A. Missing Proofs from Section 3

Before proving Lemma 4, we first need the following Lemma that bounds the probability of a single arm being misordered when deciding which arms to remove in a round:
Lemma 3. Assume that the best arm was not eliminated prior to round m. Let $[x]_{+}=\max (x, 0)$. Then for any arm $x_{i} \in S_{m}$,

$$
\begin{aligned}
& \mathbb{P}\left[\left\langle\hat{\theta}_{m}, x_{i}\right\rangle>\left\langle\hat{\theta}_{m}, x_{1}\right\rangle\right] \leq \\
& \exp \left(-\frac{\left[\Delta_{i}-\left(2+2 \sqrt{2 h_{\left|S_{m}\right| / 4}}\right) \gamma_{\max }\right]_{+}^{2} T}{16 \log _{2}(n) h_{\left|S_{m}\right| / 4} \sigma^{2}}\right)
\end{aligned}
$$

Proof. For simplicity, we will drop all subscripts m in this proof, so that we say $\hat{\theta}$ instead of $\hat{\theta}_{m}$ and \mathcal{Z} instead of \mathcal{Z}_{m} etc. By slight abuse of notation, let $y \in \mathbb{R}^{N}$ be the vector of true rewards for the sampled arms \mathcal{Z}, let $\gamma \in \mathbb{R}^{N}$ be the misspecification vector, and let $X \in \mathbb{R}^{N \times d}$ be the design matrix whose rose are the elements of \mathcal{Z}. That is, we have $y=X \theta+\gamma$. Let $s=\hat{y}-y$, all of whose components are independent 1 -subgaussian random variables
Fix some index i. Notice that if i does not satisfy $\Delta_{i}>\left(2+2 \sqrt{2 h_{S_{m}}}\right)\left|\gamma_{\max }\right|$, then the statement is trivially true. Therefore, we may safely assume $\Delta_{i}>\left(2+2 \sqrt{2 h_{S_{m}}}\right)\left|\gamma_{\max }\right|$
Let $\theta^{\prime}=\operatorname{argmin}_{X \theta=X \theta^{\prime}}\left\|\theta^{\prime}\right\|_{2}$. Notice that $y=X \theta+\gamma=X \theta^{\prime}+\gamma$ implies that using θ^{\prime} does not introduce more misspecification. (In fact, $\theta=\theta^{\prime}$ if X has rank d.) Further, by Lemma 10, we have that $x_{i}-x_{j}$ is in the span of \mathcal{Z} for all x_{i} and x_{j} in S_{m}, so that $\left\langle\theta^{\prime}, x_{i}-x_{j}\right\rangle=\left\langle\theta, x_{i}-x_{j}\right\rangle$ for all i and j.

Then, after the player obtains the vector of rewards \hat{y} by playing each arm in \mathcal{Z}, the estimate $\hat{\theta}$ is given by:

$$
\begin{aligned}
\hat{\theta} & =\underset{\theta \in \operatorname{span}(\mathcal{Z})}{\operatorname{argmin}} \sum_{x_{i} \in \hat{\mathcal{Z}}}\left(\left\langle\theta, x_{i}\right\rangle-\hat{y}_{i}\right)^{2} \\
& =\operatorname{argmin}\left\{\|\hat{\theta}\|_{2} \text { s.t. } X^{T} X \hat{\theta}=X^{T} \hat{y}\right\}
\end{aligned}
$$

Now, since for any v there exists u such that $X^{T} X u=X^{T} v$, we have:

$$
\begin{aligned}
\hat{\theta} & =\left(X^{T} X\right)^{\ddagger} X^{T} \hat{y}=\left(X^{T} X\right)^{\ddagger} X^{T}(X \theta+s+\gamma) \\
& =\theta^{\prime}+\left(X^{T} X\right)^{\ddagger} X^{T}(s+\gamma)
\end{aligned}
$$

This implies:

$$
\begin{aligned}
\left\langle\hat{\theta}, x_{i}\right\rangle & >\left\langle\hat{\theta}, x_{1}\right\rangle \\
\left\langle\hat{\theta}, x_{i}-x_{1}\right\rangle-y_{i}+y_{1} & \geq \Delta_{i} \\
\left\langle\hat{\theta}-\theta^{\prime}, x_{i}-x_{1}\right\rangle & >\Delta_{i}-\gamma_{1}+\gamma_{i} \\
& \geq \Delta_{i}-2 \gamma_{\max }
\end{aligned}
$$

Substituting in our expression for $\hat{\theta}$, we have that the probability that the empirical average of the best arm is smaller than the empirical average of arm i is at most

$$
\mathbb{P}\left[\left(x_{i}-x_{1}\right)^{T}\left(X^{T} X\right)^{\ddagger} X^{T}(s+\gamma)>\Delta_{i}-2 \gamma_{\max }\right]
$$

Next, we will need some guarantee about the quality of the set \mathcal{Z}. By Theorem 5, GetArms returns \mathcal{Z} that satisfies $|\mathcal{Z}|=N$ and

$$
\begin{equation*}
\sup _{x_{i}-x_{j} \in S_{m}}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{z \in \mathcal{Z}} z z^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right) \leq 8 \frac{h_{\left|S_{m}\right| / 4}}{N} \tag{3}
\end{equation*}
$$

Using this fact, we apply Cauchy-Schwarz to obtain:

$$
\begin{aligned}
\left|\left(x_{i}-x_{1}\right)^{T}\left(X^{T} X\right)^{\ddagger} X^{T} \gamma\right| & \leq\left\|X\left(X^{T} X\right)^{\ddagger}\left(x_{i}-x_{1}\right)\right\|_{2}\|\gamma\|_{2} \\
& \leq \sqrt{N}\|\gamma\|_{\infty} \sqrt{\sup _{x_{i}, x_{j} \in S_{m}}\left(x_{j}-x_{i}\right)^{T}\left(X^{T} X\right)^{\ddagger}\left(x_{j}-x_{i}\right)} \\
& =\sqrt{N}\|\gamma\|_{\infty} \sqrt{\sup _{x_{i}, x_{j} \in S_{m}}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{z \in \hat{\mathcal{Z}}} z z^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right)} \\
& \leq \sqrt{N} \sqrt{\frac{8 h_{\left|S_{m}\right| / 4}}{N}}\|\gamma\|_{\infty} \leq \sqrt{8 h_{\left|S_{m}\right| / 4}} \gamma_{\max }
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \mathbb{P}\left[\left(x_{i}-x_{1}\right)^{T}\left(X^{T} X\right)^{\ddagger} X^{T}(s+\gamma)>\Delta_{i}-2 \gamma_{\max }\right] \leq \\
& \mathbb{P}\left[\left(x_{i}-x_{1}\right)^{T}\left(X^{T} X\right)^{\ddagger} X^{T} s>\Delta_{i}-\left(2+\sqrt{8 h_{\frac{\left|S_{m}\right|}{4}}}\right) \gamma_{\max }\right]
\end{aligned}
$$

Then, since s is a mean zero, σ-subgaussian vector, for any $v \in \mathbb{R}^{N},\langle v, s\rangle$ is a mean $0,\|v\|_{2} \sigma$-subgaussian random variable. Applying the Hoeffding bound, for any $\epsilon>0$,

$$
\mathbb{P}[\langle v, s\rangle>\epsilon] \leq \exp \left(-\frac{\epsilon^{2}}{2\|v\|_{2}^{2} \sigma^{2}}\right)
$$

We will substitute $X\left(X^{T} X\right)^{\ddagger}\left(x_{i}-x_{1}\right)$ for v in the above formulation of Hoeffding's bound. To start, we compute the norm:

$$
\begin{aligned}
& \left\|X\left(X^{T} X\right)^{\ddagger}\left(x_{i}-x_{1}\right)\right\|_{2}^{2}=\left(x_{i}-x_{1}\right)^{T}\left(X^{T} X\right)^{\ddagger}\left(x_{i}-x_{1}\right) \\
& \leq \sup _{x_{i}, x_{j} \in Z}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{z \in \hat{\mathcal{Z}}} z z^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right) \leq 8 \frac{h_{\left|S_{m}\right| / 4}}{N}
\end{aligned}
$$

Then substituting $N=\frac{T}{\log _{2} n}$, and combining the above, we get that

$$
\begin{aligned}
& \mathbb{P}\left[\left(x_{i}-x_{1}\right)^{T}\left(X^{T} X\right)^{\ddagger} X^{T}(s+\gamma) \geq \Delta_{i}-2 \gamma_{\max }\right] \leq \\
& \exp \left(-\frac{\left(\Delta_{i}-\left(2+2 \sqrt{2 h_{\left|S_{m}\right| / 4}}\right) \gamma_{\max }\right)^{2} T}{16 \log _{2}(n) h_{\left|S_{m}\right| / 4} \sigma^{2}}\right)
\end{aligned}
$$

Next, following (Karnin et al., 2013), we provide the missing proof of Lemma 4:
Lemma 4. Assume that the best arm was not eliminated prior to round m, and let $[x]_{+}=\max (0, x)$. Then the probability that the best arm is eliminated on round m is at most

$$
3 \exp \left(-\frac{\left[\Delta_{\frac{1}{4}\left|S_{m}\right|}-\left(2+2 \sqrt{2 h_{\frac{1}{4}\left|S_{m}\right|}}\right) \gamma_{\max }\right]_{+}^{2} T}{16 \log _{2}(n) h_{\left|S_{m}\right| / 4} \sigma^{2}}\right)
$$

Proof. If the best arm is thrown out at round m, there are at least $\frac{1}{2}\left|S_{m}\right|$ arms in S_{m} whose \hat{y} estimates are higher than that of the best arm. Let $S_{m}^{\prime} \subset S_{m}$ be the set of arms that excludes the $\frac{1}{4}\left|S_{m}\right| \operatorname{arms}$ with the largest true means in S_{m}. If the best arm is thrown out, then at least $\frac{1}{3}$ of arms in S_{m}^{\prime} must have higher \hat{y} estimates than that of the best arm. Let N_{m} be the
number of such arms. Define $D=\max \left\{\left(\Delta_{\frac{1}{4}\left|S_{m}\right|}-\left(2+2 \sqrt{2 h_{\left|S_{m}\right| / 4}}\right) \gamma_{\max }\right)^{2}, 0\right\}$. Then using Lemma 3, the expected number of such arms is at most

$$
\begin{aligned}
\mathbb{E}\left[N_{m}\right] & =\sum_{x_{i} \in S_{m}^{\prime}} \mathbb{P}\left[\left\langle\hat{\theta}, x_{i}\right\rangle \geq\left\langle\hat{\theta}, x_{1}\right\rangle\right] \\
& \leq\left|S_{m}^{\prime}\right| \exp \left(-\frac{D T}{16 \log _{2}(n) h_{\left|S_{m}\right| / 4} \sigma^{2}}\right)
\end{aligned}
$$

Then, by Markov inequality, the probability of the best arm being thrown out at round m is at most

$$
\mathbb{P}\left[N_{m}>\frac{1}{3}\left|S_{m}^{\prime}\right|\right] \leq \frac{\mathbb{E}\left[N_{m}\right]}{\frac{1}{3}\left|S_{m}^{\prime}\right|} \leq 3 \exp \left(-\frac{D T}{16 \log _{2}(n) h_{\left|S_{m}\right| / 4} \sigma^{2}}\right)
$$

B. Missing Proofs from Section 4

Before proving Theorem 5, we need the following Lemmas, which characterize the quality of the candidate set of arms returned by the method of (Allen-Zhu et al., 2017).

First, we have the following easy technical Lemma:
Lemma 10. If for some sets S and \mathcal{Z}

$$
\sup _{x_{i}-x_{j} \in S}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{z \in \mathcal{Z}} z z^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right)<\infty
$$

then $S \subset \operatorname{span}(\mathcal{Z})$.

Proof. Fix any $x=x_{i}-x_{j} \neq 0, x_{i}, x_{j} \in S$. Then, since

$$
x^{T}\left(\sum_{z \in \mathcal{Z}} z z^{T}\right)^{\ddagger} x<\infty
$$

there exists y s.t.

$$
\left(\sum_{z \in \mathcal{Z}} z z^{T}\right) y=\sum_{z \in \mathcal{Z}} z\left(z^{T} y\right)=x
$$

which implies that $x \in \operatorname{span}(\mathcal{Z})$.
Lemma 11. Given the set $S \subset \mathcal{A} \subset \mathbb{R}^{d}$ the objective f_{S} above, and a number $N \geq d$ the output $\hat{\mathcal{Z}}$ of OptDesign satisfies $\hat{\mathcal{Z}} \subset \mathcal{A},|\hat{\mathcal{Z}}| \leq N$ and $\sup _{x_{i}, x_{j} \in S}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{z \in \hat{\mathcal{Z}}} z z^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right) \leq \frac{14}{N} \inf _{v} \inf \underset{\substack{\|\pi\|_{1} \leq N \\ \pi \in[0, N]^{|\mathcal{A}|}}}{ } \sup _{x_{i} \in S}\left(x_{i}-\right.$ $v)^{T}\left(\sum_{a \in \mathcal{A}} \pi(a) a a^{T}\right)^{\ddagger}\left(x_{i}-v\right) \leq 14 \frac{d}{N}$. That is, $\sup _{x_{i}, x_{j} \in S}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{z \in \hat{\mathcal{Z}}} z z^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right) \leq \tilde{d}$ and also $\tilde{d} \leq d$.

Proof. Let

$$
\begin{equation*}
\mathcal{Z}=\underset{\substack{\mathcal{Z}^{\prime} \subset \mathcal{A} \\\left|\mathcal{Z}^{\prime}\right| \leq N}}{\operatorname{argmin}}\left\{\sup _{x_{i}, x_{j} \in S}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{z \in \mathcal{Z}^{\prime}} z z^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right)\right\} \tag{4}
\end{equation*}
$$

Note that we consider \mathcal{Z} to be a set with multiplicity - it is permitted for an element to appear multiple times in \mathcal{Z}. Computing \mathcal{Z} exactly is NP-hard, but (Allen-Zhu et al., 2017) provides a way to approximate the solution. Note that equation 4 can be restated as follows:

$$
\begin{equation*}
c^{*}=\underset{\substack{\|c\|_{1} \leq N \\ c \in\{0,1,2, \ldots, N\}^{|\mathcal{A}|}}}{\operatorname{argmin}}\left\{\sup _{x_{i}, x_{j} \in S}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{a \in \mathcal{A}} c(a) a a^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right)\right\} \tag{5}
\end{equation*}
$$

where c is treated as a vector in $|\mathcal{A}|$ indexed by $a \in \mathcal{A}$ and \mathcal{Z} is related to c^{*} as

$$
\mathcal{Z}=\left\{a \in \mathcal{A} \text { repeated } c^{*}(a) \text { times }\right\}
$$

Then, define the continuous relaxation of the objective in 5 as:

$$
\begin{equation*}
\pi^{*}=\underset{\substack{\|\pi\|_{1} \leq N \\ \pi \in[0, N]^{|\mathcal{A}|}}}{\operatorname{argmin}}\left\{\sup _{x_{i}, x_{j} \in S}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{a \in \mathcal{A}} \pi(a) a a^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right)\right\} \tag{6}
\end{equation*}
$$

Section 3 from (Allen-Zhu et al., 2017) guarantees that a polynomial-time continuous optimization procedure can find a fractional solution π such that

$$
\sup _{x_{i}, x_{j} \in S}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{a \in \mathcal{A}} \pi(a) a a^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right) \leq 7 / 6 \sup _{x_{i}, x_{j} \in S}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{a \in \mathcal{A}} \pi^{*}(a) a a^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right)
$$

At the same time, Theorem 2.1 from (Allen-Zhu et al., 2017) (see Appendix C) provides a polynomial-time algorithm that rounds any fractional solution π to an integer solution c such that

$$
\sup _{x_{i}, x_{j} \in S}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{a \in \mathcal{A}} c(a) a a^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right) \leq 3 \sup _{x_{i}, x_{j} \in S}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{a \in \mathcal{A}} \pi(a) a a^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right)
$$

Combining the two equations, we get that there exists a polynomial-time algorithm that finds an integer solution c (or, equivalently, set \mathcal{Z}) such that

$$
\sup _{x_{i}, x_{j} \in S}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{a \in \mathcal{A}} c(a) a a^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right) \leq 7 / 2 \sup _{x_{i}, x_{j} \in S}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{a \in \mathcal{A}} \pi^{*}(a) a a^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right)
$$

Now, notice that for any solution π, we have:

$$
\begin{aligned}
& \sup _{x_{i}, x_{j} \in S}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{a \in \mathcal{A}} \pi(a) a a^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right) \\
& =\inf _{v} \sup _{x_{i}, x_{j} \in S}\left(x_{j}-v+v x_{i}\right)^{T}\left(\sum_{a \in \mathcal{A}} \pi(a) a a^{T}\right)^{\ddagger}\left(x_{j}-v+v x_{i}\right) \\
& \leq \inf _{v} \sup _{x_{i}, x_{j} \in S}\left(x_{i}-v\right)^{T}\left(\sum_{a \in \mathcal{A}} \pi(a) a a^{T}\right)^{\ddagger}\left(x_{i}-v\right)+\left(x_{j}-v\right)^{T}\left(\sum_{a \in \mathcal{A}} \pi(a) a a^{T}\right)^{\ddagger}\left(x_{j}-v\right)+2\left(x_{j}-v\right)^{T}\left(\sum_{a \in \mathcal{A}} \pi^{*}(a) a a^{T}\right)^{\ddagger}\left(x_{i}-v\right)
\end{aligned}
$$

Now, observe that $a^{\top} M b=\langle\sqrt{M} a, \sqrt{M} b\rangle \leq \frac{a^{\top} M a}{2}+\frac{b^{\top} M b}{2}$ for any positive-semidefinite matrix M by Young inequality. Therefore:

$$
\begin{aligned}
\sup _{x_{i}, x_{j} \in S}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{a \in \mathcal{A}} \pi^{*}(a) a a^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right) & \leq 4 \inf _{v} \inf _{\|\pi\|_{1} \leq N} \sup _{x \in[0, N]^{\mathcal{A} \mid}}(x \in S \\
& \leq \frac{4}{N} \inf _{v} \inf _{\substack{\|\pi\|_{1} \leq 1 \\
\pi \in[0, N]^{|\mathcal{A}|}}} \sup _{x \in S}^{T}\left(\sum_{a \in \mathcal{A}} \pi(a) a a^{T}\right)^{\ddagger}(x-v) \\
& \leq 4 \frac{d}{N}
\end{aligned}
$$

where the last line follows from setting $v=0$ and applying the Kiefer-Wolfowitz theorem (Kiefer \& Wolfowitz, 1960).
Thus, combining everything, we get that

$$
\begin{aligned}
& \sup _{x_{i}, x_{j} \in S}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{a \in \mathcal{A}} c(a) a a^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right) \leq \\
& 7 / 2 \sup _{x_{i}, x_{j} \in S}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{a \in \mathcal{A}} \pi^{*}(a) a a^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right) \leq \\
& \frac{14}{N} \inf _{v} \inf _{\|\pi\|_{1} \leq 1} \sup _{x \in S}(x-v)^{T}\left(\sum_{a \in \mathcal{A}} \pi(a) a a^{T \mathcal{A} \mid}\right)^{\ddagger}(x-v) \leq \\
& 14 \frac{d}{N}
\end{aligned}
$$

Lemma 11 depends only on the budget N and the number of dimensions d. Notice that the bound does not depend on distrbution of the arms.
Lemma 12. Given the objective f_{S}, the set \mathcal{A}, and a number $N \geq|S|$, the output \mathcal{Z} of GetArms satisfies $|\mathcal{Z}| \leq N$ and $\sup _{x_{i}, x_{j} \in S}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{z \in \mathcal{Z}} z z^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right) \leq 2 \frac{|S|}{N}$.

Proof. By Lemma 14, for any $x_{i}, x_{j} \in S$,

$$
\left(x_{j}-x_{i}\right)^{T}\left(\sum_{x \in S} x x^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right) \leq 2
$$

So, letting $\tilde{\mathcal{Z}} \leftarrow\left\{s \in S\right.$ repeated $\frac{N}{S}$ times $\}$

$$
\begin{aligned}
& \sup _{x_{i}, x_{j} \in \mathcal{S}}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{z \in \tilde{\mathcal{Z}}} z z^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right) \\
& \leq \frac{|S|}{N} \sup _{x_{i}, x_{j} \in S}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{x \in S} x x^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right) \\
& \leq 2 \frac{|S|}{N}
\end{aligned}
$$

While the above Lemma requires the number of pulls to be greater than the candidate set S, the next Lemma shows that it is possible to bound the performance of OptDesign even if $N<|S|$.
Lemma 13. Given the objective f_{S}, the set \mathcal{A}, and a number N, the output \mathcal{Z} of GetArms satisfies $|\mathcal{Z}| \leq N$ and $\sup _{x_{i}, x_{j} \in S}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{z \in \mathcal{Z}} z z^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right) \leq 6 \frac{|S|}{N}$.

Proof. Given any fractional solution to $f_{S} \pi$, using Theorem 2.1 from (Allen-Zhu et al., 2017), OptDesign outputs an integer solution \mathcal{Z} such that

$$
\begin{aligned}
& \sup _{x_{i}, x_{j} \in s}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{z \in \mathcal{Z}} z z^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right) \leq \\
& 3 \sup _{x_{i}, x_{j} \in \mathcal{Z}}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{z \in \mathcal{Z}} \pi_{z} z z^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right) \leq \\
& 3 \sup _{z_{i}, z_{j} \in \mathcal{Z}}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{z \in S} \frac{N}{|S|} z z^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right) \leq \\
& 3 \frac{|S|}{N} \sup _{x_{i}, x_{j} \in S}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{z \in S} z z^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right) \leq 6 \frac{|S|}{N}
\end{aligned}
$$

where the last step uses Lemma 14 below.
Now we prove Lemma 14:
Lemma 14. Let $x_{1}, \ldots x_{n}$ be arbitrary vectors in \mathbb{R}^{d}. Let X be a matrix s.t. ith row of X corresponds to x_{i} for all i. Then for any j, k,

$$
\left(x_{j}-x_{k}\right)^{T}\left(X^{T} X\right)^{\ddagger}\left(x_{j}-x_{k}\right) \leq 2
$$

Proof. For any $j, x_{j}=X^{T} e_{j}$ where e_{j} is the j th identity vector. Then for any j, k,

$$
\begin{aligned}
& \left(x_{j}-x_{k}\right)^{T}\left(X^{T} X\right)^{\ddagger}\left(x_{j}-x_{k}\right)= \\
& \left(e_{j}-e_{k}\right)^{T} X\left(X^{T} X\right)^{\ddagger} X^{T}\left(e_{j}-e_{k}\right)
\end{aligned}
$$

Let $e=e_{j}-e_{k}$, and let $u=\left(X^{T} X\right)^{\ddagger} X^{T} e$. Then,

$$
\begin{aligned}
& X^{T} X u=X^{T} e \Longrightarrow X^{T}(X u-e)=0 \Longrightarrow \\
& X u-e \in \operatorname{ker}\left(X^{T}\right) \Longrightarrow X u-e \perp \operatorname{Im}(X)
\end{aligned}
$$

Then there exists a w such that $e=X u+Q w$, where Q is a matrix with columns orthogonal to columns of X. Then,

$$
e^{T} X\left(X^{T} X\right)^{\ddagger} X^{T} e=u^{T} X^{T} X\left(X^{T} X\right)^{\ddagger} X^{T} X u
$$

By definition of $u, u \perp \operatorname{ker}\left(X^{T} X\right)$, and thus

$$
\begin{aligned}
& \left(x_{j}-x_{k}\right)^{T}\left(X^{T} X\right)^{\ddagger}\left(x_{j}-x_{k}\right)= \\
& u^{T} X^{T} X\left(X^{T} X\right)^{\ddagger} X^{T} X u= \\
& u^{T} X^{T} X u=\|X u\|_{2}^{2} \leq\|e\|_{2}^{2}=2
\end{aligned}
$$

because $\|e\|_{2}^{2}=\|X u\|_{2}^{2}+\|Q w\|_{2}^{2}$
Given the above, we are ready to proof Theorem 5.
Proof of Theorem 5. Combining Lemmas 11, 12, and 13, we get that on inputs S, N and \mathcal{A}, GetArms produces a set \mathcal{Z} such that if $\frac{T}{\left\lceil\log _{2} n\right\rceil}=N \geq|S|$, GetArms returns a set \mathcal{Z} that satisfies:

$$
\sup _{x_{i}, x_{j} \in S}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{z \in \mathcal{Z}} z z^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right) \leq \min \left\{\frac{8|S| / 4}{N}, \frac{14 \tilde{d}}{N}\right\}=8 \frac{h_{|S| / 4}}{N}
$$

Similarly, if $N<|S|$, GetArms returns a set \mathcal{Z} that satisfies:

$$
\sup _{x_{i}, x_{j} \in S}\left(x_{j}-x_{i}\right)^{T}\left(\sum_{z \in \mathcal{Z}} z z^{T}\right)^{\ddagger}\left(x_{j}-x_{i}\right) \leq \min \left\{14 \frac{\tilde{d}}{N}, 24 \frac{|S| / 4}{N}\right\}=8 \frac{h_{|S| / 4}}{N}
$$

C. Properties of the Objective f_{S}

In this section we verify that the assumptions required to use the approach of (Allen-Zhu et al., 2017) in GetArms hold.

C.1. Equivalence of objectives

Lemma 15. Assume we are given a set of n vectors $\mathcal{Z} \subset \mathbb{R}^{d}$ that span a k-dimensional subspace. Let $Z \in \mathbb{R}^{n \times d}$ be a matrix such that each row represents a vector in \mathcal{Z}. Let $Q \in \mathbb{R}^{k \times d}$ be a matrix with orthogonal rows such that $\operatorname{span}\left(Q^{T}\right)=\operatorname{span}\left(Z^{T}\right)$. Define $M=\left(Q Q^{T}\right)^{-1 / 2} Q$. Then, for any symmetric, positive semi-definite matrix $A \in \mathbb{R}^{d \times d}$ such that $A^{\ddagger} z<\infty$ for all $z \in \mathcal{Z}$, it holds that $M A M^{T}$ is invertible and for all $z \in \mathcal{Z}$

$$
(M z)^{T}\left(M A M^{T}\right)^{-1} M z=z^{T} A^{\ddagger} z
$$

Proof.

$$
M A M^{T}=\left(Q Q^{T}\right)^{-1 / 2} Q A Q^{T}\left(Q Q^{T}\right)^{-1 / 2}
$$

Since A is a symmetric PSD matrix, it has a symmetric PSD root $A^{1 / 2}$. Since $\left(Q Q^{T}\right)^{-1 / 2}$ is invertible, $A^{1 / 2} Q^{T}\left(Q Q^{T}\right)^{-1 / 2}$ has rank less than k iff there exists $v \neq 0$,

$$
A^{1 / 2} Q^{T} v=A^{1 / 2}\left(\sum_{i=1}^{k} v_{i} q_{i}\right)=0
$$

where q_{i} correspond to rows of Q. By assumption, for each $z_{i} \in \mathcal{Z}$, there exists y_{i} s.t. $A y_{i}=A^{1 / 2} A^{1 / 2} y_{i}=z_{i}$. Thus, $z_{i} \in \operatorname{Im}\left(A^{1 / 2}\right)$ for all i. Since $\operatorname{span}\left(Z^{T}\right)=\operatorname{span}\left(Q^{T}\right)$, it must be that $\sum_{i=1}^{k} v_{i} q_{i} \in \operatorname{Im}\left(A^{1 / 2}\right)$. Since the kernel of $A^{1 / 2}$ is orthogonal to the image of $A^{1 / 2}$, we get that $A^{1 / 2}\left(\sum_{i=1}^{k} v_{i} q_{i}\right)=0$ iff $\sum_{i=1}^{k} v_{i} q_{i}=0$, which is impossible, since q_{i} form an orthogonal set.
Thus, $B=A^{1 / 2} Q^{T}\left(Q Q^{T}\right)^{-1 / 2}$ has rank k, and thus $M A M^{T}=B^{T} B \in \mathbb{R}^{k \times k}$ is invertible.
Moreover, note that if \mathcal{Z} is not in the image of A, then $M A M^{T}$ is not invertible.
For the second part of the Lemma, fix some $z \in \mathcal{Z}$. By assumption, there exists $y \in \mathbb{R}^{d}$ s.t. $A^{\ddagger} z=y$, which implies that $A y=z$ and y is orthogonal to $\operatorname{ker}(A)$. Since A is a symmetric PSD matrix, this means that $y \in \operatorname{Im}(A)$. Let $Q_{1} \in \mathbb{R}^{k_{1} \times d}$ be an orthogonal row matrix s.t. the rows of Q and Q_{1} together span $\operatorname{Im}(A)$ and rows of Q and Q_{1} are orthogonal to each other. Notice that that implies that $A=\left[Q^{T} \mid Q_{1}^{T}\right] \Lambda\left[Q^{T} \mid Q_{1}^{T}\right]^{T}$ where Λ is diagonal. Then, $y=Q^{T} w+Q_{1}^{T} w_{1}$ for some w, w_{1}. Then substituting the definition of M and using the fact that $A y=z$,

$$
\begin{aligned}
& (M z)^{T}\left(M A M^{T}\right)^{-1} M z=z^{T} Q^{T}\left(Q A Q^{T}\right)^{-1} Q A y= \\
& z^{T} Q^{T}\left(Q A Q^{T}\right)^{-1} Q A\left(Q^{T} w+Q_{1}^{T} w_{1}\right)= \\
& z^{T} Q^{T} w+z^{T} Q^{T}\left(Q A Q^{T}\right)^{-1} Q A Q_{1}^{T} w_{1}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& Q A Q_{1}^{T}=Q\left[Q^{T} \mid Q_{1}^{T}\right] \Lambda\left[Q^{T} \mid Q_{1}^{T}\right]^{T} Q_{1}^{T}= \\
& {\left[I_{k \times k} \mid \mathbf{0}_{k \times k_{1}}\right] \Lambda\left[\mathbf{0}_{k_{1} \times k}^{T} \mid I_{k_{1} \times k_{1}}\right]^{T}=\mathbf{0}}
\end{aligned}
$$

Thus, the equation above becomes

$$
(M z)^{T}\left(M A M^{T}\right)^{-1} M z=z^{T} Q^{T} w
$$

Since columns in Q_{1} are orthogonal to columns of z,

$$
\begin{aligned}
& z^{T} A^{\ddagger} z=z^{T} y=z^{T} Q^{T} w= \\
& (M z)^{T}\left(M A M^{T}\right)^{-1} M z
\end{aligned}
$$

Using the above, given a set of of arms $\mathcal{A} \subset \mathbb{R}^{d}$ and a set $\mathcal{Z} \subset \mathbb{R}^{d}$, define M as in Lemma 15. Then for any subset $\mathcal{A}^{\prime} \subset \mathcal{A}$,

$$
\begin{aligned}
& \sup _{z \in \mathcal{Z}}(M z)^{T}\left(\sum_{x \in \mathcal{A}^{\prime}} M x(M x)^{T}\right)^{-1} M z= \\
& \sup _{z \in \mathcal{Z}} z^{T}\left(\sum_{x \in \mathcal{A}^{\prime}} x x^{T}\right)^{\ddagger} z
\end{aligned}
$$

where we use

$$
(M z)^{T}\left(\sum_{x \in \mathcal{A}^{\prime}} M x(M x)^{T}\right)^{-1} M z=\infty
$$

if $\sum_{x \in \mathcal{A}^{\prime}} M x\left(M_{\mathcal{Z}} x\right)^{T}$ is not invertible. Notice that if $\mathcal{Z}=\left\{z_{i}-z_{j} \mid z_{i}, z_{j} \in \mathcal{S}\right\}$ for some set of arms \mathcal{S}, and $\mathcal{S} \subset \operatorname{span}(\mathcal{A})$, then \mathcal{Z} is in the image of $\sum_{x \in \mathcal{A}} x x^{T}$.
Thus, if we are give a number N, sets \mathcal{Z}, \mathcal{A}, then

$$
\begin{aligned}
& \underset{\mathcal{X} \subset \mathcal{A}}{\operatorname{argmin}} \\
& |\mathcal{A}| \leq N \\
& \underset{\mathcal{Z}}{ }(\mathcal{X})= \\
& \underset{\mathcal{X} \subset \mathcal{A}}{\operatorname{argmin}} \sup _{z \in \mathcal{Z}} z^{T}\left(\sum_{x \in \mathcal{X}} x x^{T}\right)^{\ddagger} z= \\
& |\mathcal{A}| \leq N \\
& \underset{\substack{\mathcal{X} \subset \mathcal{A}}}{\operatorname{argmin}} \sup _{z \in \mathcal{Z}}(M z)^{T}\left(\sum_{x \in \mathcal{X}} M x\left(M_{\mathcal{Z}} x\right)^{T}\right)^{-1} M z
\end{aligned}
$$

The algorithm GetArms ensures that $\mathcal{Z} \subset \mathcal{A}$, and $N \geq \operatorname{dim}(\operatorname{span}(\mathcal{Z}))$ whenever it attempts to find a solution to

$$
\underset{\substack{\mathcal{X} \subset \mathcal{A} \\ \mathcal{A} \mid \leq N}}{\operatorname{argmin}} f_{\mathcal{Z}}(\mathcal{X})
$$

Thus, every time the minimization algorithm for the above objective is called, there exists a subset \mathcal{X} that makes $f_{\mathcal{Z}}$ finite. Moreover, $\sum_{x \in \mathcal{X}} M x(M x)^{T}$ is invertible.
Using this, we can now replace the minimization objective with

$$
\underset{\substack{\tilde{\mathcal{X}} \subset \tilde{\mathcal{A}} \\|\tilde{\mathcal{A}}| \leq N}}{\operatorname{argmin}} \sup _{z \in \tilde{\mathcal{Z}}} z^{T}\left(\sum_{x \in \tilde{\mathcal{X}}} x x^{T}\right)^{-1} z
$$

where $\tilde{\mathcal{A}}=M \mathcal{A}$ and $\tilde{\mathcal{Z}}=M \mathcal{Z}$. Notice that then, the solution to the objective \tilde{X} forms an invertible matrix $\sum_{x \in \tilde{\mathcal{X}}} x x^{T}$. Thus, to find an approximate solution, we can use the procedure in (Allen-Zhu et al., 2017) that finds an approximate solution over the space of positive-definite matrices. Moreover, if $\mathcal{Z} \subset \mathbb{R}^{d}$ span \mathbb{R}^{d}, then $M=I$ and the two objective are exactly the same.

C.2. Solution over the set of positive-definite matrices

By the discussion in the previous section, we can assume that othe objective optimized in GetArms has the following form:
Given a set of arms $\mathcal{A} \subset \mathbb{R}^{k}$ that span \mathbb{R}^{k}, a subset $Z \in \mathcal{A}$ and number of pulls per round N,

$$
f(M)=\sup _{\substack{z=z_{i}-z_{j} \\ z_{i}, z_{j} \in \mathcal{A}}} z^{T} M^{-1} z
$$

Below, we will show that f satisfies the conditions required by the approximation algorithm (Allen-Zhu et al., 2017) hold. f satisfies the following assumptions (see (Allen-Zhu et al., 2017)):
(A1) Monotonicity: for any $A, B \in \mathbb{S}_{d}^{+}$with $A \preceq B, f(A) \geq f(B)$
(A2) Reciprocal sub-linearity: for any $A \in \mathbb{S}_{d}^{+}$and $t \in(0,1), f(t A) \leq t^{-1} f(A)$
(A3) Polynomial-time approximability of continuous relaxation: for any fixed $\delta \in(0,1)$, the continuous relaxation of 4 defined as

$$
\begin{aligned}
& \min _{s \in C} F(s)=\min _{s \in C} f\left(\sum_{i=1}^{N n} s_{i} x_{i} x_{i}^{T}\right) \text { where } \\
& C=\left\{s \in[0, N]^{N n}: \sum_{i=1}^{N n} s_{i} \leq N\right\}
\end{aligned}
$$

can be solved with $(1+\delta)$-relative error by a polynomial-time algorithm.
Assumptions (A1) and (A2) trivially hold. As for assumption (A3), notice that
Theorem 16. f is a convex function in s over a convex set C.
Proof. Given any $s_{1}, s_{2} \in C$ and $t \in[0,1]$,

$$
\begin{array}{r}
\left(t \sum_{i=1}^{N n} s_{1, i} x_{i} x_{i}^{T}+(1-t) \sum_{i=1}^{N n} s_{2, i} x_{i} x_{i}^{T}\right)^{-1} \preceq \\
t\left(\sum_{i=1}^{N n} s_{1, i} x_{i} x_{i}^{T}\right)^{-1}+(1-t)\left(\sum_{i=1}^{N n} s_{2, i} x_{i} x_{i}^{T}\right)^{-1}
\end{array}
$$

Let

$$
z=\underset{\substack{z=z_{i}-z_{j} \\ z_{i}, z_{j} \in Z}}{\operatorname{argmax}} z^{T}\left(t \sum_{i=1}^{N n} s_{1, i} x_{i} x_{i}^{T}+(1-t) \sum_{i=1}^{N n} s_{2, i} x_{i} x_{i}^{T}\right) z
$$

Then, using (A1),

$$
\begin{aligned}
& F\left(t s_{1}+(1-t) s_{2}\right)= \\
& z^{T}\left(t \sum_{i=1}^{n} s_{1, i} x_{i} x_{i}^{T}+(1-t) \sum_{i=1}^{n} s_{2, i} x_{i} x_{i}^{T}\right) z \leq \\
& t z^{T}\left(\sum_{i=1}^{n} s_{1, i} x_{i} x_{i}^{T}\right)^{-1} z+(1-t) z^{T}\left(\sum_{i=1}^{n} s_{2, i} x_{i} x_{i}^{T}\right)^{-1} z \leq \\
& t F\left(s_{1}\right)+(1-t) F\left(s_{2}\right)
\end{aligned}
$$

Thus, since $F(s)$ is convex, there are a number of convex solvers that minimize F over C in polynomial time. For completeness, we also show that entropic mirror descent method from (Allen-Zhu et al., 2017) can be used to optimize F : Assumptions B1 and B3 are trivially satisfied, while for B2, F_{λ} is Lipschitz because it is convex.
Then, notice that equation (4) can be restated as follows: let $\left\{x_{1}, x_{2}, \ldots, x_{N \times n}\right\}$ be a set of arms such that each of the n arms in \mathcal{A} is replicated exactly N times. Then, minimizing (4) is equivalent to

$$
\begin{aligned}
& \underset{s \in S}{\operatorname{argmin}} F(s)=\underset{s \in S}{\operatorname{argmin}} f\left(\sum_{i=1}^{N n} s_{i} x_{i} x_{i}^{T}\right) \text { where } \\
& S=\left\{s \in\{0,1, \ldots, N\}^{N n}: \sum_{i=1}^{N n} s_{i} \leq N\right\}
\end{aligned}
$$

Thus, using Theorem 2.1 from (Allen-Zhu et al., 2017) (stated below, using our notation) and assuming $T \geq 45 d \log _{2} n$, we get that
Theorem 17. Suppose $\varepsilon \in(0,1 / 3]$, $N n \geq N \geq 5 d / \varepsilon^{2}, b \in\{1,2, \ldots, N\}$, and $f: S_{d}^{+} \rightarrow \mathbb{R}$ satisfies assumptions (Al) and (A2). Let $\pi \in C$ by any fractional solution so that $F(\pi)<\infty$. Then, in time complexity $\tilde{O}\left(N n d^{2}\right)$ we can round π to an integral solution

$$
\hat{s} \in S \text { satisfying } F(\hat{s}) \leq(1+6 \varepsilon) F(\pi)
$$

where $C=\left\{c \in[0, N]^{N n}: \sum_{i=1}^{N n} c_{i} \leq N\right\}$.
For completion, we also note that our algorithm is almost optimal, which follows from Theorem 1.4 from (Allen-Zhu et al., 2017):

Theorem 18. Suppose $\varepsilon \in(0,1 / 3], N n \geq N \geq 5 d / \varepsilon^{2}, f: \mathbb{S}_{d}^{+} \rightarrow R$ satisfies assumptions (A1)-(A3), and $\min _{s \in S} F(s)<$ $+\infty$. Then, there exist a polynomial-time algorithm that outputs $\hat{s} \in S$ satisfying

$$
F(\hat{s}) \leq(1+8 \varepsilon) \min _{s \in S} F(s)
$$

Thus, under assumption that $T>45 d \log _{2} n$, using $N=\frac{T}{\log _{2} n} \geq 45 d$, we get that there exists an $\varepsilon \in(0,1 / 3]$ s.t. $N \varepsilon^{2} \geq 5 d$ and so the hypotheses of Theorem 18 are satisfied. In particular, we have the following result:
Theorem 19. If $T>45 d \log _{2}(n)$, then in $G e t$ Arms, the output $\hat{\mathcal{X}}$ provided by the algorithm of (Allen-Zhu et al., 2017) satisfies:

$$
f_{S}(\hat{\mathcal{X}}) \leq \frac{11}{3} \inf _{|\mathcal{X}|=N} f_{S}(\mathcal{X})
$$

D. Proof of Theorem 6

Theorem 6. Given a d-dimensional linear bandit pure-exploration algorithm, any $p \in(0,1 / 2)$, and any $n \geq d$, there exists an problem instance on which the probability of identifying the best arm is at most $1-\exp \left(\frac{-(15+o(1)) T}{p(1-p) \tilde{H}_{2}}\right)$, where the $o(1)$ depends on n, T and p and goes to zero as $T \rightarrow \infty$.

Proof. Suppose otherwise. Then given any d-armed multi-armed bandit problem with true rewards y_{1}, \ldots, y_{d} contained in $[p, 1-p]$, we construct an $d+1$-dimensional linear bandit problem as follows: choose an arbitrary orthonormal set $z_{1}, \ldots, z_{d} \subset \mathbb{R}^{d+1}$. Set $\theta=\sum_{i=1}^{d} y_{i} z_{i}$. For $i>d$, set $x_{i}=z_{i}$ where now r_{i} is an arbitrary value in $[0, p]$, and z_{i} is an arbitary vector such that $\left\langle z-i, z_{j}\right\rangle=0$ for all $i \leq d$. When our algorithm queries arm x_{i} for $i \leq d$, we provide an observed Bernoulli reward with mean $\left\langle x_{i}, \theta\right\rangle=y_{i}$, and for $i>d$, we provide $\left\langle x_{i}, \theta\right\rangle<p$. Then finding the best arm in this setting is equivelent to finding the best arm in the original multi-armed bandit problem. The value H_{2} in the multi-armed bandit instance is $\max _{i \leq d} i \Delta_{i}^{-2} \geq \frac{1}{3} \tilde{H}_{2}$, and so the Theorem follows from (Audibert \& Bubeck, 2010a) Theorem 4.

E. Proof of Theorem 7

Theorem 7. Given a linear bandit pure-exploration algorithm, there exists a problem instance on which the probability of identifying the best arm is at most $1-\exp \left(-T \cdot\left(1 / \sqrt{H_{L B}}+2 \sin \frac{\pi}{n}\right)^{2}\right)$.

We will use the following construction. Consider a problem instance with set A of n arms $x_{1}, x_{2}, \ldots, x_{n}$ that are equispaced on the unit circle $S^{1} \subset \mathbb{R}^{2}$ (the construction can be extended to higher dimensions). The angle between every consecutive pair of arms is therefore $\frac{2 \pi}{n}$. Let θ have unit norm and be aligned along x_{1}. Consider the set of parameter vectors M that are exactly aligned along one of the arms, i.e. $M:=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$. By rotational invariance, for any parameter vector $\lambda \in M$, the problem instances will have exactly the same value of $H_{L B}$. Now, we can use the same construction as in the proof of Theorem 1 from (Degenne et al., 2020), but with the added assumption that the strategy ψ has knowledge of the $H_{L B}$ value for the two probvlem instances, to show the following:

Lemma 20. For any linear-bandit fixed budget algorithm running for time T and achieving error probability δ, for all $\theta \in M$, we have

$$
\frac{T}{\log _{2}(1 / \delta)} \geq \frac{1}{\max _{w \in D_{d}} \min _{\lambda \in M, \lambda \in \neg \theta}\|\theta-\lambda\|_{V_{w}}^{2}}
$$

where $\neg \theta$ refers to the set $\left\{\lambda: \max _{a \in A} \lambda^{T} a>\max _{a \in A} \theta^{T} a\right\}$

Proof. Suppose there exists a linear bandit fixed-budget algorithm for which the above bound is not true. We will use such an algorithm. along with the value of $H_{L B}$ from the construction to create a fixed-confidence strategy ψ to distinguish between two problem instances with parameter vector $\theta, \lambda \in M$, as described in the proof of Theorem 1 of (Degenne et al., 2020), from which the lemma follows.

We can further show the following lemma, that relates $\min _{\lambda \in M, \lambda \in \neg \theta}\|\theta-\lambda\|^{2}$
Lemma 21. For a fixed w and θ, we have

$$
\min _{\lambda \in M, \lambda \in \neg \theta}\|\theta-\lambda\|_{V_{w}}<\min _{\lambda \in S^{1}, \lambda \in \neg \theta}\|\theta-\lambda\|_{V_{w}}+2 \sin \frac{\pi}{n}
$$

Proof. Let λ^{*} be the minimizer of $\min _{\lambda \in S^{1}, \lambda \in \neg \theta}\|\theta-\lambda\|_{V_{w}}$. By definition of M, there exists a $\lambda^{\prime} \in M$ such that $\| \lambda^{\prime}-$ $\lambda^{*}\left\|_{V_{w}} \leq\right\| \lambda^{\prime}-\lambda^{*}\left\|_{2}\right\| V_{w}\left\|_{2}=2 \sin \frac{\pi}{n}\right\| V_{w} \|_{2} \leq 2 \sin \frac{\pi}{n}$. The last inequality is true since $\left\|V_{w}\right\|_{2}=\left\|\sum_{i=1}^{d} w_{i} x_{i} x_{i}^{T}\right\|_{2} \leq$ $\sum_{i=1}^{d} w_{i}\left\|x_{i} x_{i}^{T}\right\|=1$, since the w_{i} lie on a simplex and x_{i} lie on the unit circle.

Using the above two lemmas, we have

$$
\begin{array}{r}
\frac{T}{\log _{2}(1 / \delta)} \geq \frac{1}{\max _{w \in D_{d}} \min _{\lambda \in M, \lambda \in \neg \theta}\|\theta-\lambda\|_{V_{w}}^{2}} \\
=\frac{1}{\max _{w \in D_{d}}\left(\min _{\lambda \in M, \lambda \in \neg \theta}\|\theta-\lambda\|_{V_{w}}\right)^{2}} \\
\geq \frac{1}{\max _{w \in D_{d}}\left(\min _{\lambda \in S^{1}, \lambda \in \neg \theta}\|\theta-\lambda\|_{V_{w}}+2 \sin \frac{\pi}{n}\right)^{2}} \\
\geq \frac{1}{\left(\frac{1}{\sqrt{H_{L B}}}+2 \sin \frac{\pi}{n}\right)^{2}}
\end{array}
$$

where the last inequality follows from Lemma 8 of (Degenne et al., 2020). The theorem follows.

F. Proofs for Section 6

Lemma 8. The probability that $y_{1, m+1}<y_{1, m}-\epsilon$ is at most:

$$
3 \exp \left(-\frac{\max \left\{\left(\epsilon-\left(2+\sqrt{2 h_{\left|S_{m}\right| / 4}}\right) \gamma_{\max }\right)^{2}, 0\right\} T}{\log _{2}(n) h_{\left|S_{m}\right| / 4}}\right)
$$

Proof. Define $\Delta_{i, m} \leq \Delta_{i}$ to be the gap between the i th best arm and the best arm remaining in S_{m}. Then notice that the result of Lemma 3 still holds if we replace x_{1} with the best arm remaining in S_{m} and Δ_{i} with $\Delta_{i, m}$

Let S_{m}^{ϵ} be the set of arms in S_{m} with y value less than $y_{1, m}-\epsilon$. Notice that in order for $y_{1, m+1}$ to be less than $y_{1, m}-\epsilon$, we must have $\left|S_{m}\right| / 2$ elements of $\left|S_{m}^{\epsilon}\right|$ to have \hat{y} values larger than those of the best arm left in S_{m}. Let $S_{m}^{\epsilon^{\prime}}$ be the set of arms that excludes the $\frac{1}{4}\left|S_{m}\right|$ arms with highest true mean from S_{m}^{ϵ}. Then if $y_{1, m+1}<y_{1, m}$, we must have $\frac{1}{3}$ of the arms in $S_{m}^{\epsilon^{\prime}}$ have higher \hat{y} estimates than the best arm in S_{m}. Let N_{m} be the number of such arms. Define $D=\max \left\{\left(\epsilon-\left(2+\sqrt{h_{\left|S_{m}\right| / 4}}\right) \gamma_{\max }\right)^{2}, 0\right\}$.
Then, since all arms in S_{m}^{ϵ} have $\Delta_{i, m} \geq \epsilon$, we have by Lemma 3 that

$$
\mathbb{E}\left[N_{m}\right] \leq\left|S_{m}^{\epsilon^{\prime}}\right| \exp \left(-\frac{D T}{\log _{2}(n) h_{\left|S_{m}\right| / 4}}\right)
$$

So using Markov inequality in exactly the same way as in the proof of Lemma 3, the conclusion follows.

