
The Logical Options Framework

A. Formulation of Logical Options
Framework with Safety Automaton

In this section, we present a more general formulation of
LOF than that presented in the paper. In the paper, we make
two assumptions that simplify the formulation. The first
assumption is that the LTL specification can be divided into
two independent formulae, a liveness property and a safety
property: φ = φliveness ∧ φsafety. However, not all LTL
formulae can be factored in this way. We show how LOF
can be applied to LTL formulae that break this assumption.
The second assumption is that the safety property takes a
simple form that can be represented as a penalty on safety
propositions. We show how LOF can be used with arbitrary
safety properties.

A.1. Automata and Propositions

All LTL formulae can be translated into Büchi automata
using automatic translation tools such as SPOT (Duret-Lutz
et al., 2016). All Büchi automata can be decomposed into
liveness and safety properties (Alpern & Schneider, 1987),
so that automaton W = Wliveness × Wsafety. This is a
generalization of the assumption that all LTL formulae can
be divided into liveness and safety properties φliveness and
φsafety. The liveness propertyWliveness must be an FSA,
although this assumption could also be loosened to allow
it to be a deterministic Büchi automaton via some minor
modifications (allowing multiple goal states to exist and
continuing episodes indefinitely, even once a goal state has
been reached).

As in the main text, we assume that there are three types
of propositions – subgoals PG, safety propositions PS , and
event propositions PE . The event propositions have set val-
ues and can occur in bothWliveness andWsafety. Safety
propositions only appear inWsafety . Subgoal propositions
only appear inWliveness. Each subgoal may only be asso-
ciated with one state. Note that after writing a specification
and decomposing it intoWliveness andWsafety , it is possi-
ble that some subgoals may unexpectedly appear inWsafety .
This can be dealt with by creating “safety twins” of each sub-
goal – safety propositions that are associated with the same
low-level states as the subgoals and can therefore substitute
for them inWsafety .

Subgoals are propositions that the agent must achieve in
order to reach the goal state ofWliveness. Although event
propositions can also define transitions in Wliveness, we
assume that “achieving” them is not necessary in order
to reach the goal state. In other words, we assume that
from any state in Wliveness, there is a path to the goal
state that involves only subgoals. This is because in our
formulation, the event propositions are meant to serve as
propositions that the agent has no control over, such as

receiving a phone call. If satisfaction of the liveness property
were to depend on such a proposition, then it would be
impossible to guarantee satisfaction. However, if the user is
unconcerned with guaranteeing satisfaction, then specifying
a liveness property in which satisfaction depends on event
propositions is compatible with LOF.

Safety propositions may only occur inWsafety and are as-
sociated with things that the agent “must avoid”. This is
because every state ofWsafety is an accepting state (Alpern
& Schneider, 1987), so all transitions between the states
are non-violating. However, any undefined transition is not
allowed and is a violation of the safety property. In our
formulation, we assign costs to violations, so that violations
are allowed but come at a cost. In practice, it also may be
the case that the agent is in a low-level state from which
it is impossible to reach the goal state without violating
the safety property. In our formulation, satisfaction of the
liveness property (but not the safety property) is still guaran-
teed in this case, as the finite cost associated with violating
the rule is less than the infinite cost of not satisfying the
liveness property, so the optimal policy for the agent will be
to violate the rule in order to satisfy the task (see the proofs,
Appendix B). This scenario can be avoided in several ways.
For example, do not specify an environment in which it is
only possible for the agent to satisfy the task by violating
a rule. Or, instead of prioritizing satisfaction of the task,
it is possible to instead prioritize satisfaction of the safety
property. In this case, satisfaction of the liveness property
would not be guaranteed but satisfaction of the safety prop-
erty would be guaranteed. This could be accomplished by
terminating the rollout if a safety violation occurs.

We assume that event propositions are observed – in other
words, that we know the values of the event propositions
from the start of a rollout. This is because we are planning in
a fully observable setting, so we must make this assumption
to guarantee convergence to an optimal policy. However, the
partially observable case is much more interesting, in which
the values of the event propositions are not known until
the agent checks or the environment randomly reveals their
values. This case is beyond the scope of this paper; however,
LOF can still guarantee satisfaction and composability in
this setting, just not optimality.

Proposition labeling functions relate states to propositions:
TPG

: S → 2PG , TPS
: S → 2PS , and TPE

: 2PE →
{0, 1}.

Given these definitions of propositions, it is possible
to define the liveness and safety properties formally.
Wliveness = (F ,PG ∪ PE , TF , RF , f0, fg). F is the set
of states of the liveness property. The propositions can be
either subgoals PG or event propositions PE . The transition
function relates the current FSA state and active propositions
to the next FSA state, TF : F × 2PG × 2PE ×F → [0, 1].

The Logical Options Framework

The reward function assigns a reward to the current FSA
state, RF : F → R. We assume there is one initial state f0

and one goal state fg .

The safety property is a Büchi automaton Wsafety =
(FS ,PS ∪ PE , TS , RS , F0). FS are the states of the au-
tomaton. The propositions can be safety propositions PS or
event propositions PE . The transition function TS relates
the current state and active propositions to the next state,
TS : FS × 2PS × 2PE × FS → [0, 1]. The reward func-
tion relates the automaton state and safety propositions to
rewards (or costs), RS : FS × 2PS → R. F0 defines the set
of initial states. We do not specify an accepting condition
because for safety properties, every state is an accepting
state.

A.2. The Environment MDP

There is a low-level environment MDP E =
(S,A, RE , TE , γ). S is the state space and A is the
action space. They can be either discrete or continuous.
RE is the low-level reward function that character-
izes, for example, time, distance, or actuation costs.
TE : S ×A× S → [0, 1] is the transition function and γ is
the discount factor. Unlike in the simpler formulation in
the paper, we do not combine RE and the safety automaton
reward function RS in the MDP formulation E .

A.3. Logical Options

We associate every subgoal pg with an option opg =
(Ipg , πpg , βpg , Rpg , Tpg). Every opg has a policy πpg whose
goal is to reach the state spg where pg is true. Option poli-
cies are learned by training on the product of the environ-
ment and the safety automaton, E×Wsafety and terminating
training only when spg is reached. RE : FS × S ×A → R
is the reward function of the product MDP E × Wsafety.
There are many reward-shaping policy-learning algorithms
that specify how to define RE . In fact, learning a policy for
E×Wsafety is the sort of hierarchical learning problem that
many reward-shaping algorithms excel at, including Reward
Machines (Icarte et al., 2018) and (Li et al., 2017). This is
because in LOF, safety properties are not composable, so
using a learning algorithm that is satisfying and optimal but
not composable to learn the safety property is appropriate.
Alternatively, there are many scenarios whereWsafety is a
trivial automaton in which each safety proposition is asso-
ciated with its own state, as we describe in the main paper,
so penalties can be assigned to propositions and the state of
the agent inWsafety can be ignored.

Note that since the options are trained independently, one
limitation of our formulation is that the safety properties
cannot depend on the liveness state. In other words, when
an agent reaches a new subgoal, the safety property cannot
change. However, the workaround for this is not too compli-

Algorithm 2 Learning and Planning with Logical Options

1: Given:
Propositions P partitioned into subgoals PG, safety
propositions PS , and event propositions PE
Wliveness = (F ,PG ∪ PE , TF , RF , f0, fg)
Wsafety = (FS ,PS ∪ PE , TS , RS , F0)
Low-level MDP E = (S,A, RE , TE , γ)
Proposition labeling functions TPG

: S → 2PG , TPS
:

S → 2PS , and TPE
: 2PE → {0, 1}

2: To learn:
3: Set of options O, one for each subgoal proposition
p ∈ PG

4: Meta-policy µ(f, fs, s, o) along with Q(f, fs, s, o) and
V (f, fs, s)

5: Learn logical options:
6: For every p in PG, learn an option for achieving p,
op = (Iop , πop , βop , Rop , Top)

7: Iop = S

8: βop =

{
1 if p ∈ TPG

(s)

0 otherwise
9: πop = optimal policy on E × Wsafety with rollouts

terminating when p ∈ TPG
(s)

10: Top(f ′s, s
′|fs, s) =

∞∑
k=1

p(f ′s, k)γk if p ∈ TP (s′)

0 otherwise

11: Rop(fs, s) = E[RE(fs, s, a1) + γRE(fs,1, s1, a2) +
· · ·+ γk−1RE(fs,k−1, sk−1, ak)]

12: Find a meta-policy µ over the options:
13: Initialize Q : F × FS × S × O → R and V : F ×
FS × S → R to 0

14: for (k, f, fs, s) ∈ [1, . . . , n]×F ×FS × S: do
15: for o ∈ O: do
16: Qk(f, fs, s, o)← RF (f)Ro(fs, s)+∑

f ′∈F

∑
f ′
s∈FS

∑
p̄e∈2PE

∑
s′∈S

TF (f ′|f, TPG
(s′), p̄e)

TS(f ′s|fs, TPS
(s′), p̄e)TPE

(p̄e)
To(s

′|s)Vk−1(f ′, f ′s, s
′)

17: end for
18: Vk(f, fs, s)← max

o∈O
Qk(f, fs, s, o)

19: end for
20: µ(f, fs, s, o) = arg max

o∈O
Q(f, fs, s, o)

21: Return: Options O, meta-policy µ(f, fs, s, o), and
Q(f, fs, s, o), V (f, fs, s)

cated. First, if the liveness state affects the safety property,
this implies that liveness propositions such as subgoals may
be in the safety property. In this case, as we described above,
the subgoals present in the safety property need to be substi-
tuted with “safety twin” propositions. Then during option
training, a policy-learning algorithm must be chosen that
will learn sub-policies for all of the safety property states,

The Logical Options Framework

even if those states are only reached after completing a com-
plicated task (for example, all of the sub-policies could be
trained in parallel as in (Icarte et al., 2018)). Lastly, during
meta-policy learning and during rollouts, when a new option
is chosen, the current state of the safety property must be
passed to the new option.

The components of the logical options are defined starting at
Alg. 2 line 5. Note that for stochastic low-level transitions,
the number of time steps k at which the option terminates is
stochastic and characterized by a distribution function. In
general this distribution function must be learned, which is a
challenging problem. However, there are many approaches
to solving this problem; (Abel & Winder, 2019) contains an
excellent discussion.

The most notable difference between the general formula-
tion and the formulation in the paper is that the option policy,
transition, and reward functions are functions of the safety
automaton state fs as well as the low-level state s. This
makes Logical Value Iteration more complicated, because
in the paper, we could assume we knew the final state of
each option (i.e., the state of its associated subgoal sg). But
now, although we still assume that the option will termi-
nate at sg, we do not know which safety automaton state
it will terminate in, so the transition model must learn a
distribution over safety automaton states, and Logical Value
Iteration must account for this uncertainty.

A.4. Hierarchical SMDP

Given a low-level environment E , a liveness property
Wliveness, a safety propertyWsafety, and logical options
O, we can define a hierarchical semi-Markov Decision Pro-
cess (SMDP)M = E ×Wliveness ×Wsafety with options
O and reward function RSMDP . This SMDP differs sig-
nificantly from the SMDP in the paper in that the safety
propertyWsafety is now an integral part of the formulation.
RSMDP (f, fs, s, o) = RF (f)Ro(fs, o).

A.5. Logical Value Iteration

A value function and Q-function are found for the SMDP
using the Bellman update equations:

Qk(f, fs, s, o)← RF (f)Ro(fs, s) +
∑
f ′∈F

∑
f ′
s∈FS∑

p̄e∈2PE

∑
s′∈S

TF (f ′|f, TPG
(s′), p̄e)

TS(f ′s|fs, TPS
(s′), p̄e)TPE

(p̄e)To(s
′|s)Vk−1(f ′, f ′s, s

′)

(5)

Vk(f, fs, s)← max
o∈O

Qk(f, fs, s, o) (6)

B. Proofs and Conditions for Satisfaction and
Optimality

The proofs are based on the more general LOF formulation
of Appendix A, as results on the more general formulation
also apply to the simpler formulation used in the paper.
Definition B.1. Let the reward function of the environment
beRE(fs, s, a), which is some combination ofRE(s, a) and
RS(fs, p̄s) = RS(fs, TPS

(s)). Let π′ : FS×S×A×S →
[0, 1] be the optimal goal-conditioned policy for reaching
a state s′. In the case of a goal-conditioned policy, the
reward function is RE , and the objective is to maximize the
expected reward with the constraint that s′ is reached in
a finite amount of time. We assume that every state s′ is
reachable from any state s, a standard regularity assump-
tion in MDP literature. Let V π

′
(fs, s|s′) be the optimal

expected cumulative reward for reaching s′ from s with
goal-conditioned policy π′. Let sg be the state associated
with the subgoal, and let πg be the optimal goal-conditioned
policy associated with reaching sg. Let π∗ be the optimal
policy for the environment E .
Condition B.1. The optimal policy for the option must be
the same as the goal-conditioned policy that has subgoal
sg as its goal: π∗(fs, s) = πg(fs, s|sg). In other words,
V πg (fs, s|sg) > V π

′
(fs, s|s′) ∀fs, s, s′ 6= sg .

This condition guarantees that the optimal option policy
will always reach the subgoal sg. It can be achieved by
setting all rewards−∞ < RE(fs, s, a) < 0 and terminating
the episode only when the agent reaches sg. Therefore
the expected return for reaching sg is a bounded negative
number, and the expected return for all other states is −∞.
Lemma B.2. Given that the goal state ofWliveness is reach-
able from any other state using only subgoals and that there
is an option for every subgoal and that all the options meet
Condition B.1, there exists a meta-policy that can reach the
FSA goal state from any non-trap state in the FSA.

Proof. This follows from the fact that transitions in
Wliveness are determined by achieving subgoals, and it is
given that there exists an option for achieving every sub-
goal. Therefore, it is possible for the agent to execute any
sequence of subgoals, and at least one of those sequences
must satisfy the task specification since the FSA represent-
ing the task specification is finite and satisfiable, and the
goal state fg is reachable from every FSA state f ∈ F using
only subgoals.

Definition B.2. From Dietterich (2000): A hierarchically
optimal policy for an MDP or SMDP is a policy that
achieves the highest cumulative reward among all policies
consistent with the given hierarchy.

In our case, this means that the hierarchically optimal meta-
policy is optimal over the available options.

The Logical Options Framework

Definition B.3. Let the expected cumulative reward func-
tion of an option o started at state (fs, s) be Ro(fs, s). Let
the reward function on the SMDP be RSMDP (f, fs, s, o) =
RF (f)Ro(fs, s) with RF (f) ≥ 02. Let µ′ : F × FS ×
S × O × F → [0, 1] be the hierarchically optimal goal-
conditioned meta-policy for achieving liveness state f ′. The
objective of the meta-policy is to maximize the reward func-
tion RSMDP with the constraint that it reaches f ′ in a finite
number of time steps. Let V µ

′
(f, fs, s|f ′) be the hierar-

chically optimal return for reaching f ′ from (f, fs, s) with
goal-conditioned meta-policy mu′. Let µ∗ be the hierar-
chically optimal policy for the SMDP. Let fg be the goal
state, and µg be the hierarchically optimal goal-conditioned
meta-policy for achieving the goal state.
Condition B.3. The hierarchically optimal meta-policy
must be the same as the goal-conditioned meta-policy that
has the FSA goal state fg as its goal: µ∗(f, fs, s) =
µg(f, fs, s|fg). In other words, V µg (f, fs, s|fg) >

V µ
′
(f, fs, s|f ′) ∀f, fs, s, f ′ 6= fg .

This condition guarantees that the hierarchically optimal
meta-policy will always go to the FSA goal state fg
(thereby satisfying the specification). Here is an exam-
ple of how this condition can be achieved: If −∞ <
RE(fs, s, a) < 0 ∀s, then Ro(fs, s) < 0 ∀fs, o, s. Then
if RF (f) > 0 (in our experiments, we set RF (f) = 1 ∀f),
RSMDP (f, fs, s, o) = RF (f)Ro(fs, s) < 0, and if the
episode only terminates when the agent reaches the goal
state, then the expected return for reaching fg is a bounded
negative number, and the expected return for all other states
is −∞.
Lemma B.4. From (Sutton et al., 1999): Value iteration on
an SMDP converges to the hierarchically optimal policy.

Therefore, the meta-policy found using the Logical Op-
tions Framework converges to a hierarchically optimal meta-
policy that satisfies the task specification as long as Condi-
tions B.1 and B.3 are met.
Definition B.4. Consider the SMDP where planning is al-
lowed over the low-level actions instead of the options.
We will call this the hierarchical MDP (HMDP), as this
MDP is the product of the low-level environment E , the live-
ness propertyWliveness, and the safety propertyWsafety.
Let RF (f) > 0 ∀f , and let RHMDP (f, fs, s, a) =
RF (f)RE(fs, s, a), and let π∗HMDP be the optimal policy
for the HMDP.
Theorem B.5. Given Conditions B.1 and B.3, the hierarchi-
cally optimal meta-policy µg with optimal option policies
πg has the same expected returns as the HMDP optimal
policy π∗ and satisfies the task specification.

2The assumption that RSMDP (f, fs, s, o) = RF (f)Ro(fs, s)
and RHMDP (f, fs, s, a) = RF (f)RE(fs, s, a) can be relaxed
so that RSMDP and RHMDP are functions that are monotonic
increasing in the low-level rewards Ro and RE , respectively.

Proof. By Condition B.1, every subgoal has an option as-
sociated with it whose optimal policy is to go to the sub-
goal. By Condition B.3, the hierarchically optimal meta-
policy will reach the FSA goal state fg. The meta-policy
can only accomplish this by going to the subgoals in a se-
quence that satisfies the task specification. It does this by
executing a sequence of options that correspond to a satis-
fying sequence of subgoals and are optimal in expectation.
Therefore, sinceRF (f) > 0 ∀f andRSMDP (f, fs, s, o) =
RF (f)Ro(fs, s), and since the event propositions that af-
fect the order of subgoals necessary to satisfy the task are
independent random variables, the expected cumulative re-
ward is a positive linear combination of the expected option
rewards, and since all option rewards are optimal with re-
spect to the environment and the meta-policy is optimal
over the options, our algorithm attains the optimal expected
cumulative reward.

C. Experimental Implementation
We discuss the implementation details of the experiments in
this section. Because the setups of the domains are analo-
gous, we discuss the delivery domain first in every section
and then briefly relate how the same formulation applies to
the reacher and pick-and-place domains as well. In this sec-
tion, we use the simpler formulation of the main paper and
not the more general formulation discussed in Appendix A.

C.1. Propositions

The delivery domain has 7 propositions plus 4 compos-
ite propositions. The subgoal propositions are PG =
{a, b, c, h}. Each of these propositions is associated with a
single state in the environment (see Fig. 12a). The safety
propositions are PS = {o, e}. o is the obstacle proposi-
tion. It is associated with many states – the black squares in
Fig. 12a. e is the empty proposition, associated with all of
the white squares in the domain. This is the default propo-
sition for when there are no other active propositions. The
event proposition is PE = {can}. can is the “cancelled”
proposition, representing when one of the subgoals has been
cancelled.

To simplify the FSAs and the implementation, we make an
assumption that multiple propositions cannot be true at the
same state. However, it is reasonable for can to be true
at the subgoals, and therefore we introduce 4 composite
propositions, ca = a ∧ can, cb = b ∧ can, cc = c ∧ can,
ch = h ∧ can. These can be counted as event propositions
without affecting the operation of the algorithm.

The reacher domain has analogous propositions. The sub-
goals are r, g, b, y and correspond to a, b, c, h. The envi-
ronment does not contain obstacles o but does have safety
proposition e, and it also has the event proposition can

The Logical Options Framework

and the composite propositions cr, cg, cb, cy for when can
is true at the same time that a subgoal proposition is true.
Another difference is that the subgoal propositions are asso-
ciated with a small spherical region instead of a single state
as in the delivery domain; this is a necessity for continuous
domains and unfortunately breaks one of our conditions for
optimality because the subgoals are now associated with
multiple states instead of a single state. However, the LOF
meta-policy will still converge to a hierarchically optimal
policy.

The pick-and-place domain has subgoals r, g, b, y like the
reacher domain, and event proposition can. Like the reacher
domain, the pick-and-place domain’s subgoals become true
in a region around the goal state, breaking one of the nec-
essary conditions for optimality. However, the LOF meta-
policy still converges to a hierarchically optimal policy.

C.2. Reward Functions

Next, we define the reward functions of the physical environ-
ment RE , safety propositions RS , and FSA states RF . We
realize that often in reinforcement learning, the algorithm
designer has no control over the reward functions of the
environment. However, in our case, there are no publicly
available environments such as OpenAI Gym or the Deep-
Mind Control Suite that we know of that have a high-level
FSA built-in. Therefore, anyone implementing our algo-
rithm will likely have to implement their own high-level
FSA and define the rewards associated with it.

For the delivery domain, the low-level environment reward
function RE : S × A → R is defined to be −1 ∀s, a. In
other words, it is a time/distance cost.

We assign costs to the safety propositions by defining the
reward function RS : PS → R. All of the costs are 0 except
for the obstacle cost, RS(o) = −1000. Therefore, there is a
very high penalty for encountering an obstacle.

We define the environment reward function RE : S ×A →
R to beRE(s, a) = RE(s, a)+RS(TP (s)). In other words,
it is the sum of RE and RS . This reward function meets
Condition B.1 for the optimal option policies to always
converge to their subgoals.

Lastly, we define RF : F → R to be RF (f) = 1 ∀f .
Therefore the SMDP cost RSMDP (f, s, o) = Ro(s) and
meets Condition B.3 so that the LOF meta-policy converges
to the optimal policy.

The reacher environment has analogous reward functions.
The safety reward function RS(p) = 0 ∀p ∈ PS because
there is no obstacle proposition. Also, the physical envi-
ronment reward function differs during option training and
meta-policy learning. For meta-policy learning, the reward
function is RE(s, a) = −a>a − 0.1 – a time cost and an

actuation cost. During option training, we speed learning
by adding the distance to the goal state as a cost, instead
of a time cost: RE(s, a) = −a>a− ||s− sg||2. Although
the reward functions and value functions are different, the
costs are analogous and lead to good performance as seen in
the results. Note that this method can’t be used for Reward
Machines, because it trains sub-policies for FSA states, and
the subgoals for FSA states are not known ahead of time, so
distance to subgoal cannot be calculated.

The pick-and-place domain has reward functions analogous
to the reacher domain’s.

C.3. Algorithm for LOF-QL

The LOF-QL baseline uses Q-learning to learn the meta-
policy instead of value iteration. We therefore use “Logical
Q-Learning” equations in place of the Logical Value Iter-
ation equations described in Eqs. 3 and 4 in the main text.
The algorithm is described in Alg. 3. A benefit of using
Q-learning instead of value iteration is that the transition
function TF of the FSA T does not have to be explicitly
known, as the algorithm samples from the transitions rather
than using TF explicitly in the formula. However, as de-
scribed in the main text, this comes at the expense of reduced
composability, as LOF-QL takes around 5x more iterations
to converge to a new meta-policy than LOF-VI does. Let
Q0(f, s, o) be initialized to be all 0s. The Q update formulas
are given in Alg. 3 lines 13 and 14.

C.4. Comparison of LOF-VI and Q-Learning for
Reward Machines

Figs. 4, 5, 6, and 7 give a visual overview of how LOF-VI
and Q-Learning for Reward Machines work, and illustrate
how they differ.

C.5. Tasks

We test the environments on four tasks, a “sequential” task
(Fig. 8), an “IF” task (Fig. 9), an “OR” task (Fig. 10), and
a “composite” task (Fig. 11). The reacher domain has the
same tasks, expect r, g, b, y replace a, b, c, h, and there are
no obstacles o. Note that in the LTL formulae, �!o is the
safety property φsafety; the preceding part of the formula is
the liveness property φliveness used to construct the FSA.

The Logical Options Framework

`

(a) Environment MDP E .

Go grocery shopping OR pick up the kid, then go home.

S0 S1 G
or

(b) Liveness property T . The natural language rule can be represented as an LTL
formula which can be translated into an FSA.

Figure 4. LOF and RM both require an environment MDP E and an automaton T that specifies a task.

`

S0

or Goal
State

`

S1

Figure 5. In RM, sub-policies are learned for each state of the automaton. In this case, in state S0, a sub-policy is learned that goes either
to the shopping cart of the kid, whichever is closer. In state S1, the sub-policy goes to the house.

C.6. Full Experimental Results

For the satisfaction experiments for the delivery domain, 10
policies were trained for each task and for each baseline.
Training was done for 1600 episodes, with 100 steps per
episode. Every 2000 training steps, the policies were tested
on the domain and the returns recorded. For this discrete
domain, we know the minimum and maximum possible
returns for each task, and we normalized the returns using
these minimum and maximum returns. The error bars are
the standard deviation of the returns over the 10 policies’
rollouts.

For the satisfaction experiments for the reacher domain, a
single policy was trained for each task and for each baseline.
The baselines were trained for 900 epochs, with 50 steps per
epoch. Every 2500 training steps, each policy was tested
by doing 10 rollouts and recording the returns. For the
RM baseline, training was for 1000 epochs with 800 steps
per epoch, and the policy was tested every 8000 training
steps. Because we don’t know the minimum and maximum
rewards for each task, we did not normalize the returns. The
error bars are the standard deviation over the 10 rollouts for
each baseline.

For the composability experiments, a set of options
was trained once, and then meta-policing training using

LOF-VI, LOF-QL, and Greedy was done for each task.
Returns were recorded at every training step by rolling out
each baseline 10 times. The error bars are the standard
deviations on the 10 rollouts.

For the pick-and-place domain, 1 policy was trained for
the satisfaction experiments, and experimental results were
evaluated over 10 rollouts. Training was done for 7500
epochs with 1000 steps per epoch. Every 250,000 training
steps, the policy was tested by doing 10 rollouts and record-
ing the returns. For the composability experiments, returns
were recorded by rolling out each baseline 2 times. The RM
baseline was trained over 10000 epochs with 1000 steps per
epoch.

We ran experiments on a workstation with an Intel i9 proces-
sor and an Nvidia 1080Ti GPU. The total number of train-
ing steps, size of the model, and training time of LOF-VI
and RM are shown in Table 1. Information for LOF-QL,
Greedy, and Flat Options are not shown because
they are equivalent to LOF-VI. This is because the vast
majority of the computational workload is spent training
the low-level options (which are the same for LOF-VI,
LOF-QL, Greedy, and Flat Options).

Code and videos of the domains and tasks are in the supple-
ment.

The Logical Options Framework

` ` `

option option option

(a) Step 1 of LOF: Learn a logical option for each subgoal.

`

S0

Goal
State

`

S1

or

(b) Step 2 of LOF: Use Logical Value Iteration to find a meta-policy that satisfies the liveness property. In this image, the boxed subgoals
indicate that the corresponding option is the optimal option to take from that low-level state. The policy ends up being the same as RM’s
policy – in state S0, the optimal meta-policy chooses the “grocery shoppping” option if the grocery cart is closer and the “pick up kid”
option if the kid is closer. In the state S1, the optimal meta-policy is to always choose the “home” option.

Figure 6. LOF has two steps. In (a) the first step, logical options are learned for each subgoal. In (b) the second step, a meta-policy is
found using Logical Value Iteration.

D. Further Discussion
What happens when incorrect rules are used? One
benefit of representing the rules of the environment as LTL
formulae/automata is that these forms of representing rules
are much more interpretable than alternatives (such as neu-
ral nets). Therefore, if an agent’s learned policy has bad
behavior, a user of LOF can inspect the rules to see if the
bad behavior is a consequence of a bad rule specification.
Furthermore, one of the consequences of composability is
that any modifications to the FSA will alter the resulting
policy in a direct and predictable way. Therefore, for exam-
ple, if an incorrect human-specified task yields undesirable
behavior, with our framework it is possible to tweak the task
and test the new policy without any additional low-level
training (however, tweaking the safety rules would require
retraining the logical options).

What happens if there is a rule conflict? If the specified
LTL formula is invalid, the LTL-to-automaton translation
tool will either throw an error or return a trivial single-state
automaton that is not an accepting state. Rollouts would
terminate immediately.

What happens if the agent can’t satisfy a task without
violating a rule? The solution to this problem depends on
the user’s priorities. In our formulation, we have assigned
finite costs to rule violations and an infinite cost to not satis-
fying the task (see Appendix B). We have prioritized task
satisfaction over safety satisfaction. However, it is possible
to flip the priorities around by terminating training/rollouts
if there is a safety violation. In our proofs, we have assumed
that the agent can reach every subgoal from any state, imply-
ing either that it is always possible to avoid safety violations
or that safety violations are allowed.

Why is the safety property not composable? The safety
property is not composable because we allow safety propo-
sitions to be associated with more than one state in the
environment (unlike subgoals). The fact that there can be
multiple instances of a safety proposition in the environ-
ment means that it is impossible to guarantee that a new
option policy will be optimal if retraining is done only at the
level of the safety automaton and not also over the low-level
states. In order to guarantee optimality, retraining would
have to be done over both the high and low levels (the safety

The Logical Options Framework

Go home OR pick up the kid,
then go grocery shopping

S0 S1 G
or

(a) LOF can easily solve this new liveness property without training new options.

`

S0
`

S1

Goal
State

or

(b) Logical Value Iteration can be used to find a meta-policy on the new task without the need to retrain the logical options. A new
meta-policy can be found in 10-50 iterations. The new policy finds that in state S0, “home” option is optimal if the agent is closer to
“home”, and the “kid” option is optimal if the agent is closer to “kid”. In state S1, the “grocery shopping” option is optimal everywhere.

Figure 7. What distinguishes LOF from RM is that the logical options of LOF can be easily composed to solve new tasks. In this example,
the new task is to go home or pick up the kid, then go grocery shopping. Logical Value Iteration can find a new meta-policy in 10-50
iterations without needing to relearn the options.

init s1 s2 s3 goal
a b c h

Figure 8. FSA for the sequential task. The LTL formula is ♦(a ∧
♦(b ∧ ♦(c ∧ ♦h))) ∧�!o. The natural language interpretation is
“Deliver package a, then b, then c, and then return home h. And
always avoid obstacles o”.

init s1

s2

s3

goal
a ∧ ¬can

c ∨
(ca
n ∧
¬a)

a ∧ can

c ∧ ¬can

can

a
∨ c
an

a

Figure 9. FSA for the IF task. The LTL formula is (♦(c ∧ ♦a) ∧
�!can)∨(♦a∧♦can)∧�!o. The natural language interpretation
is “Deliver package c, and then a, unless a gets cancelled. And
always avoid obstacles o”.

init s1 goal
a ∨ b c

Figure 10. FSA for the OR task. The LTL formula is ♦((a ∨ b) ∧
♦c)∧�!o. The natural language interpretation is “Deliver package
a or b, then c, and always avoid obstacles o”.

init

s1 s2 s3

s4 s5

goal

(a
∨
b)
∧
¬c
an

can ∧ ¬a ∧ ¬b

(a ∨ b) ∧ can

h ∧ ¬can

c ∨
(can
∧
¬
h)

h ∧ can

c ∧ ¬can

can

h ∨
can

a ∨ b
h

Figure 11. FSA for the composite task. The LTL formula is
(♦((a∨b)∧♦(c∧♦h))∧�!can)∨(♦((a∨b)∧♦h)∧♦can)∧�!o.
The natural language interpretation is “Deliver package a or b, and
then c, unless c gets cancelled, and then return to home h. And
always avoid obstacles”.

The Logical Options Framework

Domain Algorithm Epochs
Steps per

epoch
Total training

steps
Size of
model

Training
time (sec)

Training
time (hours)

Delivery LOF-VI 1600 100 160,000 ∼36K 29.2 0.0081
Delivery RM 1600 100 160,000 ∼92K 44.1 0.012
Reacher LOF-VI 900 50 45,000 154K 2200 0.62
Reacher RM 1000 800 800,000 155K 11300 3.14
Pick and place LOF-VI 7500 1000 7,500,000 279K 40900 11.35
Pick and place RM 10000 1000 10,000,000 297K 55500 15.41

Table 1. Information on experimental tests for the LOF-VI and RM algorithms. Info for LOF-QL, Greedy, and Flat Options is not
shown because it is equivalent to that for LOF-VI. This is because the training of the low-level options takes up the vast majority of
training time and accounts for all of the size of the model. Model sizes for the delivery domain are approximate as they vary with the
number of FSA states of the liveness property.

b

h

c

a

(a) Delivery domain. (b) Averaged. (c) Composite.

(d) OR. (e) IF. (f) Sequential.

Figure 12. All satisfaction experiments on the delivery domain. Notice how for the composite and OR tasks (Figs. 12c and 12d), the
Greedy baseline plateaus before LOF-VI and LOF-QL. This is because Greedy chooses a suboptimal path through the FSA, whereas
LOF-VI and LOF-QL find an optimal path. Also, notice that RM takes many more training steps to achieve the optimal cumulative
reward. This is because for RM, the only reward signal is from reaching the goal state. It takes a long time for the agent to learn an optimal
policy from such a sparse reward signal. This is particularly evident for the sequential task (Fig. 12f), which requires the agent to take a
longer sequence of actions/FSA states before reaching the goal. The options-based algorithms train much faster because when training the
options, the agent receives a reward for reaching each subgoal, and therefore the reward signal is much richer.

automaton and the environment). Our definition of com-
posability involves only replanning over the high level of
the FSA. Therefore, safety properties are not composable.
Furthermore, rewards/costs of the safety property can be
associated with propositions and not just with states (as
with the liveness property). This is because a safety viola-
tion via one safety proposition (e.g., a car going onto the
wrong side of the road) may incur a different penalty than
a violation via a different proposition (a car going off the
road). The propositions are associated with low-level states
of the environment. Therefore any retraining would have
to involve retraining at both the high and low levels, once

again violating our definition of composability.

Simplifying the option transition model: In our experi-
ments, we simplify the transition model by setting γ = 1,
an assumption that does not affect convergence to optimal-
ity. In the case where γ = 1, Eq. 2 reduces to To(s′|s) =∑
k p(s

′, k). Assuming that the option terminates only at
state sg, then Eq.2 further reduces to To(sg|s) = 1 and
To(s

′|s) = 0 for all other s′ 6= sg. Therefore no learning
is required for the transition model. For cases where the
assumption that γ = 1 does not apply, (Abel & Winder,
2019) contains an interesting discussion.

The Logical Options Framework

r

g

y
b

(a) Reacher domain. (b) Averaged. (c) Composite.

(d) OR. (e) IF. (f) Sequential.

Figure 13. Satisfaction experiments for the reacher domain, without RM results. The results are equivalent to the results on the delivery
domain.

r

g

y
b

(a) Reacher domain. (b) Averaged. (c) Composite.

(d) OR. (e) IF. (f) Sequential.

Figure 14. Satisfaction experiments for the reacher domain, including RM results. RM takes significantly more training steps to train than
the other baselines, although it eventually reaches and surpasses the cumulative reward of the other baselines. This is because for the
continuous domain, we violate some of the conditions required for optimality when using the Logical Options Framework – in particular,
the condition that each subgoal is associated with a single state. In a continuous environment, this condition is impossible to meet, and
therefore we made the subgoals small spherical regions, and we only made the subgoals associated with specific Cartesian coordinates
and not velocities (which are also in the state space). Meanwhile, the optimality conditions of RM are looser and were not violated, which
is why it achieves a higher final cumulative reward.

Learning the option reward model: The option reward
model Ro(s) is the expected reward of carrying out option
o to termination from state s. It is equivalent to a value
function. Therefore, it is convenient if the policy-learning

algorithm used to learn the options learns a value function
as well as a policy (e.g., Q-learning and PPO). However,
as long as the expected return can be computed between
pairs of states, it is not necessary to learn a complete value

The Logical Options Framework

b

g

r
y

(a) Reacher domain. (b) Averaged. (c) Composite.

(d) OR. (e) IF. (f) Sequential.

Figure 15. Satisfaction experiments for the pick-and-place domain, without RM results. The results are equivalent to the results on the
delivery and reacher domains.

b

g

r
y

(a) Reacher domain. (b) Averaged. (c) Composite.

(d) OR. (e) IF. (f) Sequential.

Figure 16. Satisfaction experiments for the pick-and-place domain, including RM results. For the pick-and-place domain, RM did not
converge to a solution within the training time allotted for it (10 million training steps).

function. This is because during Logical Value Iteration,
the reward model is only queried at discrete points in the
state space (typically corresponding to the initial state and
the subgoals). So as long as expected returns between the
initial state and subgoals can be computed, Logical Value
Iteration will work.

Why is LOF-VI so much more efficient than the RM
baseline? In short, LOF-VI is more efficient than RM

because LOF-VI has a dense reward function during train-
ing and RM has a sparse reward function. During training,
LOF-VI trains the options independently and rewards the
agent for reaching the subgoals associated with the options.
This is in effect a dense reward function. The generic re-
ward function for RM only rewards the agent for reaching the
goal state. There are no other high-level rewards to guide
the agent through the task. This is a very sparse reward
that results in less efficient training. RM’s reward function

The Logical Options Framework

b

h

c

a

(a) Delivery domain. (b) Averaged. (c) Composite.

(d) OR. (e) IF. (f) Sequential.

Figure 17. All composability experiments for the delivery domain.

r

g

y
b

(a) Delivery domain. (b) Averaged. (c) Composite.

(d) OR. (e) IF. (f) Sequential.

Figure 18. All composability experiments for the reacher domain.

could easily be made dense by rewarding every transition
of the automaton. In this case, RM would probably train as
efficiently as LOF-VI. However, imagine an FSA with two
paths to the goal state. One path has only 1 transition but
has much lower low-level cost, and one path has 20 tran-
sitions and a much higher low-level cost. RM might learn
to prefer the reward-heavy 20-transition path rather than
the reward-light 1-transition path, even if the 1-transition
path results in a lower low-level cost. In theory it might
be possible to design an RM reward function that adjusts

the automaton transition reward depending on the length of
the path that the state is in, but this would not be a trivial
task when accounting for branching and merging paths. We
therefore decided that it would be a fairer comparison to use
a trivial RM reward function, just as we use a trivial reward
function for the LOF baselines. However, we were careful
to not list increased efficiency in our list of contributions;
although increased efficiency was an observed side effect
of LOF, LOF is not inherently more efficient than other
algorithms besides the fact that it automatically imposes a

The Logical Options Framework

b

g

r
y

(a) Delivery domain. (b) Averaged. (c) Composite.

(d) OR. (e) IF. (f) Sequential.

Figure 19. All composability experiments for the pick-and-place domain.

dense reward on reaching subgoals.

The Logical Options Framework

Algorithm 3 LOF with ε-greedy Q-learning

1: Given:
Propositions P partitioned into subgoals PG, safety
propositions PS , and event propositions PE
Environment MDP E = (S,A, TE , RE , γ)
Logical options O with reward models Ro(s) and tran-
sition models To(s′|s)
Liveness property T = (F ,PG ∪ PE , TF , RF , f0, fg)
(TF does not have to be explicitly known if it can be
sampled from a simulator)
Learning rate α, exploration probability ε
Number of training episodes n, episode length m

2: To learn:
3: Meta-policy µ(f, s, o) along with Q(f, s, o) and
V (f, s)

4: Find a meta-policy µ over the options:
5: Initialize Q : F ×S ×O → R and V : F ×S → R to

0
6: for k ∈ [1, . . . , n]: do
7: Initialize FSA state f ← 0, s a random initial state

from E
8: Draw p̄e ∼ TPE

()
9: for j ∈ [1, . . . ,m]: do

10: With probability ε let o be a random option; other-
wise, o← arg max

o′∈O
Q(f, s, o′)

11: s′ ∼ To(s)
12: f ′ ∼ TF (TPG

(s′), p̄e, f)
13: Qk(f, s, o)← Qk−1(f, s, o) + α

(
RF (f)Ro(s) +

γV (f ′, s′)−Qk−1(f, s, o)
)

14: Vk(f, s)← max
o′∈O

Qk(f, s, o′)

15: f ← f ′

16: end for
17: end for
18: µ(f, s, o) = arg max

o∈O
Q(f, s, o)

19: Return: OptionsO, meta-policy µ(f, s, o) and Q- and
value functions Q(f, s, o), V (f, s)

