This implies that a tighter bound on the generalization error
is achieved using the GJM loss function. In other words,
DNNs which are trained with the proposed loss function
exhibit a better generalization performance, compared with
those trained by the KL loss function.

7. Experimental Evaluation
The goal of our experiments is to assist in evaluating the
effect of the loss function on the generalization performance
of DNN based age estimation systems trained by SGD. It
should be noted that none of the reported results in this
paper are intended to compete with the state-of-the-arts —
our goal is to demonstrate how the loss function affects
the generalization performance of a DNN model trained by
SGD.

7.1. Settings and Datasets

We evaluate a variety of neural network architectures
trained on a number of different datasets. We study the
VGG (Parkhi et al., 2015) and the ResNet50 models (Hu
et al., 2018), pre-trained on VGGFace2 dataset (Cao et al.,
2018) for our experiments. The last fully-connected layer in
these models is replaced with a K-neurons fully-connected
layer, whereK is the number of the age classes. The weights
of this FC layer are then randomly initialized. K is set to
101 for ages from 0 to 100. In all experiments, we train

2Theoretically speaking, KL is not Lipschitz. Theorem 1 states
that a loss function in the form of I(·, ·) is γ-Lipschitz, if h(·)
is γ-Lipschitz. In the case of KL, h(x) = − log(x) and so we
need to find γ = supx |h′(x)| (Lemma 1). In theory, there is no
finite value of γ to satisfy this condition for x = 0; therefore KL
does not satisfy the Lipschitz property. However, from a practical
point of view, we always make KL γ-Lipschitz by bounding x
from below (assuming the minimum x is 1E − 15). So, we can
say that this trimmed KL is γ-Lipschitz but the constant γ is very
large. In contrast, GJM does not have this issue. In other words,
we can state that the GJM is better in generalization due to this
Lipschitzness property.
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the models via SGD with the same random seed and set
the following training hyper-parameters. The batch size,
parameter α, weight decay and momentum are set to 64,
0.5, 0.0005 and 0.9 respectively. For the experiments with
the VGG model, the learning rate is initialized as 0.001
and then scheduled with exponential decay to reach 10−5

at 30-th epoch. For experiments on the ResNet50 model,
the learning rate is initialized as 10−5 and then increased
to a higher value 0.07 after 5 epochs and then decreased
exponentially to reach 10−5 after 30 epochs.

All the images used for training and testing are pre-
processed by the following procedures: first, the position
of the left and right middle of the eyes, the tip of the nose,
the left and right edges of the mouth are extracted by utiliz-
ing the face detector proposed in (Zhang et al., 2016). By
normalizing this positional information, we adjust the face
at the center of the input image by the alignment method
in (Wen et al., 2016). In the end, all images are reshaped
to the size of 256 × 256 pixels and then fed to the model
for training and testing. The standard data augmentation
techniques, including random cropping and flipping, are
preformed during the training phase. In the test stage, we
use only the center-cropped images.

We evaluate the age estimation performance on 5 datasets,
including Balanced AGeing (BAG) (Akbari et al., 2020a),
MORPH (Ricanek & Tesafaye, 2006), FG-NET (Panis et al.,
2016), FACES (Ebner et al., 2010) and SC-FACE (Grgic
et al., 2011). The BAG dataset contains 200, 123 in-the-
wild images. There are enough images of all ages, ranging
from 0 to 100 years-old. The MORPH dataset includes
55, 134 images in the age range from 16 to 72 years-old.
This dataset provides a suitable collection for analyzing the
generalization performance because most of images in the
dataset are African people, while this ethnic group is under
represented in our training dataset. FG-NET dataset con-
tains 1, 002 images with the age labels in the range from
0 to 69 years-old. This dataset provides large variations
in pose, expression and lighting conditions. The FACES
dataset has 2, 052 images with six expressions (neutrality,
happiness, anger, fear, disgust, and sadness) in the age range
from 19 to 80 years-old. SC-FACE dataset contains 4, 160
images in the age range from 21 to 75 years-old. We sepa-
rate the SC-FACE dataset into two separate parts, namely
SC-FACE-ROT and SC-FACE-SUR, which contain 1, 170
and 2, 990 images, respectively. The SC-FACE-ROT part
contains 10 images for each individual captured with differ-
ent head poses ranging from −90◦ to +90◦ in equal steps
of 22.5◦. The SC-FACE-SUR part has 17 images for each
subject captured with seven cameras with different shooting
characteristics.

In our experiments, we use a random subset of BAG dataset,
namely SubBAG, or MORPH, as the training set S. We
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Figure 2. Generalization error curves per training epoch.

Table 1. Generalization Error of VGG Models.
Êgen(S,R) = |Rtrain(fθS,R)−Rtest(fθS,R)|

Method FG-NET MORPH FACES SC-FACE Average

KL 0.1023 0.7321 0.8834 1.0974 0.7038
GJM 0.0097 0.2420 0.3272 0.2358 0.2037

retain other datasets as the test sets T ∈ (X × Y)M . Note
that under this setting, the output model fS,R, is statisti-
cally independent of the characteristics of images in T s.
Therefore, we can evaluate the generalization performance
reliably (Akbari et al., 2020a; 2021b; 2020b).

We measure the generalization error directly in terms of
the absolute difference between losses on the test and train-
ing set. Let fθS,R denote the model trained using set S.
We define Egen(S,R) ∼= Êgen(S,R) = |Rtrain(fθS,R)−
Rtest(f

θ
S,R)| as a measure to approximate the generaliza-

tion error, where Rtrain(fθS,R) and Rtest(fθS,R) denote the
average loss values of the trained model fθS,R on the training
and test sets, respectively. We further evaluate the gener-
alization performance in terms of accuracy measures, in-
cluding mean absolute error (MAE) and cumulative score
(CS) (Guo et al., 2009), on the training and test sets. MAE
is defined as

∑M
k=1

|l̂k−lk|
M , where M is the total number

of test samples and l̂k is the corresponding estimated age,
obtained by taking the bin index to the maximum value of
the model’s output. CS is defined as MI

M × 100%, where
KI is the number of samples such that |ŷk − yk| < I . In
this paper we set I as 5.

7.2. Evaluation

In this section, we evaluate the generalization performance
of the trained model with respect to the loss function adopted
for training. In our first experiment, we randomly choose a
subset of 50K images from the BAG dataset. 90% images of
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Table 2. Generalization Performance in Terms of MAE and CS Measures (Model: VGG, Training Set: BAG).
FG-NET MORPH FACES SC-FACE-ROT SC-FACE-SUR Average

Method MAE CS (%) MAE CS (%) MAE CS (%) MAE CS (%) MAE CS (%) MAE CS (%)
Classification 3.20 82.14 5.50 60.34 5.33 61.60 6.07 53.59 5.44 66.76 5.10 64.88
LDL (χ2) 5.35 59.28 4.76 66.49 4.66 65.25 4.50 71.07 4.89 69.80 4.83 66.37
LDL (KL) 3.08 83.83 5.27 62.43 4.72 66.76 5.25 63.93 5.46 65.71 4.75 68.53
LDL (GJM) 2.93 84.43 4.63 66.03 4.47 69.88 4.72 71.19 4.78 71.75 4.30 72.65

Table 3. Generalization Error in Terms of MAE and CS Measures (Model: VGG, Training Set: SubBAG).
FG-NET MORPH FACES SC-FACE-ROT SC-FACE-SUR Average

Method MAE CS (%) MAE CS (%) MAE CS (%) MAE CS (%) MAE CS (%) MAE CS (%)
Classification 3.57 78.94 6.54 53.38 6.59 50.83 6.45 49.32 6.19 65.05 5.86 59.50
χ2 3.29 80.44 5.98 56.10 6.05 55.77 5.61 58.55 5.75 66.89 5.33 63.55
LDL (KL) 3.24 81.54 6.01 57.36 6.11 55.60 5.90 54.79 6.52 60.64 5.55 61.98
LDL (GJM) 3.21 81.59 5.63 59.13 5.90 57.55 5.32 62.14 5.37 67.96 5.08 65.67

Table 4. Generalization Error in Terms of MAE and CS Measures (Model: VGG, Training Set: MORPH).
FG-NET BAG FACES SC-FACE-ROT SC-FACE-SUR Average

Method MAE CS (%) MAE CS (%) MAE CS (%) MAE CS (%) MAE CS (%) MAE CS (%)
Classification 5.73 58.31 8.91 40.75 9.28 36.53 4.68 67.95 9.14 23.68 7.54 45.44
LDL (χ2) 5.95 61.83 8.86 40.85 9.50 37.35 4.59 70.26 9.55 27.76 7.69 47.61
LDL (KL) 5.45 62.76 8.41 42.86 8.43 40.90 4.22 71.54 9.70 23.96 7.24 48.40
LDL (GJM) 5.29 63.70 8.62 40.99 8.73 40.45 4.05 76.24 8.92 29.40 7.12 50.15

Table 5. Generalization Error in Terms of MAE and CS Measures (Model: ResNet50, Training Set: SubBAG).
FG-NET MORPH FACES SC-FACE-ROT SC-FACE-SUR Average

Method MAE CS (%) MAE CS (%) MAE CS (%) MAE CS (%) MAE CS (%) MAE CS (%)
Classification 4.29 73.15 6.55 52.10 7.48 50.15 7.99 45.04 8.67 57.79 6.99 55.64
LDL (KL) 4.04 75.35 6.44 52.60 7.32 50.73 8.67 27.86 7.80 61.71 6.85 53.60
LDL (χ2) 3.62 78.44 5.98 57.70 7.05 51.56 8.02 41.71 9.28 59.03 6.79 57.68
LDL (GJM) 3.40 82.04 5.74 58.60 6.16 57.12 6.66 46.32 7.54 62.01 5.90 61.21

this set are randomly selected for training the VGG model
and the rest are used for validation. Fig. 2 illustrates the loss
generalization error Êgen computed on the validation set
using the model obtained at each epoch. Due to different
scale of the loss values, we normalize the loss values to the
range [0, 1]. The plot shows that the over-fitting issue is
more severe for the model trained by the KL divergence.
On the other hand, the proposed GJM loss function greatly
alleviates the over-fitting issue. This behavior can also be
inferred from Fig. 1. The large values of x in Fig. 1 usually
occur at the beginning of training (first few epochs). At
these points, the Lipschitz constant of the both GJM and KL
loss functions are close to each other as seen in Fig. 1. As
can also be observed from Fig. 2, the generalization error
curves coincide each other for the first few epochs. However,

when training continues GJM has better stability, and so it
exhibits better generalization than KL at the end of training
phase.

The generalization error Êgen of the solution achieved by
SGD is further reported in Table 1 for several test datasets.
It can be observed that the generalization error is lower
for the model trained by the proposed GJM loss function.
These observations confirm our main outcome which has
been theoretically proved in Corollary 2.

In Tables 2, 3 and 4, we evaluate the generalization perfor-
mance, in terms of MAE and CS measures, of various VGG
models which are trained on BAG, SubBAG and MORPH
datasets, respectively. Since the MORPH dataset has no
images with ages outside the range 16 to 72, we removed
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the images with labels outside this range from the test sets.
Table 5 reports the generalization performance of ResNet50
model trained on the SubBAG dataset.

Within the LDL framework, we investigate the effect of us-
ing KL divergence (Gao et al., 2017) and χ2-statistic (Öster-
reicher, 2002) as the loss function. The performance is
also compared with the classification based age estima-
tion method (Rothe et al., 2018), where the well-known
cross entropy (CE) is used as the loss function. In this
approach, the age labels are one-hot encoded. It should
be noted that when σ → 0, the LDL framework will be
similar to the classification based approach. We can write
`KL(ŷ,y) = `CE(ŷ,y) +H(y), where H(y) is the neg-
ative entropy of y. For a given sample, it is a constant
negative value. Other things being equal, the GJM loss
achieves DNN models, whose generalization capabilities
are practically distinguishable from those obtained by the
other loss functions. It should be noted that the performance
of models trained on the MORPH dataset is significantly
lower than those trained by the BAG dataset. This reflects
the characteristics of the MORPH dataset that contains im-
ages captured in a controlled environment. As the final point,
it can be inferred that the choice of loss function affects the
generalization performance of DNN based age estimation
systems.

7.3. The Effect of the Hyper-Parameter

α is the hyper-parameter in the proposed GJM loss function
which affects the performance of the trained model. From
Lemma 1, γ = supx |h′(x)|. Therefore, we can infer that
the stability is higher for smaller α (see Fig. 1). However,
the performance degrades for very small values of α, be-
cause the loss function becomes constant for small α, and is
rendered a meaningless objective function for training.

In order to study the impact of α, we evaluate the generaliza-
tion performance with different α values, changing from 0
to 1. Table 6 shows the age estimation accuracy of different
VGG models which are trained using the GJM loss function
with different values of α. We report MAEs on the FG-NET
dataset. We can see that a proper α is important for the best
MAE measure. Generally, α = 0.5 is the best choice.

Table 6. The Influence of α on Age Estimation Accuracy
α 0.2 0.3 0.4 0.5 0.6 0.7 0.8

MAE 3.7 3.3 3.2 3.2 3.5 4 4.8

8. Conclusion and Future Work
The main goal of this study was to establish a relationship
between the generalization performance of DNN based sys-
tems and the loss function. Using the notion of uniform
stability, we showed that the generalization error is depen-

dent on the properties of the loss function used for training
deep neural network via the stochastic gradient descent al-
gorithm. We proved that the model trained with a Lipschitz
loss function exhibits a stronger stability, and therefore a
a lower generalization error is expected. Inspired by our
theoretical findings, focusing on the age estimation problem,
we proposed a loss function which helps to improve the
generalization capability of DNN based age estimation sys-
tems. We validated our theoretical findings experimentally
by comparing the generalization error of different age esti-
mation models (using the same DNN architecture) trained
with several loss functions on large training sets.

We should emphasize that other factors, beside loss function,
affect the accuracy. In this work, our goal was to show how
the loss function itself affects the training process, while
keeping other contributing factors fixed. In fact, we show
that Lipschitzness property of the loss function is directly
related to the model’stability and this gives us some insights
as to how to design a loss that is more stable with respect
to input changes, for instance change of illumination over
the input face, etc. Considering this as the most important
property of our loss, we believe that adapting GJM with
state-of-the-art techniques in the age estimation, and even
in other research areas, helps to improve the generaliza-
tion performance in unseen scenarios. Furthermore, while
this work primarily focuses on the age estimation task, the
findings are applicable to other vision tasks, such as image
quality assessment, recommendation systems, human pose
estimation, and other tasks currently addressed with label
distribution learning.

Finally, it should be noted that the total error of a model
can be decomposed into the generalization error and the op-
timization error (difference between the expected risk and
the true optimum of the empirical risk). We addressed the
former component by upper bounding the error by a quantity
related to the SGD stability. For a comprehensive investi-
gation of the factors impacting on the overall performance
of deep label distribution learning, we need to analyze the
factors influencing the optimization error as well. Further,
our theoretical framework does not directly explain how
tightly the loss function upper-bounds a quantity of interest,
such as MAE. A more direct linking of the loss function and
measures of interest, as well as the optimization error, will
be the focus of our future work.
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