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APPENDIX

We remind that Appendix A contains an application of The-
orem (2.1) to the continuous case. Appendix B contains
the proofs of Proposition 4.1 and Theorem 4.2. Finally,
Appendix C contains the derivation of ρt in the finite case
thanks to Lagrange method of multipliers.

A. Comparison of the Bounds in the
Continuous Case

As another example of application of Theorem (2.1), let
us consider the case `t(θ) = (θ − yt)2. We assume that
supt∈N |yt| = C < +∞. We prove the following state-
ments:

• for some choice of η and π, EWA (that is, (4) with
Dφ = KL) leads to

T∑
t=1

Eθ∼ρt [`t(θ)] ≤ inf
m∈[−C,C]

{
T∑
t=1

(yt −m)2

+ 4C2
√
T log(T )(1 + o(1))

=

T∑
t=1

(yt − ȳT )
2

+ 4C2
√
T log(T )(1 + o(1))

}

where ȳT = (1/T )
∑T
t=1 yt, but C has to be known

by the user to reach this.

• for some choice of η and π, (4) with Dφ = χ2 leads to

T∑
t=1

Eθ∼ρt [`t(θ)]

≤ inf
m∈R

{
T∑
t=1

(m− yt)2 + C ′T
2
3 (1 + |m|)5

}
(70)

where C ′ is a constant that depends only on C, and
none of these constants have to be known by the user.

There are various ways of using EWA in this context. The
important point is that they all require the support of the
prior π to be bounded (or to truncate its support at some
point):

1. a first option is to use as a prior π the uniform distri-
bution on [−C,C]. Of course, this is possible only if
one knows C in advance! In this case, the losses are
bounded by 4C2 and so the regret bound is given by

T∑
t=1

Eθ∼ρt [`t(θ)] ≤ inf
ρ∈P(Θ)

{
T∑
t=1

Eθ∼ρ[(yt − θ)2]

+
ηC2T

2
+

KL(ρ||π)

η

}
. (71)

For m ∈ [−C,C] and δ ∈ (0, 1), define ρm,δ as the
uniform distribution on an inverval of length δC that
containsm (one could think of [m−δC/2,m+δC/2]
but when m = C, this interval would not be included
in [−C,C]...). We obtain:

T∑
t=1

Eθ∼ρt [`t(θ)]

≤ inf
m∈[−C,C]

inf
δ∈(0,1)

{
T∑
t=1

Eθ∼ρ[(θ − yt)2]

+ 8ηC4T +
log
(

2
δ

)
η

}

≤ inf
m∈[−C,C]

inf
δ∈(0,1)

{
T∑
t=1

(
(yt −m)2 + C2δ2

+ 2Cδ|yt −m|
)

+ 8ηC4T +
log
(

2
δ

)
η

}

≤ inf
m∈[−C,C]

inf
δ∈(0,1)

{
T∑
t=1

(yt −m)2 + 5TC2δ

+ 8ηC4T +
log
(

2
δ

)
η

}

= inf
m∈[−C,C]

{
T∑
t=1

(yt −m)2

+ 8ηC4T +
1 + log

(
10TC2η

)
η

}
reached for δ = 1/(5ηTC2) (in (0, 1) for T large
enough). The choice η =

√
log(T )/(4C2

√
T ) gives:

T∑
t=1

Eθ∼ρt [`t(θ)] ≤ inf
m∈[−C,C]

{
T∑
t=1

(yt −m)2

+ 4C2
√
T log(T )(1 + o(1))

}
. (72)

2. a second strategy is detailed for example in (Gerchi-
novitz, 2011), it consists in taking a heavy-tailed dis-
tribution on R for π, but to use as a predictor the pro-
jection of θ on the interval [−C,C], that is, changing
the loss in |yt − proj[−C,C](θ)|. This would lead to
a regret bound similar to (72), without improving the
applicability of the result, in the sense that one has to
know C to use the procedure.
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3. a third approach was mentioned by an anonymous Ref-
eree, and can in principle be used when C is unknown.
In this case, we take π as the uniform prior on [−c, c]
for some c > 0. The important point is that the loss
`t(θ) belongs to the interval [0, (c+C)2] whose upper
bound is unknown. Based on techniques developped
in (Cesa-Bianchi & Lugosi, 2001; Auer et al., 2002),
Theorem 6 in (Cesa-Bianchi et al., 2007) upper bounds
the regret of an adaptive version of EWA that can be
used in the case where the losses belongs to an (un-
known) bounded interval. This theorem is written in
the finite Θ case, but it seems to be direct to extend the
result to the general case. If one is “lucky”, that is, if
c ≥ C, then one would recover a regret bound simi-
lar to (72). However, it might be that C > c. In this
case, we only have the guarantee to perform as well
as the best predictor in [−c, c]. If the best predictor m
satisfies |m| > c then this gives a linear regret.

Let us now use the strategy (4) with D being the χ2 diver-
gence, and with a prior π that is the student distribution
T (k) with k = 4 degrees of freedom. First,∫

`t(θ)
2π(dθ) =

∫
|yt − θ|4π(dθ)

≤ 8

∫
|yt|4π(dθ) + 8

∫
|θ|4π(dθ) ≤ 8(C4 + 24). (73)

This gives the regret bound

T∑
t=1

Eθ∼ρt [`t(θ)] ≤ inf
ρ∈P(Θ)

{
T∑
t=1

Eθ∼ρ[(yt − θ)2]

+ η8(C4 + 24)T +
χ2(ρ||π)

η

}
(74)

and here, let us consider, for m ∈ R and δ ∈ (0, 1), the
uniform distribution ρm,δ on an interval of length δC that
contains m. The regret bound becomes:

T∑
t=1

Eθ∼ρt [`t(θ)]

≤ inf
m∈R

inf
δ∈(0,1)

{
T∑
t=1

(m− yt)2 + δ5C2T

+ η8(C4 + 24)T +
χ2(ρm,δ||π)

η

}
. (75)

Note that the density of T (k) with respect to the Lebesgue
measure is given by:

1√
kπ

Γ
(
k+1

2

)
Γ
(
k
2

) (
1 +

t2

k

)− k+1
2

(76)

so we can derive the upper bound

χ2(ρm,δ||π) ≤ C ′′

δη
(1 + |m|)5 (77)

for some C ′′ > 0 that depends only on C. This time, the
choices δ = η = 1/T 1/3 lead to

T∑
t=1

Eθ∼ρt [`t(θ)]

≤ inf
m∈R

{
T∑
t=1

(m− yt)2 + C ′T
2
3 (1 + |m|)5

}
(78)

where C ′ is a constant that depends only on C. The impor-
tant point is that the strategy can be implemented without
the knowledge of C nor C ′. But also, this has an important
cost, that is, the regret is now in T 2/3.

Remark A.1. An anonymous Referee suggested that it is
possible to first build predictors on nested intervals, and
then to aggregate them via EWA to obtain adaptation to
the unknown constant C. However, these predictors are
not uniformly bounded, so we don’t see how to apply the
standard results on EWA to them.

However, this suggestion leads to an improvement on (70)
that will combine the ideas of EWA and non-exponentially
weighted aggregation. The idea is to use EWA on nested
intervals, and then to aggregate them using the χ2 bound,
which does not require boundedness.

More precisely, define ρtk as the result of using EWA with a
uniform prior on [−k, k], for any k ∈ N \ {0}. We have:

T∑
t=1

Eθ∼ρtk [`t(θ)] ≤ inf
m∈[−k,k]

{
T∑
t=1

(yt −m)2

+ 4k2
√
T log(T )(1 + o(1))

}
.

It is then possible to adapt Corollary 2.4 to aggregate the
various ρtk, using a prior π on k. This leads to a posterior
ρt on k such that

T∑
t=1

Ek∼ρtEθ∼ρtk [`t(θ)]

≤ inf
k≥1

{
T∑
t=1

Eθ∼ρtk [`t(θ)] +
ηL2T

2
+

1
π(k)−1

η

}

≤ inf
k≥1

inf
m∈[−k,k]

{
T∑
t=1

(yt −m)2

+ 4k2
√
T log(T )(1 + o(1)) +

ηL2T

2
+

1
π(k) − 1

η

}
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where

L2 = 2C2 + 2

∞∑
k=1

π(k)k2.

The choice π(k) ∝ 1/k4 and η ∝ 1/
√
T leads to a bound

in:

T∑
t=1

Ek∼ρtEθ∼ρtk [`t(θ)] ≤ inf
m∈R

{
T∑
t=1

(yt −m)2

+ (1 +m4 + C2)
√
T log(T )(1 + o(1))

}

which improves on (70).

B. Proofs of the Results in Section 4
Proof of Proposition 4.1: It is a direct application of
Lemma 5.1 to f = F . �

Proof of Theorem 4.2: This proof follows step by step the
classical analysis of FTRL, but we provide it for the sake
of completeness. For short, let L̄t(µ) := Eθ∼qµ [`t(θ)].
First, by assumption, L̄t is convex. By definition of the
subgradient of a convex function,

T∑
t=1

Eθ∼qµt [`t(θ)]−
T∑
t=1

Eθ∼qµ [`t(θ)]

=

T∑
t=1

L̄t(µt)−
t∑
t=1

L̄t(µ)

≤
T∑
t=1

µTt ∇L̄t(µt)−
T∑
t=1

µT∇L̄t(µt). (79)

Then, we prove by recursion on T that for any µ ∈ Rd,

T∑
t=1

µTt ∇L̄t(µt)−
T∑
t=1

µT∇L̄t(µt)

≤
T∑
t=1

µTt ∇L̄t(µt)−
T∑
t=1

µTt+1∇L̄t(µt)

+
Dφ(qµ||π)

η
(80)

which is exactly equivalent to

T∑
t=1

µTt+1∇L̄t(µt) ≤
T∑
t=1

µT∇L̄t(µt) +
Dφ(qµ||π)

η
. (81)

Indeed, for T = 0, (81) just states that Dφ(qµ||π) ≥ 0
which is true by assumption. Assume that (81) holds for

some integer T − 1. We then have, for all µ ∈ Rd,

T∑
t=1

µTt+1∇L̄t(µt)

=

T−1∑
t=1

µTt+1∇L̄t(µt) + µTT+1∇L̄T (µT )

≤
T−1∑
t=1

µT∇L̄t(µt) +
Dφ(qµ||π)

η
+ µTT+1∇L̄T (µT )

as (81) holds for T − 1. Apply this to µ = µT+1 to get

T∑
t=1

µTt+1∇L̄t(µt)

≤
T∑
t=1

µTT+1∇L̄t(µt) +
D(qµT+1

||π)

η

= min
m∈Rd

[
T∑
t=1

mT∇L̄t(µt) +
D(qm||π)

η

]
(by definition of µT+1),

≤
T∑
t=1

µT∇L̄t(µt) +
Dφ(qµ||π)

η

for all µ ∈ Rd. Thus, (81) holds for T . Thus, by recur-
sion, (81) and (80) hold for all T ∈ N.

The last step is to prove that for any t ∈ N,

µTt ∇L̄t(µt)− µTt+1∇L̄t(µt) ≤
ηL2

α
. (82)

Indeed,

µTt ∇L̄t(µt)−µTt+1∇L̄t(µt)
= (µt − µt+1)T∇L̄t(µt)
≤ ‖µt − µt+1‖‖∇L̄t(µt)‖∗

≤ L‖µt − µt+1‖ (83)

as L̄t isL Lipschitz w.r.t ‖·‖ (Lemma 2.6 page 27 in (Shalev-
Shwartz, 2012) states that the conjugate norm of its gradient
is bounded by L). Define

Gt(µ) =

t−1∑
i=1

µT∇L̄i(µi) +
Dφ(qµ||π)

η
.

We remind that by assumption, µ 7→ Dφ(qµ||π)/η is α/η-
strongly convex with respect to ‖ · ‖. As the sum of a
linear function and an α/η-strongly convex function, Gt is
α/η-strongly convex. So, for any (µ, µ′),

Gt(µ
′)−Gt(µ) ≥ (µ′ − µ)T∇Gt(µ) +

α‖µ′ − µ‖2

2η
.
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As a special case, using the fact that µt is a minimizer of
Gt, we have

Gt(µt+1)−Gt(µt) ≥
α‖µt+1 − µt‖2

2η
.

In the same way,

Gt+1(µt)−Gt+1(µt+1) ≥ α‖µt+1 − µt‖2

2η
.

Summing the two previous inequalities gives

µTt ∇L̄t(µt)− µTt+1∇L̄t(µt) ≥
α‖µt+1 − µt‖2

η
,

and so, combined with (83), this gives:

‖µt+1 − µt‖ ≤
√
η

α

[
µTt ∇L̄t(µt)− µTt+1∇L̄t(µt)

]
.

Combining this inequality with (83) leads to (82).

Plugging (79), (80) and (82) together gives

T∑
t=1

Eθ∼qµt [`t(θ)]−
T∑
t=1

Eθ∼qµ [`t(θ)]

≤ ηTL2

α
+
Dφ(qµ||π)

η
,

that is the statement of the theorem. �

C. Derivation of ρt in the Finite Case via
Lagrange Method of Multipliers

Following Remark 3.1, we provide the derivation of ρt in
the finite case, thanks to Lagrange method of multipliers.
We remind that

L(ρt1, . . . , ρ
t
M , λ, ν1, . . . , νM ) =

M∑
j=1

ρtj

t−1∑
s=1

`s(θj)

+

∑M
j=1 πjφ

(
ρtj
πj

)
η

+ λ
1−

∑M
j=1 ρ

t
j

η
+

M∑
j=1

νjρ
t
j . (84)

So:

∂

∂ρtj
L(ρt1, . . . , ρ

t
M , λ, ν1, . . . , νM ) =

t−1∑
s=1

`s(θj)

+
φ′
(
ρtj
πj

)
η

+
−λ
η

+ νj . (85)

Thus the first-order equation

∂

∂ρtj
L(ρt1, . . . , ρ

t
M , λ, ν1, . . . , νM ) = 0 (86)

is equivalent to

φ′
(
ρtj
πj

)
= λ− η

t−1∑
s=1

`s(θj)− ηνj . (87)

Intuitively, the next step would be to apply the inverse of
the function φ′:

ρtj
πj

= (φ′)−1

(
λ− η

t−1∑
s=1

`s(θj)− ηνj

)
. (88)

Remind that the first order condition for νj is νj ≥ 0 and
νj > 0⇔ ρj = 0. So, we would obtain the simpler formula:

ρtj = πj max

{
0, (φ′)−1

(
λ− η

t−1∑
s=1

`s(θj)

)}
. (89)

It turns out that, under the assumptions of Proposition 3.1,
(φ′)−1 indeed exists and ∇φ̃∗(y) = max{0, (φ′)−1(y)}.
That is, (89) is equivalent to (29).


