
Unitary Branching Programs: Learnability and Lower Bounds

Fidel Ernesto Dı́az Andino 1 Maria Kokkou 2 Mateus de Oliveira Oliveira 3 Farhad Vadiee 3

Abstract

Bounded width branching programs are a for-
malism that can be used to capture the notion
of non-uniform constant-space computation. In
this work, we study a generalized version of
bounded width branching programs where instruc-
tions are defined by unitary matrices of bounded
dimension. We introduce a new learning frame-
work for these branching programs that lever-
ages on a combination of local search techniques
with gradient descent over Riemannian manifolds.
We also show that gapped, read-once branching
programs of bounded dimension can be learned
with a polynomial number of queries in the pres-
ence of a teacher. Finally, we provide explicit
near-quadratic size lower-bounds for bounded-
dimension unitary branching programs, and expo-
nential size lower-bounds for bounded-dimension
read-once gapped unitary branching programs.
The first lower bound is proven using a combi-
nation Nečiporuk’s lower bound technique with
classic results from algebraic geometry. The sec-
ond lower bound is proven within the framework
of communication complexity theory.

1. Introduction
Bounded width branching programs, also known as non-
uniform finite automata, may be regarded as model of
computation that generalizes the notion of constant space
computation to the non-uniform setting (Nakanishi et al.,
2000; Barrington, 1989; Ergün et al., 1995). A celebrated
result due to Barrington states that any Boolean function
f : {0, 1}n → {0, 1} that can be computed by a Boolean
circuit of depth d can also be computed by a width-5 branch-
ing program of length 4d (Barrington, 1989). As a con-
sequence, functions that can be computed by logarithmic

1University of São Paulo, São Paulo, Brazil 2Chalmers Univer-
sity of Technology, Gothenburg, Sweden 3University of Bergen,
Bergen, Norway. Correspondence to: Mateus de Oliveira Oliveira
<mateus.oliveira@uib.no>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

depth Boolean circuits can be computed by width-5 branch-
ing programs of polynomial length.

The problem of constructing branching programs consis-
tent with a given dataset has been studied under a large
variety of paradigms (Bergadano et al., 1997; Mansour &
McAllester, 2002; Ergün et al., 1995; Raghavan & Wilkins,
1993; Bshouty et al., 1998). In this work, we address the
problem of constructing bounded-width branching programs
consistent with a given input dataset from the perspective
of continuous optimization theory. We formalize branch-
ing programs according to Barrington’s M -program model,
where branching programs are viewed as a sequence of tu-
ples of elements of a monoid M (i.e., a semigroup with
identity) (Bédard et al., 1993; Cleve, 1991; Caussinus, 1996;
Barrington, 1989). This point of view allows us to consider
branching programs over matrix groups, and in particular
over the unitary group U(k), i.e., the group of k× k unitary
matrices with matrix multiplication as the operation.

For each fixed k ∈ N, the unitary group U(k) is a compact
and connected topological group, that has has the structure
of a Riemannian manifold, known as the complex Stiefel
manifold (Adams & Walker, 1965). This allows us to view
the problem of searching for a branching program consistent
with a given dataset as the problem of minimizing function
with unitary constraints (Abrudan et al., 2008; 2009; 2008).
The caveat is that such problems can be reformulated as
minimization problems in the Stiefel manifold, and therefore
one can leverage on the machinery of Riemannian gradient
descent to search for optimal solutions.

Still, when the number of variables become too large (mean-
ing a few hundreds), state-of-the-art tools that implement
Riemannian gradient descent algorithms become impracti-
cal. To mitigate this computational intractability, we com-
bine Riemannian gradient descent with a simple local opti-
mization technique inspired on the paradigm of waveform
relaxation (Lelarasmee et al., 1982; Janssen & Vandewalle,
1997; Crow & Ilic, 1990). More precisely, we start by fixing
the values of a large number of variables in the system. Sub-
sequently, we compute an optimal solution with respect to
the remaining variables. At this point, the values of the opti-
mized variables are fixed, and a new small set of variables to
be optimized is selected. The process is repeated until no im-
provement is observed. Interestingly, this algorithm works

Unitary Branching Programs: Learnability and Lower Bounds

surprisingly well for the task of learning unitary branch-
ing programs consistent with sparse unstructured datasets.
More precisely, our heuristic was able to learn read-once
unitary branching programs of dimension 3 consistent with
datasets containing n positive and n negative binary strings,
each of length n, with near 0% error. In our experiments, n
was chosen from the set {16, 32, ..., 1024} and the time for
learning the branching programs varied from a few seconds
(for n = 16) to about 72 hours (for n = 1024). It is worth
noting that the time to learn these datasets with 10% error
was substantially smaller (less than 4 hours).

Besides our learning framework, we also study connec-
tions between unitary branching programs and the theory
of learning from a minimally adequate teacher. In partic-
ular, we show that gapped, read-once branching programs
of bounded dimension can be learned with a polynomial
number of queries in the presence of a teacher. Finally,
we provide explicit near-quadratic size lower-bounds for
bounded-dimension unitary branching programs, and expo-
nential size lower-bounds for bounded-dimension read-once
gapped unitary branching programs. The first lower bound
is proven using a combination Nečiporuk’s lower bound
technique with classic results from algebraic geometry. The
second lower bound is proven within the framework of com-
munication complexity theory.

2. Unitary Branching Programs
We denote by N, R and C the sets of natural numbers, real
numbers and complex numbers respectively. The set of pos-
itive natural numbers is denoted by N+. For each n ∈ N+,
we let [n]=̇{1, . . . , n} and JnK = {0, . . . , n− 1}. Given a
vector V we may write V [i] to denote the i-th entry of V .

A semigroup is a nonempty set G endowed with an associa-
tive binary operation of type G × G → G. If a and b are
elements of G, then we denote by a · b the result of applying
the semigroup operation to the ordered pair (a, b).

Branching Program. Let G be a semigroup and s ∈ N+.
An (s,G)-instruction is a tuple I = (A0, . . . , As−1) of el-
ements from G. An n-input branching program over G of
length `, arity s, and class size c is a tuple B = (J , I, C)
where J = (j1, . . . , j`) is a sequence of indices from [n],
I = (I1, . . . , I`) is a sequence of (s,G)-instructions, and
C = (C0, . . . , Cc−1) is sequence of pairwise disjoint sub-
sets of G.

Given a string W ∈ JsKn, the value of B on W is defined
as follows.

value(B,W) = I1[W [j1]] ·I2[W [j2]] · . . . ·I`[W [j`]]. (1)

Intuitively, the value(B,W) is obtained by multiplying a
sequence of ` elements from the semigroup G. For each

r ∈ [`], the r-th factor of this multiplication is the W [jr]-th
element of the instruction Ir.

We say that a branching program B computes a function
f : JsKn → JcK if for each string W ∈ [s]n, the element
value(B,W) belongs to the set Cf(W).

A celebrated complexity theoretic result due to Barrington,
states that if an n-input Boolean function f : {0, 1}n →
{0, 1} can be computed by a fan-in-2 Boolean circuit of
depth d, then f can also be computed by an n-input branch-
ing program over the symmetric group S5 of length 4d (Bar-
rington, 1989). This implies that Boolean functions that
can be computed by circuits of logarithmic depth can be
computed by polynomial-size branching programs over the
group S5. The importance of Barrington’s theorem stems
from the fact that many interesting Boolean functions can be
computed by polynomial-size circuits of logarithmic depth,
including arithmetic functions such as addition, multiplica-
tion, powering and division (Chiu et al., 2001; Beame et al.,
1986), several cryptographic functions (Viola, 2009) and a
large number of combinatorial problems (Elberfeld et al.,
2012).

2.1. Unitary Branching Programs

Our main object of study is the notion of unitary branch-
ing program. Intuitively, unitary branching programs are
precisely the branching programs defined above, except for
the fact that we need to be more specific in the way we
partition the unitary group U(k) into classes. We choose a
standard approach. Namely, if a branching program B has
class size c, then we fix c representative unitary matrices
X0, . . . , Xc−1 and say that an input string W belongs to
class i if the unitary matrix value(B,W) is closer to Xi

than to any other representative matrix. In case of ties, we
choose the class of smallest index.

Distance Between Matrices. Given complex vectors x
and y, we let 〈x, y〉 =

∑
i xi ·yi denote the inner product of

x and y. Given unitary matrices U with columns u1, . . . , uk,
and W with columns v1, . . . , vk, we define the distance
between U and W as

MD(U,W) =

k∑
i=1

(1− 〈ui, vi〉)(1− 〈ui, vi〉).

Please note that MD(U,W) is always a non-negative real
value. This notion of distance will be used for two purposes.
First, to define a notion of distance for unitary branching
programs. Second, to partition the space of unitary matrices
into a finite number of regions.

Partitioning the Unitary Group U(k). Given a tuple
ζ = (X0, . . . , Xc−1) of pairwise distinct k × k unitary

Unitary Branching Programs: Learnability and Lower Bounds

matrices, we partition the space U(k) into c regions Cζ =
(C0, . . . , Cc−1) as follows. For each matrix Y ∈ U(k), we
let Y belong to Ci if i is the minimum index in JcK with the
property that MD(Y,Xi) ≤ MD(Y,Xj) for every j ∈ JcK.
Intuitively, a matrix Y belongs to Ci if Xi is the closest
matrix to Y among the matrices in the sequence ζ. If this
closest distance is achieved by more than one matrix in ζ,
then Y is added to the cell of the partition corresponding to
the matrix Xi of smallest index.

Unitary Branching Programs. A k-dimensional unitary
branching program is a branching program B = (J , I, C)
over the group U(k), where C = (C1, . . . , Cc) is the par-
tition of U(k) induced by some tuple ζ = (X0, . . . , Xc−1)
of pairwise distinct unitary matrices. We say that ζ is the
class sequence of B.

3. Learning Unitary Branching Programs
Using Gradient Descent

In this section, we introduce a new heuristic for learning
unitary branching programs consistent with a given dataset.
The idea is to view the search for a separating branching
program as a continuous optimization problem and to lever-
age on the power of gradient descent algorithms. Unitary
matrices enjoy several properties that are relevant in our con-
text. First, the set of unitary matrices of a given dimension
forms a group, and therefore, is closed under multiplication.
Second, the determinant of an unitary matrix is a complex
number of norm 1. This is important for stability reasons
since computing with branching programs requires the mul-
tiplication of a long sequence of matrices. Third, the group
of permutation matrices form a subgroup of unitary matri-
ces, and therefore, the machinery from Barrington’s theorem
can be simulated by branching programs over the unitary
group. Third, the unitary group U(k) is endowed with the
relative topology as a subset of X (k,C), the set of all k× k
complex matrices. Notice that X (k,C) is homeomorphic to
the euclidean space. As a topological space, U(k) is both
compact and connected. Additionally, U(k) has the struc-
ture of a Riemannian manifold called the complex Stiefel
manifold. Therefore, instead of considering the problem
of finding an optimal branching program as an optimiza-
tion problem with unitary constraints over the euclidean
space, we will use Riemannian gradient descent algorithms
to view the learning problem for branching programs as
an unconstrained optimization problem over the complex
Stiefel manifold. We note that our choice of the unitary
group over the orthogonal group stems from the fact that
the former is connected while the latter is not. In particular,
for each m ∈ N the space formed by the Cartesian product
of m copies of the unitary group still has a unique com-
ponent, the product of m copies of the orthogonal group
has 2m connected components. Also note that the special

orthogonal group, the subgroup of the orthogonal group
containing matrices with determinant equal to 1 is indeed
connected. Nevertheless, restricting instructions to use such
matrices may restrict the power of the branching program,
since for instance, permutation matrices corresponding to
odd permutations do not belong to this group.

Still, given the high dimensionality of our data, simply for-
mulating the problem as an optimization problem on Rie-
mannian manifolds turns to be intractable to current state
of the art optimization tools. To counter this drawback, we
follow an approach similar to the one used in the context
of waveform relaxation algorithms. We start by guessing
random solution, and by using this random solution to fix
the value of all but a small fraction of the variables. Subse-
quently, we apply the Riemannian optimization algorithm
only on this small fraction of variables. Once this optimum
has been achieved, we select a new small fraction of vari-
ables to optimize. We keep repeating this process until time
is up or until we have reached a solution with a good enough
accuracy. In our case, the variables chosen to be optimized
at each time step are either those corresponding to a small
set of instructions of the unitary branching program, or those
corresponding to the class matrices.

Datasets. An n-input dataset of arity s and class-size c is
a tuple D = (D0, . . . , Dc−1) where for each i ∈ JcK, Di

is a subset of JsKn and for each i, j ∈ JcK, Di ∩ Dj = ∅.
We say that an n-input branching program B of arity s and
class size c is consistent withD if for each i ∈ JcK, and each
string W ∈ Di, the matrix value(B,W) belongs to Ci.

Discrete Distance. It will be convenient to define a mea-
sure of how well a branching program approximates a
dataset D. We define the discrete distance between B and
D as the value

DD(B,D) = max
i∈JcK

|{W ∈ Di : value(B,W) /∈ Ci}|
|Di|

.

In other words, for each class i we consider the ratio be-
tween the number of strings in Di that were incorrectly
classified by the branching program and the size of Di. The
distance between B and D is the maximum value of these
ratios. Note that if the branching program is consistent
with the branching program then the distance is zero, while
if the branching program makes mistakes in every string
belonging to some class, then the distance is 1.

Continuous Distance. For purposes of optimization, we
also define a continuous real-valued distance function be-
tween unitary branching programs and datasets. This will
be the function to be optimized by our Riemannian gradient

Unitary Branching Programs: Learnability and Lower Bounds

descent algorithm.

CD(B,D) =

c−1∑
i=0

∑
W∈Di

MD(value(B,W), Xi)

|Di|
. (2)

Learning Unitary Branching Programs The problem
of learning a k-dimensional unitary branching program B
compatible with a given n-input dataset D can be formu-
lated as a continuous optimization problem with unitary
constraints.

More precisely, given a sequence J = (j1, . . . , jl) of in-
dices from [n], and an n-input dataset D of arity s and class
size c, the goal is to find sequences1

I = (A0
0, . . . , A

0
s−1, . . . , A

l
0, . . . , A

l
s−1)

and
ζ = (X0, . . . , Xc−1)

of k-dimensional unitary matrices such that the branching
program B = (J , I, Cζ) minimizes the continuous dis-
tance function CD(B,D).

For each k, the unitary group U(k) has the structure of a
manifold, known as the k × k complex Stiefel manifold.
This allows one to reformulate the problem of solving an
optimization problem with a single k × k unitary constraint
as an optimization problem over the k × k complex Stiefel
manifold comprising of k2 complex variables (Absil et al.,
2009). More generally, a problem with several k×k unitary
constraints can be reformulated as an optimization prob-
lem over a Cartesian product of Stiefel manifolds. In our
case, this amounts to solving an optimization problem with
k2 ·(l ·s+c) complex variables over the manifold U(k)l·s+c,
since we have l · s + c constraints over U(k). More pre-
cisely, this corresponds to optimizing over the unitary matri-
ces A1

0, . . . , A
l
s−1 defining the instructions of the branching

programs and the matrices X0, . . . , Xc−1 defining repre-
sentatives for the partition of the space U(k) used by the
branching program.

Optimization problems over the complex Stiefel manifolds,
and many other well studied manifolds, can be easily speci-
fied using open source tool boxes such as Manopt (Boumal
et al., 2014) or ROPTLIB (Huang et al., 2018). In particular,
our optimization problem can be easily specified in using
Matlab in conjunction with Manopt or in C++ in conjunction
with ROPTLIB. The problem is that a direct specification in
this setting does not scale well with the length of the strings
in the dataset. In particular, the task of learning read-once
unitary branching programs over the group U(2) compatible

1For each i ∈ {1, . . . , l}, (Ai
0, . . . , A

i
s−1) are the matrices

corresponding to the i-th instruction of the branching program.

with randomly generated datasets consisting of 64 positive
strings and 64 negative strings, each with 64 bits, turned
out to be impractical using this direct setting. Note that this
corresponds to solving an optimization problem with 520
complex variables2 over the product manifold U(2)×66.

To circumvent this difficulty, we perform two crucial im-
provements. First, instead of applying the optimization
directly into the whole product manifold U(k)l·s+c we com-
bine a local optimization paradigm together with sliding
window protocol to optimize the problem in small parts.
Second, we use pre-computation to reduce significantly the
time required to evaluate the function to be optimized at
each step. We will describe both steps below.

3.1. Local Optimization.

As mentioned above, we address the global optimization
problem of finding a branching program that minimizes
the objective function CD(B,D) into a succession of local
optimization problems over manifolds of much smaller di-
mension. This process is split into two parts, an instruction
optimization part and a class representative optimization.
We describe these two parts in more detail below.

Window of Instructions Optimization. In the first part,
given a fixed window size parameter w, an initial position i,
and an initial branching program B, we construct a branch-
ing program B′ by keeping all matrices fixed, except for the
matrices

Ai0, . . . , A
i
s−1, . . . , A

i+w−1
0 , . . . , Ai+w−1s

belonging to instructions Ii, . . . , Ii+w−1. In this sense, at
each step, we solve an unconstrained optimization problem
with k2 ·s·w variables over the manifold U(k)s·w. Note that
here, the window size is supposed to be small, and can even
be set to 1, meaning that a single instruction (containing s
unitary matrices) is optimized at a time.

Class Representative Optimization. In the second part,
given an initial branching programB, we construct a branch-
ing program B′ by keeping all matrices fixed, except for the
matrices

ζ = (X0, . . . , Xc−1)

which define the class representatives of the branching pro-
gram. The intuition is that fixing a sequence of class rep-
resentatives a priory may affect the ability of a branching
program learning a dataset. Since this effect is very hard to
predict, the best option is to also leave the task of learning
the class representatives to the learning algorithm.

2In this case, k = 2, l = 64, s = 2 and c = 2. The correspond-
ing optimization problem to be solved has k2 · (l · s+ c) = 520
variables.

Unitary Branching Programs: Learnability and Lower Bounds

Combining Both Optimization Procedures. In essence,
the algorithm works as follows. We start by sampling all
matrices of the branching program, including the instruc-
tion matrices, and class representative matrices at random.
Subsequently, we make a round of instruction optimiza-
tions. This round consists of l − w + 1 steps, where at step
i, then we optimize the matrices corresponding to instruc-
tions Ii, . . . , Ii+w−1 as described above. When this round
is finished, we perform the class representative optimization.
We iterate this process until the target accuracy has been
achieved, or until time is up. The problem with applying
this approach without further modification is at each call of
the objective function CD(B,D), one needs to evaluate the
branching program on each string of the dataset. Each such
evaluation takes time O(k3 · n ·m) where m is the number
of strings in the dataset, n is the length of each string, and
k is the dimension of the unitary matrices in the branching
program.

3.2. Pre-computation

We can significantly reduce the time spent per call of the
continuous distance function by using pre-computation.

Given a dataset D = (D0, . . . , Dc−1). A pre-computation
for D is a tuple (f0, . . . , fc) of functions, where for each
a ∈ JcK, fa is a function from [|Da|] to U(k).

Given a dataset D = (D0, . . . , Dc−1) a k-dimensional
unitary branching program B with index sequence J =
(j1, . . . , j`), and a non-negative integer p ∈ {0, . . . , l} we
let

LeftD(B, p) = (f0, . . . , fc−1)

where for each a ∈ JcK, fa : [|Da|]→ U(k) is the function
defined as follows for each z ∈ [|Da|],

fa(z) =

{
Jk if p = 0,
I1[Da[z][j1]] · . . . · Ip[Da[z][jp]] otherwise.

In other words, fa(z) is the unitary in U(k) obtained by
applying instructions I1, . . . , Ip to the z-string of Da. In
case p = 0, then fa(z) is the identity matrix Jk, which
intuitively corresponds to applying no instruction at all.

Analogously, given a dataset D and a branching program B
as above and a non-negative integer p ∈ {1, . . . , l + 1}, we
define

RightD(B, p) = (g0, . . . , gc−1)

where for each a ∈ JcK, ga : [|Da|]→ U(k) is the function
defined as follows for each string W ∈ Da,

ga(z) =

{
Jk if p = l + 1,
Ip[Da[z][jp]] · . . . · Il[Da[z][jl]] otherwise.

In other words, ga(z) is the unitary in U(k) obtained by
applying instructions Ip, . . . , Il to the z-th string of Da. In
case p = l + 1, then ga(z) is the identity matrix Jk, which
intuitively corresponds to applying no instruction at all.

Finally, given a dataset D and a branching program B as
above and non-negative integers p, p′ ∈ {1, . . . , l} with
p < p′, we define

MiddleD(B, p, p′) = (h0, . . . , hc−1)

where for each a ∈ JcK, ha : [|Da|]→ U(k) is the function
defined as follows for each z ∈ [|Da|].

ha(W) = Ip[Da[z][jp]] · . . . · Ip′ [Da[z][jp′]].

In other words, ha(z) is the unitary in U(k) obtained by
applying instructions Ip, . . . , Ip′ to the z-th string in Da.

With the notation above, we have the following observation.

Observation 1. Let D = (D0, . . . , Dc) be a dataset, B be
a branching program of length l, and p < p′ be positions in
[l]. Let

• LeftD(B, p− 1) = (f0, . . . , fc−1),

• MiddleD(B, p, p′) = (h0, . . . , hc−1), and

• RightD(B, p′ + 1) = (g0, . . . , gc−1).

Then, for each a ∈ JcK and each z ∈ [|Da|], we have that
value(B,Da[z]) = fa(z) · ha(z) · ga(z).

Let D = (D0, . . . , Dc) be a dataset, and B be a
k-dimensional branching program of length l. Let
L = (f0, . . . , fc) and R = (g0, . . . , gc) be pre-
computations for D, and p and w be positive integers. Let
FD(B,D,L,R, p, w) be the real number obtained from the
following sum:

∑
a∈JcK

∑
z∈[|Da|]

MD(fa(z) · ha(z) · ga(z), Xa)

|Da|

where (h0, . . . , ha) = MiddleD(B, p, p+ w − 1).

Then, from Observation 1, we have the following proposi-
tion stating that FD(B,D,L,R, p, w) can be used to com-
pute the continuous distance between a branching program
and a dataset.

Proposition 2. Let D be a dataset, B be a branching pro-
gram of length l, and p and w be positive integers such
that p + w − 1 ≤ l. Let L = LeftD(B, p − 1) and
R = RightD(B, p + w) then FD(B,D,L,R, p, w) =
CD(B,D).

Unitary Branching Programs: Learnability and Lower Bounds

The reason why we will be using FD(B,D,L,R, p, w) as
a way of computing the continuous distance CD(B,D) be-
tween a branching program and a dataset is because the
former is much more efficient than the later. More precisely,
computing CD(B,D) takes time O(k3 · n ·m), where m
is the number of strings in the dataset, n is the length of
each string, and k is the dimension of the unitary matrices in
the branching program. On the other hand, computing this
value using FD(B,D,L,R, p, w) takes time O(k3 ·w ·m),
since k and w will be very small in our applications, this
computation takes essentially linear time on the number of
strings of the dataset, provided that the pre-computations L
and R have already been performed. It turns out that in the
process of optimizing the matrices belonging to instructions
in a given window, the Riemannian gradient descent algo-
rithm will need to call the function FD(B,D,L,R, p, w)
many times until it stabilizes, while the pre-computations
L and R will be kept fixed during the whole process. This
represents a huge save of time, and allows us to deal with
datasets containing strings with thousands of bits.

In Algorithm 1, we depict a pseudo-code of our algo-
rithm. In the pseudo-code, for given positive integers k
and r, we let Sample(U(k)r) be the function that sam-
ples a tuple containing r k × k unitary matrices at ran-
dom. We let OptWindow(B,D,L,R, p, w) be the func-
tion that applies the Riemannian gradient descent method
to optimize the matrices corresponding to instructions
Ip, . . . , Ip+w−1. Internally, this function makes calls to the
function FD(B,D,L,R, p, w), and the pre-computations
L and R are obtained before calling this function. Finally,
OptClasses(B,D,M) is the function that optimizes the
class representatives. Intuitively, M is the pre-computation
corresponding to applying all instructions of the branching
program. Internally, this optimization function calls the
pre-computed function F̂D(B,D,M) which when given a
branching program B, a dataset D and a pre-computation
M = (h0, . . . , hc−1), outputs the value∑

a∈JcK

∑
z∈[|Da|]

MD(ha(z), Xa)

|Da|
.

This function can also be used to compute the continuous dis-
tance function between a branching program and a dataset,
as stated in the following proposition.

Proposition 3. Let D be a dataset and B be a branch-
ing program of length l. Let M = MiddleD(B, 1, l) then
F̂D(B,D,M) = CD(B,D).

4. A Near Quadratic Size Lower Bound for
Unitary Branching Programs

The task of proving superlinear lower bounds on the size of
Boolean circuits for explicit families of functions (i.e func-

Algorithm 1: Sliding Window Unitary Learning.
Data: An n-input dataset D of arity s and

class-size c; an index sequence J , a
dimension parameter k, a window-size
parameter w; an accuracy parameter α; a
maximum number of iterations Max

Result: A branching program B with
DD(B,D) ≤ α or the branching program
obtained after executing iteration Max.

I ← Sample(U(k)l·s).
ζ ← Sample(U(k)c).
B ← (J , I, Cζ).
t← 0; Total number of iterations.
p← 1; Initial position of the window.
MinDiscDist← DD(B,D); smallest discrete
distance obtained so far.

while MinDiscDist > α and t <Max do
L← LeftD(B, p− 1)
R← RightD(B, p+ w)
B ← OptWindow(B,L,R, p, w)
M → MiddleD(B, 1, l)
B ← OptClasses(B,M)
if DD(B,D) < MinDiscDist then

MinDiscDist← DD(B,D)
end
if p+ w ≤ l then

p← p+ 1;
else

p← 1;
end

end

tions in NP), is still one of the major unsolved open prob-
lems in computational complexity theory (Find et al., 2015;
Iwama & Morizumi, 2002; Lachish & Raz, 2001). This task
is even more tantalizing when considering non-Boolean
models of computation. Therefore, developing techniques
to prove super-linear lower bounds distinct models of com-
putation has been an active line of research (Nečiporuk,
1966; Turán & Vatan, 1997; Roychowdhury & Vatan, 2001).
In particular, near-quadratic lower bounds have been ob-
tained for Boolean formulas (Nečiporuk, 1966), quantum
formulas (Roychowdhury & Vatan, 2001), and more gener-
aly for circuits of bounded treewidth (de Oliveira Oliveira,
2016). These lower bounds rely on a framework called
the Nečiporuk’s method. In this section, we combine
Nečiporuk’s method with techniques from algebraic geome-
try to prove a near-quadratic lower bound on the number of
instructions in a unitary branching programs computing the
element distictness function (Theorem 4). We note that our
lower bound assumes no restriction at all on the number of
bits necessary to represent the entries of the unitary matrices
belonging to the branching program.

Unitary Branching Programs: Learnability and Lower Bounds

Let X be a set of variables. A Boolean assignment for
X is a function of the form α : X → {0, 1}. We denote
by {0, 1}X the set of all Boolean assignments for X . A
Boolean function over X is a function f : {0, 1}X →
{0, 1}.

Let X = {x1, ..., xn} be a set of n = 2q log q distinct
variables partitioned into q blocks Y1, Y2, ..., Yq , where each
block Yi has 2 log q variables. The element distinctness
function δn : {0, 1}X → {0, 1} is defined as follows for
each assignment s1, s2, ..., sq of the blocks Y1, Y2, ..., Yq
respectively.

δn(s1, s2, ..., sq) =

{
1 if si 6= sj for i 6= j,
0 otherwise. (3)

Theorem 4. Let X be a set with n Boolean variables, and
let δn : {0, 1}X → {0, 1} be the n-bit element distinctness
function. Let B be a unitary branching program of dimen-
sion k and length l computing δn. Then l = Ω(n2

k2 logn).

5. Gapped Read-Once Unitary Branching
Programs

Let B = (J , I, C) be a unitary branching program with
class sequence ζ = (X0, . . . , Xc−1). We say that B is read-
once if the indices in J are pairwise distinct. In other
words, each symbol of the input string is read at most
once. Let δ be a positive real number between 0 and 1.
We say that B is δ-gapped if for each i, j in {0, . . . , c− 1},
|MD(Xi, value(B,W))−MD(Xj , value(B,W))| > δ for
each W ∈ JcKn.

An n-input 2-classes dataset is a dataset D = (D0, D1)
with two classes D0, D1 ⊆ JsKn for some s. The next
theorem states that for each fixed k ∈ N+, any δ-gapped
read-once unitary branching program consistent with a given
n-input 2-classes dataset D can be transformed into a deter-
ministic finite automaton over the alphabet JsK consistent
with D whose number of states is polynomial in n and in
1/δ.

Theorem 5. Let B be a gapped, read-once unitary branch-
ing program of dimension k separating an n-input 2-classes
dataset D = (D0, D1). One can construct a deterministic

finite automaton F(B) over JsK with
(
n
δ

)O(k2)
states such

that D1 ⊆ L(F(B)) and D0 ∩ L(F(B)) = ∅.

In the classic framework of learning with membership and
equivalence queries, the goal is to learn a regular language
L over a given alphabet JsK in the setting where the learner
has access to an oracle (a minimally adequate teacher) that
is able to answer two types of queries: membership queries,
where the learner selects a word inW ∈ JsK∗ and the teacher
answers whether or not W ∈ L; and equivalence queries
where the learner selects an hypothesis automatonH and the

teacher answers whether or not L is the language of H. If
this is not the case, the teacher gives to the student a counter-
example word W ∈ Σ∗\L. A celebrated result from An-
gluin (Angluin, 1987) states that any regular language can
be exactly learned with a number of queries that is polyno-
mial in the number of states of a minimum deterministic
automaton representing the target language, and the size of
the largest counter-example returned by the teacher. If L is
the characteristic language of a function f : JsKn → {0, 1},
meaning that L(f) = {W ∈ JsKn : f(W) = 1}, then
Angluin’s result implies that one can learn an automaton
accepting L in time polynomial in n and in the size of the
minimum deterministic finite automaton accepting L. The-
orem 5 can be used to transfer this classic result from the
context of functions computable by DFAs to functions com-
putable by gapped read-once unitary branching programs.

Theorem 6. For any fixed k and any δ ∈∈ R with 0 < δ <
1, the representation class of n-input δ-gapped read-once
unitary branching programs is exactly learnable using the
representation class of deterministic finite automata with a
total number of queries that is polynomial in n and in 1/δ.

Another interesting consequence of Theorem 5 is that it
allows one to use techniques from best-partition communi-
cation complexity theory to prove explicit lower bounds for
the dimension necessary to compute certain functions using
gapped read-once branching programs. In the setting of
best-partition communication complexity theory, two play-
ers, Alice and Bob wish to compute the value of a function
f : {0, 1}n → {0, 1}, known in advance by both players,
on a specific input W . The caveat is that the positions in
{1, ..., n} are partitioned into two sets A and B in such a
way that Alice only has access to bits of W at positions
in A and Bob only has access to bits of W at positions in
B. In order to compute the value f(W), Alice and Bob
exchange bits using a communication protocol, where in the
end of the process, the last bit of the protocol is the value
f(W). Both the protocol and the partition of the input bits
are agreed by Alice and Bob before the bits of the input
string are distributed to them. And the protocol should give
the correct answer on every input string. The deterministic
communication complexity of f is the minimum number
of bits in a deterministic protocol computing f , while the
non-deterministic complexity of f is the minimum number
of bits in a non-deterministic protocol.

Lemma 7. Let f : 0, 1n → {0, 1} be a function such
that L(f) is the language of some non-deterministic finite
automaton with m states. Then the non-deterministic com-
munication complexity of f is O(logm).

Therefore, by combining Lemma 7 with Theorem 5, we
have the following.

Lemma 8. Let f : {0, 1}n → {0, 1} be a function com-
putable by a δ-gapped read-once unitary branching pro-

Unitary Branching Programs: Learnability and Lower Bounds

gram of dimension k. Then the communication complexity
of f is O(k2 · log n/δ).

An example of function with best-partition non-
deterministic communication complexity Ω(n) is the
triangle-freeness function ∆n : {0, 1}n → {0, 1} (Jukna
& Schnitger, 2002). This function takes as input an
array x = (xij)1≤i<j≤m consisting of n =

(
m
2

)
Boolean

variables representing an undirected graph G(x) on m
vertices {1, ...,m}. The graphG(x) has an edge connecting
vertices i and j, with i < j, if and only if xij = 1. The
triangle-freeness function ∆n returns 1 on an input x if and
only if the graph G(x) does not contain a triangle. From
Lemma 8 and the Ω(n) lower bound on the best-partition
non-deterministic communication complexity of ∆n, we
have the following theorem.

Theorem 9. Let B be a δ-gapped read-once branching
program computing ∆n : {0, 1}n → {0, 1}. Then k =
Ω(
√
n/(log n/δ)).

6. Experimental Evaluation
In this section, we describe experiments designed to evaluate
the performance of our algorithm in the task of learning
unitary branching programs consistent with a given dataset.
For the purpose of these experiments, we focus on read-once
branching programs, where the bits of the input are read
from left to right. More formally, for datasets containing
strings with n bits, the sequence of indices of the branching
program is J = (1, 2, . . . , n).

We have implemented our algorithm in a tool called LUBP -
Learning Unitary Branching Programs, which can be down-
loaded at https://github.com/AutoProving/LUBP. Our tool
was implemented in C++ using ROPTLIB, a library for op-
timization on Riemannian manifolds (Huang et al., 2018).
Each instance was executed in a machine with CPU of
type Intel Xeon-Gold 6138 2.0 GHz. We set the maximum
amount of RAM memory to 4GB per tested instance. Our
implementation is sequential, in the sense that it does not
resort to the use of parallel programming techniques.

In our experiments we evaluated the ability of our algorithm
to learn branching programs consistent with randomly gen-
erated sparse datasets. More precisely, for each n in the set
{16, 32, 64, 128, 256, 512, 1024}, we generated 10 datasets
at random, each containing two classes, and each class
containing n strings from {0, 1}n. We call these datasets n-
datasets. Each such n-dataset was generated in two stages.
In the first stage, we sampled, uniformly at random, one
n-bit string at a time and added it to a set S0 until it had n
strings. Subsequently, we generated one n-bit string, uni-
formly at random, at a time and added it to a set S1, provided
it was not already present in the first set S0, until it had n
strings.

Figure 1. Average time in seconds needed to learn a dimension-3
unitary branching program consistent with an n-dataset up to a
given accuracy. For instance, the red line depicts the time neces-
sary to learn such a branching program with at most 20% error.
The considered values of n are represented in the horizontal axis,
while the time in seconds is depicted in the vertical axis. A number
r close to point (n, t) of a given color indicates that the accuracy
represented by the color was achieved only for r out of the 10
randomly generated instances of n-datasets. In this case, the av-
erage is taken with respect to these r instances. No number close
to such a point (n, t) indicates that the corresponding accuracy
was obtained on all 10 n-datasets. For instance, for all but two
of the 1024-datasets our program was able to learn a completely
consistent (0% error) dimension-3 unitary branching program.

We run our algorithm on each dataset and recorded for
each of these datasets the number of seconds necessary to
achieve an error of at most x, for x belonging to the set
{20%, 10%, 5%, 2%, 1%, 0%}. We note that for the vast
majority of the generated datasets (except for one instance
of a 512-dataset and two instances of a 1024-dataset), our
algorithm was able to learn a completely consistent unitary
branching program of dimension-3 (0% error). In Figure 1
we depict a graph where the horizontal axis corresponds to
the length of strings in a given dataset, and the vertical axis
corresponds to the time necessary to learn the dataset with a
given accuracy. For instance, the red line in Figure 1 depicts
the time necessary to learn a dataset with at most 20% error
in function of n, while the purple line represents the time to
learn the datasets with 0% error.

7. Conclusion
In this work, we have studied the notion of unitary branch-
ing program (UBP) a model of computation that lifts the
classical notion of programs over monoids to the continuous
setting. The main insight is that such UBPs may be viewed
as points in a complex Stiefel manifold, and therefore, the

https://github.com/AutoProving/LUBP

Unitary Branching Programs: Learnability and Lower Bounds

process of learning a UBP consistent with a given dataset
can be approached using techniques based on Riemannian
gradient descent.

We have proved explicit near-quadratic lower bounds on the
length of unitary branching programs of bounded dimension.
This result imposes no restriction on the number of times
each symbol of the input is read and on the number of bits
necessary to represent the complex numbers in the matrices
defining the UBPs. On the other hand, we proved an explicit
polynomial lower bound on the dimension of read-once
polynomially-gapped UBPs. We leave open the question
of proving similar (or stronger) lower bounds for general
read-once UBPs (i.e., without imposing a restriction on the
gap).

Our empirical results indicate that read-once UBPs of small
dimension are able to represent n-datasets with 0% error.
It would be very interesting to have an analytic proof or
disproof for this empirical observation. More specifically, is
it the case that read-once UBPs of dimension 3 can represent
arbitrary n-datasets? In the opposite direction, can one
construct a family of n-datasets which cannot be represented
by read-once UBPs of constant dimension?

Acknowledgements
This work was supported by the Research Council of Nor-
way in the context of the project Automated Theorem Prov-
ing from the Mindset of Parameterized Complexity Theory
(Grant no 288761). We also acknowledge support from the
Sigma2 Network (Proj. no. NN9535K).

References
Abrudan, T., Eriksson, J., and Koivunen, V. Conjugate

gradient algorithm for optimization under unitary matrix
constraint. Signal Processing, 89(9):1704–1714, 2009.

Abrudan, T. E., Eriksson, J., and Koivunen, V. Steepest
descent algorithms for optimization under unitary matrix
constraint. IEEE Transactions on Signal Processing, 56
(3):1134–1147, 2008.

Absil, P.-A., Mahony, R., and Sepulchre, R. Optimization
algorithms on matrix manifolds. Princeton University
Press, 2009.

Adams, J. F. and Walker, G. On complex stiefel manifolds.
In Mathematical Proceedings of the Cambridge Philo-
sophical Society, volume 61, pp. 81–103. Cambridge
University Press, 1965.

Angluin, D. Learning regular sets from queries and coun-
terexamples. Information and computation, 75(2):87–
106, 1987.

Barrington, D. A. Bounded-width polynomial-size branch-
ing programs recognize exactly those languages in nc1.
Journal of Computer and System Sciences, 38(1):150–
164, 1989.

Beame, P. W., Cook, S. A., and Hoover, H. J. Log depth
circuits for division and related problems. SIAM Journal
on Computing, 15(4):994–1003, 1986.

Bédard, F., Lemieux, F., and McKenzie, P. Extensions to
barrington’s m-program model. Theoretical Computer
Science, 107(1):31–61, 1993.

Bergadano, F., Bshouty, N. H., Tamon, C., and Varricchio, S.
On learning branching programs and small depth circuits.
In European Conference on Computational Learning The-
ory, pp. 150–161. Springer, 1997.

Boumal, N., Mishra, B., Absil, P.-A., and Sepulchre, R.
Manopt, a matlab toolbox for optimization on manifolds.
The Journal of Machine Learning Research, 15(1):1455–
1459, 2014.

Bshouty, N. H., Tamon, C., and Wilson, D. K. On learning
width two branching programs. Information Processing
Letters, 65(4):217–222, 1998.

Caussinus, H. A note on a theorem of barrington, straubing
and thérien. Information Processing Letters, 58(1):31–33,
1996.

Chiu, A., Davida, G., and Litow, B. Division in logspace-
uniform nc. RAIRO-Theoretical Informatics and Applica-
tions, 35(3):259–275, 2001.

Cleve, R. Towards optimal simulations of formulas by
bounded-width programs. Computational Complexity, 1
(1):91–105, 1991.

Crow, M. L. and Ilic, M. The waveform relaxation method
for systems of differential/algebraic equations. In 29th
IEEE Conference on Decision and Control, pp. 453–458.
IEEE, 1990.

de Oliveira Oliveira, M. Size-Treewidth Tradeoffs for Cir-
cuits Computing the Element Distinctness Function. In
Proc. of the 33rd Symposium on Theoretical Aspects of
Computer Science (STACS 2016), volume 47 of LIPIcs,
pp. 56:1–56:14, 2016.

Elberfeld, M., Jakoby, A., and Tantau, T. Algorithmic meta
theorems for circuit classes of constant and logarithmic
depth. In 29th International Symposium on Theoretical
Aspects of Computer Science, pp. 66, 2012.

Ergün, F., Kumar, S. R., and Rubinfeld, R. On learning
bounded-width branching programs. In Proceedings of
the eighth annual conference on Computational learning
theory, pp. 361–368, 1995.

Unitary Branching Programs: Learnability and Lower Bounds

Find, M. G., Golovnev, A., Hirsch, E. A., and Kulikov, A. S.
A better-than-3n lower bound for the circuit complex-
ity of an explicit function. Electronic Colloquium on
Computational Complexity (ECCC), 22:166, 2015.

Huang, W., Absil, P.-A., Gallivan, K. A., and Hand, P.
Roptlib: an object-oriented c++ library for optimization
on riemannian manifolds. ACM Transactions on Mathe-
matical Software (TOMS), 44(4):1–21, 2018.

Iwama, K. and Morizumi, H. An explicit lower bound of 5n-
o (n) for boolean circuits. In Mathematical foundations
of computer science 2002, pp. 353–364. Springer, 2002.

Janssen, J. and Vandewalle, S. On sor waveform relaxation
methods. SIAM journal on numerical analysis, 34(6):
2456–2481, 1997.

Jukna, S. and Schnitger, G. Triangle-freeness is hard to
detect. Combinatorics Probability and Computing, 11(6):
549–570, 2002.

Lachish, O. and Raz, R. Explicit lower bound of 4.5 n-o
(n) for boolena circuits. In Proceedings of the thirty-third
annual ACM symposium on Theory of computing, pp.
399–408. ACM, 2001.

Lelarasmee, E., Ruehli, A. E., and Sangiovanni-Vincentelli,
A. L. The waveform relaxation method for time-domain
analysis of large scale integrated circuits. IEEE transac-
tions on computer-aided design of integrated circuits and
systems, 1(3):131–145, 1982.

Mansour, Y. and McAllester, D. Boosting using branching
programs. Journal of Computer and System Sciences, 64
(1):103–112, 2002.

Nakanishi, M., Hamaguchi, K., and Kashiwabara, T. Or-
dered quantum branching programs are more powerful
than ordered probabilistic branching programs under a
bounded-width restriction. In International Computing
and Combinatorics Conference, pp. 467–476. Springer,
2000.

Nečiporuk. On a Boolean function. Soviet Math. Dokl., 7
(4):999–1000, 1966.

Raghavan, V. and Wilkins, D. Learning µ-branching pro-
grams with queries. In Proceedings of the Sixth Annual
ACM Conference on Computational Learning Theory, pp.
27–36. ACM Press, New York, NY, 1993.

Roychowdhury, V. P. and Vatan, F. Quantum formulas: A
lower bound and simulation. SIAM Journal on Comput-
ing, 31(2):460–476, 2001.

Turán, G. and Vatan, F. On the computation of boolean
functions by analog circuits of bounded fan-in. Journal
of Computer and System Sciences, 1(54):199–212, 1997.

Viola, E. On the power of small-depth computation. Now
Publishers Inc, 2009.

