
Robust Pure Exploration in Linear Bandits with Limited Budget

Ayya Alieva 1 Ashok Cutkosky 2 Abhimanyu Das 3

Abstract
We consider the pure exploration problem in the
fixed-budget linear bandit setting. We provide a
new algorithm that identifies the best arm with
high probability while being robust to unknown
levels of observation noise as well as to moder-
ate levels of misspecification in the linear model.
Our technique combines prior approaches to pure
exploration in the multi-armed bandit problem
with optimal experimental design algorithms to
obtain both problem dependent and problem inde-
pendent bounds. Our success probability is never
worse than that of an algorithm that ignores the
linear structure, but seamlessly takes advantage
of such structure when possible. Furthermore, we
only need the number of samples to scale with the
dimension of the problem rather than the number
of arms. We complement our theoretical results
with empirical validation.

1. Introduction
A variety of problems across disciplines involve making
decisions based on noisy observations. For example, online
ad companies need to decide which ads to show to users
based on noisy estimates of click rates, and machine learn-
ing practitioners need to tune hyperparameters based on
performance on evaluation sets. All of these situations call
for an exploration period, after which a decision is made.
In the ads setting, the exploration is a testing phase prior to
deployment. In machine learning, it is a model development
or tuning phase. Further, in all these cases, the exploration
phase is limited by a fixed budget: there is only a limited
amount of clicks ad companies can use for estimating click
rates for ads, or a hyperparameter tuning job will only have
a certain amount of resources. This limitation means that
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the exploration phase should be somehow efficient - we
wish to make the best use of our limited budget in order to
maximize the chance that our final decision is the best one.

We model this problem as a pure exploration bandit problem
(Even-Dar et al., 2002; Bubeck et al., 2009). We consider a
finite set of n possible actions1, which we call “arms”, such
that each action x has an associated noisy reward y ∈ R.
We are allowed to take an action (or “pull an arm”) and
obtain an unbiased estimate of the corresponding reward.
We will pull arms for a given exploratory period, observe the
resulting reward estimates, and then output our best guess
for the arm with the highest reward. The goal is to maximize
the probability that our output is indeed the arm with the
highest reward.

Often, we have some knowledge about relationships be-
tween different arms which we would like to take advantage
of during the exploration phase. We model this prior knowl-
edge by embedding our arms as x ∈ Rd in such a way that
arms that seem qualitatively similar have similar embed-
dings. Note that this embedding is known - we either choose
or are given the features for each arm. We then assume a
linear model for the rewards y = 〈θ, x〉 for some fixed (but
unknown) θ ∈ Rd. However, in deference to the reality
that such a model is almost certainly not perfect, we allow
for a certain amount of misspecification: y = 〈θ, x〉 + γ,
where we assume γ is unknown but not too large. This set-
ting can be described as the misspecified linear bandit. We
provide an algorithm that, after exploring T arms, outputs a
suboptimal arm with probability at most:

log2(n) exp

(
− T

σ2 log2(n)H̃2

)
(1)

where H̃2 is an instance-dependent quantity (defined pre-
cisely in Section 2) that is bounded by d

max(∆2−
√
dγ,0)2

,
where ∆2 indicates the gap in reward y between the second-
best arm and the best arm, and σ2 is the variance of the
observational noise.2 We also provide a lower bound that
suggests that the above expression is tight up to logarithmic
factors.

1In Section 6 we provide a covering argument that extends to
infinite actions

2The above expressions supress some additional constants that
appear in our formal results.
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The pure exploration bandit problem has been studied
by several previous authors (Audibert & Bubeck, 2010a;
Karnin et al., 2013; Gabillon et al., 2012; Jamieson et al.,
2014). Classically, the literature distinguishes between two
cases, one in which the goal is to minimize the expected
number of samples of an exploration phase required to guar-
antee a certain success probability of identifying the best
arm, and one in which one must maximize the probability
of finding the best arm given a certain exploration budget.
These are called the fixed confidence and fixed budget set-
tings respectively. The former case has been studied in the
linear bandit setting in a number of prior works (Karnin,
2016; Tao et al., 2018; Soare et al., 2014; Xu et al., 2018; De-
genne et al., 2020). Notice that sample complexity bounds
for fixed confidence algorithms do not, in general, translate
to bounds for the fixed budget setting, and furthermore, the
sampling strategies for many fixed confidence algorithms
require knowledge of a target success probability, which is
not available for fixed budget problems.

Indeed, surprisingly little work (e.g. (Hoffman et al., 2014;
Katz-Samuels et al., 2020)) has focused on the fixed-budget
setting in linear bandits, which is the focus of this paper.
Furthermore, there appears to be a dearth of work on the
problem of misspecified linear bandits in the pure explo-
ration setting. Prior work on linear bandits (Karnin, 2016;
Hoffman et al., 2014; Katz-Samuels et al., 2020) seems
to rely heavily on the assumption that the linear model is
correct, and it is unclear to what extent their results will
degrade when this assumption is violated. Since, in reality,
no linear model is likely to be completely correct, this limits
the theoretical guarantees of these algorithms in practical
situations. Nevertheless, it is intuitively the case that even a
linear model with modest misspecification should provide
some advantage over simply ignoring the feature vectors.

Our algorithm, in addition to obtaining the bound (1), guar-
antees a mistake probability that gracefully degrades with
the level of misspecification. Although our mistake probabil-
ity without misspecification does not quite match the recent
bound in (Katz-Samuels et al., 2020) for non-misspecified
settings, note that our algorithm does not need to know what
the level of misspecification is in advance (i.e. it is adap-
tive), and moreover we provide an explicit polynomial-time
algorithm, while (Katz-Samuels et al., 2020) involves run-
ning mirror descent on a subproblem that is only provably
convex in particular scenarios. Beyond misspecification,
we automatically adapt to the variance of the random ob-
servations σ2, again without requiring this parameter as
input. Additionally, our results can also be extended to pro-
vide guarantees for the case of problem independent bounds
(independent of the ∆i).

A closely related problem to pure exploration in bandits is
the problem of minimizing regret. In this setting, the algo-

rithm attempts to minimize the total loss obtained over the
set of pulled arms, thus mixing the “exploration” phase with
an “exploitation” phase. This setting has been extensively
studied in both the general (Auer & Ortner, 2010; Kaufmann
et al., 2012; Audibert & Bubeck, 2010b) and linear bandit
(Abbasi-Yadkori et al., 2011; Srinivas et al., 2009; Agrawal
& Goyal, 2013) setting. Some work has also been done on
the problem on misspecified linear models in the cumulative
regret setting. (Ghosh et al., 2017; Gopalan et al., 2016)
provide algorithms that consider misspecified linear bandits,
and show how to obtain small regret when the vector of
misspecifications γ ∈ Rn is bounded in 2-norm. This is
a strong restriction on misspecification, but in fact (Ghosh
et al., 2017) shows that for the case of minimizing regret,
more moderate levels of misspecification may completely
destroy any chance for improved performance. In contrast,
in our pure exploration setting, we are able to handle γ
bounded in∞-norm, which is much less restrictive.

We organize this paper as follows: in Section 2 we formally
describe our setting and notation. In Sections 3 and 4 we
describe our algorithm and give its analysis. In Section 5 we
provide our lower bound, and in Section 6 we extend our re-
sults to obtain a problem independent bound for the mistake
probability. In Section 7 we provide a few experimental
examples, and in Section 8 we provide some concluding
remarks and open problems.

2. Problem Statement
In the pure exploration linear bandit setting, a player is given
a set of n arms A = {x1, . . . , xn} ⊂ Rd with ‖xi‖ ≤ 1
for all i and n ≥ d. Each xi is associated with an expected
reward yi. Each yi takes the form yi = 〈θ, xi〉+ γi, where
θ is some vector in Rd, and γi is the deviation from the
linear model. Neither θ nor γ is known to the player. We
define γmax = maxi |γi|. At each step of the game, the
player chooses one arm xi of their choice and observes
an independent sample ŷi = yi + ζ where ζ is mean-zero
σ-subgaussian random variable that is independent of the
past history of the game, where σ is also not known to
the player. The goal of the game is to query at most T
arms xi1 , . . . , xiT and then output the arm with the highest
expected reward.

For ease of notation, we assume that the arms are enu-
merated in order of the decreasing expected reward, i.e.
y1 ≥ y2 ≥ · · · ≥ yn. We also assume that the set of arms
{x1, . . . , xn} spans Rd. This is without loss of generality,
as we may always change coordinates to a subspace spanned
by the arms. We define the gap ∆i = y1 − yi for i > 1, i.e.
the difference between the expected rewards of the best arm
and the ith best arm. We also define N = T

log2 n
. Further, to

simplify our presentation we assume that n, d and T
log2(n)
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are powers of 2, and there is a unique best arm3.

We will also use the following non-standard notation: given
a symmetric positive semidefinite matrix M , and a vector
x, we use M‡x to indicate either∞ if x is not in the range
of M , or argminy,My=x ‖y‖2 otherwise. This notation is
well-defined because the kernel and range of a symmetric
positive semi-definition matrix are orthogonal subspaces.
Intuitively, M‡ is similar to a pseudo-inverse, but instead
of sending kernel elements to 0, we send them to∞. We
will also refer to the matrix norm of x with respect to M as
‖x‖M :=

√
xTMx

We will refer to the classical bandit problem in which the
n arms are not associated with feature vectors xi ∈ Rd as
the multi-armed bandit problem. One quantity of interest
in the multi-armed bandit setting is H2 = max1<i≤n

i
∆2
i

.
This quantity frequently appears in error probabilities of
algorithms. For example, (Karnin et al., 2013) obtains error
probability

3 log2(n) exp

(
− T

16 log2(n)H2

)
(2)

In our linear bandit setting, we define a similar quantity:

d̃ = inf
v

inf
‖π‖1≤N
π∈[0,N ]|A|

sup
xi∈A

(xi − v)T (
∑
a∈A

π(a)aaT )‡(xi − v)

hi =

{
min( 7

4 d̃, 3i) if i > T
4dlog2(n)e

min( 7
4 d̃, i) if i ≤ T

4dlog2(n)e

H̃2 = max
1<i≤n

hi

max(∆i − (2 + 2
√

2hi)γmax, 0)2

We will show that d̃ ≤ d, so that d̃ cannot be very large even
in the worst-case. In the next section, we will also draw
a connection between H̃2 and the notion of “characteristic
time” (Degenne et al., 2020) used in lower bounds for the
fixed confidence problem setting.

In the absence of misspecification, H̃2 can be bounded by
min(3H2,

7d̃
4∆2

2
). Our bounds will depend on H̃2 in a way

analogous to how bounds for the multi-armed bandit setting
depend on H2. Larger values of H̃2 correspond to more
difficult problems. As ∆i − (2 +

√
hi)γmax decreases, the

arms become harder to distinguish, and as d̃ increases, our
ability to utilize linear structure to gain information about
the arms also decreases.

3. Algorithm
Our approach is based on the sequential halving algorithm of
(Karnin et al., 2013). We construct a sequence of “candidate

3These simplifying assumptions allow us to avoid dxe operators
in several places.

sets” S0, . . . , SM for each of M = log2(n) rounds such
that S0 = A, and |SM | = 1. To get Sm+1 from Sm, we
pick N = T

log2 n
points xm,1, . . . , xm,N in A, and receive

rewards ym,1, . . . , ym,N where ym,i = 〈θ, xm,i〉+ γxm,i +
ζm,i. Then, we perform linear regression to get an estimate
θ̂m. Next, for each element x ∈ Sm, we compute ŷ =
〈θ̂m, x〉. Finally, we order the elements of Sm according
to the values of ŷ, and remove the bottom half of these
elements to obtain Sm+1, breaking ties arbitrarily. The final
output of our algorithm is the sole element of SM .

A key step in this procedure is the choice of the N arms we
pull in every round. We choose these arms using an optimal
experimental design algorithm. Specifically, we deploy the
method described by (Allen-Zhu et al., 2017), which we
refer to as OptDesign. This algorithm provides a way to
choose a discrete subset of arms whose covariance matrix
approximately optimizes a certain objective, which arises
organically in the analysis of the failure probability of our
approach. In order to employ this result however, we will
require T ≥ 45d log2(n) due to technical limitations on the
algorithm of (Allen-Zhu et al., 2017). This requirement is
not very restrictive, since T must be at least Ω(d) for us to
be able to even sample all dimensions.

We provide the pseudocode for our pure exploration algo-
rithm in Algorithms 1 and 2.

Algorithm 1 LinearExploration
Input: total budget T , set of arms A = {x1, . . . , xn}.
Initialize: S0 ← {x1, . . . , xn} = A, m ← 0, N ←

T
dlog2 ne
while |Sm| > 1 do

Pick Zm = {xm,1, ..., xm,N} ←
GetArms(Sm, N,A).
Sample each arm xm,i ∈ Zm to obtain a reward esti-
mate ŷm,i.
Compute minimum norm OLS estimate

θ̂m = argmin
θ∈span(Zm)

N∑
i=1

(〈θ, xm,i〉 − ŷm,i)2

Set Sm+1 be the set of |Sm|/2 arms in Sm with largest
values of ŷ = 〈θ̂, x〉.
m← m+ 1

end while
Return The unique element of Sm.

Theorem 1. Let T > 45d log2 n and (2 + 2
√

2hi)γmax ≤
∆i for all i. Then LinearExploration makes at most
T arm pulls, and fails to return the optimal arm x1 with
probability at most:

3 log2(n) exp

(
− T

16 log2(n)H̃2σ2

)
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Algorithm 2 GetArms(S,N,A)

Input: remaining set of arms S, accuracy ε, round
budget N , set of arms to choose A
Define

fS(Z) = sup
xi∈S
xj∈S

(xj − xi)T
(∑
z∈Z

zzT

)‡
(xj − xi)

Ẑ ← approximation to argmin Z⊆A
|Z|≤N

fS(Z) using

OptDesign (Allen-Zhu et al., 2017).
if N > |S| then
Z̃ ← {s ∈ S repeated N

|S| times}
Set Z ← argmin{fS(Ẑ), fS(Z̃)}

end if
return Z

We also have the following important bounds on d̃, which is
an immediate consequence of Lemma 11, using the Kiefer-
Wolfowitz theorem (Kiefer & Wolfowitz, 1960).

Proposition 2. d̃ ≤ d

It is helpful to compare Theorem 1 to the result for ordinary
multi-armed bandit exploration of (Karnin et al., 2013),
which obtains an error probability of:

3 log2(n) exp

(
− T

16 log2(n)σ2 maxi≤n i∆
−2
i

)
Notice that in case of a strictly linear model (for which
γi = 0 for all i), our definition of H̃2 simplifies to:

H̃2 = max
1<i≤n

hi
∆2
i

≤ min

(
3H2,

7d̃

4∆2
2

)

Hence, our dependence on H̃2 improves on the ordinary
multi-armed bandit bound (2). Moreover, our algorithm’s
performance can be directly bounded in terms of the di-
mension of the space d rather than any other geometric
properties of the arrangement of the arms. Even if the lin-
ear structure is essentially useless (i.e. d ≥ n), we decay
gracefully to near-optimal bounds for the pure-exploration
multi-armed bandit problem:

For a tighter characterization of our algorithm’s performance
in terms of the geometric structure of the arms, it is also
instructive to consider the following bound on H̃2

H̃2 ≤

7 inf
‖π‖1≤N
π∈[0,N ]|A|

sup
xi∈A

(xi − x1)T (
∑
a∈A

π(a)aaT )‡(xi − x1)

4∆2
2

This expression is somewhat similar in flavor to the char-
acteristic time definition in (Degenne et al., 2020). In that
work, it is shown that for the fixed confidence setting, if the
target failure probability is δ and the (random) number of
trials is T , then

lim inf
δ→0

E[T ]

log2(1/δ)

≥ inf
‖π‖1≤1

π∈[0,1]|A|

max
1<i≤n

(xi − x1)T (Σπ)‡(xi − x1)

∆2
i

where we define Σπ =
∑
a∈A π(a)aaT . Roughly speak-

ing, this suggests that no fixed-confidence algorithm should
expect to obtain T for which the error probability δ is less
than:

exp

− T

inf ‖π‖1≤1

π∈[0,1]|A|
max1<i≤n

(xi−x1)T (Σπ)‡(xi−x1)
∆2
i


Although it is not clear how to convert this result into a
lower bound for our fixed-budget setting, this at least pro-
vides intuitive evidence that our error bound is measuring
the difficulty of the problem using the “right” geometric
quantities.

Further, note that our algorithm does not need to sample all
of the possible arms: it is possible for T < |A|. This prop-
erty highlights how our method is using the linear structure:
by performing regression, we learn about arms that we have
never pulled, and are able to infer whether they are worth
considering or not.

Finally, comparing the output of OptDesign to a uniform
sampling allows us to always at least match the error bound
of successive halving. If we were to run OptDesign by
itself, the variance of the estimates might be up to 3 times
higher than the uniform sampling approach (due to error in
optimization and rounding from fractional to integer solu-
tions). In practice, this would rarely be an issue since it is
rare for the best experiment design to be uniform sampling.
Yet, for the sake of exposition we include the comparison in
our algorithm.

We prove Theorem 1 by examining the probability of dis-
carding the correct arm in each round of the loops in the
algorithm. Then, we use union bound to bound the over-
all error probability, in a manner roughly analogous to the
strategy followed by (Karnin et al., 2013).

To this end, we first need the following Lemma (whose proof
is deffered to the appendix) that bounds the probability of a
single arm being misordered when deciding which arms to
remove in a round:
Lemma 3. Assume that the best arm was not eliminated
prior to round m. Let [x]+ = max(x, 0). Then for any arm
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xi ∈ Sm,

P[〈θ̂m, xi〉 > 〈θ̂m, x1〉] ≤

exp

−[∆i − (2 + 2
√

2h|Sm|/4)γmax

]2
+
T

16 log2(n)h|Sm|/4σ
2


We also require the following Lemma:

Lemma 4. Assume that the best arm was not eliminated
prior to round m, and let [x]+ = max(0, x). Then the
probability that the best arm is eliminated on round m is at
most

3 exp

−
[
∆ 1

4 |Sm|
− (2 + 2

√
2h 1

4 |Sm|
)γmax

]2

+

T

16 log2(n)h|Sm|/4σ
2


Proof. If the best arm is thrown out at round m, there are
at least 1

2 |Sm| arms in Sm whose ŷ estimates are higher
than that of the best arm. Let S′m ⊂ Sm be the set of arms
that excludes the 1

4 |Sm| arms with the largest true means
in Sm. If the best arm is thrown out, then at least 1

3 of
arms in S′m must have higher ŷ estimates than that of the
best arm. Let Nm be the number of such arms. Define
D = max{(∆ 1

4 |Sm|
− (2+2

√
2h|Sm|/4)γmax )2, 0}. Then

using Lemma 3, the expected number of such arms is at
most

E[Nm] =
∑
xi∈S′m

P[〈θ̂, xi〉 ≥ 〈θ̂, x1〉]

≤ |S′m| exp

(
− DT

16 log2(n)h|Sm|/4σ
2

)
Then, by Markov inequality, the probability of the best arm
being thrown out at round m is at most

P
[
Nm >

1

3
|S′m|

]
≤E[Nm]

1
3 |S′m|

≤3 exp

(
− DT

16 log2(n)h|Sm|/4σ
2

)

Using the above Lemma, Theorem 1 follows by union
bound:

Proof of Theorem 1. Define Dm = max{(∆ 1
4 |Sm|

− (2 +

2
√

2h|Sm|/4)γmax )2, 0}.
Then using Lemma 4 and the union bound, the probability

of eliminating the best arm is at most

log2(n)∑
m=0

3 exp

(
− DmT

16 log2(n)h|Sm|/4σ
2

)

≤ 3 log2(n) exp

(
− T

16 log2(n) supm
h|Sm|/4
Dm

σ2

)

≤ 3 log2(n) exp

(
− T

16 log2(n)H̃2σ2

)

4. Analysis of GetArms
In this section, we provide an analysis of the GetArms
procedure that is used to choose which arms to pull in each
round of LinearExploration. The heavy-lifting here
is performed by the experimental design algorithm pro-
posed by (Allen-Zhu et al., 2017), which we refer to as
OptDesign. Given S ⊂ A ⊂ Rd, a number N and the
objective fS : Sd+ → R:

fS(X) = sup
xi,xj∈S

(xj − xi)TX‡(xi − xj)

OptDesign returns a set Ẑ = {z1, . . . , zn} ⊂ A such
that X̂ =

∑
z∈Ẑ zz

> nearly minimizes fS(X). We ver-
ify technical conditions required of fS in order to employ
OptDesign in Appendix C.

We use OptDesign to obtain a near-optimal set of arms to
pull. GetArms then potentially improves this near-optimal
set by comparing to a few special-case candidate sets of
arms. By comparing to these special cases, we mitigate
the risk that the approximation factor in the discrete opti-
mization algorithm will cause worse performance than an
algorithm that ignores the linear structure.

Our main result is the following, proved in Appendix B:

Theorem 5. On inputs S,N andA, GetArms runs in time
polynomial in |S|, N , |A| and d and produces a set Z ⊂ A,
|Z| ≤ N that satisfies:

sup
xi−xj∈S

(xj − xi)T
∑
z∈Ẑ

zzT

‡ (xj − xi) ≤ 8
h|S|/4

N

Note that this theorem does not use any geometric properties
of the arms (e.g. no condition numbers). The quantity
h|Sm|/4 depends only on the dimension and the relative
gaps between the arms.

5. Lower Bound
We next provide a lower bound for the pure exploration
linear bandit problem without misspecification, suggesting
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that H̃2 is a good complexity measure for this problem.
Our lower bound is a reduction to the ordinary multi-armed
bandit lower bound (Audibert & Bubeck, 2010a). This result
states that for any p ∈ (0, 1/2), for any algorithm, there
exists a d-armed bandit with true rewards in [p, 1− p] and
whose observed values are Bernoulli random variables such
that the probability of successfully identifying the best arm
is at most 1− exp

(
−(5+o(1))T
p(1−p)H2

)
, where H2 = maxi i∆

−2
i .

Using this, we have the following:

Theorem 6. Given a d-dimensional linear bandit pure-
exploration algorithm, any p ∈ (0, 1/2), and any n ≥ d,
there exists an problem instance on which the probability of
identifying the best arm is at most 1− exp

(
−(15+o(1))T

p(1−p)H̃2

)
,

where the o(1) depends on n, T and p and goes to zero as
T →∞.

Note that this is not an instance dependent lower bound.

We also provide a lower bound that depends on the geomet-
ric structure of the problem. We first define some notation:
for any vector w ∈ Rd and real number γ, we define the
design matrix Vw :=

∑d
i=1 wixix

T
i , and Vw,γ to be Vw,γ =

Vw+γId, where I is the identity matrix inRdxd. We define
Dd is the probability simplex of dimension d. Our lower
bound for any problem instance with dimension d, arms
xi ∈ A and parameter vector θ ∈ Rd is in terms of the quan-

tity HLB = min
w∈Dd

max
x∈A,x 6=x1

min
γ∈R

‖x1−x‖2
V
−1
w,γ

(max(θTV −1
w,γVw(x1−x),0)2

.

Theorem 7. Given a linear bandit pure-exploration al-
gorithm, there exists a problem instance on which the
probability of identifying the best arm is at most 1 −
exp

(
−T · (1/

√
HLB + 2 sin π

n )2
)
.

The HLB term in the above geometry-dependent lower
bound (whose proof is deferred to the appendix) plays a
similar role as the H̃2 quantity in our upper bound. We
defer closing the gap between these two terms to future
work.

6. Problem Independent Bound
Now we provide an analysis of our algorithm that obtains a
problem independent bound. This means that the mistake
probability will not depend on ∆i. We do this by redefining
the definition of a mistake: instead of bounding the proba-
bility of returning the best arm, we bound the probability of
returning an arm with reward close to highest reward.

To facilitate our discussion, we define the value x1,m to
be the best arm remaining in Sm, and y1,m to be the ex-
pected reward of this arm. Thus the final output of the
algorithm has expected reward y1,log2(n). We will show that
the probability that y1,m+1 < y1,m − ε is small for any
given ε. Then, by union bound, we will obtain with high

probablity y1,log2(n) ≥ y1− log2(n)ε. Specifically, we have
the following lemma:

Lemma 8. The probability that y1,m+1 < y1,m − ε is at
most:

3 exp

(
−

max{(ε− (2 +
√

2h|Sm|/4)γmax)2, 0}T
log2(n)h|Sm|/4

)

Proof. Define ∆i,m ≤ ∆i to be the gap between the ith
best arm and the best arm remaining in Sm. Then notice
that the result of Lemma 3 still holds if we replace x1 with
the best arm remaining in Sm and ∆i with ∆i,m

Let Sεm be the set of arms in Sm with y value less than
y1,m − ε. Notice that in order for y1,m+1 to be less than
y1,m − ε, we must have |Sm|/2 elements of |Sεm| to have
ŷ values larger than those of the best arm left in Sm. Let
Sε
′

m be the set of arms that excludes the 1
4 |Sm| arms with

highest true mean from Sεm. Then if y1,m+1 < y1,m, we
must have 1

3 of the arms in Sε
′

m have higher ŷ estimates than
the best arm in Sm. Let Nm be the number of such arms.
Define D = max{(ε− (2 +

√
h|Sm|/4)γmax)2, 0}.

Then, since all arms in Sεm have ∆i,m ≥ ε, we have by
Lemma 3 that

E[Nm] ≤ |Sε
′

m| exp

(
− DT

log2(n)h|Sm|/4

)
So using Markov inequality in exactly the same way as in
the proof of Lemma 3, the conclusion follows.

This Lemma allows us to prove an analog of Theorem 1:

Theorem 9. For any given ε > 0, the probability that
LinearExploration returns an arm with true mean
more than than ε log2(n) lower than y1 is at most:

3 log2(n) exp

(
− inf

i

max{(ε− (2 +
√

2hi)γmax)2, 0}T
log2(n)hi

)

Note that the hi in the bound do not depend on the problem
instance. The proof is identical to the proof of Theorem 1,
using Lemma 8 in the same way as Lemma 4.

In addition to verifying the natural intuition that our algo-
rithm performs reasonably even with very small ∆2, Theo-
rem 9 lets us design an algorithm that allows for an infinite
number of arms. For example, we might consider the sit-
uation in which A = {x : ‖x‖ ≤ 1}. The procedure is
computationally inefficient, but straightforward. We require
only one more assumption, namely that ‖θ‖ ≤ 1. For sim-
plicity of exposition, also assume that our bandit problem
is well-specified (γmax = 0), although this is not necessary.
Given an error tolerance ε, we choose a subset of the arms,
Â, of cardinality at most ε−d such that any arm in A is at
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most O(ε) far away in the 2-norm from an arm in Â. Such
a choice is possible because we assumed every arm in A
has norm at most one. Since ‖θ‖ ≤ 1, This implies that the
highest expected reward in Â is at most O(ε) away from the
highest expected reward in A.

Our approach is then to run LinearExploration on Â
rather than A. Since log2(|Â|) ≤ d log2(1/ε), by Theorem
9, with probability at least

1− 3d log2(1/ε) exp

(
− inf

i

ε2T

d log2(1/ε)hi

)
the returned arm’s expected reward is optimal to within
O(εd log2(1/ε)) in Â, and so within O(εd log2(1/ε)) of
the best expected reward in A.

Clearly, this method is slow computationally. If A has
some structure, it may be possible to reduce the amount of
computation. We leave this question for future work.

Figure 1. Probabilities of algorithms returning the best arm. Error
bars are the standard error, averaged over 200 trials. Budget is
T = 800, number of arms is n = 50, arms have dimensions d = 3,
and there is no misspecification (γ = 0). We compared the per-
formance of LinearExploration versus three baselines: BayesGap,
Succesive Halving, Non-Adaptive and XY-Allocation. We con-
sider four different settings: Uniform, when arms are sampled
uniformly from a hypercube; GaussianMixture, when arms are
sampled from a mixture of three gaussians; Clusters, when arms
are sampled from two tight clusters; and Subspace, when arm
features are close to forming a subspace in Rd−1.

7. Experiments
In this section, we empirically validate our approach via
synthetic experiments. We tested our algorithm on both
truly linear problems (misspecification of 0) and problems
with misspecification of order O(1/d).

In Figure 1, we tested four different distributions of arms:
a Uniform distribution where each arm was sampled uni-
formly from a hypercube {x : ‖x‖∞ ≤ 1}; a Gaussian-
Mixture distribution where each arm was sampled from a
mixture of three gaussians with constant variance and three
different basis vectors chosen as the means; a Clusters dis-
tribution where arms are sampled uniformly from one of
two hypercubes of size [−ε, ε]d for a small ε = 0.05, one
centered at θ and one at−θ; and Subspace, where arms were
sampled uniformly from [−1, 1]d−1 × [−ε, ε], resulting in
arms being close to a subspace of Rd−1. The experiments
used d = 3, n = 50, T = 800, and are averaged over 200
trials.

We compared LinearExploration to two baseline
fixed-budget algorithms: the successive halving approach
from (Karnin et al., 2013), which ignores the linear structure,
and the BayesGap algorithm from (Hoffman et al., 2014).
In addition, we also compare against the XY-Allocation
fixed confidence algorithm from (Soare et al., 2014), where
we ignore the stopping criteria and run for the full time
budget. We report results with the static version of the XY-
Allocation - the adaptive version (and many other adaptive
fixed confidence algorithms) requires knowledge of a target
success probability for their arm-selection strategy, which
is not available in the fixed budget setting. Finally, we also
compare LinearExploration against a non-adaptive
variant (denoted as Non-Adaptive), where we just run a
single round of GetArms and spend the entire budget in a
single experimental design call.

Except for the hard Clusters instance (where all the al-
gorithms perform relatively poorly due to the small gap
between arms), LinearExploration performed better
than the other baselines in most instances. Note that unlike
LinearExploration, BayesGap algorithm (Hoffman
et al., 2014) requires hyperparameters σ, the variance of
the noise, and η, a prior on the variance of θ. In Figure 1,
we used the true values for both η and σ. However, these
values are unlikely to be known apriori in most applica-
tions, which would degrade the performance of BayesGap.
All algorithms perform better on simpler arm distributions,
but LinearExploration seems to exploit the linear
structure significantly better than the baselines. In partic-
ular, while XY-Allocation also utilizes linear structure, it
is outperformed by LinearExploration , possibly be-
cause fixed-confidence algorithms do not explicitly utilize
knowledge of the time horizon that is available in the fixed-
budget setting. LinearExploration also outperforms
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Figure 2. Probabilities of algorithms returning the best arm under varying level of misspecification and number of dimensions. Arms are
sampled iid uniformly from a bounded hypercube. Error bars are the standard error, averaged over 200 trials. Budget is T = 80, number
of arms is n = 20. In the figure on the right, misspecification is 0, and dimensions vary from d = 3 to d = 10. In the figure on the left,
arms have dimensions d = 3 and the misspecification is sampled uniformly iid for each arm, varying ‖γ‖∞ from 0 to 1

d
= 1

3
.

its Non-Adaptive counterpart, confirming that our al-
gorithm’s use of multiple adaptive rounds of experiment
design are valuable

Figure 2 compares the performance of our algorithm as a
function of varying misspecification and number of dimen-
sions d, while fixing n = 20 and T = 80 for the Uniform
distribution instance. For BayesGap, we use the shaded
grey area to illustrate its dependence on the hyperparam-
eters σ and η. The shaded part shows the one standard
error confidence bound on performance of BayesGap un-
der different reasonable choices of the two parameters. For
instance, while the real σ and real η are both equal to 1.0
in our setting, the grey area was sampled from 0.5 to 3.0
for σ, and from 0.5 to 2.0 for η. LinearExploration,
Non-Adaptive, Successive Halving, and XY Allocation
(Soare et al., 2014) do not require any prior knowledge, so
those experiments are plotted as lines with standard error
bars.

Since Successive Halving algorithm does not rely on lin-
ear structure, its performance does not vary with the
number of dimensions or misspecification levels. Simi-
larly, as BayesGap heavily relies on its Bayesian prior,
its performance is affected by the specification of σ and
η, rather than by misspecification and number of fea-
tures. While this makes these two baselines seem more
robust to a misspecified linear model, this also implies that
neither of the two algorithms can successfully leverage
the information encoded in the linear structure, as show-
cased by Figure 2. XY-Allocation and Non-Adaptive
do rely on linear structure, but not as effectively as

LinearExploration, as seen from the figures. Thus,
even though LinearExploration degrades with the
level of misspecification and the number of features, the
algorithm still outperforms the other baselines as long as
the linear structure is able to provide some information.

8. Conclusion
We have introduced a algorithm for pure exploration in the
linear bandits setting. Our algorithm is robust in the sense
that it does not require any input relating to the distribution
of the observation noise, and is even able to handle modest
amounts of misspecification. We further demonstrate that
our mistake probabilty is nearly tight in the well-specified
case. We also show that we can bound method enjoys a
problem independent mistake probability - that is, a mistake
probability that does not depend on the gaps in the values
of the arms. We leverage this observation to design an
algorithm for the case of infinitely many potential arms. We
support our theoretical contributions with an empirical study
verifying the desirable properties of our algorithm.

While our work represents a step towards robustifying pure
exploration problems to misspecification, we hope for fur-
ther improvements. For example, we require the misspec-
ification to be a factor of

√
hi ≤

√
d smaller than the gap

between the ith best and the best arm. It is unclear if this is
tight in general. It might be possible to relax this require-
ment in some settings and do well so long as the misspecifi-
cation does not actually reorder the linear model.
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