
Supplementary Information

Here, we provide additional information on different parts of the paper. In particular,
in section 1 we introduce and discuss two chain models in polymer physics. In section
2, we provide the theoretical proofs of Theorems 3 and 4, Lemma 2, and Corollary 5 in
the manuscript. In section 3, we present the action-sampling algorithm, and in section 4
we provide additional baseline results in the standard MuJoCo tasks. Finally, in section
5, we provide the network architecture of the learning methods, as well as the PolyRL
hyper parameters used in the experimental section.

1 Polymer Models
In the field of Polymer Physics, the conformations and interactions of polymers that are
subject to thermal fluctuations are modeled using principles from statistical physics. In
its simplest form, a polymer is modeled as an ideal chain, where interactions between
chain segments are ignored. The no-interaction assumption allows the chain segments
to cross each other in space and thus these chains are often called phantom chains [1].
In this section, we give a brief introduction to two types of ideal chains.
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Figure 1: A chain (or trajectory) is shown as a sequence of Te random bond vectors
{ωi}i=1..Te . In a freely-jointed chain (a), the orientation of the bond vectors are
independent of one another. The end-to-end vector of the chain is depicted by U .
In a freely-rotating chain (c), the correlation angle θ is invariant between every two
consecutive bond vectors, which induces a finite stiffness in the chain. (b, d) A qualitative
comparison between an FJC (b) and an FRC with θ ≈ 5.7◦ (d), in a 2D environment of
size 400× 400 for 20000 number of moves.

Two main ideal chain models are: 1) freely-jointed chains (FJCs) and 2) freely-
rotating chains (FRCs) [1]. In these models, chains of size Te are demonstrated as a
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sequence of Te random vectors {ωi}i=1..Te , which are as well called bond vectors (See
Figure 1). FJC is the simplest proposed model and is composed of mutually independent
random vectors of the same size (Figure 1(a)). In other words, an FJC chain is formed
via uniform random sampling of vectors in space, and thus is a random walk (RW). In
the FRC model, on the other hand, the notion of correlation angle is introduced, which
is the angle θ between every two consecutive bond vectors. The FRC model, fixes the
correlation angle θ (Figure 1(c)), thus the vectors in the chain are temporally correlated.
The vector sampling strategy in the FRCs induces persistent chains, in the sense that
the orientation of the consecutive vectors in the space are preserved for certain number
of time steps (a.k.a. persistence number), after which the correlation is broken and the
bond vectors forget their original orientation. This feature introduces a finite stiffness in
the chain, which induces what we call local self avoidance, leading to faster expansion
of the chain in the space (Compare Figures 1 (b) and (d) together). Below, we discuss
two important properties of the FJCs and the FRCs, and subsequently formally introduce
the locally self-avoiding random walks (LSA-RWs) in Definition 1.

FJCs (Property) - In the Freely-Jointed Chains (FJCs) or the flexible chains model,
the orientations of the bond vectors in the space are mutually independent. To measure
the expected end-to-end length of a chain Ũ with Te bond vectors of constant length bo
given the end-to-end vector U =

∑Te
i=1 ωi (Figure 1 (a)) and considering the mutual

independence between bond vectors of an FJC, we can write [1],

E[‖U‖2] =

Te∑
i,j=1

E[ωi.ωj ] =

Te∑
i=1

E[ω2
i ] + 2

∑
i>j

E[ωi.ωj ] = Teb
2
o, (1)

where E[.] denotes the ensemble average over all possible conformations of the chain as
a result of thermal fluctuations. Equation 1 shows that the expected end-to-end length
Ũ = E[‖U‖2]1/2 = bo

√
Te, which reveals random-walk behaviour as expected.

FRCs (Property) - In the Freely-Rotating Chains (FRCs) model, we assume that
the angle θ (correlation angle) between every two consecutive bond vectors is invariant
(Figure 1 (c)). Therefore, bond vectors ωi:1,...,Te are not mutually independent. Unlike
the FJC model, in the FRC model the bond vectors are correlated such that [1],

E[ωi.ωj ] = b2o (cos θ)
|i−j|

= b2oe
− |i−j|Lp , (2)

where Lp = 1
| log(cos θ)| is the correlation length (persistence number). Equation 2 shows

that the correlation between bond vectors in an FRC is a decaying exponential with
correlation length Lp.

Lemma 1. [1] Given an FRC characterized by end-to-end vector U , bond-size bo and
number of bond vectors Te, we have E[‖U‖2] = b2Te, where b2 = b2o

1+cosθ
1−cosθ and b is

called the effective bond length.

Lemma 1 shows that FRCs obey random walk statistics with step-size (bond length)
b > bo. The ratio b/bo = 1+cos θ

1−cos θ is a measure of the stiffness of the chain in an FRC.
FRCs have high expansion rates compared to those of FJCs, as presented in Proposi-

tion 2 below.
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Proposition 2 (Expanding property of LSA-RW). [1] Let τ be a LSA-RW with the
persistence number Lpτ > 1 and the end-to-end vector U(τ), and let τ ′ be a random
walk (RW) and the end-to-end vector U(τ ′). Then for the same number of time steps
and same average bond length for τ and τ ′, the following relation holds,

E[‖U(τ)‖]
E[‖U(τ ′)‖]

=
1 + e−1/Lpτ

1− e−1/Lpτ
> 1, (3)

where the persistence number Lpτ = 1
| log cos θ| , with θ being the average correlation

angle between every two consecutive bond vectors.

Proof. This proposition is the direct result of combining Equations 2.7 and 2.14 in [1].
Equation 2.7 provides the expected Te time-step length of the end-to-end vector with
average step-size bo associated with FJCs and Equation 2.14 provides a similar result
for FRCs. Note that in the FRC model, since the bond vectors far separated in time on
the chain are not correlated, they can cross each other.

Radius of Gyration (Formal Definition) [2] The square radius of gyration U2
g (τ)

of a chain τ of size Te is defined as the mean square distance between position vectors
t ∈ τ and the chain center of mass (τ̄ ), and is written as,

U2
g (τ) :=

1

Te

Te∑
i=1

||ti − τ̄ ||2, (4)

where τ̄ = 1
Te

∑Te
i=1 ti. When it comes to selecting a measure of coverage in the space

where the chain resides, radius of gyration Ug is a more proper choice compared with
the end-to-end distance ||U ||, as it signifies the size of the chain with respect to its
center of mass, and is proportional to the radius of the sphere (or the hyper sphere)
that the chain occupies. Moreover, in the case of chains that are circular or branched,
and thus cannot be assigned an end-to-end length, radius of gyration proves to be a
suitable measure for the size of the corresponding chains [2]. For the case of fluctuating
chains, the square radius of gyration is usually ensemble averaged over all possible
chain conformations, and is written as [2],

E[U2
g (τ)] :=

1

Te

Te∑
i=1

E[||ti − τ̄ ||2]. (5)

Remark 1. The square radius of gyration U2
g is proportional to the square end-to-end

distance ||U ||2 in ideal chains (e.g. FJCs and FRCs) with a constant factor [2]. Thus,
Proposition 2 and Equation 3, which compare the the end-to-end distance of LSA-RW
and RW with each other, similarly hold for the radius of gyration of the respective
models, implying faster expansion of the volume occupied by LSA-RW compared with
that of RW.

2 The Proofs
In this section, the proofs for the theorems and Lemma 2 in the manuscript are provided.
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2.1 The proof of Lemma 2 in the manuscript
Lemma 2 statement: Let τS = (s0, . . . , sTe−1) be the trajectory of visited states, sTe
be a newly visited state and ωi = si − si−1 be the bond vector that connects two
consecutive visited states si−1 and si. Then we have,

‖sTe − τ̄S‖2 = ‖ωTe +
1

Te

[
Te−1∑
i=1

iωi

]
‖2. (6)

Proof. Using the relation τ̄S := 1
Te

∑
s∈τS s as well as the definition of bond vectors

(Equation (3) in the manuscript), we can write sTe− τ̄S on the left-hand side of Equation
(6) in the manuscript as,

sTe − τ̄S =sTe −
1

Te

∑
s∈τS

s

=sTe − sTe−1 + sTe−1 −
1

Te

∑
s∈τS

s

=ωTe +
1

Te
(sTe−1 − s0) + (sTe−1 − s1) + (sTe−1 − s2) + . . .

+ (sTe−1 − sTe−2)]

=ωTe +
1

Te
[(sTe−1 − sTe−2 + sTe−2 − sTe−3 + . . .

+ s2 − s1 + s1 − s0) + (sTe−1 − sTe−2 + sTe−2 − sTe−3 + . . .

+ s3 − s2 + s2 − s1) + · · ·+ (sTe−1 − sTe−2)]

=ωTe +
1

Te
[(ωTe−1 + · · ·+ ω1) + (ωTe−1 + · · ·+ ω2) + · · ·+ ωTe−1]

=ωTe +
1

Te

[
Te−1∑
i=1

iωi

]
(7)

⇒ ‖sTe − τ̄S‖2 = ‖ωTe +
1

Te

[
Te−1∑
i=1

iωi

]
‖2 (8)

2.2 The proof of Theorem 3 in the manuscript
Theorem 3 statement (Upper-Bound Theorem) Let β ∈ (0, 1) and τS be an LSA-RW
in S induced by PolyRL with the persistence number LpτS > 1 within episode N ,
ωτS = {ωi}Te−1

i=1 be the sequence of corresponding bond vectors, where Te > 0 denotes
the number of bond vectors within τS , and bo be the average bond length. The upper
confidence bound for ULSUg2(τS) with probability of at least 1− δ is,
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UB =Λ(Te, τS) +
1

δ

[
Γ(Te, bo, τS) +

2b2o
T 2
e

Te−1∑
i=1

ie
−(Te−i)
LpτS

]
, (9)

where,

Λ(Te, τS) = − 1

Te − 1
U2
g (τS) (10)

Γ(Te, bo, τS) =
b2o
Te

+
‖
∑Te−1
i=1 iωi‖2

T 3
e

(11)

Proof. If we replace the term Ug
2(τ ′S) in Equation (5) in the manuscript with its

incremental representation as a function of Ug2(τS), we get

ULSUg2(τS) = sup
sTe∈Ω

(
Te − 2

Te − 1
Ug

2(τS) +
1

Te
‖sTe − τ̄S‖2 − Ug

2(τS)

)
= − 1

Te − 1
Ug

2(τS) + sup
sTe∈Ω

1

Te
‖sTe − τ̄S‖2. (12)

Therefore, the problem reduces to the calculation of

1

Te
sup
sTe∈Ω

‖sTe − τ̄S‖2. (13)

Using Lemma 2 in the manuscript, we can write Equation (13) in terms of bond vectors
ωi = si − si−1 as,

1

Te
sup
sTe∈Ω

‖sTe − τ̄S‖2 =
1

Te
sup
sTe∈Ω

‖ωTe +
1

Te

[
Te−1∑
i=1

iωi

]
‖2. (14)

From now on, with a slight abuse of notation, we will treat ωTe = STe − sTe−1 as a
random variable due to the fact that STe is a random variable in our system. Note that
ωi for i = 1, 2, . . . , Te − 1 is fixed, and thus is not considered a random variable. We
use high-probability concentration bound techniques to calculate Equation (13). For any
δ ∈ (0, 1), there exists α > 0, such that

Pr[‖ωTe +
1

Te

[
Te−1∑
i=1

iωi

]
‖2 < α|STe ∈ Ω] > 1− δ. (15)

We can rearrange Equation 15 as,

Pr[‖ωTe +
1

Te

[
Te−1∑
i=1

iωi

]
‖2 ≥ α|STe ∈ Ω] ≤ δ. (16)
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Multiplying both sides by T 2
e and expanding the squared term in Equation 16 gives,

Pr[T 2
e ‖ωTe‖2 + 2Te(ωTe .

Te−1∑
i=1

iωi) + ‖
Te−1∑
i=1

iωi‖2 ≥ T 2
e α|STe ∈ Ω] ≤ δ. (17)

By Markov’s inequality we have,

Pr

[
T 2
e ‖ωTe‖2 + 2Te(ωTe .

Te−1∑
i=1

iωi) + ‖
Te−1∑
i=1

iωi‖2 ≥ T 2
e α

]

≤
E
[
T 2
e ‖ωTe‖2 + 2Te(ωTe .

∑Te−1
i=1 iωi) + ‖

∑Te−1
i=1 iωi‖2

]
T 2
e α

= δ

=⇒ α =
1

δT 2
e

[
T 2
e E
[
‖ωTe‖2

]
+ 2TeE

[
ωTe .

Te−1∑
i=1

iωi

]
+ ‖

Te−1∑
i=1

iωi‖2
]

=⇒︸ ︷︷ ︸
by Def. 1

α =
1

δT 2
e

[
T 2
e b

2
o + 2TeE

[
ωTe .

Te−1∑
i=1

iωi

]
+ ‖

Te−1∑
i=1

iωi‖2
]

Note that all expectations E in the equations above are over the transition kernel P
of the MDP. Using the results from Lemma 3 below, we conclude the proof.

Lemma 3. Let τS denote the sequence of states observed by PolyRL and STe be the new
state visited by PolyRL. Assuming that τ ′S := (τS , STe) (Equation (2) in the manuscript)
follows the LSA-RW formalism with the persistence number LpτS > 1, we have

E

[
ωTe .

Te−1∑
i=1

iωi

]
= b20

Te−1∑
i=1

ie
−|Te−i|
LpτS (18)

Proof.

E

[
ωTe .

Te−1∑
i=1

iωi

]
= E

[
Te−1∑
i=1

iωTe .ωi

]
=

Te−1∑
i=1

iE [ωTe .ωi] . (19)

Here, the goal is to calculate the expectation in Equation 19 under the assumption that
τ ′S is LSA-RW with persistence number LpτS > 1. Note that if τ ′S is LSA-RW and
LpτS > 1, the chain of states visited by PolyRL prior to visiting sTe is also LSA-
RW with LpτS > 1. Now we focus on the expectation in Equation 19. We compute
E [ωTe .ωi] using the LSA-RW formalism (Definition 1 in the manuscript) as following,

E [ωTe .ωi] = b20e
−|Te−i|
LpτS

Therefore, we have,

Te−1∑
i=1

iE [ωTe .ωi] =

Te−1∑
i=1

ib20e
−(Te−i)
LpτS = b20

Te−1∑
i=1

ie
−(Te−i)
LpτS
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2.3 The proof of Theorem 4 in the manuscript
Theorem 4 statement (Lower-Bound Theorem) Let β ∈ (0, 1) and τS be an LSA-RW
in S induced by PolyRL with the persistence number LpτS > 1 within episode N ,
ωτS = {ωi}Te−1

i=1 be the sequence of corresponding bond vectors, where Te > 0 denotes
the number of bond vectors within τS , and bo be the average bond length. The lower
confidence bound for LLSUg2(τS) at least with probability 1− δ is,

LB = Λ(Te, τS) + (1−
√

2− 2δ)

[
Γ(Te, bo, τS) +

(Te − 1)(Te − 2)

T 2
e

b20e
−|Te−1|
LpτS

]
, (20)

where,

Λ(Te, τS) = − 1

Te − 1
U2

g (τS) (21)

Γ(Te, bo, τS) =
b2o
Te

+
‖
∑Te−1

i=1 iωi‖2

T 3
e

(22)

Proof. Using the definition of radius of gyration and letting d = L2-norm in Equation
(4) in the manuscript, we have

LLSUg2(τS) = inf
sTe∈Ω

Te − 2

Te − 1
U2
g (τS) +

1

Te
‖sTe − τ̄S‖2 − U2

g (τS)

= − 1

Te − 1
U2
g (τS) + inf

sTe∈Ω

1

Te
‖sTe − τ̄S‖2 (23)

To calculate the high-probability lower bound, first we use the result from Lemma 2 in
the manuscript. Thus, we have

inf
sTe∈Ω

1

Te
‖sTe − τ̄S‖2 =

1

Te
inf

sTe∈Ω
‖ωTe +

1

Te

[
Te−1∑
i=1

iωi

]
‖2. (24)

We subsequently use the second moment method and Paley–Zygmund inequality to
calculate the high-probability lower bound. Let Y = ‖ωTe + 1

Te

[∑Te−1
i=1 iωi

]
‖2, for

the finite positive constants c1 and c2 we have,

Pr[Y > c2β] ≥ (1− β)2

c1
(25)

where,

E
[
Y 2
]
≤ c1E [Y ]

2 (26)
E [Y ] ≥ c2.

The goal is to find two constants c1 and c2 such that Equation (26) is satisfied and then
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we find β ∈ (0, 1) in Equation (25) using δ. We start by finding c2 ,

E [Y ] = E

[
(ωTe +

1

Te

[
Te−1∑
i=1

iωi

]
s).(ωTe +

1

Te

[
Te−1∑
i=1

iωi

]
)

]

= E

[
‖ωTe‖2 +

2

Te
(ωTe .

Te−1∑
i=1

iωi) +
1

T 2
e

‖
Te−1∑
i=1

iωi‖2
]

= E
[
‖ωTe‖2

]
+

2

Te

Te−1∑
i=1

iE [ωTe .ωi] +
1

T 2
e

‖
Te−1∑
i=1

iωi‖2

= b2o +
2

Te
b20

Te−1∑
i=1

ie
−|Te−i|
LpτS +

1

T 2
e

‖
Te−1∑
i=1

iωi‖2, (27)

therefore,

E [Y ] = b2o +
2

Te
b20

Te−1∑
i=1

ie
−|Te−i|
LpτS +

1

T 2
e

‖
Te−1∑
i=1

iωi‖2

≥ b2o +
2

Te
b20e

−|Te−1|
LpτS

Te−1∑
i=1

i+
1

T 2
e

‖
Te−1∑
i=1

iωi‖2

= b2o +
(Te − 1)(Te − 2)

Te
b20e

−|Te−1|
LpτS +

1

T 2
e

‖
Te−1∑
i=1

iωi‖2︸ ︷︷ ︸
=c2

(28)

To find c1, we have

E
[
Y 2
]
≤ c1E [Y ]

2
.
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E
[
Y 2
]

= E

(‖ωTe‖2 +
2

Te
(ωTe .

Te−1∑
i=1

iωi) +
1

T 2
e

‖
Te−1∑
i=1

iωi‖2
)2


= E
[
‖ωTe‖4

]
+

4

T 2
e

E

[
(ωTe .

Te−1∑
i=1

iωi)
2

]

+
1

T 4
e

E

[
‖
Te−1∑
i=1

iωi‖4
]

+
4

Te
E

[
‖ωTe‖2(ωTe .

Te−1∑
i=1

iωi)

]

+
2

T 2
e

E

[
‖ωTe‖2‖

Te−1∑
i=1

iωi‖2
]

+
2

T 3
e

E

[
(ωTe .

Te−1∑
i=1

iωi)‖
Te−1∑
i=1

iωi‖2
]

= E
[
‖ωTe‖4

]
+

4

T 2
e

E

[
(ωTe .

Te−1∑
i=1

iωi)
2

]

+
1

T 4
e

‖
Te−1∑
i=1

iωi‖4 +
4

Te
E

[
‖ωTe‖2(ωTe .

Te−1∑
i=1

iωi)

]

+
2b2o
T 2
e

‖
Te−1∑
i=1

iωi‖2 +
2

T 3
e

‖
Te−1∑
i=1

iωi‖2E

[
(ωTe .

Te−1∑
i=1

iωi)

]
(29)

We calculate the expectations appearing in Equation (29) to conclude the proof.

4

T 2
e

E

[
(ωTe .

Te−1∑
i=1

iωi)
2

]
≤ 4

T 2
e

E

[
(‖ωTe‖‖

Te−1∑
i=1

iωi‖)2

]

=
4‖
∑Te−1
i=1 iωi‖2

T 2
e

E
[
(‖ωTe‖)2

]
=

4‖
∑Te−1
i=1 iωi‖2b2o
T 2
e

(30)

4

Te
E

[
‖ωTe‖2(ωTe .

Te−1∑
i=1

iωi)

]
=

4

Te
E

[
Te−1∑
i=1

i‖ωTe‖2ωTe .ωi

]

=
4

Te

Te−1∑
i=1

iE
[
‖ωTe‖2ωTe .ωi

]
=

4 maxs,s′ ‖ω(s, s′)‖2

Te

Te−1∑
i=1

iE [ωTe .ωi]

=
4b2o maxs,s′ ‖ω(s, s′)‖2

Te

Te−1∑
i=1

ie
−(Te−i)
LpτS (31)
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where ω(s, s′) denotes the bond vector between two states s and s′.
To calculate E

[
‖ωTe‖4

]
, we let Z ∼ N (0, 1) and using definition 1, w.lo.g. we

assume ‖ωTe‖2 ∼ N (b2o, σ
2) with σ <∞. Thus, we have

E
[
‖ωTe‖4

]
= E

[
σ2Z2 + 2b2oσZ + b2o

]
=︸︷︷︸

Binomial Theorem and linearity of expectation

σ2 + b4o (32)

E

[
(ωTe .

Te−1∑
i=1

iωi)

]
= E

[
(

Te−1∑
i=1

iωTe .ωi)

]
=

Te−1∑
i=1

iE [ωTe .ωi] =

Te−1∑
i=1

ib2oe
−|Te−i|
LpτS

(33)

Substitution of the expectations in Equation (29) with Equations (32), (30), (31) and
(33) gives,

E
[
Y 2
]
≤ σ2 + b4o +

4b2o
T 2
e

‖
Te−1∑
i=1

iωi‖2 +
1

T 4
e

‖
Te−1∑
i=1

iωi‖4 +
4b2o maxs,s′ ‖ω(s, s′)‖2

Te

Te−1∑
i=1

ie
−(Te−i)
LpτS

+
2b2o
T 2
e

‖
Te−1∑
i=1

iωi‖2 +
2b2o
T 3
e

Te−1∑
i=1

ie
−|Te−i|
LpτS ‖

Te−1∑
i=1

iωi‖2 (34)

Equation (27) gives,

E [Y ]
2

= b4o +
4b4o
T 2
e

(
Te−1∑
i=1

ie
−(Te−i)
LpτS

)2

+
1

T 4
e

‖
Te−1∑
i=1

iωi‖4 +
2b4o
T 2
e

Te−1∑
i=1

ie
−(Te−i)
LpτS

+
2b2o
T 2
e

‖
Te−1∑
i=1

iωi‖2 +
2b2o
T 3
e

Te−1∑
i=1

ie
−(Te−i)|
LpτS ‖

Te−1∑
i=1

iωi‖2 (35)

Now to find c1, we use Equation (26),

4b2o
T 2
e

‖
Te−1∑
i=1

iωi‖2 −
4b4o
T 2
e

(
Te−1∑
i=1

ie
−|Te−i|
LpτS

)2

=
4b2o
T 2
e

‖ Te−1∑
i=1

iωi‖2 −

(
Te−1∑
i=1

ie
−|Te−i|
LpτS

)2


≤ 4b2o
T 2
e

(
‖
Te−1∑
i=1

iωi‖2
)

︸ ︷︷ ︸
B

.
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4b2o maxs,s′ ‖ω(s, s′)‖2

Te

Te−1∑
i=1

ie
−(Te−i)
LpτS − 2b4o

T 2
e

Te−1∑
i=1

ie
−(Te−i)
LpτS

=

(
4b2o maxs,s′ ‖ω(s, s′)‖2

Te
− 2b4o
T 2
e

) Te−1∑
i=1

ie
−(Te−i)
LpτS

≤
(

4b2o maxs,s′ ‖ω(s, s′)‖2

Te

) Te−1∑
i=1

ie
−(Te−i)
LpτS︸ ︷︷ ︸

A

Thus, we have

E
[
Y 2
]

E [Y ]
2 ≤ 1 +

σ2 +A+B

E [Y ]
2 ≤︸︷︷︸

by comparing A and B with (35)

2 = c1 (36)

2.4 The proof of Corollary 5 in the manuscript
Corollary 5 statement: Given that assumption 1 is satisfied, any exploratory trajectory
induced by PolyRL algorithm (ref. Algorithm 1 in the manuscript) with high probability
is an LSA-RWs.

Proof. Given Assumption 1 in the manuscript, due to the Lipschitzness of the transition
probability kernel w.r.t. the action variable, the change in the distributions of the resulting
states are finite and bounded by the L2 distance of the actions. Thus, given a locally self-
avoiding chain τA ∈ ATe with persistence numberLpτA , and ∀i ∈ [Te] : b2o = E[‖ai‖2],
by the Lipschitzness of the transition probability kernel of the underlying MDP, there
exists a finite empirical average bond vector among the states visited by PolyRL (i.e.
the first condition in Definition 1 in the manuscript is satisfied).

On the other hand, the PolyRL action sampling method (Algorithm 2) by construc-
tion preserves the expected correlation angle θτA between the consecutive selected
actions with finite L2 norm, leading to a locally self-avoiding random walk in A. Given
the following measure of spread adopted by PolyRL and defined as,

U2
g (τS) :=

1

Te − 1

∑
s∈τS

‖s− τ̄S‖2, (37)

and the results of Theorems 3 and 4 in the manuscript (LB and UB high probability
confidence bounds on the sensitivity of U2

g (.)), and considering that at each time step the
persistence number of the chain of visited states LpτS is calculated and the exploratory
action is selected such that the stiffness of τS is preserved, with probability 1− δ the
correlation between the bonds in τS is maintained (i.e. the second condition in Definition
1 in the manuscript is satisfied). Hence, with probability 1− δ the chain τS induced by
PolyRL is locally self avoiding.
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Corollary 3. Under assumption 1 in the manuscript, with high probability the Te time-
step exploratory chain τ induced by PolyRL with persistence number Lpτ provides
higher space coverage compared with the Te time-step exploratory chain τ ′ generated
by a random-walk model.

Proof. Results from Corollary 5 in the manuscript together with remark 1 conclude the
proof.

3 Action Sampling Method
In this section, we provide the action sampling algorithm (Algrithm 2), which contains
the step-by-step instruction for sampling the next action. The action sampling process is
also graphically presented in Figure 2 (a).

 A
			aT−3 θ

θ
			aT−2

θ
θ

		a0
		a1

		a2

θ
			aT−1

	 
UτA

 S

	ω1

		s1

		s0

		s2	ω2

		s3
	ω3

		st

			st−1

	
Ug

		sT

			sT−2
	ωT

	 
UτS

		ωT−1

	P

	 
!
P

		 
!
At−1

	 
!
VP

	 
!
Vr

	Q

	O

η

(a) (b) (c) 

	C

Figure 2: Schematics of the steps involved in the PolyRL exploration technique. (a) The
action sampling method. In order to choose the next action ~At, a randomly chosen point
P in A is projected onto the current action vector ~At−1, which gives ~VP . The point
Q is subsequently found on the vector ~Vr = ~P − ~VP using trigonometric relations
and the angle η drawn from a normal distribution with mean θ. The resulting vector
~OQ (shown in red) gives the next action. Detailed instructions are given in Algorithm

2. (b) A schematic of action trajectory τA with the mean correlation angle θ between
every two consecutive bond vectors and the end-to-end vector UτA . (c) A schematic of
state trajectory τS with bond vectors ωi = si − si−1. The radius of gyration and the
end-to-end vector are depicted as Ug and UτS , respectively. Point C is the center of
mass of the visited states.

12



Algorithm 2 Action Sampling

Require: Angle η and Previous action At−1

1: Draw a random point P in the action space (Pi ∼ U [−m,m]; i = 1, . . . d) . P is
the vector from the origin to the point P

2: D = At−1.P

3: Vp =
D

||At−1||22
At−1 . The projection of P on At−1

4: Vr = P−Vp
5: l = ||Vp||2 tan η
6: k = l/||Vr||2
7: Q = kVr + Vp
8: if D > 0 then
9: At = Q

10: else
11: At = −Q
12: end if
13: Clip At if out of action range
14: return At

4 Additional Baseline Results
In this section, we provide the benchmarking results for DDPG-UC, DDPG-OU, DDPG-
PARAM, DDPG-FiGAR (Figure 3), as well as SAC and OAC (Figure 4) algorithms on
three standard MuJoco tasks. Moreover, the source code is provided here.

(a) Hopper-V2 (b) HalfCheetah-V2 (c) Ant-V2 

DDPG-PARAM DDPG-UC DDPG-OU DDPG-FiGAR 

Figure 3: Performance of DDPG-UC, DDPG-OU, DDPG-PARAM, and DDPG-FiGAR
algorithms across 3 MuJoCo domains. The plots are averaged over 5 random seeds. The
test evaluation happens every 5k over 1 million time steps.
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(a) Hopper-V2 (b) HalfCheetah-V2 (c) Ant-V2 

SAC 

OAC 

Figure 4: Performance of SAC and OAC algorithms across 3 MuJoCo domains. The
plots are averaged over 5 random seeds. The test evaluation happens every 5k steps over
1 million time steps.

In order to Benchmark DDPG-FiGAR results, we let the action repetition set, defined
as W := {1, 2, . . . |W |} ([3]), be equal to {1}. The results are expected to converge to
those of DDPG-OU noise as depicted in Figure 5.

(a) Hopper-V2 (b) HalfCheetah-V2 (c) Ant-V2 

DDPG-OU DDPG-FiGAR (W = {1}) 

Figure 5: Benchmarking DDPG-FiGAR against DDPG-OU using action repetition set
W = {1} across 3 MuJoCo domains. The plots are averaged over 5 random seeds. The
test evaluation happens every 5k steps over 1 million time steps.

5 Hyperparameters and Network Architecture
In this section, we provide the architecture of the neural networks (Table 1), as well as the
PolyRL hyper parameters (Table 2) used in the experiments. Regarding the computing
infrastructure, the experiments were run on a slurm-managed cluster with NVIDIA
P100 Pascal (12G HBM2 memory) GPUs. The avergae run-time for DDPG-based and
SAC-based models were around 8 and 12 hours, respectively.
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Table 1: DDPG and SAC Network Architecture

Parameter Value
Optimizer Adam
Critic Learning Rate 1e−3 (DDPG) 3e−4 (SAC)
Actor Learning Rate 1e−4 (DDPG) 3e−4 (SAC)
Discount Factor 0.99
Replay Buffer Size 1e+6
Number of Hidden Layers (All Networks) 2

Number of Units per Layer
400 (1st)- 300 (2nd)
(DDPG)

both 256 (SAC)

Number of Samples per Mini Batch 100
Nonlinearity ReLU
Target Network Update Coefficient 5e−3
Target Update Interval 1

The exploration factor - The one important parameter in the PolyRL exploration
method, which controls the exploration-exploitation trade-off is the exploration factor
β ∈ [0, 1]. The factor β plays the balancing role in two ways: controlling (1) the range
of confidence interval (Equations (7) and (11) in the manuscript; δ = 1− e−βN ); and
(2) the probability of switching from the target policy πµ to the behaviour policy πPolyRL.
Figure 6 illustrates the effect of varying β on the performance of a DDPG-PolyRL
agent in the HalfCheetah-v2 environment. The heat maps (Figures 6 (a), (b) and (c))
show the average asymptotic reward obtained for different pairs of correlation angle
θ and variance σ2. The heat maps depict that for this specific task, the performance
of DDPG-PolyRL improves as β changes from 0.0004 to 0.01. The performance plot
for the same task (Figure 6 (d)) shows the effect of β on the amount of the obtained
reward. The relation of β with the percentage of the moves taken using the target policy
is illustrated in Figure 6 (e)). As expected, larger values of β lead to more exploitation
and fewer exploratory steps.

Table 2: PolyRL Hyper parameters. Note that the parameters θ and σ are angles and
their respective values in the table are in radian.

Mean Correlation Angle
θ

Variance
σ2

Exploration Factor
β

DDPG-PolyRL
SparseHopper-V2 (λ = 0.1) 0.035 0.00007 0.001

SparseHalfCheetah-V2 (λ = 5) 0.17 0.017 0.02
SparseAnt-V2 (λ = 0.15) 0.087 0.035 0.01

SAC-PolyRL
SparseHopper-V2 (λ = 3) 0.35 0.017 0.01

SparseHalfCheetah-V2 (λ = 15) 0.35 0.00007 0.05
SparseAnt-V2 (λ = 3) 0.035 0.00007 0.01
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β = 0.0001 
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β= 0.00001 
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β= 0.1 (e) 

(a) (b) (c) 

Figure 6: Performance of DDPG-PolyRL in HalfCheetah-v2 for different values of
exploration factor β. (a-c) Heat maps depict the mean of the obtained asymptotic
rewards after 3 million time steps over a range of correlation angle θ and the variance
σ2. The results are shown for β = 0.0004 (a), β = 0.001 (b), and β = 0.01 (c). (d)
Performance of DDPG-PolyRL in HalfCheetah-v2 for the fixed values of θ = 0.035
and σ2 = 0.00007, and different values of β. (e) The percentage of the movements the
DDPG-PolyRL agent behaves greedily. All values are averaged over four random seeds
and the error bars show the standard error on the mean.
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