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Abstract
Annealed Importance Sampling (AIS) and its
Sequential Monte Carlo (SMC) extensions are
state-of-the-art methods for estimating normal-
izing constants of probability distributions. We
propose here a novel Monte Carlo algorithm, An-
nealed Flow Transport (AFT), that builds upon
AIS and SMC and combines them with normaliz-
ing flows (NFs) for improved performance. This
method transports a set of particles using not
only importance sampling (IS), Markov chain
Monte Carlo (MCMC) and resampling steps - as
in SMC, but also relies on NFs which are learned
sequentially to push particles towards the suc-
cessive annealed targets. We provide limit the-
orems for the resulting Monte Carlo estimates of
the normalizing constant and expectations with
respect to the target distribution. Additionally,
we show that a continuous-time scaling limit of
the population version of AFT is given by a
Feynman–Kac measure which simplifies to the
law of a controlled diffusion for expressive NFs.
We demonstrate experimentally the benefits and
limitations of our methodology on a variety of
applications.

1. Introduction
Let π be a target density on X ⊆ Rd w.r.t. the Lebesgue
measure known up to a normalizing constant Z. We
want to estimate Z and approximate expectations with re-
spect to π. This has applications in Bayesian statistics
but also variational inference (VI) (Mnih and Rezende,
2016) and compression (Li and Chen, 2019; Huang et al.,
2020) among others. AIS (Neal, 2001) and its SMC exten-
sions (Del Moral et al., 2006) are state-of-the art Monte
Carlo methods addressing this problem which rely on a
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sequence of annealed targets πk ∝ π1−βk
0 πβkK bridging

smoothly an easy-to-sample distribution π0 to πK := π
for 0 = β0 < β1 < · · · < βK = 1 and MCMC kernels of
invariant distributions πk (Zhou et al., 2016; Llorente et al.,
2020). In their simplest instance, SMC samplers propagate
N particles approximating πk at time k. These particles are
reweighted according to weights proportional to πk+1/πk
at time k + 1 to build an IS approximation of πk+1, then
one resamplesN times from this approximation and finally
mutate the resampled particles according to MCMC steps
of invariant distribution πk+1. This procedure can provide
high-variance estimators if the discrepancy between πk and
πk+1 is significant as the resulting IS weights then have
a large variance and/or if the MCMC kernels mix poorly.
This can be reduced by increasing K and the number of
MCMC steps at each temperature but comes at an increas-
ing computational cost.

An alternative approach is to build a transport map T :
X → X to ensure that if X ∼ π0 then the distribution
of X ′ = T (X) denoted T#π0 is approximately equal to
π. In (El Moselhy and Marzouk, 2012), this map is param-
eterized using a polynomial chaos expansion and learned
by minimizing a regularized Kullback-Leibler (KL) diver-
gence between T#π0 and π; see also (Marzouk et al.,
2016). Taghvaei et al. (2020) and Olmez et al. (2020) ob-
tain transport maps by solving a Poisson equation. How-
ever, they do not correct for the discrepancy between T#π0

and π using IS. Doing so would incur a O(d3) cost when
computing the Jacobian. Normalizing Flows (NFs) are an
alternative flexible class of diffeomorphisms with easy-to-
compute Jacobians (Rezende and Mohamed, 2015). These
can be used to parameterize T and are also typically learned
by minimizing KL(T#π0||π) or a regularized version of it.
This approach has been investigated in many recent work;
see e.g. (Gao et al., 2020; Nicoli et al., 2020; Noé et al.,
2019; Wirnsberger et al., 2020). Although it is attractive, it
is also well-known that optimizing this ‘mode-seeking’ KL
can lead to an approximation of the target T#π0 which has
thinner tails than the target π and ignore some of its modes;
see e.g. (Domke and Sheldon, 2018).

In this paper, our contributions are as follows.

• We propose Annealed Flow Transport (AFT), a method-
ology that takes advantages of the strengths of both
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SMC and NFs. Given particles approximating πk at
time k, we learn a NF Tk+1 minimizing the KL be-
tween (Tk+1)#πk and πk+1. As πk is closer to πk+1

than π0 is from πK = π, learning such a NF is easier
and less prone to mode collapse. Additionally the use
of MCMC steps in SMC samplers allows the particles
to diffuse and further prevent such collapse. Having ob-
tained Tk+1, we then apply this mapping to the particles
before building an IS approximation of πk+1 and then
use resampling and MCMC steps.
• We establish a weak law of large numbers and a Central

Limit Theorem (CLT) for the resulting Monte Carlo es-
timates of Z and expectations w.r.t. π. Available CLT
results for SMC (Chopin, 2004; Del Moral, 2004; Kün-
sch, 2005; Beskos et al., 2016) do not apply here as the
transport maps are learned from particles.
• When one relies on Unadjusted Langevin algorithm

(ULA) kernels to mutate particles, a time-rescaled pop-
ulation version of AFT without resampling is shown to
converge as K → ∞ towards a Feynman–Kac mea-
sure. For NFs expressive enough to include exact trans-
port maps between successive distributions, this mea-
sure corresponds to the measure induced by a controlled
Langevin diffusion.
• We demonstrate the performance of AFT on a variety of

benchmarks, showing that it can improve over SMC for
a given number of temperatures.

Related Work. The use of deterministic maps with AIS
(Vaikuntanathan and Jarzynski, 2011) and SMC (Akyildiz
and Míguez, 2020; Everitt et al., 2020; Heng et al., 2021)
has already been explored. However, Everitt et al. (2020)
and Vaikuntanathan and Jarzynski (2011) do not propose
a generic methodology to build such maps while Akyildiz
and Míguez (2020) introduce mode-seeking maps and do
not correct for the incurred bias. Heng et al. (2021) rely on
quadrature and a system of time-discretized nonlinear or-
dinary differential equations: this can be computationally
cheaper than learning NFs but is application specific. NFs
benefit from easy-to-compute Jacobians and a large and
quickly expanding literature (Papamakarios et al., 2019);
e.g., as both MCMC and NFs on manifolds have been de-
veloped, our algorithm can be directly extended to such set-
tings.

Evidence Lower Bounds (ELBOs) based on unbiased esti-
mators of Z have also been mentioned in (Salimans et al.,
2015; Goyal et al., 2017; Caterini et al., 2018; Huang et al.,
2018; Wu et al., 2020; Thin et al., 2021). These estima-
tors generalize AIS, and are obtained using sequential IS,
transport maps and MCMC. However, when MCMC ker-
nels such as Metropolis–Hastings (MH) or Hamiltonian
Monte Carlo (HMC) are used, accept/reject steps lead to
high variance estimates of ELBO gradients (Thin et al.,
2021). Moreover, while SMC (i.e. combining sequential

IS and resampling) can also be used to define an ELBO,
resampling steps correspond to sampling discrete distribu-
tions and lead to high variance gradient estimates; see e.g.
(Maddison et al., 2017; Le et al., 2018; Naesseth et al.,
2018) in the context of state-space models. The algorithm
proposed here does not rely on the ELBO, so it can use
arbitrary MCMC kernels and exploit the benefits of resam-
pling. Moreover, it only requires a single pass through the
K+1 annealed distributions: there is no need to iteratively
run sequential IS or SMC for estimating Z and an ELBO
gradient estimate.

Optimal control ideas have also been proposed to im-
prove SMC by introducing an additive drift to a time-
inhomogeneous ULA to improve sampling; see Richard
and Zhang (2007); Kappen and Ruiz (2016); Guarniero
et al. (2017); Heng et al. (2020). The proposed iterative
algorithms require estimating value functions but, to be im-
plementable, the approximating function class has to be
severely restricted. The algorithm proposed here is much
more widely applicable and can use sophisticated MCMC
kernels.

Finally, alternative particle methods based on gradient
flows in the space of probability measures have been pro-
posed to provide an approximation of π, such as Stein Vari-
ational Gradient Descent (SVGD) (Liu and Wang, 2016;
Liu et al., 2019; Wang and Li, 2019; Zhu et al., 2020; Re-
ich and Weissmann, 2021). However, their consistency re-
sults require both K, the number of time steps, and N , the
number of particles, to go to infinity. In contrast, AFT only
needs N → ∞. Moreover, they require specifying a suit-
able Reproducing Kernel Hilbert Space or performing ker-
nel density estimation, which can be challenging in high di-
mension. Additionally, contrary to AFT, these methods do
not provide an estimate of Z. One recent exception is the
work of Han and Liu (2017) which combines SVGD with
IS to estimate Z but this requires computing Jacobians of
computational cost O(d3).

2. Sequential Monte Carlo samplers
We provide here a brief overview of SMC samplers and
their connections to AIS. More details can be found in
(Del Moral et al., 2006; Dai et al., 2020).

We will rely on the following notation for the annealed den-
sities (πk)0≤k≤K targeted by SMC:

πk(x) =
γk(x)

Zk
=

exp(−Vk(x)

Zk
,

whereZ0 = 1 so π0(x) = γ0(x) and Vk(x) = (1−βk)V0+
βkVK for 0 = β0 < β1 < · · · < βK = 1. However,
we could use more generally any sequence of distributions
bridging smoothly π0 to πK = π.
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2.1. Sequential importance sampling

Let us first ignore the key resampling steps used by SMC.
In this case, SMC boils down to a sequential IS technique
where one approximates πk at time k. We first sample
X0 ∼ π0 at time k = 0, then at time k ≥ 1, obtain a a new
sample Xk ∼ Mk(Xk−1, ·) using a Markov kernel Mk.
For the distribution of Xk to be closer to πk than the one of
Xk−1, Mk is typically selected as a MCMC kernel of in-
variant density πk such as MH or HMC, or of approximate
invariant density πk such as ULA. Hence, by construction,
the joint density of X0:k is

η̄k(x0:k) = π0(x0)
∏k
l=1Ml(xl−1, xl). (1)

The resulting marginal ηk of Xk under η̄k usually differs
from πk. If one could evaluate ηk pointwise, then IS could
be used to correct for the discrepancy between ηk and πk
using the IS weight wk(xk) = γk(xk)/ηk(xk). Unfortu-
nately, ηk is intractable in all but toy scenarios. Instead,
SMC samplers introduce joint target densities π̄k(x0:k) to
compute tractable IS weights wk(x0:k) over the whole path
X0:k defined by

π̄k(x0:k) = πk(xk)
∏k−1
l=0 Ll(xl+1, xl), (2)

here Ll are “backward” Markov kernels moving each sam-
ple Xl+1 into a sample Xl starting from a virtual sample
Xk from πk

1. Hence by construction πk is the marginal of
π̄k at time k. The backward kernels Lk−1 are chosen so
that the following incremental IS weights are well-defined

Gk(xk−1, xk) =
γk(xk)Lk−1(xk, xk−1)

γk−1(xk−1)Mk(xk−1, xk)
, (3)

and, from (1) and (2), one obtains

wk(x0:k) :=
γ̄k(x0:k)

η̄k(x0:k)
=

k∏
l=1

Gl(xl−1, xl), (4)

where γ̄k(x0:k) = Zkπ̄k(x0:k) is the unnormalized joint
target. Using IS, it is thus straightforward to check that

Zk = η̄k[wk], π̄k[f ] =
η̄k[wkf ]

η̄k[wk]
, (5)

where f(x0:k) is a function of the whole trajectory x0:k

and µ[g] is a shorthand notation for the expectation
EX∼µ[g(X)]. As πk is a marginal of π̄k, we can also es-
timate expectations w.r.t. to πk using π̄k[f ] = πk[f ] for

1As in (Crooks, 1998; Neal, 2001; Del Moral et al., 2006; Dai
et al., 2020), we do not use measure-theoretic notation here but it
should be kept in mind that the kernels Ml do not necessarily ad-
mit a density w.r.t. Lebesgue measure; e.g. a MH kernel admits an
atomic component. For completeness, a formal measure-theoretic
presentation of the results of this section is given in Appendix A.

f(x0:k) = f(xk). From (5), it is thus possible to derive
consistent estimators of Zk and πk[f ] by sampling N ‘par-
ticles’ Xi

0:k ∼ η̄k where i = 1, ..., N and using

ZNk =
1

N

N∑
i=1

wk(Xi
0:k), πNk [f ] =

N∑
i=1

W i
kf(Xi

k), (6)

where W i
k ∝ wk(Xi

0:k),
∑N
i=1W

i
k = 1.

When the kernels Mk are πk-invariant and we select
Lk−1 as the reversal of Mk, i.e. πk(x)Mk(x, x′) =
πk(x′)Lk−1(x′, x), it is easy to check that Gl(xl−1, xl) =
γl(xl−1)/γl−1(xl−1). In that case, (5) corresponds to AIS
(Neal, 2001) and is also known as the Jarzynski–Crooks
identity (Jarzynski, 1997; Crooks, 1998). When πk is a
sequence of posterior densities, a similar construction was
also used in (MacEachern et al., 1999; Gilks and Berzuini,
2001; Chopin, 2002). The generalized identity (5) allows
the use of more general dynamics, including deterministic
maps which will be exploited by our algorithm.

In practice, the choice of the backward transition kernels
has a large impact on the variance of the estimates (6).
(Del Moral et al., 2006) identified the backward kernels
minimizing the variance of the IS weights (3)-(4) and pro-
posed various approximations to them.

2.2. Sequential Monte Carlo

To reduce the variance of the IS estimators (6), SMC sam-
plers combine sequential IS steps with resampling steps.
Given an IS approximation πNk−1 =

∑N
i=1W

i
k−1δXik−1

of
πk−1 at time k−1, one resamplesN times from πNk−1 to ob-
tain particles approximately distributed according to πk−1.
This has for effect of discarding particles with low weights
and replicating particles with high weights, this helps fo-
cusing subsequent computation on “promising” regions of
the space. Empirically, resampling usually provides lower
variance unbiased estimates of normalizing constants and
is computationally very cheap; see e.g. (Chopin, 2002;
Hukushima and Iba, 2003; Del Moral et al., 2006; Rous-
set and Stoltz, 2006; Zhou et al., 2016; Barash et al., 2017).
The resampled particles are then evolved according to Mk,
weighted according to Gk and resampled again.

3. Annealed Flow Transport Monte Carlo
We now introduce AFT, a new flexible adaptive Monte
Carlo method that leverages NFs. Given the particle ap-
proximations πNk−1 :=

∑N
i=1W

i
k−1δXik−1

and ZNk−1 at
time k − 1, AFT computes an approximation πNk and ZNk
by performing four main sub-steps: Transport, Importance
Sampling, Resampling and Mutation, as summarized in
Algorithm 1. Whenever the index i is used in the algorithm,
we mean ‘for all i ∈ {1, ..., N}’. These four sub-steps are
now detailed below.
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Algorithm 1 Annealed Flow Transport

1: Input: number of particles N , unnormalized annealed
targets {γk}Kk=0 such that γ0 = π0 and γK = γ, re-
sampling threshold A ∈ [1/N, 1).

2: Ouput: Approximations πNK and ZNK of π and Z.
3: Sample Xi

0 ∼ π0 and set W i
0 = 1

N and ZN0 = 1.
4: for k = 1, . . . ,K do
5: Compute LNk (T ) using (8).
6: Solve Tk ← argminT∈T LNk (T ) using e.g. SGD.
7: Transport particles: X̃i

k = Tk(Xi
k−1).

8: Estimate normalizing constant Zk:
ZNk ← ZNk−1

(∑N
i=1W

i
k−1Gk,Tk(Xi

k−1)
)

.
9: Compute IS weights:

wik ←W i
k−1Gk,Tk(Xi

k−1) // unnormalized

W i
k ←

wik∑N
j=1 w

j
k

// normalized

10: Compute effective sample size ESSNk using (10).
11: if ESSNk /N ≤ A then
12: Resample N particles denoted abusively also X̃i

k

according to the weights W i
k, then set W i

k = 1
N .

13: end if
14: Sample Xi

k ∼ Kk(X̃i
k, ·). // MCMC

15: end for

3.1. Transport map estimation

In this step, we learn a NF Tk that moves each sampleXk−1

from πk−1 to a sample X̃k = Tk(Xk−1) as close as pos-
sible to πk by minimizing an estimate of KL(T#πk−1||πk)
over a set T of NFs. This KL can be decomposed as a
sum of a loss term Lk(T ) and a term log Zk

Zk−1
that can

be ignored as it is independent of the NF T . A sim-
ple change of variables allows us to express the loss term
Lk(T ) as an expectation under πk−1 of some tractable
function x 7→ hT (x):

Lk(T ) :=πk−1[hT ],

hT (x) :=Vk(T (x))− Vk−1(x)− log |∇T (x)|.
(7)

The Jacobian determinant of T in (7) can be evaluated ef-
ficiently for NFs while the expectation under πk−1 can be
estimated using πNk−1 thus yielding the empirical loss:

LNk (T ) :=
∑N
i=1W

i
k−1hT (Xi

k−1). (8)

In practice, (8) is optimized over the NF parameters using
gradient descent. The resulting NF Tk is then used to trans-
port each particle Xi

k−1 to X̃i
k = Tk(Xi

k−1)2. However,
the loss (8) being not necessarily convex, the solution Tk
is likely to be sub-optimal. This is not an issue, since IS is
used to correct for such approximation error as we will see

2We should write TN
k to indicate the dependence of our esti-

mate of N but do not to simplify notation.

next. We also emphasize that the convergence results for
this scheme presented in Section 4 do not require finding a
global minimizer of this non-convex optimization problem.

3.2. Importance Sampling, Resampling and Mutation

Importance Sampling. This step corrects for the NF Tk
being only an approximate transport between πk−1 and πk.
In this case, we have M trans

k (x, x′) = δTk(x)(x
′) and by se-

lecting Ltrans
k−1(x, x′) = δT−1

k (x′)(x) then the incremental IS
weight (3) is given by a simple change-of-variables formula

Gk,Tk(xk−1) =
γk(Tk(xk−1))|∇Tk(xk−1)|

γk−1(xk−1)
. (9)

Using (9), we can update the weights wik =
W i
k−1Gk,Tk(Xi

k−1) to account for the errors intro-
duced by Tk. When Tk are exact transport maps from πk−1

to πk, the incremental weight in (9) becomes constant and
equal to the ratio Zk/Zk−1. Thus, introducing the NF
Tk can be seen as a way to reduce the variance of the IS
weights in the SMC sampler.

Resampling. As discussed in Section 2.2, resampling
can be very beneficial but it should only be performed when
the variance of the IS weights is too high (Liu and Chen,
1995) as measured by the Effective Sample Size (ESS)

ESSNk =

(
N∑
i=1

(
W i
k

)2)−1

, (10)

which is such that ESSNk ∈ [1, N ]. When ESSNk /N is
smaller than some prescribed threshold A ∈ [1/N, 1) (we
use A = 0.3), resampling is triggered and each particle
X̃i
k is then resampled without replacement from the set of

N available particles {X̃i
k}i∈[1:N ] according to a multino-

mial distribution with weights {W i
k}i∈[1:N ]. The weights

are then reset to uniform ones; i.e. W i
k = 1

N . More sophis-
ticated lower variance resampling schemes have also been
proposed; see e.g. (Kitagawa, 1996; Chopin, 2004).

Mutation. The final step consists in mutating the parti-
cles using a πk−invariant MCMC kernel Kk , i.e. using
Xi
k ∼ Kk(X̃i

k, ·). This allows particles to better explore
the space.

Note that if the transport maps Tk were known, Algo-
rithm 1 could be reinterpreted as a specific instance of a
SMC as detailed in Section 2 where at each time k ≥ 1 we
perform two time steps of a standard SMC sampler by ap-
plying first a transport step M trans

k (x, x′) = δTk(x)(x
′) then

a mutation step Mmut
k (x, x′) = Kk(x, x′); see Appendix

B.1 for details.
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3.3. Variants and Extensions

Contrary to standard SMC, the estimates ZNk returned by
Algorithm 1 are biased because of the dependence of the
NF Tk on the particles. To obtain unbiased estimates of
Zk and to avoid over-fitting of the NF to the N particles, a
variant of Algorithm 1 described in Algorithm 2 (see Ap-
pendix F) is used in the experimental evaluation. This vari-
ant employs three sets of particles: the training set is used
to evaluate the loss (8), the validation set is used in a stop-
ping criterion when learning the NF and the test set is inde-
pendent from the rest and is computed sequentially using
the learned NFs. It would also be possible to combine AFT
with various extensions to SMC that were already proposed
in the literature. For example, we can select adaptively the
annealing parameters βk to ensure the ESS only decreases
by a pre-determined percentage (Jasra et al., 2011; Schäfer
and Chopin, 2013; Beskos et al., 2016; Zhou et al., 2016)
or use the approximation of πk obtained at step 13 of Algo-
rithm 1 to determine the parameters of the MCMC kernel
Kk (Del Moral et al., 2012a; Buchholz et al., 2021).

4. Asymptotic analysis
We establish here a law of large numbers and a CLT for
the particle estimates πNk [f ] and ZNk of πk[f ] and Zk. We

denote by P−→ convergence in probability and by D−→ con-
vergence in distribution.

4.1. Weak law of large numbers

Theorem 1 shows that πNk [f ] andZNk are consistent estima-
tors of πk[f ] and Zk, hence of π[f ] and Z at time k = K.

Theorem 1 (weak law of large numbers). Let f be a func-
tion s.t. |f(x)| ≤ C(1 + ‖x‖4) for all x ∈ X and for
some C > 0. Under Assumptions (A) to (D) and for any
k ∈ 0, ...,K:

(Rk) : πNk [f ]
P−→ πk[f ], ZNk

P−→ Zk.

The result is proven in Appendix C.3 and relies on four
assumptions stated in Appendix C.1: (A) on the smooth-
ness of the Markov kernels Kk, (B) on the moments of πk,
(C) on the smoothness of the family of NFs and (D) on the
boundedness of the incremental IS weight Gk,T (x). Per-
haps surprisingly, Theorem 1 does not require the NFs to
converge as N → ∞. This is a consequence of Proposi-
tion 9 in Appendix C.3 which ensures uniform consistency
of the particle approximation regardless of the choice of
the NFs. However, convergence of the NFs is required to
obtain a CLT result as we see next. Theorem 4 of Ap-
pendix C.3 states a similar result for Algorithm 2 of Ap-
pendix F.

4.2. Central Limit theorem

Besides assumptions (A) to (D), we make five assumptions
stated in Appendix C.1: (E) on the Markov kernels Kk

strengthens (A) and is satisfied by many commonly used
Markov kernels as shown in C.2. The smoothness assump-
tions (F) and (G) on the family T of NFs and potentials Vk
are also standard. Finally, (H) and (I) describe the asymp-
totic behavior of Tk. We do not require Tk to be a global
minimizer of the loss LNk , neither do we assume it to be
an exact local minimum of LNk . Instead, (H) only needs
Tk to be an approximate local minimum of LNk and (I) im-
plies that Tk converges in probability towards a strict local
minimizer T ?k of Lk as N →∞.

Before stating the CLT result, we need to introduce the
asymptotic incremental variance Vinc

k [f ] at iteration k. To
this end, consider the set of limiting re-sampling times
Kopt := {k0, ...kP } ⊂ {0, ...,K} defined recursively by
kp+1 := inf{kp < k : nESSk ≤ A} and kP+1 := K + 1

where ESSNk /N
N→∞→ nESSk with

nESSk =
πkp
[
E
[
w?k
∣∣Xkp

]]2
πkp

[
E
[
(w?k)

2
∣∣∣Xkp

]] ,
the expectation being w.r.t. to Xs ∼ Ks(T

?
s (Xs−1), ·)

for kp + 1 ≤ s ≤ k, while Xkp ∼ πkp and w?k =∏k
s=kp+1Gs,T?s (Xs−1) is the product of the incremental

IS weights using the locally optimal NFs T ?s . The variance
Vinc
k [f ] at time k is given by:

Vinc
k [f ] =

{
Z2
kVarπk [f ], k ∈ K,

Z2
kp
πkp

[
E
[
(w?k)

2Gk[f ]
∣∣∣Xkp

]]
, kp < k < kp+1,

with Gk[f ] := Kk

[
f2
]
(T ?k (Xk−1))−Kk[f ]

2
(T ?k (Xk−1)).

Theorem 2 (Central limit theorem). Let f be a real valued
function s.t., for some C > 0, f(x) ≤ C(1 + ‖x‖2) and

‖f(x)− f(x′)‖ ≤ C
(

1 + ‖x‖3 + ‖x′‖3
)
‖x− x′‖.

Then, under Assumptions (A) to (I) and for 0 ≤ k ≤ K:

(CLTk) :

{√
N
(
πNk [f ]− πk[f ]

) D−→ N (0,Vπk [f ]),
√
N
(
ZNk − Zk

) D−→ N (0,Vγk [1]).

Vγk [f ] and Vπk [f ] are defined recursively with Vγ0 [f ] =
Varπ0

[f ] and

Vγk [f ] = Vinc
k [f ] + Vγk−1

[
Qk,T?k [f ]

]
,

Vπk [f ] = Z−2
k Vγk [f − πk[f ]],

where Qk,T (x, dy) := Gk,T (x)Kk(T (x),dy).
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The asymptotic variances Vγk and Vπk depend only on the
maps T ∗k and not on the local variations of the family T
around T ∗k . This is a consequence of the particular form of
the IS weights which provide an exact correction regardless
of the NF selected as summarized by the following identity:

πk[f ] =
πk−1[Qk,T [f ]]

πk−1[Gk,T ]
, ∀T ∈ T .

In the ideal case when T ?k are exact transport maps from
πk−1 to πk, the ESS resampling criterion ESSNk /N is al-
ways equal to 1 and thus resampling is never triggered.
Moreover, a direct computation shows that the asymptotic
variance Vπk [f ] is exactly equal to Varπk [f ]. This illustrates
the benefit of introducing NFs to improve SMC. A proof is
provided in Appendix C.4 along with a similar result (The-
orem 5) for Algorithm 2.

5. Continuous-time scaling limit
We consider the setting where πk arise from the time-
discretization of a continuous-time path (Πt)[0,1] of den-
sities connecting π0 to π; i.e. πk is of the form πk = Πtk

with tk = kλ and λ = 1
K . We write Vt(x) and Zt to denote

the potential and unknown normalizing constant of Πt and
Γt(x) = exp(−Vt(x)). We are here interested in identi-
fying the “population” behavior of AFT (i.e. N → ∞) as
λ → 0 when ULA kernels are used and no resampling is
performed as in AIS. To simplify the analysis, we further
consider in this Section the ideal situation where Tk is an
exact minimizer of the population lossLk. Rigorous proofs
of the results discussed here can be found in Appendix E.

5.1. Settings

Without resampling, the population version of AFT be-
haves as a sequential IS algorithm as defined in Section 2.1
where it is possible to collapse the transport step and mu-
tation step into one single Markov kernel Mk(x, x′) =
Kk(Tk(x), x′). Similarly we can collapse the correspond-
ing backward kernels and the resulting extended target dis-
tributions π̄k are still given by (5) with modified IS weights

wk(x0:k) =

k∏
l=1

γl(xl)

γlKl(xl)︸ ︷︷ ︸
rk(x1:k)

k∏
l=1

Gl,Tl(xl−1), (11)

where rk(x1:k) = 1 for πl-invariant MCMC kernels Kl as
used in Algorithm 1; see Appendix B.2 for a derivation. To
ensure that the laws η̄k and π̄k of the Markov chain X0:k

converge to some continuous-time limits, Kk are chosen
to be ULA kernels3; i.e. Kk(x, x′) is a Gaussian density

3The random walk MH algorithm also admits a Langevin dif-
fusion as scaling limit when λ → 0 (Gelfand and Mitter, 1991;
Choi, 2019) but the technical analysis is much more involved.

in x′ with mean x − λVk(x) and covariance 2λI . In this
case, γkKk(x) =

∫
γk(y)Kk(y, x) dy is intractable and so

is rk(x1:k). This is not an issue as we are only interested
here in identifying the theoretical scaling limit. To ensure
η̄k and π̄k admit a limit, we also consider NFs of the form:

T (x) = x+ λAθ(x),

where (θ, x) 7→ Aθ(x) is from Θ × X to X and Θ is a
compact parameter space. The continuous-time analogues
of NFs sequences (Tk)k∈{1,...,K} are represented by a set
A of time-dependent controls of the form αt(x) = Aθt(x),
where t 7→ θt is a 1-Lipschitz trajectory in Θ. To any con-
trol α corresponds an NFs sequence (Tk)k∈{1,...,K} defined
by Tk(x) = x+ λαtk(x).

5.2. Continuous-time limits

Limiting forward process. Using a similar approach to
(Dalalyan, 2017), the Markov chain X0:K under η̄K con-
verges towards a stochastic process X[0,1] defined by the
following Stochastic Differential Equation (SDE)

dXt = (αt(Xt)−∇Vt(Xt)) dt+
√

2 dBt, (12)

where X0 ∼ π0 and (Bt)t≥0 is a standard Brownian mo-
tion. We denote by Λ̄αt the joint distribution of this process
up to time t and by Λαt its marginal at time t.

Limiting weights. The weight wK(X0:K) in (11) is such
that rK(X1:K) → 1 as the invariant distribution of the
ULA kernel Kk converges to πk when λ → 0 while the
logarithm of the product of Gl,Tl(Xl−1) is a Riemann sum
whose limiting value is the following integral:

K∑
l=1

log(Gl,Tl(Xl−1)) −−−→
λ→0

∫ 1

0

gαs (Xs) ds,

with X[0,1] defined in (12) and gαt (x) being the dominating
term in the Taylor expansion of log(Gl,Tl(x)) w.r.t. time:

gαt (x) = ∇ · αt(x)−∇xVt(x)>αt(x)− ∂tVt(x).

The limit of IS weights wk(X0:k) is thus identified as

wαt (X[0,t]) = exp

(∫ t

0

gαs (Xs) ds

)
.

In the context of non-equilibrium dynamics, gαt (x) is
known as instantaneous work (Rousset and Stoltz, 2006)
and is constant in the ideal case where Πt = Λαt .

Limiting objective. To identify a non-trivial limiting
loss, we consider the following aggregation of all Lk(Tk)

Ltotλ (α) := λ−1
K∑
k=1

Lk(Tk). (13)
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The next result shows that (13) converges towards a non-
trivial lossM(α) as λ→ 0 under three assumptions stated
in Appendix E.2: (a) and (b) on the smoothness of Vt(x)
and Aθ(x) and (c) on the moments of Πt.

Proposition 1. Under Assumptions (a) to (c), for λ small
enough, it holds that for all α ∈ A∣∣Ltotλ (α)−M(α)

∣∣ ≤ λC,
where C is independent of λ and

M(α) =
1

2

∫ 1

0

(
Πt

[
(gαt )

2
]
−Πt[g

α
t ]

2
)

dt. (14)

The optimal NFs (Tk)1:K are thus expected to converge
towards some α? minimizingM(α) over A as made pre-
cise in Proposition 29 of Appendix E.6. Moreover when
the class of NFs is expressive, i.e. A is rich enough, then
M(α?) = 0 and thus gαt are constant and α? satisfies the
Partial Differential Equation (PDE)

0 = ∇ · α?t (x)−∇xVt(x)>α?t (x)− ∂tVt(x) + Πt[∂tVt].

This PDE has appeared, among others, in Lelièvre et al.
(2010, pp. 273–275) and (Vaikuntanathan and Jarzynski,
2008; Reich, 2011; Heng et al., 2021). Its solution defines
a deterministic flow α?t that transports mass along the path
(Πα

t )[0,1]; i.e. if Xt is a solution to an ODE of the form
Ẋt = α?t (Xt) with initial values X0 ∼ Π0, then Xt ∼ Πt.

Feynman–Kac measure. Given a control α, we consider
the Feynman–Kac measure Πt defined for any bounded
continuous functional f of the process X[0,t] in (12)

Π
α

t [f ] =
Λ
α

t [wαt f ]

Λ
α

t [wαt ]
. (15)

By a similar argument as in (Rousset and Stoltz, 2006), we
show in Proposition 22 of Appendix E.3 that Π

α

t admits Πt

as a marginal at time t regardless of the choice of α. Using
the optimal control α? in (12) and (15) gives rise to Λ

?
and

Π
?

t which are equal whenM(α?) = 0. Next, we show that
Π
?

t is the scaling limit of πk.

5.3. Convergence to the continuous-time limit

As the measures πk and Π
?

t are defined on different spaces,
we construct a sequence of interpolating measures Π̄λ

t de-
fined over the same space as Π̄?

t and whose marginal at
the joint times {t0, ..., tK} is exactly equal to π̄k; see
Appendix E.1 for details. Theorem 3 provides a conver-
gence rate for the interpolating measures Π̄λ

t towards Π
?

t as
λ → 0, thus establishing Π

?

t as the scaling limit of πk; see
Appendix E.6 for the proof.

Theorem 3. Under Assumptions (a) to (g), then for λ small
enough there exists a finite C such that for any t ∈ [0, 1]:

KL(Π̄?
t ||Π̄λ

t ) ≤ C
√
λ.

This result relies on Assumptions (d) to (g) in addition
to Assumptions (a) to (c) which are also stated in Ap-
pendix E.2. (d) strengthens assumption (c) on the moments
of Πt. (e) guarantees the existence of a solution α? in A
minimizingM and controls the local behavior ofM near
α?. (f) guarantees the existence of solutions αλ in A min-
imizing Ltotλ (α) for any λ = 1

K . Finally, (g) ensures the
optimal control α? induces bounded IS weights.

6. Applications
In this section we detail the practical implementation of
AFT and empirically investigate performance against rel-
evant baselines.

As discussed in Section 3.3, we use three sets of particles-
‘train, test and validation’ which improves robustness,
avoids overfitting the flow to the particles and gives unbi-
ased estimates of Z when using the test set. We initialize
our flows to the identity for the optimization at each time
step. Algorithm 2, in the supplement gives a summary.

We concentrate our empirical value evaluation on the learnt
flow, which is equivalent to using the test set particles. The
learnt flow is of interest in deploying an efficient sampler
on large scale distributed parallel compute resources. It is
also of interest for inclusion as a subroutine in a larger sys-
tem. Since modern hardware enables us to do large com-
putations in parallel, the computation is dominated by algo-
rithmic steps that are necessarily done serially, particularly
repeat applications of the Markov kernel (Lee et al., 2010).

As our primary, strong, baseline for AFT, we use a stan-
dard instance of SMC samplers (Del Moral et al., 2006;
Zhou et al., 2016) which corresponds to AIS with adaptive
resampling and is also known as population annealing in
physics (Hukushima and Iba, 2003; Barash et al., 2017).
As observed many times in the literature and in our experi-
ments, SMC estimates are of lower variance than AIS esti-
mates. This SMC baseline is closely related to AFT since it
corresponds to using AFT with an identity transformation
Tk(x) = x instead of a learnt flow.

We largely use the number of transitions K as a proxy for
compute time. This is valid when the cost of evaluating
the flow is modest relative to that of the other algorithmic
steps, as it is for the trained flows in all non-trivial cases
we consider. We only consider flows of no more than a few
layers per transition, but deeper flows could start to form an
appreciable part of the serial computation. In some cases,
we use variational inference (VI) as a measure of behaviour
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without MCMC. In this case, evaluation time is not com-
parable and faster. Since we concentrate on trained flows,
we do not evaluate training time in the benchmarks con-
sidered, though fast training of AFT could be of interest
in further work. Both SMC and AFT use the same Markov
kernelsKk, using HMC except where otherwise stated. We
tune the step size to have a reasonable acceptance probabil-
ity based on preliminary runs of SMC using a modest K.
Then for larger K experiments, we linearly interpolate the
step sizes chosen on the preliminary runs. We always use
a linearly spaced geometric schedule and the initial distri-
bution is always a multivariate standard normal. We repeat
experiments 100 times. Further experimental details may
be found in Appendix G. We plan to make the code avail-
able within https://github.com/deepmind.

6.1. Illustrative example

We start with an easily visualized two dimensional target
density as shown in Figure 1. All sensible methods should
work in such a low dimensional case but it can still be in-
formative. We investigate two families of flows based on
rational quadratic splines (Durkan et al., 2019). The first
(termed AFTmf for mean field) operates on the two di-
mensions separately. The second family (denoted AFT in
Figure 1) adds dependence to the splines using inverse au-
toregressive flows (Kingma et al., 2016). Figure 1 shows
weighted samples from AFT as we anneal from a standard
normal distribution. Figure 2 (a) shows that AFT reduces
the variance of the normalizing constant estimator relative
to SMC. Conversely, we see that AFTmf actually increases
the variance relative to SMC for small numbers of transi-
tions. Since the factorized approximation cannot model the
dependence of variables the optimum of the KL underesti-
mates the variance of the target. Later, in Sections 6.3 and
6.4, we discuss examples where even a simple NF leads to
an improvement for a modest number of transitions.

Figure 1: Weighted samples for a 2-D target density with
AFT. The colours show the normalized weights which are
clipped at the 95th percentile for clarity. The final samples
are visually indistinguishable from the target.

6.2. Funnel distribution

We next evaluate the performance of the method on Neal’s
ten-dimensional ‘funnel’ distribution (Neal, 2003):

x0 ∼ N (0, σ2
f ), x1:9|x0 ∼ N (0, exp(x0)I).

Figure 2: Results from the four different examples. Cyan
lines denote gold standard values of the log normalizing
constant. In (c) and (d) green horizontal lines denote the
median value for an importance sampling estimate based
on variational inference. Note that in (d) the small AFT
error bars can make it difficult to see - it can be found next
to the gold standard value in each case.

https://github.com/deepmind
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Here, σ2
f = 9. Many MCMC methods find this example

challenging because there is a variety of length scales de-
pending on the value of x0 and because marginally x1:9 has
heavy tails. We use here slice sampling instead of HMC
for the Markov kernels as recommended in (Neal, 2003).
For each flow we use an affine inverse autoregressive flow
(Kingma et al., 2016). In this example, we also compare
against VI (Rezende et al., 2014) which uses the same num-
ber of flows. We then apply a simple importance correc-
tion to the VI samples to give an unbiased estimate of the
normalizing constant. Figure 2 (b) shows the results. We
see that for small number of flows/transitions VI performs
best, followed by AFT. However, VI shows little further
improvement with additional flows and in this regime AFT,
SMC and VI perform similarly.

6.3. Variational Autoencoder latent space

For our next example, we trained a variational autoencoder
(Kingma and Welling, 2014; Rezende et al., 2014) with
convolution on the binarized MNIST dataset (Salakhutdi-
nov and Murray, 2008) and a normal encoder distribution
with diagonal covariance. Using the fixed, trained, genera-
tive decoder network we investigated the quality of normal-
izing constant estimation which in this case corresponds to
the likelihood of a data point with the distribution over the
30 latent variables marginalized out (Wu et al., 2017).

Using long run SMC on the 10000 point test set we es-
timate that the hold out log-likelihood per data point for
the network is -86.3. For each data point we also found
the optimal variational normal approximation with diago-
nal covariance rather than using the amortized variational
approximation. Using this optimal normal approximation
we investigated its variance when used as an importance
proposal for the likelihood. We estimate the mean abso-
lute error for the estimator across the test set was 0.6 nats
per data point which indicates that the VI is often perform-
ing well. There was a tail of digits where VI performed
relatively worse. Since these ‘difficult’ digits constituted a
more challenging inference problem, we used one of these,
with a VI/SMC error of 1.5 nats, to comparatively bench-
mark AFT in the detailed manner used in our other exam-
ples.

For the AFT flow we used an affine transformation with
diagonal linear transformation matrix. The baseline VI ap-
proximation can be thought of the pushforward of a stan-
dard normal through this ‘diagonal affine’ flow. Note that
since diagonal affine transformations are closed under com-
position there would obtain no additional expressiveness in
the baseline VI approximation from adding more of them.

Figure 2 (c) shows the results for this example. Both AFT
and SMC reduce in variance as the number of temperatures
increases and exceed the performance of the variational

baseline. AFT has a notably lower variance than SMC for
10 and 30 temperatures- which shows the incorporation of
the flows is beneficial in this case. Results for other diffi-
cult digits are shown in the appendix where the qualitative
trend is similar.

6.4. Log Gaussian Cox process

We evaluate here the performance of AFT for estimating
the normalizing constant of a log Gaussian Cox process ap-
plied to modelling the positions of pine saplings in Finland
(Møller et al., 1998). We consider points on a discretized
d = M ×M = 1600 grid. This results in the target density

γ(x) = N (x;µ,K)
∏

i∈[1:M ]2

exp(xiyi − a exp(xi)).

This challenging high-dimensional problem is a commonly
used benchmark in the SMC literature (Heng et al., 2020;
Buchholz et al., 2021). The mean and covariance function
match those estimated by (Møller et al., 1998) and are de-
tailed in the Appendix. The supplement also discusses the
effect of pre-conditioners on the mixing of the Markov ker-
nel. For the NF we again used the diagonal affine transfor-
mation. The approximating family is the push forward of
the previous target distribution and thus even a simple flow
can result in a good approximation. It is also fast to evalu-
ate. Figure 2 (d) shows that the baseline VI approximation
is unable to capture the posterior correlation and that AFT
gives significantly more accurate results than SMC for a
given number of transitions. As such, the Markov kernel
and flow complement each other in this case.

7. Conclusion
We proposed Annealed Flow Transport which combines
SMC samplers and normalizing flows. We studied its
asymptotic behavior and showed the benefit of introducing
learned flows to reduce the asymptotic variance. We iden-
tified the scaling limit of AFT as a controlled Feynman–
Kac measure whose optimal control solved a flow trans-
port problem in an idealized setting. Empirically we found
multiple cases where trained AFT gave lower variance esti-
mates than SMC for the same number of transitions, show-
ing that we can combine the advantages of both SMC and
normalizing flows. We believe AFT will be particularly
useful in scenarios where it is both difficult to design fast
mixing MCMC kernels and very good flows so that neither
SMC nor VI provide low variance estimates.
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A. Using measure-theoretic notation
The Markov transition kernel Mk is defined as a map Mk : X × B(X ) → [0, 1] where B(X ) are the Borel sets, Lk−1 is
defined similarly. The joint distribution of the non-homogeneous Markov chain of initial distributionX0 ∼ π0 and Markov
transition kernel Xl ∼Ml(Xl−1, ·) at time l is given at time k by

η̄k(dx0:k) = π0(dx0)

k∏
l=1

Ml(xl−1,dxl).

SMC samplers rely on the following target distribution of the form

π̄k(dx0:k) = πk(dxk)

k−1∏
l=0

Ll(xl+1,dxl),

and γk(dx0:k) = Zkπ̄k(dx0:k). When πl(dx′)Ll−1(x′,dx) is absolutely continuous w.r.t. πl(dx)Ml(x, dx
′), then we can

define its Radon-Nikodym derivative and the incremental importance weight Gl through

Gl(xl−1, xl) =
Zl
Zl−1

πl(dxl)Ll−1(xl,dxl−1)

πl−1(dxl−1)Ml(xl−1,dxl)
=

γl(dxl)Ll−1(xl,dxl−1)

γl−1(dxl−1)Ml(xl−1,dxl)
.

If Gl is defined for l = 1, ..., k, then π̄k is absolutely continuous w.r.t. η̄k so we can write

π̄k[f ] =
η̄k[wkf ]

η̄k[wk]
, where wk(x0:k) = Zk

dπ̄k
dη̄k

(x0:k) =
dγ̄k
dη̄k

(x0:k) =

k∏
l=1

Gl(xl−1, xl).

If Mk is πk-invariant then (Crooks, 1998; Neal, 2001) select Lk−1 at the reversal of Mk, that is the kernel satisfying
πk(dx)Mk(x,dx′) = πk(dx′)Lk−1(x′,dx) and in this case

Gl(xl−1, xl) =
Zl
Zl−1

dπl
dπl−1

(xl−1) =
dγl

dγl−1
(xl−1).

B. Extended proposal and target of AFT algorithm
In this section, assuming the transport maps Tk are here fixed, we write explicitly the extended proposal and target distri-
butions used implicitly by the AFT algorithm if no resampling was used.

B.1. Non-collapsed version

In this case, we sampleX0 ∼ π0(·) at k = 0 then use X̃k = Tk(Xk−1) followed byXk = Kk(X̃k, ·) at time k ≥ 1. Hence,
using the notation M trans

l (x, x′) = δTl(x)(x
′) and Mmut

l (x, x′) = Kl(x, x
′), the proposal at time k after the transport step

is of the form

η̄k(x0:k−1, x̃1:k) = π0(x0)

(
k−1∏
l=1

M trans
l (xl−1, x̃l)M

mut
l (x̃l, xl)

)
M trans
k (xk−1, x̃k),

and the target is

π̄k(x0:k−1, x̃1:k) = πk(x̃k)Ltrans
k−1(x̃k, xk−1)

(
k−2∏
l=0

Lmut
l (xl+1, x̃l+1)Ltrans

l (x̃l+1, xl)

)
,

where Ltrans
l−1 (x, x′) = δT−1

l (x)(x
′) and Lmul

l−1(x, x′) = πl(x
′)Mmul

l (x′, x)/πl(x). After the mutation step at time k, the
proposal is

η̄k(x0:k, x̃1:k) = η̄k(x0:k−1, x̃1:k)Mmut
k (x̃k, xk) = π0(x0)

(
k∏
l=1

M trans
l (xl−1, x̃l)M

mut
l (x̃l, xl)

)
.
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and the target is

π̄k(x0:k, x̃1:k) = πk(xk)

(
k−1∏
l=0

Lmut
l (xl+1, x̃l+1)Ltrans

l (x̃l+1, xl)

)
.

Hence the incremental weight after a transport term at time k is of the form

π̄k(x0:k−1, x̃1:k)

η̄k(x0:k−1, x̃1:k)
=
π̄k−1(x0:k−1, x̃1:k−1)

η̄k−1(x0:k−1, x̃1:k−1)

πk(x̃k)Ltrans
k−1(x̃k, xk−1)

πk−1(x̃k−1)M trans
k (xk−1, x̃k)︸ ︷︷ ︸

incremental weight=
Zk−1
Zk

Gk,Tk (xk−1)

,

while after the mutation step it is of the form

π̄k(x0:k, x̃1:k)

η̄k(x0:k, x̃1:k)
=
π̄k(x0:k−1, x̃1:k)

η̄k(x0:k−1, x̃1:k)

πk(xk)Lmul
k−1(xk, x̃k)

πk(x̃k)Mmul
k (x̃k, xk)︸ ︷︷ ︸

incremental weight=1

.

B.2. Collapsed version

When no resampling is used, there is no use for the introduction of the random variables X̃1:k in the previous derivation
and they can be integrated out. In this case, we collapse the transport step and mutation step into one single Markov kernel

M col
k (x, x′) =

∫
M trans
k (x, x̃)Mmut

k (x̃, x′) dx̃ (16)

=

∫
δTk(x)(x̃)Kk(x̃, x′) dx̃

= Kk(Tk(x), x′).

Similarly we collapse the backward kernels used to defined the extended target distributions π̄k

Lcol
k−1(x, x′) =

∫
πk(x̃)Kk(x̃, x)

πkKk(x)
δT−1
k (x̃)(x

′) dx̃ (17)

=
πk(Tk(x′))|∇Tk(x′)|Kk(Tk(x′), x)

πkKk(x)
.

Contrary to Appendix B.1, we consider the more general scenario here where Kk might not be πk invariant discussed in
Section 5. From (16) and (17), π̄k is thus given by (5) for

wk(x0:k) =

k∏
l=1

γl(xl)

γlKl(xl)︸ ︷︷ ︸
rk(x1:k)

k∏
l=1

Gl,Tl(xl−1),

where rk(x1:k) = 1 for πl-invariant MCMC kernels Kl as used in Algorithm 1.

C. Proof of the asymptotic results
We consider the unnormalized empirical measure γNk defined as:

γNk = ZNk π
N
k .

We will provide the consistency and CLT results for both γNk [f ] and πNk [f ] which imply the results on the normalizing
constant ZNk as ZNk = γNk [1]. We denote by FNk the filtration generated by the particles Xi

k and the NFs Tk+1 up to time
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k and write Ek[f ] = E[f |FNk ]. This accounts for possible randomness coming from the optimization of the NFs. We also
consider Cp the class of continuous functions f on X with growth in x of at most p, for some non-negative integer p, i.e.

Cp(C) = {f : X → R | f is continuous and ∀x ∈ X : ‖f(x)‖ ≤ C(1 + ‖x‖p)}.

In addition, we denote by LCp the class of functions in Cp that are locally Lipschitz and with local Lipschitz constant
satisfying a growth condition:

LCp(C) =
{
f ∈ Cp(C) | ∀x, x′ ∈ X : ‖f(x)− f(x′)‖ ≤ C

(
1 + ‖x‖p+1

+ ‖x′‖p+1
)
‖x− x′‖

}
.

For ease of notation we also introduce the unnormalized transition kernel Qk,T which acts on functions f by:

Qk,T [f ](x) := Gk,T (x)

∫
f(y)Kk(T (x),dy).

Moreover, we overload the notation and write Lk(θ) := Lk(τθ) and LNk (θ) := LNk (τθ).

C.1. Assumptions

The following assumptions are needed for both Theorems 1 and 2.

(A) The Markov kernel Kk preserves the class Cp for any p, meaning that Kk(f) ∈ Cp whenever f in Cp.

(B) πk admits 8th order moments.

(C) The normalizing flows in T are of the form T (x) = τθ(x) where θ is a finite dimensional vector in a compact convex
set Θ. Moreover, the maps x 7→ τθ(x) are L-Lipschitz and jointly continuous in x and θ.

(D) The importance weights Gk,T (x) are uniformly bounded over x and T .

In addition to the previous assumptions, we will need additional assumptions for the CLT result in Theorem 2. First, we
strengthen Assumption (A)

(E) The Markov kernel Kk preserves the class LCp for any p, i.e. Kk(f) ∈ Cp for any f in LCp.

We then make additional assumptions on the smoothness of the potentials Vk and the parameterization of the normalizing
flows τθ:

(F) The flow (θ, x) 7→ τθ(x) admits derivatives ∇θτθ(x), ∂θi∂xlτθ(x) and ∂θi∂θj∂xlτθ(x), Hxτθ(x) with at most linear
growth in x uniformly in θ. Moreover, all singular values of∇xτθ(x) are lower-bounded by a positive constant c > 0
uniformly in x and θ.

(G) The potentials are twice continuously differentiable and their gradients are L-Lipchitz, i.e. ‖∇Vk(x) −∇Vk(x′)‖ ≤
L‖x− x′‖.

Finally, we make two assumptions on the algorithm used to find θNk . We denote by Θ?
k the set of local minimizers of the

population loss θ 7→ Lk(θ).

(H) The estimator θNk satisfies:

∇LNk (θNk ) = oP(1),

HLNk (θNk ) ≥ oP(1).

(I) There exists a local minimizer θ?k ∈ Θ?
k of the population loss Lk(θ) such that

P
[
θ?k ∈ arg min

θ∈Θ?k

∥∥θNk − θ∥∥]→ 1.
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Assumption (H) states that the algorithm finds an approximate local minimizer of the empirical loss LNk (θ). This condition
depends only on how well the algorithm is able to find a local optimum of the empirical loss accurately. In the ideal case
where θNk is an exact local minimizer of LNk (θ), then the condition holds by definition. Assumption (I) states that as N
increases θNk remains within the basin of attraction of a single local optimum θ?k and does not jump between different
solutions. For instance, in the case of gradient descent, this assumption can be satisfied if the algorithm starts from the
same initial (θk)0 for all values of N and is iterated to obtain an estimator θNk . Hence, as N increases the empirical loss
will have the same basins of attraction as the population loss and the choice of the solution θ?k is determined only by the
initial condition (θk)0.

C.2. Kernels satisfying Assumptions (A) and (E)

Here we provide examples of generic transition kernels Kk that satisfy Assumptions (A) and (E). In Appendix C.2.1, we
show that the kernel used in the Unadjusted Langevin Algorithm (ULA kernel) satisfies Assumptions (A) and (E) under
mild assumptions on πk. While this kernel is not exactly invariant w.r.t. πk, we will use it in Appendix C.2.2 to construct
a kernel invariant w.r.t. πk and satisfying Assumptions (A) and (E).

C.2.1. UNADJUSTED LANGEVIN KERNEL

We consider a slightly generalized version of the ULA kernel whose density g(x, y) is given by:

g(x, y) ∝ exp

(
− 1

4τ
‖y − x− ατ∇ log πk(x)‖2

)
, (18)

with 0 ≤ α ≤ 1 and τ > 0. When α = 0, one recovers the random walk kernel, while setting α = 1 gives back the ULA
kernel with discretization step-size τ .

Proposition 2. Under Assumption (G), the density g(x, y) in (18) satisfies

‖∇x log g(x, y)‖ . (1 + ‖y‖+ ‖x‖), ‖∇y log g(x, y)‖ . (1 + ‖y‖+ ‖x‖).

Moreover, the ULA kernel with density g(x, y) satisfies Assumptions (A) and (E).

Proof. The estimate in (21) is obtained by direct computation of the gradient of the logarithm of g(x, y)

‖∇xg(x, y)‖ =
1

τ

∥∥∥(y − x+ τα∇Vk(x))
>

(−I + ταHxVk(x))
∥∥∥

. (1 + ‖x‖+ ‖y‖),

where we used that ∇Vk(x) has at most a linear growth in x and HxVk(x) is bounded by Assumption (G). The second
assertion is obtained similarly by directly computing the gradient w.r.t y.

To show that the ULA kernel satisfies Assumption (A), consider a function f in Cp, we can then write after a change of
variables:

Kk(f)(x) =

∫
f(y + x− τα∇Vk(x))N (y, 0, 2τI) dy

.
∫
‖y‖pN (y, 0, 2τI) dy + ‖x‖p + (τα)p‖∇Vk(x)‖ . (1 + ‖x‖p),

where we get the last inequality by Assumption (G). It is easy to see that x 7→ K(f)(x) is continuous by smoothing with a
Gaussian and recalling that∇Vk(x) is continuous. Hence, we can conclude that K(f) ∈ Cp. To show that Assumption (E)
holds, we consider a function f in LCp and control the difference |Kk(f)(x)−Kk(f)(x′)|. For concision, we introduce
r(x, y) = y + x− τα∇Vk(x) and write:

|Kk(f)(x)−Kk(f)(x′)| ≤
∫
|f(r(x, y))− f(r(x′, y))|N (y, 0, 2τI) dy (19)

.
∫
‖r(x, y)− r(x′, y)‖

(
‖r(x, y)‖p+1

+ ‖r(x′, y)‖p+1
)
N (y, 0, 2τI) dy.
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Using Assumption (G), we clearly have:

‖r(x, y)‖ . (1 + ‖x‖+ ‖y‖), ‖r(x, y)− r(x′, y)‖ . (x− x′).

We get the desired result by using the previous bounds in (19) and using the convexity of the power function.

C.2.2. METROPOLIS–HASTINGS KERNEL

For a target density πk, we consider a Metropolis–Hasting kernel Kk(x, dy) of the form:

Kk(x, dy) = g(x, y)α(x, y) dy + δx(dy)

∫
(1− α(x, u))g(x, u) du, (20)

where g(x, y) is the density of a proposal kernel and α(x, y) is the acceptance ratio:

α(x, y) = min

(
1,
πk(y)g(y, x)

πk(x)g(x, y)

)
.

We are in particular interested in proposals g that satisfy the growth condition:

‖∇x log g(x, y)‖ . (1 + ‖x‖+ ‖y‖). (21)

By Proposition 2, the above condition is satisfied if g is a ULA kernel and if the potential Vk satisfies Assumption (G).

In the next proposition, we show that Assumptions (A) and (E) hold under mild assumptions on πk and when the proposal
g satisfies (21).

Proposition 3. Assume that Assumptions (B) and (G) hold for πk and that g satisfies Assumption (A) then the MH kernel
in (20) satisfies Assumption (A).

If, in addition, g satisfies the growth condition in (21), then the MH kernel in (20) satisfies Assumption (E).

Proof. For the first part of the proof, we consider a function f in Cp and write:

|Kk[f ](x)| =
∣∣∣∣f(x)

∫
(1− α(x, u))g(x, u) du+

∫
f(y)α(x, y)g(x, y) dy

∣∣∣∣
≤ |f(x)|+

∣∣∣∣∫ f(y)g(x, y) dy

∣∣∣∣,
where we used that 0 ≤ α(x, y) ≤ 1 to get the inequality. Since g satisfies Assumption (A) and f ∈ Cp we directly
conclude that:

|Kk[f ]| . 1 + ‖x‖p.

To prove the second part, consider a function f in LCp. We need to control the difference |Kk[f ](x)−Kk[f ](x′)|:

Kk[f ](x)−Kk[f ](x′) =f(x)− f(x′) +

∫
(f(y)− f(x))g(x, y)α(x, y) dy −

∫
(f(y)− f(x′))g(x′, y)α(x′, y) dy

= (f(x)− f(x′))

∫
g(x, y)α(x, y) dy︸ ︷︷ ︸

A

+

∫
(f(y)− f(x′))(g(x, y)− g(x′, y))α(x, y) dy︸ ︷︷ ︸

B

+

∫
(f(y)− f(x′))g(x′, y)(α(x, y)− α(x′, y)) dy︸ ︷︷ ︸

C

.
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We will control each term A, B and C independently. Since 0 ≤ α ≤ 1, and f ∈ LCp, we directly have |A| .(
1 + ‖x‖p+1

+ ‖x′‖p+1
)
‖x− x′‖. To control the second term B, we use the fundamental theorem of calculus which

yields

|g(x, y)− g(x′, y)| =
∣∣∣∣∫ 1

0

g(xt, y)∇x log g(xt, y)>(x− x′)
∣∣∣∣,

where xt := (1− t)x+ tx′. Since g satisfies (21) by assumption, we can directly write:

|g(x, y)− g(x′, y)| ≤ ‖x− x′‖
∫ 1

0

g(xt, y)(1 + ‖y‖+ ‖xt‖) dt.

Plugging the above inequality in B and using that f ∈ Cp yields:

|B| . ‖x− x′‖
∫ 1

0

∫ (
1 + ‖y‖p + ‖x′‖p

)
(1 + ‖y‖+ ‖xt‖)g(xt, y) dt.

Since g satisfies Assumption (A), we can directly conclude that |B| .
(

1 + ‖x‖p+1
+ ‖x′‖p+1

)
‖x− x′‖. Finally, to

control C, we first define the function b(x, y) = Vk(x)− Vk(y) + log g(y,x)
g(x,y) so that the acceptance ratio can be written as

α(x, y) = min
(
1, eb(x,y)

)
. Using Lemma 1, we directly have:

|α(x, y)− α(x′, y)| ≤ |b(x, y)− b(x′, y)|
≤ |Vk(x)− Vk(x′) + log g(y, x)− log g(y, x′) + log g(x′, y)− log g(x, y)|

≤
∣∣∣∣∫ 1

0

(∇Vk(xt) +∇y log g(y, xt)−∇x log g(xt, y))
>

(x− x′) dt

∣∣∣∣
. ‖x− x′‖

∫ 1

0

(1 + ‖xt‖+ ‖y‖) dt . ‖x− x′‖(1 + ‖x‖+ ‖x′‖+ ‖y‖).

We can therefore use the above inequality to upper-bound |C| as follows

|C| . ‖x− x′‖
∫

(|f(x′)|+ |f(y)|)(1 + ‖x‖+ ‖x′‖+ ‖y‖)g(x′, y) dy

. ‖x− x′‖(1 + ‖x‖+ ‖x′‖),

where we used that f belongs to LCp and thus to Cp.

Lemma 1. The following holds for any a, a′ in R:∣∣∣min (1, ea)−min
(

1, ea
′
)∣∣∣ ≤ |a− a′|

Proof. Fix a and a′ in R. We distinguish 4 cases:

Case 1: a ≤ 0 and a′ ≤ 0.∣∣∣min (1, ea)−min
(

1, ea
′
)∣∣∣ =

∣∣∣ea − ea′ ∣∣∣ = |a− a′|
∫ 1

0

e(1−t)a+ta′ dt

≤ max
(
ea, ea

′
)
|a− a′| ≤ |a− a′|

where we used that ea ≤ 1 and ea
′ ≤ 1.

• Case 2: a ≥ 0 and a′ ≥ 0
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We directly have
∣∣∣min (1, ea)−min

(
1, ea

′
)∣∣∣ = |1− 1| = 0 ≤ |a− a′|.

Case 3: a ≤ 0 and a′ ≥ 0. ∣∣∣min (1, ea)−min
(

1, ea
′
)∣∣∣ = |ea − 1| = |a|

∫ 1

0

eta dt

Recalling that a ≤ 0 we have eta ≤ 1 and |a| = −a. Moreover, since a′ ≥ 0 we can write∣∣∣min (1, ea)−min
(

1, ea
′
)∣∣∣ ≤ −a ≤ a′ − a = |a′ − a|

Case 4: a′ ≤ 0 and a ≥ 0. This case is the same as case 3 by switching the roles of a and a′.

C.3. Weak law of large numbers

For simplicity, we provide a proof of Appendix C.3 when resampling is performed at each step. This can easily be
extended to adaptive resampling using techniques from (Douc and Moulines, 2008; Del Moral et al., 2012b). We denote
by P−→ convergence in probability.

Proof. of Theorem 1. We proceed by induction. The result clearly holds for k = 0 by the regular law of large numbers.
By induction, we assume Rl holds for 0 ≤ l ≤ k − 1 and we will prove that Rk holds as well. Let f be a function in C4.
We use the decomposition πNk [f ]− πk[f ] = AN +BN with:

AN = πNk [f ]− Ek−1[πNk [f ]],

BN = Ek−1[πNk [f ]]− πk[f ].

Propositions 4 and 5 show that both AN and BN converge in probability to 0 and imply that πNk [f ] − πk[f ]
P−→ 0. It

remains to show that γNk [f ] − γk[f ]
P−→ 0. We recall that γNk [f ] = γNk [1]πNk [f ] and γk[f ] = γk[1]πk[f ]. Thus we

only need to show that γNk [1] − γk[1]
P−→ 0. Recall that γNk [1] =

∏k
l=1 π

N
l−1[Gl,Tl ] and by Proposition 4 we know that

πNl−1[Gl,Tl ]
P−→ Zl

Zl−1
, thus we directly have γNk [1]

P−→
∏k
l=1

Zl
Zl−1

= Zk
Z0

. This directly implies γNk [1]
P−→ Zk

Z0
= γk[1] since

Z0 = 1 by construction. Finally, we conclude that γNk [f ]− γk[f ]
P−→ 0 using Slutsky’s lemma.

Theorem 4 (Weak law of large numbers for Algorithm 2). Let f be a function s.t. |f(x)| ≤ C(1 + ‖x‖4) for all x ∈ X
and for some C > 0. Under Assumptions (A) to (D) and for any k ∈ 0, ...,K:

(Rk) : πNtest
k [f ]

P−→ πk[f ], ZNtest,test
k

P−→ Zk,

where πNtest
k and ZNtest,test

k are given by Algorithm 2.

Proof. The proof is a direct consequence of consistency of SMC samplers (Chopin, 2004; Del Moral, 2004). Indeed, the
test particles

{
Xi,test
k

}
1:N

are independent from the train and validation particles
{
Xi,train
k

}
1:N

and
{
Xi,val
k

}
1:N

used to

learn the flows Tk. Moreover, by Proposition 6, the importance weights wi,test
k correct exactly for the discrepancy between

πk and (Tk)#πk−1. Hence, knowing the train and validation particles, Algorithm 2 is a standard SMC sampler with
Markov transition kernel given by Mk(x, .) = (Tk)#Kk(x, .). Therefore consistency holds and ZNtest,test

k is an unbiased
estimator of Zk.

Proposition 4. Under Assumptions (A) to (D) and whenever the recursion assumption Rk−1 holds for a given k > 0, it
also holds that

BN := Ek−1

[
πNk [f ]

]
− πk[f ]

P−→ 0, πNk−1[Gk,Tk ]
P−→ Zk

Zk−1
,

for all functions f in C4.
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Proof. We use the following decomposition for BN = B
(1)
N +B

(2)
N +B

(3)
N +B

(4)
N :

B
(1)
N :=

1

πNk−1[Gk,Tk ]

(
πk−1[Qk,Tk [f ]]− πk−1

[
Qk,T?k [f ]

])
,

B
(2)
N :=

πk−1

[
Qk,T?k [f ]

]
πNk−1[Gk,Tk ]πk−1

[
Gk,T?k

](πk−1

[
Gk,T?k

]
− πk−1[Gk,Tk ]

)
,

B
(3)
N :=

1

πNk−1[Gk,Tk ]

(
πNk−1[Qk,Tk [f ]]− πk−1[Qk,Tk [f ]]

)
,

B
(4)
N :=

πk−1

[
Qk,T?k [f ]

]
πNk−1[Gk,Tk ]πk−1

[
Gk,T?k

](πk−1[Gk,Tk ]− πNk−1[Gk,Tk ]
)
.

Proposition 6 states that πk−1[Qk,T [f ]] is independent of the choice of T . Thus, the first two terms B(1)
N and B(2)

N are
exactly 0.

We know by Proposition 7 that Qk,T [f ](x) belongs to C4, uniformly over T . Moreover, the family F = (Qk,τθ [f ](x))θ∈Θ

is continuously indexed by the compact set Θ. We can therefore apply Proposition 9 under the recursion assumptionRk−1

to the family F . This ensures that

sup
T∈T

∣∣πNk−1[Qk,T [f ]]− πk−1[Qk,T [f ]]
∣∣ P−→ 0.

In particular, we have

πNk−1[Qk,Tk [f ]]− πk−1[Qk,Tk [f ]]
P−→ 0,

πNk−1[Gk,Tk ]− πk−1[Gk,Tk ]
P−→ 0,

where the last equation is obtained simply by choosing f = 1. This directly implies that B(3)
N and B(4)

N converge to 0 in
probability using Slutsky’s lemma.

Proposition 5. Under Assumptions (A) to (D) and whenever the recursion assumption Rk−1 holds for a given k > 0, it
holds that:

AN := πNk [f ]− Ek−1[πNk [f ]]
P−→ 0,

for all measurable functions f in Cp.

Proof. We will show that the characteristic function of AN denoted φAN (t) converges towards 1 for all t ∈ R. It is easy
to see that AN can be expressed as:

AN =
1

N

(
N∑
i=1

UN,i

)
, UN,i = f(Xi

k)− Ek−1[f(Xi
k)],

where, conditionally on FNk−1, the variables Xi
k are independent and identically distributed according to:

P
(
Xk ∈ dx

∣∣FNk−1

)
=

N∑
i=1

Gk,Tk
(
Xi
k−1

)∑N
j=1Gk,Tk

(
Xj
k−1

)Kk

(
Tk
(
Xi
k−1

)
,dx
)
.

Let us introduce the conditional characteristic function φ̂UN,1(t) knowing FNk−1 defined by:

φ̂UN,1(t) = Ek−1

[
eitUN,1

]
.

This allows to express φAN (t) in terms of φ̂UN,1(t) as φAN (t) = E[φ̂UN,1( tN )N ]. Thus, we only need to prove that

φ̂UN,1( tN )N
P−→ 1.
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We will rely on the following expression φ̂UN,1( tN ) = 1 + t
NEN ( tN ) with EN (u) :=

∫ 1

0
φ̂′UN,1(su) ds. We only need to

prove that EN ( tN )
P−→ 0 as N →∞. Let us introduce the families of functions indexed by u ∈ [−|t|, |t|]:

gu(x) =

∫ 1

0

eisuf(x) ds, ĝu =

∫ 1

0

e−isuEk−1[f(Xk)] ds, fu(x) = f(x)gu(x).

Using the dominated convergence theorem, we can further express EN (u) as follows:

EN (u) = iEk−1

[
UN,1

∫ 1

0

eisuUN,1 ds

]
= iEk−1[fu(Xk)]ĝu − iEk−1[f(Xk)]Ek−1[gu(Xk)]ĝu.

Each expectation is of the form Ek−1[h(Xk)] =
πNk−1[Qk,Tk [h]]

πNk−1[Gk,Tk ]
. Using the induction hypothesis Rk−1, and recalling that

each function fu, f and gu belongs to C4, it follows that each conditional expectation converges in probability towards
πk[fu], πk[f ] and πk[gu] while ĝu

P−→
∫ 1

0
e−isuπk[f ] ds. Moreover, using the fact that the functions gu and fu are continu-

ously indexed by u over the compact set [−|t|, |t|], we can apply Proposition 9 to ensure that convergence is uniform over
this set. This allows us to prove in particular that EN ( tN )

P−→ 0. We have shown so far that φ̂UN,1( tN ) = 1 + oP( tN ) which

allows to conclude that φ̂UN,1( tN )N
P−→ 1 as N →∞ and thus AN

P−→ 0.

Proposition 6. The following holds for any admissible T in T and function f such that Kk[f ](x) <∞ and πk[f ] <∞:

πk−1[Qk,T [f ]] =
Zk
Zk−1

πk[f ].

In particular, we have πk−1[Gk,T ] = Zk
Zk−1

.

Proof. For any admissible map T we have that:

πk−1[Qk−1,T [f ]] =
Zk
Zk−1

∫
πk(T (x))

πk−1(x)
|∇T (x)|

(∫
f(y)Kk(T (x),dy)

)
πk−1(x) dx

=
Zk
Zk−1

∫ ∫
πk(z)f(y)Kk(z,dy) dz

=
Zk
Zk−1

πk[f ].

The second line is obtained by a change of variables z = T (x) and using that Kk is invariant w.r.t πk. The last inequality
is obtained by choosing f = 1.

Proposition 7. Let f be a measurable function in Cp for 0 ≤ p ≤ 4. Then, under Assumptions (A), (C) and (D), the
function x 7→ Qk,T [f ](x) belongs to Cp uniformly over T . In other words, there exists a positive constant C > 0 such
that:

|Qk,T [f ](x)| ≤ C(1 + ‖x‖p), ∀x ∈ X ,∀T ∈ T .

Proof. By Assumption (A), we have that |Kk[f ](x)| ≤ C(1 + ‖x‖p). Moreover, using Assumption (C) we know that
T (x) has a linear growth in x, ‖T (x)‖ ≤ C ′(1 + ‖x‖) with the same constant C ′ for all T ∈ T . Therefore, there exists
a positive constant M > 0, such that |Kk[f ](T (x))| ≤ M(1 + ‖x‖p) for any T ∈ T and x ∈ X . Finally, we know by
Assumption (D) that Gk,T (x) is bounded uniformly over x and T . This allows us to conclude that Qk,T [f ] has the desired
growth in x which is uniform over T ∈ T .

Proposition 8. Let 1 ≤ p ≤ 4, C > 0 and F be a class of measurable functions in Cp(C) such that the bracketing number
N[](ε,F , L2(πk)) is finite for any ε > 0. Then under Assumption (B) and the recursion assumption Rk the following
uniform convergence holds in probability

sup
f∈F
|πNk [f ]− πk[f ]| P−→ 0.
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Proof. First consider the envelope F (x) := sups∈S |f(x)| which has a growth of at most p in x by assumption on F .
Moreover, F is πk-integrable by Assumption (B). Fix ε > 0. Since the bracketing number N[](ε,F , L1(πk)) is finite, there
exists finitely many ε-brackets ([li, ui])1≤i≤I whose union contains F and such that πk(ui − li) < ε for every i ∈ {1, I}.
Moreover, the functions li and ui can be chosen to have a growth of at most p in x, since F belongs to Cp(C). Hence, for
every f ∈ F , there is a bracket [li, ui] such that:(

πNk − πk
)
[f ] ≤

(
πNk − πk

)
[ui] + πk[ui − f ] ≤

(
πNk − πk

)
[ui] + ε.

Hence, we have:

sup
f∈F

(
πNk − πk

)
[f ] ≤ max

i

(
πNk − πk

)
[ui] + ε.

Since Rk holds and ui ∈ Cp(C), the right hand side converges in probability towards ε. Similarly, it is possible to show
that:

inf
f∈F

(
πNk − πk

)
[f ] ≥ min

i

(
πNk − πk

)
[li]− ε.

with r.h.s. converging towards −ε in probability. This allows us to conclude.

Proposition 9. Let F be a class of measurable functions in C4(C) for some C > 0:

|f(x)| ≤ C(1 + ‖x‖4), ∀x ∈ X , ∀f ∈ F .

Assume that F is continuously indexed by a compact set S, i.e. s 7→ fs(x) is continuous for any x ∈ X , where fs is
an element in F indexed by s ∈ S. Then under Assumption (B) and the recursion assumption Rk the following uniform
convergence holds in probability

sup
f∈F
|πNk [f ]− πk[f ]| P−→ 0.

Proof. First consider the envelope F (x) := sups∈S |fs(x)| which has a growth of at most 4 in x by assumption over the
class F . Moreover, F is πk-integrable by Assumption (B). Since F is continuously indexed by a compact set and has an
integrable envelope F w.r.t. πk, this implies that its bracketing number N[](ε,F , L1(πk)) is finite for every ε > 0 (Van der
Vaart, 2000, Example 19.8). We can directly apply Proposition 8 to get the desired result.

C.4. Proof of the central limit theorem

As shown in (Douc and Moulines, 2008, Theorem 10) and (Del Moral et al., 2012b, Section 6), the fluctuations of the SMC
sampler with adaptive resampling admit the same asymptotic variance as the ideal SMC sampler with resampling at the
optimal times in Kopt. Therefore, it is enough to prove this result for the case when resampling is triggered exactly at times
k in K.

Proof. of Theorem 2. We will proceed by induction. For k = 0, the samples (Xi
0)1≤i≤N are i.i.d. thus one can directly

apply the standard central limit theorem to show that the result holds at k = 0, i.e. we write CLT0 holds. By induction,
let us assume that CLTk−1 holds for some k > 0, we will then show that CLTk holds as well. Let f be a measurable
real-valued function over X with at most quadratic growth in x. For conciseness, we first define EN and FN

EN =
√
N
(
γNk [f ]− γk[f ]

)
, FN =

√
N
(
πNk [f ]− πk[f ]

)
.

We need to show that EN and FN converge to centered Gaussians with variances Vγk [f ] and Vπk [f ]. Starting with EN , we
use the decomposition EN = RN + PN with

PN := Ek−1[EN ], RN := EN − Ek−1[EN ]. (22)

Using the recursion assumption and Proposition 10, we can show that PN converges in distribution towards a cen-
tered Gaussian with variance Vγk−1[Qk,T? [f ]]. Moreover, by Propositions 12 and 13, we know that Ek−1[eitRN ]

P−→
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exp(− t
2

2 V
inc
k [f ]). This allows us to conclude that the characteristic function of EN converges pointwise to the character-

istic function of a centered Gaussian distribution with variance Vγk [f ]:

φEN (t) = E
[
eitPNEk−1

[
eitRN

]]
→ exp

(
− t

2

2
Vγk [f ]

)
,

where by definition Vγk [f ] = Vinc
k [f ] + Vγk−1[Qk,T? [f ]]. We can then conclude using Lévy continuity theorem that EN

converges in distribution towards a centered Gaussian with variance Vγk [f ] for any f with at most quadratic growth. For
FN , we can use the following identity:

FN =

√
N

γNk [1]

(
γNk − γk

)
[f − πk[f ]].

Recalling that γNk [1]
P−→ γk[1] by Theorem 1, we can directly conclude using Slutsky’s lemma that

FN
D−→ N (0,Vπk [f ])

where convergence is in distribution and where, by definition, Vπk [f ] =
Vγk [f−πk[f ]]

γk[1]2 . This concludes the proof.

Theorem 5 (Central limit theorem for Algorithm 2 ). Let f be a real valued function s.t. f(x) ≤ C(1 + ‖x‖2) for some
C > 0. Then, under Assumptions (A) to (G) and for any k ∈ 0, ...,K the same CLT result as in Theorem 2 holds when
using the particles produced by Algorithm 2 instead of Algorithm 1.

Proof. The proof proceeds by recursion exactly as in Theorem 2. The only difference is that the flow is estimated using
the training and validation particles instead of the test ones. This does not affect the proof by recursion since we condition
w.r.t. the sigma algebra Fk−1 generated by both test particles and by the flow at time k. We only need to make sure that
θNk produced by Algorithm 3 satisfies Assumptions (H) and (I).

First, the validation criterion LNvalk (θ) converges uniformly in θ in probability towards Lk and so does the training criterion
LNtraink (θ) by Proposition 9 . Hence, returning the flow with smallest validation error is asymptotically equivalent to
returning the flow with smallest training error as Nval and Ntrain increase. Moreover, since θNk is obtained by performing
gradient descent over LNtraink , the final iterate will be the one that minimizes LNtraink . Recalling now that gradient descent
converges to a local minimizer, it follows that Assumption (H) holds provided that the number of iterations J is large
enough as Ntrain and Nval increase.

Second, since the flows are all initialized to the identity for any number of particles and since both the training loss
and its gradient are uniformly converging in probability towards Lk(θ) and ∇θLk(θ) then the optimization trajectories
obtained using ∇θLNk (θ) also converge uniformly to the one obtained using ∇θLk(θ). Hence, for N large enough, θN is
approaching a single local minimizer θ?. Therefore Assumption (I) also holds.

Proposition 10. Let f be a function in C2. Under the induction assumption CLTk−1, we have that:

PN
D−→ N

(
0,Vγk−1[Qk,T? [f ]]

)
,

where PN is defined in (22).

We defer the proof of Proposition 10 to Appendix D.3 as it relies on asymptotic stochastic equicontinuity of a suitable
pocess which will be proven later in Appendix D.
Proposition 11. Assume that resampling is only performed at the ideal resampling times in K. For k /∈ K, denote by kp
the largest integer in K such that kp < k. Then, the importance weights W i

k are given by:

W i
k =

1

N

ZNkp
ZNk

wik,

with wik given by:

wik =

k∏
s=kp+1

Gs,Ts
(
Xi
s−1

)
.
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Proof. This is a simple consequence of the recursion expression of the IS weights and normalizing constants for k > kp:

W i
k =

W i
k−1

πNk−1[Gk,Tk ]
Gk,Tk(Xi

k−1),

ZNk = ZNk−1π
N
k−1[Gk,Tk ],

with W i
kp

= 1
N .

Proposition 12. Let f be a function in C2 and RN is defined in (22) and consider the conditional characteristic function

φ̂RN (t) = Ek−1[eitRN ].

Assume that resampling is not performed at iteration k and let kp be the largest integer in K such that resampling is
performed at time kp and kp < k. Recall the expression of the asymptotic incremental variance Vinck when k 6∈ K:

Vinc
k [f ] = Z2

kpπkp
[
E
[
Gk[f ]

∣∣Xkp

]]
,

with Gk[f ] := Kk

[
f2
]
(T ?k (Xk−1))−Kk[f ]

2
(T ?k (Xk−1)). Then, under the recursion assumption CLTk−1, we have:

φ̂RN (t)
P−→ exp

(
− t

2

2
Vinc
k [f ]

)
.

Proof. First, define UN,i :=
√
NZNk W

i
kf(Xi

k) and note that RN is expressed in term of UN,i as:

RN =

N∑
i=1

UN,i − Ek−1[UN,i].

We will use the same approach as in the proof of (Douc and Moulines, 2008, Theorem 2). For that purpose, we will show
the following equations hold

N∑
i=1

Ek−1

[
U2
N,i

]
− (Ek−1[UN,i])

2 P−→ Vinc
k [f ], (23)

N∑
i=1

Ek−1

[
U2
N,i1{|UN,i|≥ε}

] P−→ 0, for any ε > 0. (24)

The result will follow directly by application of (Douc and Moulines, 2008, Theorem A.3). Using the expression of W i
k

given by Proposition 11, we have that:

N∑
i=1

Ek−1

[
U2
N,i

]
=
(
ZNkp

)2 1

N

N∑
i=1

(
wik
)2
Kk

[
f2
](
Tk
(
Xi
k−1

)) P−→ Z2
kpπkp

[
E
[
(w?k)

2
Kk

[
f2
]
◦ T ?k

]]
N∑
i=1

Ek−1[UN,i]
2

=
(
ZNkp

)2 1

N

N∑
i=1

(
wik
)2(

Kk[f ]
(
Tk
(
Xi
k−1

)))2 P−→ Z2
kpπkp

[
E
[
(w?k)

2
(Kk[f ] ◦ T ?k )

2
]]
.

The above expressions are a result of the consistency of the particles trajectories Xi
kp:k−1 by the recursion assumption.

This shows (23). The proof of (24) is the same as in (Douc and Moulines, 2008, Theorem 2).

Proposition 13. Let f be a function in C2 and RN is defined in (22) and consider the conditional characteristic function

φ̂RN (t) = Ek−1[eitRN ].

Under the recursion assumption CLTk−1, and if resampling is performed at iteration k we have:

φ̂RN (t)
P−→ exp

(
− t

2

2
γk[1]2Varπk [f ]

)
.
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Proof. First note that RN is expressed as a sum of the form:

RN =
1√
N

N∑
i=1

BN,i, BN,i = γNk [1](UN,i − Ek−1[UN,i]),

where, conditionally on FNk−1, the variables (UN,i)1≤i≤N are independent and identically distributed as f(Xk) with:

P (Xk ∈ dx|FNk−1) =

N∑
i=1

Gk,Tk(Xi
k−1)∑N

j=1Gk,Tk(Xj
k−1)

Kk

(
Tk
(
Xi
k−1

)
,dx
)
.

Hence, we have that φ̂RN (t) = (φ̂BN,1( t√
N

))N . We will start by proving the following asymptotic decomposition for

φ̂BN,1 :

φ̂BN,1

(
t√
N

)
= 1− t2

2N
γ2
k[1]Varπk [f ] +

t2

N
oP(1).

Since BN,1 is centered conditionally on FNk−1 and admits a finite second-order moment, the function s 7→ φ̂BN,1(s) is
twice differentiable and satisfies φ̂BN,1(0) = 1 and φ̂

′

BN,1
(0) = 0. Moreover, by application of the dominated convergence

theorem, we have that
(
φ̂BN,1

)′′
(s) = −Ek−1

[
B2
N,1e

isBN,1
]
. We can therefore apply Lemma 2 to s 7→ φ̂BN,1(s) which

yields the identity:

φ̂BN,1(s) = 1 + s2

∫ 1

0

∫ 1

0

u
(
φ̂BN,1

)′′
(suv) dudv

= 1− s2

∫ 1

0

∫ 1

0

uEk−1

[
B2
N,1e

isuvBN,1
]

dudv.

Choosing s = t√
N

for a fixed t ∈ R, we have:

φ̂BN,1(s) = 1− t2

N

∫ 1

0

∫ 1

0

uEk−1

[
B2
N,1e

i t√
N
uvBN,1

]
dudv.

By Lemma 3 and for any s ∈ R, we know that Ek−1

[
B2
N,1e

isBN,1
]

converges in probability towards A∞(s) defined as:

A∞(s) := γ2
k[1]πk

[
(f − πk[f ])

2
eisγk[1](f−πk[f ])

]
.

Moreover, Lemma 3 also ensures this convergence to be uniform in s over the interval [−|t|, |t|]. Hence, we can write:

φ̂BN,1(s) = 1− t2

N

∫ 1

0

∫ 1

0

uA∞(
t√
N
uv) dudv +

t2

N
oP(1). (25)

By the dominated convergence theorem we know that A∞( t√
N
uv) −→

N
A∞(0) for any fixed t, u and v. Moreover, since

A∞ is bounded, we can apply the dominated convergence theorem a second time to conclude that:∫ 1

0

∫ 1

0

uA∞(
t√
N
uv) dudv −→

N

∫ 1

0

∫ 1

0

uA∞(0) dudv =
1

2
γ2
k[1]πk

[(
f2 − πk[f ]

2
)]
. (26)

Using (26) in (25), we have shown so far that:

φ̂BN,1(s) = 1− t2

2N
γ2
k[1]Varπk [f ] +

t2

N
oP(1).

Recalling that (1 + x
N + x

N o(1))N → ex as N →∞, we can therefore conclude that:

φ̂RN (t) = (φ̂BN,1(
t√
N

))N
P−→ exp

(
− t

2

2
γk[1]2Varπk [f ]

)
.

which is the desired result.
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Lemma 2. Let f : R→ C be a function that is twice differentiable and that f(0) = 0 and f ′(0) = 0. Then the following
identity holds:

f(s) = 1 + s2

∫ 1

0

∫ 1

0

uf
′′
(suv) dudv.

Proof. The identity follows by direct integration.

Lemma 3. Let f be a function in C2 and define:

BN,i = γNk [1](UN,i − Ek−1[UN,i]),

where, conditionally on FNk−1, the variables (UN,i)1≤i≤N are independent and identically distributed as f(Xk) with:

P (Xk ∈ dx|FNk−1) =

N∑
i=1

Gk,Tk(Xi
k−1)∑N

j=1Gk,Tk(Xj
k−1)

Kk

(
Tk
(
Xi
k−1

)
,dx
)
.

Define the limiting function

A∞(s) := γ2
k[1]πk

[
(f − πk[f ])

2
eisγk[1](f−πk[f ])

]
then

Ek−1

[
B2
N,1e

isBN,1
] P−→ A∞(s),

where convergence is in probability and is uniform in s over any compact interval.

Proof. By definition of UN,1, we have

Ek−1[UN,1] =
πNk−1[Qk,Tk [f ]]

πNk−1[Gk,Tk ]
:= f̄N ,

where we introduced f̄N as a shorthand notation. Since f belongs to C2 we can apply the weak law of large numbers in
Theorem 1 which implies that

f̄N
P−→ πk−1[Qk,Tk [f ]]

πk−1[Gk,Tk ]
= πk[f ],

where we used Proposition 6 to get the last equality. We also have γNk [1]
P−→ γk[1] by Theorem 1. Furthermore, by

definition of BN,1 and UN,1, we can write

Ek−1

[
B2
N,1e

isBN,1
]

=
(
γNk [1]

)2πNk−1

[
Qk,Tk

[(
f − f̄N

)2
eisγ

N
k [1](f−f̄N)

]]
πNk−1[Gk,Tk ]

.

Recalling that f2 belongs to C4, we can again apply the weak law of large numbers in Theorem 1 along with the continuous
mapping theorem to conclude that

Ek−1

[
B2
N,1e

isBN,1
] P−→ γk[1]2

πk−1

[
Qk,Tk

[
(f − πk[f ])

2
eisγk[1](f−πk[f ])

]]
πk−1[Gk,Tk ]

= γk[1]2πk

[
(f − πk[f ])

2
eisγk[1](f−πk[f ])

]
= A∞(s),

where the second line is obtained by application of Proposition 6. Moreover, using Proposition 9 (as in the proof of
Proposition 5), we can conclude that convergence is uniform over s ∈ [−|t|, |t|].
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C.5. Convergence of the flow transport

Proposition 14. Under Assumptions (A) to (D) and (F) to (I), it holds that:

θNk
P−→ θ?k

Proof. To simplify notations, we write d(θ,Θ?) = infθ′∈Θ? ‖θ − θ′‖. We will first show that θNk approaches the set of

critical points Θ?, i.e. d
(
θNk ,Θ

?
) P−→ 0. We assume by contradiction that d

(
θNk ,Θ

?
)

does not converge to 0 in probability.
Hence, there exist ε > 0 and η > 0 as well as a subsequence of θφNk with φN → +∞ such that:

P
[
d
(
θφNk ,Θ?

)
≥ ε
]
≥ η,∀N ∈ N (27)

However, we also know that the sequence θφN is tight as it is supported on Θ which is compact by Assumption (C). Hence,
it admits a subsequence that converges in distribution towards a r.v. θ∞k . Without loss of generality, we assume θφN to be
such convergent subsequence. Since θ 7→ d(θ,Θ?) is continuous we have by the continuous mapping theorem that

d(θφNk ,Θ?)
d−→ d(θ∞k ,Θ

?) (28)

We will now show that θ∞k must be supported on Θ?, the set of local minima of θ 7→ Lθ. This would imply d(θ∞k ,Θ
?) = 0.

We know by Assumptions (F) and (G) that θ 7→ ∇L(θ) and θ 7→ HL(θ) are continuous functions, hence using the
continuous mapping theorem, it holds that

∇L(θφNk )
d−→ ∇L(θ∞k ), (29)

HL(θφNk )
d−→ HL(θ∞k ).

Moreover, by Lemma 4 we can express the approximate local optimality assumption (H) in terms of the population loss
θ 7→ Lk(θ) instead of the empirical loss θ 7→ LNk (θ):

∇L(θφN ) = oP(1), (30)

HL(θφN ) ≥ oP(1).

Combining (29) and (30) if follows that ∇L(θ∞k ) = 0 and HL(θ∞k ) ≥ 0. This precisely means that θ∞k is supported on
the set of local minimizers Θ? so that d(θ∞k ,Θ

?) = 0. Hence, (28) implies that d(θφNk ,Θ?) converges in distribution to a
deterministic value 0. This, in turn, means convergence in probability

d(θφNk ,Θ?)
P−→ 0. (31)

We have extracted a subsequence that satisfies both (27) and (31), which is contradictory. We can therefore conclude that
d
(
θNk ,Θ

?
) P−→ 0. We introduce now the decomposition∥∥θNk − θ?k∥∥ =

(∥∥θNk − θ?k∥∥− d(θNk ,Θ?
))

+ d
(
θNk ,Θ

?
)
. (32)

We already know that the second term in (32) converges to 0 in probability. Moreover, we know by Assumption (I) that
θ?k is asymptotically the closest point in Θ? to θNk , hence, the first term also converges to 0 in probability, concluding the
proof.

Lemma 4. Under Assumptions (A) to (D) and (F) to (H) It holds that:

∇L(θN ) = oP(1),

HL(θN ) ≥ oP(1).
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Proof. For simplicity, we introduce the function:

lθ(x) = Vk(τθ(x))− Vk−1(x)− log |∇xτθ(x)|+ log(
Zk
Zk−1

).

Hence, by definition of L(θ) and LN (θ), we have L(θ) = πk−1[lθ] and LN (θ) = πNk−1[lθ]. Under Assumptions (F)
and (G) the gradient ∇θlθ(x) and Hessian Hθlθ(x) are well defined and admit a growth of at most 2 in x uniformly in θ.
Since, πk−1 admit a finite second order moment by Assumption (B), we can apply the dominated convergence theorem to
write (

πNk−1 − πk−1

)
[∇θlθ] = ∇θLN (θ)−∇θL(θ), (33)(

πNk−1 − πk−1

)
[Hθlθ] = HθLN (θ)−HθL(θ).

Moreover, recalling that, under Assumptions (A) to (D), the particle estimator πNk is consistent by Theorem 1 and the
families of functions (∇θlθ(x))θ∈Θ and (Hθlθ(x))θ∈Θ are indexed by a compact set Θ by Assumption (C) and admit a
quadratic growth in x, we can apply Proposition 9 to both families of functions to get a uniform convergence in probability

sup
θ

∣∣(πNk−1 − πk−1

)
[∇θlθ]

∣∣ P−→ 0, (34)

sup
θ

∣∣(πNk−1 − πk−1

)
[Hθlθ]

∣∣ P−→ 0.

Therefore, combining (33) and (34) it follows that:

sup
θ
∇θLN (θ)−∇θL(θ)

P−→ 0,

sup
θ
HθLN (θ)−HθL(θ)

P−→ 0.

We can rely on Assumption (H) to directly write

∇L(θNk ) =
(
∇L(θNk )−∇LN (θNk )

)
+ oP(1) = oP(1),

HL(θNk ) ≥
(
HL(θNk )−HLN (θNk )

)
+ oP(1) = oP(1).

D. Asymptotic stochastic equi-continuity
In this section, we establish asymptotic stochastic equi-continuity (ASEC) of a process defined by the fluctuations of the
particle approximation when applied to a suitable class of functions G. More precisely, we would like to establish ASEC
for the empirical process EN indexed by a class of functions G and defined as follows:

ENk :G → R f 7→ ENk [f ] =
√
N
(
πNk [f ]− πk[f ]

)
.

This property will be be useful for proving the CLT result in Theorem 2. We start by introducing some notions used in this
section.

D.1. Class of functions with finite locally uniform entropy

For some positive constant C, we consider G a subset of LCp(C) or Cp(C) with a measurable envelope function F (x) :=
supf∈G |f(x)|. For ε > 0 and a probability distribution P, we denote by N (ε,G, L2(P )) the covering number of G
w.r.t. L2(P ) , meaning the smallest number p of L2(P )-balls centered on functions f1, ..., fp and of radius smaller than ε
needed to cover G. The uniform covering number defined by taking the supremum of N (ε,G, L2(P )) over all probability
distributions P . Unlike in (Del Moral, 2004, Lemma 9.6.1.), we will not use the uniform covering number as this quantity
will be infinite in our setting. Instead we will consider local version of it, which we define next. We first consider the
functions H2(x) = 1 + ‖x‖p+2 and the set SR :=

{
Q ∈ P : Q

[
H2

2

]
≤ R2

}
and define the locally uniform covering

number NLU (ε,G, R) to be

NLU (ε,G, R) :=

{
supQ∈SR N (ε,G, L2(Q)), SR 6= ∅,
1, SR = ∅.

(35)
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We define the locally uniform entropy of the class G to be

J (δ,G, R) :=

∫ δ

0

√
log (NLU (ε,G, R)) dε. (36)

We have the following basic properties of the locally uniform entropy.

Proposition 15. Assume the envelope function F (x) of G satisfies F (x) ≤ C(1 + ‖x‖p) and J(δ,G, r) < +∞ for any
r > 1 and δ > 0. Then for any δ > 0, 0 ≤ r ≤ r′, it holds that

J (δ,G, r) ≤ J (δ,G, r′),
sup
δ>0
J (δ,G, r) < +∞.

Proof. For the first statement, recall that the constraint set Sr defining NLU (ε,G, r) in (35) trivially satisfies Sr ⊂ Sr′ ,
hence NLU (ε,G, r) ≤ NLU (ε,G, r′). The result follows directly by definition of the entropy in (36).

For the second statement, we first note that NLU (c,G, r) = 1 for any c ≥ 4Cr. Indeed, either S4Cr = ∅ in which
case NLU (c,G, r) = 1 holds by definition, or S4Cr 6= ∅. In the later case, for any element P ∈ S4Cr any f, g ∈ G
we have P

[
(f − g)2

] 1
2 ≤ 2P

[
F 2
] 1

2 . Moreover, since F (x) ≤ C(1 + ‖x‖p) ≤ 2C(1 + ‖x‖p+2
) we can conclude that

P
[
(f − g)2

] 1
2 ≤ 2P

[
F 2
] 1

2 ≤ 4Cr ≤ c. ≤ 2Cr ≤ c. Hence, any L2(P )-ball centered in an element f of G and of radius
c covers G. This directly implies that NLU (c,G, r) = 1. The result follows directly by definition of the entropy.

We will be in particular interested in classes of functions G for which the locally uniform entropy J (δ,G, r) is finite for
any r > 1 and δ > 0 and satisfies a growth condition supδ>0 J (δ,G, r) . r . Note that this condition always holds when
the uniform entropy is finite and is therefore a weaker requirement. Next, we show the stability of this condition when
applying the operator Qk,T to functions in f with T varying over T . More precisely, we control the entropy of the set QG
of the form

QG := {Qk,τθ [f ]|θ ∈ Θ, f ∈ G}. (37)

Proposition 16. Let G be a subset of LCp(C) for some positive constant. Assume G has a finite bracketing number
N[](ε,G, L2(πk)) , that the locally uniform entropy J(δ,G, r) defined in (36) is finite for any r > 1 and δ > 0 and satisfies
the linear growth condition supδ>0 J(δ,G, r) . r. Under Assumptions (A) and (C) to (G), the class QG defined in (37) is
a subset of LCp(C ′) for some C ′ > 0, has a finite bracketing number N[](δ,QG, L2(πk−1)) and a finite locally uniform
entropy J(δ,QG, r) for any r > 1 and δ > 0 satisfiying the linear growth condition:

sup
δ>0
J (δ,QG, r) . r.

In particular, the result holds if G is a single element in LCp(C).

Proof. Bounding the locally uniform entropy. Fix ε > 0 and r > 1. Let P be a probability distribution in Sr, ie. such
that P

[
H2

2

]
≤ r2. We consider an εr-net f1, ..., fp of G with respect to L2(PKk). We choose a covering of minimal size,

i.e. such that p = N (εr,G, L2(PKk)). We also consider θ1, ..., θp′ , an ε-covering of Θ with with minimum cardinality,
i.e. p′ = N (ε,Θ, ‖.‖) where N (ε,Θ, ‖.‖) is the covering number of Θ with ε-balls under the Euclidean distance. We also
denote by J (δ,Θ, ‖.‖) the entropy of set Θ defined as

J (δ,Θ, ‖.‖) :=

∫ δ

0

√
log (N (ε,Θ, ‖.‖)).

Since Θ is bounded and finite dimensional, supδ>0 J (δ,Θ, ‖.‖) is finite.

Let g ∈ G, hence by definition of G, there exists θ ∈ Θ and f ∈ G such that g = Qk,τθi [f ].
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By definition of the ε-covering of Θ, there exists j′ ∈ {1, ..., p′} such that ‖θ − θj′‖ ≤ ε. We can then use Proposition 17
which holds under Assumptions (A) and (C) to (G) to write:

Qk,τθ
j′

[f ](x)− εc2H2(x) ≤ g(x) ≤ Qk,τθ
j′

[f ](x) + εc2H2(x), ∀x ∈ X . (38)

Moreover, by definition of the εr-net, there exists j ∈ {1, ..., q} such that: PKk

[
(f − fj)2

]
≤ ε2r2. Subtracting

Qk,τθ
j′

[fj ](x) from (38) yields:

Qk,τθ
j′

[f − fj ](x)− εc2H2(x) ≤ g(x)−Qk,τθ
j′

[fj ] ≤ Qk,τθ
j′

[f − fj ](x) + εc2H2(x), ∀x ∈ X . (39)

We need to quantify P
[(
g −Qk,τ

θj
′ [fj ]

)2
]

. Using (39) it is easy to see that

P

[(
g −Qk,τ

θj
′ [fj ]

)2
] 1

2

≤MP
[
(Kk[(f − fj)])2

] 1
2

+ εc2P
[
H2

2

] 1
2

≤MPKk

[
(f − fj)2

] 1
2 + εc2P

[
H2

2

] 1
2

≤ ε
(
Mr + c2P

[
H2

2

] 1
2

)
≤ εr(M + c2) := εrc3.

Hence, Qk,τθ
j′

[fj ] form an εrc3 net of QG. This allows us to write:

N (εrc3,QG, L2(P )) ≤ N (εr,G, L2(PKk))N (ε,Θ, ‖.‖).

We will now upper-bound N (εr,G, L2(PKk)) by a locally uniform covering number. To achieve this we need to find a
scalar r′ such that PKk ∈ Sr′ whenever P ∈ Sr. By Assumption (A), we know that Kk preserves the classes Cp and
Cp+1. Hence, there exists a constant c4 large enough so that Kk

[
H2

2

]
≤ c4H

2
2 (x), implying that PKk

[
H2

2

]
≤ c4P

[
H2

2

]
.

By choosing r′ = c4r, we are guaranteed that PKk ∈ Sr′ . Hence, it follows that

N (εrc3,QG, L2(P )) ≤ NLU (εr,G, c4r)N (ε,Θ, ‖.‖). (40)

Taking the supremum over Sr in the l.h.h. of (40), we get

NLU (εrc3,QG, r) ≤ NLU (εr,G, c4r)N (ε,Θ, ‖.‖). (41)

Taking the logarithm of (41) and using the inequality
√
a+ b ≤

√
a+
√
b for any non-negative numbers a and b, we obtain

a bound on the entropy after a simple change of variables

J (δ,QG, r) ≤ c3J
(
c−1
3 δ,G, c4r

)
+ c3rJ

(
(rc3)−1δ,Θ, ‖.‖

)
By assumption, we have that supδ>0 J

(
c−1
3 δ,G, c4r

)
. r. Moreover, since Θ is bounded and finite dimensional, it must

hold that supδ>0,r≥1 J
(
(rc3)−1δ,Θ, ‖.‖

)
< +∞. Thus we have shown that supδ>0 J (δ,QG, r) . r.

Bounding the bracketing number. Similarly, fix ε > 0 and let {[li, ui]}1:p be ε-brackets covering G w.r.t. L2(πk), i.e.
πk
[
(li − ui)2

]
≤ ε2 and for any f ∈ G there exists i ∈ {1, p} such that

li(x) ≤ f(x) ≤ ui(x),∀x ∈ X .

Moreover, we assume the ε-brackets to be of minimal size, i.e. p = N (ε,G, Lπk). From (38) we directly have

Qk,τθ
j′

[lj ](x)− εc2H2(x) ≤ g(x) ≤ Qk,τθ
j′

[uj ](x) + εc2H2(x), ∀x ∈ X .

Using Proposition 18 we deduce that

πk−1

[(
Qk,τθ

j′
[uj − lj ](x)− 2εc2H2(x)

)2
] 1

2

. ε
(
C + πk−1

[
H2

2

] 1
2

)
.

Thus we have shown that the bracketing number N[]

(
ε,QG, Lπk−1

)
must be finite.
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Proposition 17. Let G be a subset LCp(C) for some positive constant C. Under Assumptions (A) and (C) to (G), the class
QG belongs to LCp(C ′) for some positive C ′. Moreover, the following holds for any function f ∈ G∣∣Qk,τθ [f ](x)−Qk,τθ′ [f ](x)

∣∣ . ‖θ − θ′‖H2(x)

where H2(x) = 1 + ‖x‖p+2.

Proof. Fix 1 ≤ k ≤ K. We first start by controlling Gk,τθ . For conciseness, we write Gk,τθ = ehθ(x) with hθ(x) given by

hθ(x) = ∇Vk(τθ(x))− log |∇xτθ(x)|.

The function θ 7→ hθ(x) is differentiable by Assumptions (F) and (G) and its gradient is given by:

∇θhθ(x) = ∇xVk(τθ(x))∇θτθ(x)− Tr
(

(∇xτθ(x))
−1∇θ∇xτθ(x)

)
.

Moreover, by Assumption (F), we also know that the singular values of∇xτθ(x) are lower-bounded by a positive constant
c uniformly in x and θ. Hence

∣∣∣Tr((∇xτθ(x))
−1∇θ∇xτθ(x)

)∣∣∣ ≤ c−1‖∇θ∇xτθ(x)‖. Moreover, again by Assump-
tions (C), (F) and (G) ∇xVk(x), τθ(x), ∇θτθ(x), ∇θ∇xτθ(x) all have a linear growth in x uniformly in θ. Hence, we
deduce that∇θhθ(x) has at most a quadratic growth in x. In addition, Gk,τθ is uniformly bounded in θ and x by Assump-
tion (D), therefore, we deduce that

‖∇θGk,τθ(x)‖ ≤ Gk,τθ(x)‖∇θhθ(x)‖ ≤ C
(

1 + ‖x‖2
)
.

For θ, θ′ ∈ Θ and setting θt = tθ + (1− t)θ′ , we use the fundamental theorem of calculus to write:

∣∣Gk,τθ (x)−Gk,τθ′ (x)
∣∣ ≤ ‖θ − θ′‖ ∫ 1

0

∥∥∇θGk,τθt (x)
∥∥dt . ‖θ − θ′‖

(
1 + ‖x‖2

)
. (42)

For the second part of the proof, we simply use the following decomposition:

Qk,τθ [f ](x)−Qk,τθ′ [f ](x) =
(
Gk,τθ (x)−Gk,τθ′ (x)

)
Kk[f ](x) +Gk,τθ (Kk[f ](τθ)−Kk[f ](τθ′)). (43)

For the first term in the r.h.s. of (43), we use (42) and that, by Assumption (A), Kk[f ](x) belongs to Cp(C ′) for some
constant C ′ independent of f in LCp(C). Hence, we deduce that:∣∣(Gk,τθ (x)−Gk,τθ′ (x)

)
Kk[f ](x)

∣∣ . ‖θ − θ′‖(1 + ‖x‖p+2
)
. (44)

For the second term in the r.h.s. of (43), we know by Assumption (E) that Kk[f ](x) belongs to LCp(C ′) for some constant
C ′ independent of f in LCp(C). Since Gk,τθ (x) is bounded uniformly in x and θ, we get

|Gk,τθ (Kk[f ](τθ)−Kk[f ](τθ′))| .
(

1 + ‖τθ(x)‖p+1
+ ‖τθ′(x)‖p+1

)
‖τθ(x)− τθ′(x)‖.

Moreover, we know that τθ(x) has at most a linear growth in x uniformly in θ and that

‖τθ − τθ′‖ ≤ ‖θ′ − θ‖
∫ 1

0

‖∇θτθt(x)‖ d . ‖θ′ − θ‖‖1 + ‖x‖‖.

We can therefore deduce that:

|Gk,τθ (Kk[f ](τθ)−Kk[f ](τθ′))| . ‖θ − θ′‖
(

1 + ‖x‖p+2
)
. (45)

Combining (44) and (45) yields the desired result.

Proposition 18. Under Assumption (D) for any f ∈ L2(πk) we have

‖Qk,T [f ]‖L2(πk−1) ≤ C‖f‖L2(πk)

with C being independent of f .



Annealed Flow Transport Monte Carlo

Proof. Let f be a function in L2(πk), we can directly write:

πk−1

[
(Qk,T [f ])

2
]

=

∫
πk−1(x)G2

k,T (x)(Kk[f ](T (x)))
2

dx

=
Zk
Zk−1

∫
πk(y)Gk,T

(
T−1(y)

)
(Kk[f ](y))

2
dx

≤M Zk
Zk−1

∫
πk(y)(Kk[f ](y))

2
dx

≤M Zk
Zk−1

∫
πk(y)Kk

[
f2
]
(y)

= M
Zk
Zk−1

πk
[
f2
]
.

The second line is using the change of variables y = T (x) and the expression of the importance weight Gk,T . The third
line follows by Assumption (D) stating the weights Gk,T (x) are bounded by a positive constant M > 0 independently
from x ∈ X and T ∈ T . The fourth line follows by application of Cauchy–Schwarz while the last line is a consequence of
the Markov kernel Kk being invariant under πk. Choosing C = M Zk

Zk−1
gives the desired result.

D.2. Asymptotic stochastic equi-continuity

Definition of asymptotic stochastic equicontinuity For a positive scalar δ > 0 we denote by Gk(δ) the intersection of
G with the L2(πk)-ball of radius δ

Gk(δ) :=
{
f ∈ G

∣∣∣‖f‖L2(πk) ≤ δ
}
.

Consider a stochastic processes X indexed by G, we define the uniform semi-norm over the set Gk(δ) to be

‖X‖Gk(δ) := sup
f∈Gk(δ)

|X(f)|.

We will always be in the setting where ‖X‖Gk(δ) is a random variable (i.e. measurable). Let now XN be a sequence of
stochastic processes that are linear in their index ( i.e. f 7→ XN [f ] is a linear map). In this case the sequence XN is said to
be asymptotically stochastically equicontinuous if for any sequence δN of positive real numbers converging to 0, it holds
that

∥∥XN
∥∥
Gk(δN )

converges to 0 in probability.

We are now ready to state the main result of this section establishing asymptotic stochastic equicontinuity of the sequence
of processes ENk .
Proposition 19 (Asymptotic stochastic equicontinuity). Set p = 2. Under Assumptions (A) to (G), and for any positive
C > 0 and any subclass G of LCp(C) with finite bracketing number N[](δ,G, L2(πk)) and finite locally uniform entropy
(36) J (δ,G, r) satisfying supδ>0 J (δ,G, r) . r, the process f 7→

(
ENk [f ]

)
is asymptotically stochastically equicon-

tinuous. In other words, for any sequence δN of positive real numbers converging to 0,
∥∥ENk ∥∥Gk(δN )

converges to 0 in
probability.

Proof. We proceed by induction over k. The result holds by Proposition 20 for k = 0. By induction, we assume the
property holds for the process ENk−1. We then consider a function class G satisfying the conditions of the result. We will
show that

(
ENk [f ]

)
G is asymptotically stochastically equicontinuous.

To achieve this, we fix a sequence δN converging to 0 and consider a function f ∈ Gk(δN ). We then use the following
decomposition of ENk [f ]

ENk [f ] = ENk [f ]− Ek−1

[
ENk [f ]

]︸ ︷︷ ︸
RNk [f ]

+Ek−1

[
ENk [f ]

]︸ ︷︷ ︸
PNk [f ]

.

Taking the supremum over Gk(δN ) on both sides of the above inequality yields∥∥ENk ∥∥G(δN )
≤
∥∥RNk ∥∥Gk(δN )

+
∥∥PNk ∥∥Gk(δN )

.
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By Proposition 20 we have that
∥∥RNk ∥∥Gk(δN )

P−−−−−→
N→+∞

0. Thus, we only need to prove that
∥∥PNk ∥∥Gk(δN )

P−−−−−→
N→+∞

0. By

direct computation, we have:

PNk [f ] =
γNk−1[1]

γNk [1]
ENk−1[Qk,Tk [f − πk[f ]]].

Now let us call QG be the set of functions of the form Qk,T [f ] for some f ∈ G and T ∈ T . Proposition 18 ensures also
that πk−1[Qk,Tk [f ]] ≤ Cπk[f ] ≤ CδN , hence Qk,Tk [f ] ∈ QGk−1(CδN ). Therefore, we have shown that

∥∥PNk ∥∥QGk(δN )
≤
γNk−1[1]

γNk [1]

∥∥ENk−1

∥∥
QGk−1(CδN )

.

Finally, by Proposition 16, we know that QG belongs to LCp(C ′) for some positive C ′, has a finite bracketing number
N (ε,QG, L2(πk−1)) and a finite locally covering entropy J (δ,QG, r) for any δ > 0 and r > 1 satisfying J (δ,QG, r) .
r. Therefore, by the recursion assumption, we know that

∥∥ENk−1

∥∥
QGk−1(CδN )

P−−−−−→
N→+∞

0. Moreover, recalling that

γNk [1]
P−−−−−→

N→+∞
Zk−1 for any 0 ≤ k ≤ K by Theorem 1, we can directly conclude that

∥∥PNk ∥∥Gk(δN )

P−−−−−→
N→+∞

0.

Proposition 20. Let G be the class defined in Proposition 19 and denote by RNk to be the process index by G and defined
by:

Rk[f ] =
√
N
(
πNk [f ]− Ek−1

[
πNk [f ]

])
with the convention that for k = 0, E−1 is the expectation over the samples

{
X

(i)
0

}
1:N

from π0. Under Assumptions (A)

to (D) and for any sequence δN converging to 0 and any 0 ≤ k ≤ K, it holds that∥∥RNk ∥∥Gk(δN )

P−−−−−→
N→+∞

0.

Proof. Let 0 ≤ k ≤ K. We use the convention that F−1 is the empty sigma algebra and that E−1 is the expectation over
the samples X(i)

0 1:N from π0. This will allow the same treatment for both k = 0 and k > 0. Note that, Ek−1

[
RNk [f ]

]
= 0

for any f ∈ G. Hence, the process is centered conditionally on Fk−1. Moreover, the particles
{
X

(i)
k

}
1:N

defining RNk are
i.i.d. conditionally on Fk−1. Therefore, we can use a symmetrization approach as in (Del Moral, 2004, Lemma 9.6.1.).
Let
{
εi
}

1:N
be i.i.d. Bernoulli variables with P(εi = 1) = P(εi = −1) = 1

2 independent from Fk. Conditionally on Fk−1

the samples
{
Xi
k

}
1:N

are i.i.d., hence, the symmetrization inequality in (Sen, 2018, Theorem 3.14) holds conditionally on
Fk−1:

Ek−1

[∥∥RNk ∥∥Gk(δN )

]
≤ 2
√
NEk−1

[∥∥mN
ε

∥∥
Gk(δN )

]
(46)

where mN
ε = 1

N

∑N
i=1 εiδXik . Now by conditioning on Fk, we can apply Hoeffding inequality (Sen, 2018, Lemma 3.11)

which implies that

Pk
[√

N
(
mN
ε [f ]−mN

ε [h]
)
> s
]
≤ 2e

− s2

2πN
k [(f−h)2] .

Following the proof of (Sen, 2018, Theorem 4.8), we can use the Maximal inequality for sub-Gaussian processes (Sen,
2018, Theorem 4.5), which implies that:

√
NEk

[∥∥mN
ε

∥∥
Gk(δN )

]
.
∫ ψN

0

√
log
(
N (r,Gk(δN ), L2(πNk ))

)
dr, (47)

where ψN := supf∈G(δN ) π
N
k

[
f2
]
. By definition of the locally uniform covering number in (35), we have that

N
(
r,Gk(δN ), L2(πNk )

)
≤ NLU

(
r,G, rN

)
,
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with (rN )2 = πNk
[
H2

2

]
. Hence, we can upper-bound

√
NEk

[∥∥mN
ε

∥∥
G(δN )

]
using the locally uniform entropy so that (47)

becomes
√
NEk

[∥∥mN
ε

∥∥
Gk(δN )

]
. J

(
ψN ,G, rN

)
. (48)

We can now take the expectation of (48) conditionally on Fk−1 and combine the resulting inequality with (46) yielding

Ek−1

[∥∥RNk ∥∥Gk(δN )

]
. Ek−1

[
J
(
ψN ,G, rN

)]
.

We only need to prove that Ek−1

[
J
(
ψN ,G, rN

)] P−−−−−→
N→+∞

0. To this end, we define the event

SNε =
{∣∣πNk [H2

2

]
− πk

[
H2

2

]∣∣ ≥ ε}
for some ε > 0 and its complement S̄Nε . We then decompose the expected entropy into to terms

Ek−1

[
J
(
ψN ,G, rN

)]
= Ek−1

[
J
(
ψN ,G, rN

)
S̄Nε
]

+ Ek−1

[
J
(
ψN ,G, rN

)
SNε
]
.

Conditionally on S̄Nε we have that rN ≤
√
ε+ πk[H2

2 ] := R. Hence, by monotonicity of the entropy w.r.t. to the last
argument (Proposition 15 ) , it holds that J

(
ψN ,G, rN

)
S̄Nε ≤ J

(
ψN ,G, R

)
. Conditionally on SNε we will rely on the

assumption that supδ>0 J (δ,G, r) . r which implies that J
(
ψN ,G, rN

)
SNε . rNSNε . Hence, we can write

Ek−1

[∥∥RNk ∥∥Gk(δN )

]
. Ek−1

[
J
(
ψN ,G, rN

)]
. Ek−1

[
J
(
ψN ,G, R

)]
+ Ek−1

[
πNk
[
H2

2

] 1
2SNε

]
(49)

. Ek−1

[
J
(
ψN ,G, R

)]
+ Ek−1

[
πNk
[
H2

2

]] 1
2Pk−1

[
SNε
] 1

2 ,

where we used Cauchy–Schwarz inequality to get the second line. To control the first term, we first note that ψN P−→ 0.
Indeed, by construction, πk[f2] ≤ (δN )2 for any f ∈ Gk(δN ). Moreover, by assumption, Gk(δN ) has a finite bracketing
number N[](ε,Gk(δN ), L2(πk)) for any ε > 0 and the functions f2 have a growth of at most 2p. We can then apply
Proposition 8, which holds under Assumptions (A) to (D) to get the following uniform convergence in probability of
πNk
[
f2
]

over Gk(δN ), i.e. supf∈Gk(δN )

(
πNk − πk

)[
f2
] P−→ 0. This allows to conclude that

ψN ≤ (δN )2 + sup
f∈Gk(δN )

(
πNk − πk

)[
f2
] P−→ 0.

Second, we know by Proposition 15 that J
(
ψN ,G, R

)
is bounded by a finite quantity, i.e. supδ>0 J (δ,G, R) < +∞

. Hence, by the dominated convergence theorem, it follows that Ek−1

[
J
(
ψN ,G, R

)] P−→ 0. For the second term we

have that Ek−1

[
πNk
[
H2

2

]] P−→ πk
[
H2

2

]
by Theorem 1 with πk

[
H2

2

]
being finite under Assumption (B). Moreover, since

we also have πNk
[
H2

2

] P−→ πk
[
H2

2

]
, this necessarily implies that E

[
Pk−1

[
SNε
]]

= P
[
SNε
] P−→ 0 and henceforth that

Pk−1

[
SNε
] P−→ 0.

We have shown that the r.h.s. of (49) converges to 0 in probability. This directly implies Ek−1

[∥∥RNk ∥∥Gk(δN )

]
P−→ 0 and

henceforth that aNε := Pk−1

[∥∥RNk ∥∥Gk(δN )
≥ ε
]
−→ 0 for any choice of ε > 0 by Markov inequality. Noting that aNε is

bounded for a given ε > 0, we get that E
[
aNε
]
→ 0 which exactly means

∥∥RNk ∥∥Gk(δN )

P−→ 0.

We then have the following result which is a consequence of Proposition 19

Proposition 21. Let f be in LCp and consider the family of functionQG of the form Sθ(x) = Qk,τθ [f ](x)−Qk,τθ? [f ](x)
indexed by the parameter θ ∈ Θ. Under Assumptions (A) to (G) and for any random sequence gN in QG such that
πk−1

[
(gN )2

] P−→ 0 it holds that ENk−1

[
gN
] P−→ 0.
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Proof. By Proposition 16 we know that QG belongs to LCp(C) for some positive C, has a finite bracketing number
N (δ,QG, L2(πk−1)), a finite locally uniform entropy J (δ,QG, r) for any r ≥ 1 and δ > 0 and satisfying a linear
growth condition supδ>0 J (δ,QG, r) . r. Hence, by direct application of Proposition 19, we know that the process
g 7→

√
N
(
πNk−1 − πk−1

)
[g] := ENk−1[g] indexed by functions g ∈ QG is asymptotically stochastically equicontinuous,

meaning that
∥∥ENk−1

∥∥
QG(δN )

P−→ 0 for any sequence of positive numbers δN converging to 0 and where by definition:∥∥ENk−1

∥∥
QG(δN )

:= sup
g∈QG

πk−1[g2]≤(δN)
2

∣∣ENk−1[g]
∣∣.

Denote by bN := πk
[
(gN )2

]
and fix ε > 0. We know that for any sequence RN , the following inclusion of events hold:{

ENk
[
gN
]
> ε
}
∩
{
bN > RN

}
⊂
{
bN > RN

}
{
ENk
[
gN
]
> ε
}
∩
{
bN ≤ RN

}
⊂
{∥∥ENk−1

∥∥
QG(RN )

≥ ε
}
.

Hence, the following inequality holds

P
[
ENk
[
gN
]
> ε
]

= P
[{
ENk
[
gN
]
> ε
}
∩
{
bN > RN

}]
+ P

[{
ENk
[
gN
]
> ε
}
∩
{
bN ≤ RN

}]
≤ P

[
bN > RN

]
+ P

[∥∥ENk−1

∥∥
QG(RN )

≥ ε
]
.

Moreover, by assumption, we have bN := πk
[
(gN )2

] P−→ 0. Hence, by Lemma 5, there exists a deterministic sequence
RN converging to 0 and such that

P
[
bN > RN

]
≤ RN .

We therefore have

P
[
ENk
[
gN
]
> ε
]
≤ RN + P

[∥∥ENk−1

∥∥
QG(RN )

≥ ε
]
.

The first term converges to 0 by definition of RN so does the second term by asymptotic stochastic equicontinuity of ENk−1

and since RN → 0. Therefore, we have shown that P
[
ENk
[
gN
]
> ε
]
→ 0.

Lemma 5. If bN is non-negative r.v. such that bN P−→ 0, then there exists a deterministic sequence RN converging to 0
such that:

P
[
bN > RN

]
≤ RN .

Proof. Using (Dudley, 2018, Theorem 9.2.2.), bN P−→ 0 is equivalent to having rN → 0 where

rN := inf
{
ε ≥ 0

∣∣P[bN > ε
]
≤ ε
}
.

Moreover, by definition of rN , for any N there exists aN ≤ 1
N such that RN := rN + aN satisfies

P
[
bN > RN

]
≤ RN .

Since RN → 0, we have constructed a sequence RN converging slowly enough to 0 so that P
[
bN > RN

]
→ 0.

D.3. Proof of Proposition 10

Proof of Proposition 10 . We first decompose PN as PN = AN +BN with

AN =
√
NγNk−1[1]

(
πNk−1 − πk−1

)[
Qk,Tk [f ]−Qk,T?k [f ]

]
,

BN =
√
N
(
γNk−1

[
Qk,T?k [f ]

]
− γk−1

[
Qk,T?k [f ]

])
,
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where we used the identity πk−1[Qk,Tk [f ]] = πk−1[Qk,T?k [f ]] from Proposition 6 to express AN as a difference in
expectations under πNk−1 and πk−1. By induction, BN converges in distribution to a centered Gaussian with variance
Vγk−1[Qk,T?k [f ]].

We only need to show that AN
P−→ 0. To this end, for the given function f ∈ LCp, we consider the family of functionsQG

of the form Sθ(x) = Qk,τθ [f ](x)−Qk,τθ? [f ](x) indexed by the parameter θ ∈ Θ. We will first prove that πk−1

[
S2
θN

] P−→ 0

then apply Proposition 21 to show that
√
N
(
πNk−1 − πk−1

)
[SθN ]

P−→ 0. By Proposition 17, we have that

|SθN (x)| =
∣∣Qk,Tk [f ](x)−Qk,T?k [f ](x)

∣∣ . ∥∥θNk − θ?k∥∥H2(x) (50)

where H2(x) = 1 +‖x‖p+2. Moreover, we know by Assumption (B) that πk−1

[
H2

2

]
is finite. We can square (50) and take

the expectation under πk−1 to get

πk−1

[
S2
θN

]
.
∥∥θNk − θ?k∥∥2

πk−1

[
H2

2

]
< +∞.

Since
∥∥θNk − θ?k∥∥ P−→ 0 by Proposition 14 we conclude that πk−1

[
S2
θN

] P−→ 0. We can then apply Proposition 21 to the

sequence gN := SθN to get that
√
N
(
πNk−1 − πk−1

)
[SθN ]

P−→ 0. We also know by Theorem 1 that γNk−1[1]
P−→ γk−1[1].

Therefore, it follows directly that AN
P−→ 0 concluding the proof.

E. Continuous-time limit
E.1. Notation and General setting

We start by introducing some notations.

Continuous-time path of probability measures. Let (Πt)[0,1] be a continuous-time path of probabilities connecting π0

to π. We write Vt(x) and Zt to denote the known potential and unknown normalizing constant of Πt. We assume that the
discrete auxiliary targets πk are of the form πk = Πtk where tk = kλ and λ = 1

K . In this case, increasing K amounts to
decreasing the step-size λ.

Markov Kernels. We consider the ULA kernels Kk of the form:

Kk(x, dy) = N (y;x− λVk(x), 2λI) dy

where N (x;m,Σ) is the Gaussian density with mean m and covariance Σ.

Normalizing Flows. For a given fixed step-size λ > 0, we will assume that the normalizing flows T are of the form:

T (x) = x+ λAθ(x)

where (θ, x) 7→ Aθ(x) is a function defined from Θ× X to X , with Θ being a compact subset of Rp. We then call Tλ the
set of normalizing flows defined by varying the parameter θ:

Tλ = {x 7→ x+ λAθ(x) | θ ∈ Θ}. (51)

To ensure that all functions in Tλ are diffeomorphisms, we will require Aθ(x) to satisfy Assumption (b) and for λ small
enough, the following lemma ensures that all functions in Tλ are indeed diffeomorphisms and thus define a valid family of
normalizing flows:

Lemma 6. Under Assumption (b) and if λ ≤ 1
2L , then any element in Tλ is a diffeomorphism.

Proof. Let θ be in Θ. The map T (x) = x + λAθ(x) satisfies ‖T (x)‖ → +∞ whenever ‖x‖ → +∞ since x 7→ λAθ(x)
has a growth in x of at most 1

2‖x‖. Therefore, T is proper. Moreover, the Jacobian ∇T (x) is invertible for any x ∈ X .
Thus by the Hadamard–Caccioppoli Theorem, one can conclude that T is a diffeomorphism.
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Time-dependent control. To describe the continuous-time limit, we consider time dependent controls of the form
αt(x) = Aθt(x), where t 7→ θt is a trajectory in parameter space Θ. More precisely, we consider the set Lip([0, 1],Θ) of
1-Lipschitz functions t 7→ θt from [0, 1] to Θ and we define the set A of admissible controls as

A := {α : (t, x) 7→ Aθt(x) | t 7→ θt ∈ Lip([0, 1],Θ)}.

The following smoothness properties are a direct consequence of Assumption (b).

Lemma 7. Under Assumption (b), any control in A satisfies:

‖αt(x)− αt′(x′)‖ ≤ L(‖x− x′‖+ |t− t′|), (52)
‖∇αt(x)−∇αt′(x′)‖ ≤ L(1 + ‖x‖+ ‖x′‖)(‖x− x′‖+ |t− t′|),

‖α0(0)‖ ≤ C,

with C = supθ∈Θ |Aθ(0)| < +∞.

Optimal controls and Normalizing Flows. For a given step-size 1
2L ≥ λ > 0, we denote by Tλk an NF that minimizes

Lk over the set Tλ defined in (51) and we denote by θλk its corresponding parameter in Θ,

Tλk (x) = x+ λAθλk (x).

The NF Tλk and parameter θλk exist since the set Θ is compact and the maps θ 7→ Lk(I + λAθ) is continuous. For any
λ = 1

K with K being a positive integer, we will later assume there exists at least a solution αλ ∈ A that interpolates
between the optimal NFs Tλk for all 0 ≤ k ≤ K, i.e.:

Tλk (x) = x+ λαλtk(x), ∀k ∈ [1 : K].

It is easy to see that the loss Ltotλ (α) defined in (53) admits αλ as a minimizer over the set of admissible controls A:

Ltotλ (α) :=
1

λ

K∑
k=1

Lk(I + λαtk). (53)

Feynman–Kac measures. We will introduce a family of Feynman–Kac measures indexed byA. For any element α ∈ A,
we denote by bαt (x) the controlled drift:

bαt (x) = αt(x)−∇xVt(x).

We first start by introducing a family of non-homogeneous stochastic differential equations:

dXα
t = bαt (Xα

t ) dt+
√

2 dBt, Xα
0 ∼ π0, (54)

where (Bt)t≥0 is a standard multivariate Brownian motion. Here, we emphasize the dependence of the controlled drift bαt
and the process (Xα

t )t≥0 on the control α. We will sometimes simply write bt and Xt when clear from context. We denote
by Λ̄αt the joint distribution of such process up to time t and by Λαt its marginal at time t which satisfies the following
continuity equation:

∂tΛ
α
t = ∇ · bαt + ∆Λαt .

We can then consider the following continuous-time importance weights over the process Xα
t :

wαt = exp

(∫ t

0

gαs (Xα
s ) ds

)
, gαt = ∇ · αt −∇xV >t αt − ∂tVt.

As shown later in Proposition 22 in Appendix E.3, the normalizing constant Λ̄αt [wαt ] of the weights wαt is given by
exp

(
−
∫ t

0
Πs[∂sVs] ds

)
. This allows to define the normalized weights as:

wαt = exp

(∫ t

0

gαs (Xα
s ) ds

)
, ḡαt = gαt + Πt[∂tVt].



Annealed Flow Transport Monte Carlo

The function gαt (x) is called the instantaneous work and measures how much Λt is different from Πt. We can now
introduce the family of Feynman–Kac measures defined by the importance weights over the sample path (Xα

t )[0,1] from
the process defined in (54):

Π̄α
t [f ] =

Λ̄αt [wαt f ]

Λ̄αt [wαt ]
= Λ̄αt [wαt f ], (55)

where f is any bounded continuous functional defined over the space of admissible sample paths (Xα
t )[0,1]. We will see in

Proposition 22 that the marginal of Π̄α
t at time t is exactly Πt.

We consider now the expected instantaneous variance of gt,α defined as:

M(α) :=
1

2

∫ 1

0

(
Πt

[
(gαt )

2
]
− (Πt[g

α
t ])

2
)

dt. (56)

We will show thatM(α) is the limit function of (53). We will assume that the infimum ofM(α) over A is achieved for
an element α? ∈ A:

M(α?) = inf
α∈A
M(α).

Interpolating measures. For a given λ = 1
K and a control α ∈ A, we define the following functions:

βα,λt (x) = αt(x)−∇Vt(x+ λαt(x)), (57)

δα,λt (x) =
1

λ
(Vt−λ(x)− Vt(x+ λαt(x)) + log |I + λ∇αt(x)|)

with δα,λt (x) being defined for t ≥ λ. The function βα,λt allows us to introduce the non-anticipative drift function bα,λt
which depends on the path of a process X[0,1] up to time t:

bα,λt (X) =

K∑
k=1

βα,λtk
(Xtk−1

)1[tk−1,tk)(t).

We can then consider the continuous-time process (Xα,λ
t )[0,1] defined as:

dXα,λ
t = bα,λt

(
Xα,λ

)
dt+

√
2 dBt, Xα,λ

0 ∼ π0. (58)

We denote by Λ̄α,λt the joint distribution of Xα,λ
[0,t]. To introduce the interpolating measure, we start by defining the instan-

taneous work:

gα,λs (X) = δα,λtk

(
Xtk−1

)
, tk−1 ≤ s < tk. (59)

It is easy to see that δα,λtk
(x) = 1

λ logGk,Tα,λk
(x) where Tα,λk are defined from the control α using Tα,λk = x + λαtk(x).

We define the truncated time τλ(t) = λb tλc and the corresponding index kλ(t) = b tλc. We then introduce the following
functions:

wα,λt (X[0,t]) := exp

(∫ τλ(t)

0

gα,λs (X) ds

)
, rλt (X[0,t]) = exp

− kλ(t)∑
k=1

hλtk(Xtk)

 (60)

where hλt is defined as

hλt (x) = log

(∫
exp(Vt(x)− Vt(y)− 1

4λ
‖x− y − λ∇Vt(y)‖2) dy

)
− d

2
log(4πλ).

The function wα,λt represents the correction due to the use of the control α, while rλt is the correction due to the transition
kernel Kk being only approximately invariant w.r.t. πk. We can now introduce the interpolating measures Π̄λ

t defined as:

Π̄αλ
t [f ] =

Λ̄α,λt

[
wα,λt rλt f

]
Λ̄λt

[
wα,λt rλt

] . (61)
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Additional notations We introduce discrepancy measures between controls α and α′:

S(α, α′) =

∫ 1

0

Πt

[
‖αt − α′t‖

2
+ ‖∇αt −∇α′t‖

2
]

dt, (62)

Sλt (α, α′) = λ

kλ(t)∑
k=1

Πtk−1

[∥∥αtk − α′tk∥∥2
+
∥∥∇αtk −∇α′tk∥∥2

]
.

For a function c : [0, 1]×X → R, we define the scalar:

Mλ
t [c] := λ

kλ(t)∑
k=1

Πtk−1
[ctk ]. (63)

In all what follows, for two real numbers A and B, the relation A . B mean that there exists a positive constant C > 0
that is uniform over t ∈ [0, 1] and over the set of admissible controls A and a value λ0 such that A ≤ CB for all λ ≤ λ0.

In the rest of the paper, when we write E, the expectation is w.r.t. Λ̄α unless stated otherwise. To simplify notation, we also
write Xs in place of Xα

s for the process satisfying the SDE in (54) with control α.

E.2. Assumptions

(a) For some fixed L > 0, Vt(x) is continuously differentiable in (t, x) with ∇Vt(x) being L-Lipschitz jointly in (t, x).
Moreover, ∂tVt(x) satisfies:

|∂tVt(x)− ∂tVt′(x′)| ≤ L(1 + ‖x‖+ ‖x′‖)(‖x− x′‖+ |t− t′|).

(b) Aθ(x) is continuously differentiable in (θ, x), L-Lipschitz jointly in (θ, x) and satisfies:

‖∇Aθ(x)−∇Aθ′(x′)‖ ≤ L(1 + ‖x‖+ ‖x′‖)(‖x− x′‖+ |θ − θ′|),

for all x, x′ ∈ X and θ, θ′ ∈ Θ.

(c) Πt admits finite 4-th order moments uniformly bounded for t ∈ [0, 1].

To provide the main convergence result, we need to strengthen the assumption on the moments of Πt:

(d) There exists c > 0 such that for any 0 ≤ λ < c the expectation Πt

[
exp

(
λ‖∇Vt‖2

)]
is finite and uniformly bounded

for t ∈ [0, 1].

We will then assume the existence of admissible solutions α? minimizingM and αλ minimizing Ltotλ (α) for any λ = 1
K .

We will also need an assumption on the local behavior of the lossM(α) near the optimum α?. This local behavior will be
controlled in terms of the following discrepancy:

S(α, α′) =

∫ 1

0

Πt

[
‖αt − α′t‖

2
+ ‖∇αt −∇α′t‖

2
]

dt.

(e) The minimizer α? ofM(α) exists in A and is unique. Moreover, for any δ > 0 it holds that

M(α?) < inf
S(α,α?)>δ

M(α).

Finally, there exists δ0 > 0 such that for all α ∈ A satisfying S(α?, α) ≤ δ0, it holds that

S(α?, α) .M(α)−M(α∗).

(f) For any λ = 1
K with K a positive integer, there exists at least a solution αλ ∈ A, such that αλ interpolates between

the optimal NF Tλk that minimizes Lk(T ), i.e.: Tλk (x) = x+ λαλtk(x).

Finally, a control α ∈ A is said to induce bounded weight if the following assumption hold:

(g) The functions gα
?

t are bounded from above by a constant C at all time t ∈ [0, 1].
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E.3. Continuous-time importance sampling

Proposition 22. Under Assumptions (a) to (c) and if the control α satisfies Assumption (g), then the marginal at time t of
Π̄α
t defined in (55) is equal to Πt. Moreover, we have Λ̄αt [wαt ] of the weights wαt is given by exp

(
−
∫ t

0
Πs[∂sVs] ds

)
.

Proof. We know that α satisfies (52) of Lemma 7 thanks to Assumption (b). This, in addition to Assumptions (a) and (c),
ensures the SDE defined in (54) is well defined and admits finite 4th order moments by Lemma 13. Denote by ρt the
marginal of Π̄t at time t. Let f be a bounded smooth function f of Xt at time t. Then, by definition of ρt, we have:

ρt[f ] =
Λ̄αt [wαt f ]

Λ̄αt [wαt ]
=

E[wαt f(Xt)]

E[wαt ]
.

Such quantity is finite since the importance weights wαt are bounded by Assumption (g). It is sufficient to show that both ρt
and Πt satisfy the same partial differential equation with the same initial condition. Let us first express the time derivative
of the process wαs f(Xs), which is obtained using Itô’s formula:

d

ds
[wαs f(Xs)] =

d

ds

[
exp

(∫ s

0

gαu (Xu) du

)
f(Xs)

]
=wαs

(
gαs (Xs)f(Xs) +∇f(Xs)

>(αs(Xs)−∇Vs(Xs)) + ∆f(Xs)
)

+
√

2wαs∇f(Xs)
> dBs.

Integrating the above expression in time on the interval [t, t + h] for some h > 0 and taking the expectation w.r.t. the
process Xt yields:

E[wαt+hf(Xt+h)]− E[wαt f(Xt)] =

∫ t+h

t

wαs
(
∇f(Xs)

>(αs(Xs)−∇Vs(Xs)) + ∆f(Xs)
)

ds

+

∫ t+h

t

wαs g
α
s (Xs)f(Xs) ds,

where we used E[
∫ t+h
t

√
2wαs∇f(Xs)

> dBs] = 0. A similar expression can be obtained for h < 0. By continuity of the
integrands of the r.h.s., we can divide by h and take the limit h→ 0 which yields:

d

dt
E[wαt f(Xt)] = E

[
wαt
(
gαt (Xt)f(Xt) +∇f(Xt)

>(αt(Xt)−∇Vt(Xt)) + ∆f(Xt)
)]
. (64)

Now we can compute the time derivative of ρt[f ]:

∂tρt[f ] =
1

E[wαt ]

d

dt
E[wαt f(Xt)]−

E[wαt f(Xt)]

E[wαt ]2
d

dt
E[wαt ]

= ρt
[
gαt f +∇f>(αt −∇Vt) + ∆f)

]
− ρt[f ]ρt[g

α
t ],

where we used (64) and the definition of ρt to obtain the final expression. Hence, we have the following partial differential
equation:

∂tρt[f ] = −ρt
[
∇f>(∇Vt − αt)

]
+ ρt[∆f ] + ρt[(g

α
t − ρt[gαt ])f ], ρ0[f ] = Π0[f ].

This implies the following partial differential equation on ρt using integration by parts:

∂tρt = ∇ · (ρt(∇Vt − αt)) + ∆ρt + (gαt − ρt[gαt ])ρt, ρ0 = Π0.

It is easy to check that Πt satisfies the same partial differential equation. One then concludes by uniqueness of the solution.

To get the expression of the normalizing constant Zt = Λ̄αt [wαt ], we take the time derivative of Zt and using Itô’s formula,
we get:

dZt
dt

= Λ̄αt [gαt w
α
t ] = ZtΠ̄α

t [gαt ].
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Since gαt depends only on the process at time t, and since the marginal of Π̄t at time t is equal to Πt, we obtain:

dZt
dt

= ZtΠt[g
α
t ],

where we have used integration by parts to conclude that Πt

[
∇ · αt −∇xV >t αt

]
= 0. Using the fact that Z0 = 1 and

solving the above differential equation, we get Zt = exp
(
−
∫ t

0
gαs ds

)
= exp

(
−
∫ t

0
Πs[∂sVs] ds

)
.

Lemma 8. Under Assumptions (a) and (c) and if the control α satisfies Assumption (g), then there exists a positive constant
C such that for all t ∈ [0, 1] and x ∈ X :

gαt (x) ≤ C.

In particular, this implies that the normalized weights wαt are uniformly bounded over t ∈ [0, 1].

Proof. We have by definition ḡαt = gαt + Πt[∂tVt]. Since α satisfies Assumption (g), this implies that gαt is bounded from
above by some constant number C. We only need to control Πt[∂tVt] in time. By Assumption (a), we have the estimate:

|∂tVt(x)| ≤ |∂tV0(0)|+ L(1 + 2‖x‖)2. (65)

Moreover, Assumption (c) states that the 4-th, order moments of Πt ((hence the lower order moements) ) are finite and
uniformly bounded for t ∈ [0, 1]. Therefore, using (65) implies |Πt[|∂tVt(x)|]| is also finite and uniformly bounded on
[0, 1]. This concludes the proof.

The next proposition shows that the interpolating measures Π̄α,λ
t and Λ̄α,λt admit η̄k and π̄k as marginals. It is a direct

consequence of the definition of (58) and importance weights (60) and is thus provided without a proof.

Proposition 23. Let α be a continuous-time control in A. Let Λ̄α,λt and Π̄α,λ
t defined by (58) and (61). Under Assump-

tions (a) to (c) and provided α satisfies Assumption (g), then the joint distribution of the vector (Xt0 , ..., Xtk) is equal to
η̄k, that is the joint distribution of the Markov chain defined by X0:k, with NFs Tα,λk given by:

Tα,λk (x) = x+ λαtk(x). (66)

Moreover, consider the joint distribution π̄k defined by

π̄k[f ] =
η̄k[wkf ]

η̄k[wk]
,

where the IS weights wk are given by (11) using the same choice of NFs Tk as in (66). Then, for any bounded smooth
function f of (xt0 , ..., xtk) it holds that:

Π̄α,λ
tk

[f ] = π̄k[f ].

E.4. Relative entropy computation

In this section, we are interested in computing the relative entropy between the limit distribution Π̄α
t with control α and the

interpolating measure Π̄α′,λ
t using the control α′. For clarity, we introduce the following notation:

Dλt (α, α′) := KL(Π̄α
t ||Π̄

α′,λ
t ),

∆λ
t (α, α′) := Dλt (α, α)−Dλt (α, α′).

Dλt (α, α′) represents the relative entropy between the limit distribution Π̄α
t with control α and the interpolating measure

Π̄α′,λ
t using the control α′. The error term ∆λ

t (α, α′) represents how much additional error is introduced by using a
different control α′ for the interpolating measure instead of the reference control α. In Proposition 24, we provide an
expression forDλt (α, α′), then in Proposition 26 we control the difference in relative entropies ∆λ

t (α, α′) when the control
α′ of the interpolating measure is replaced by α.
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Proposition 24. Let α and α′ be two continuous time controls inA. Under Assumptions (a) to (c) and provided α satisfies
Assumption (g), then the relative entropy between Λ̄α and Λ̄α

′,λ is well defined and given by:

KL(Λ̄α||Λ̄α
′,λ) =

1

4
E
[∫ t

0

‖bαs (Xs)− bα
′,λ
s (X)‖2 ds

]
.

Moreover, the relative entropy between Π̄α
t and Π̄α′,λ

t is well defined and given by:

Dλt (α, α′) =E

[
wαt

(∫ τλ(t)

0

(
gαs (Xs)− gα

′,λ
s (X)

)
ds

)]
+ E

[
wαt

∫ t

τλ(t)

ḡαs (Xs) ds

]

+
1

4
E
[
wαt

∫ t

0

‖bαs (Xs)− bα
′,λ
s (X)‖2 ds

]
+

1√
2
E
[
wαt

∫ t

0

(
bαs (Xs)− bα

′,λ
s (X)

)>
dBs

]

+ E

wαt
kλ(t)∑

k=1

hλtk(Xtk)

.
Proof. Let us express the relative entropy between Π̄t and Π̄λ

t defined as the expectation under Π̄t of the logarithm of the
Radon-Nykodim of Π̄t w.r.t. Π̄λ

t . By a simple chaining argument, we have that:

log

(
dΠ̄α

t

dΠ̄α′,λ
t

)
= log

(
dΠ̄α

t

dΛ̄αt

)
+ log

(
dΛ̄αt

dΛ̄α
′,λ
t

)
+ log

(
dΛ̄α

′,λ
t

dΠ̄α′,λ
t

)
. (67)

Hence, Dλt (α, α′) is obtained by taking the expectation of (67) w.r.t Π̄α
t , that is the expectation w.r.t Λ̄αt weighted by wαt :

Dλt (α, α′) = E
[
wαt log

(
dΠ̄α

t

dΛ̄αt

)]
+ E

[
wαt log

(
dΛ̄αt

dΛ̄α
′,λ
t

)]
+ E

[
wαt log

(
dΛ̄α

′,λ
t

dΠ̄α′,λ
t

)]
. (68)

We only need to express each term in (67). The first and last terms in (67) are given by definition of Πα
t and Πα′,λ

t :

log

(
dΠ̄α

t

dΛ̄αt

)
=

∫ t

0

gαs (Xs) ds− log

(
Z0

Zt

)
, (69)

log

(
dΛ̄α

′,λ
t

dΠα′,λ
t

)
= log

(
Z0

Zτλ(t)

)
−
∫ τλ(t)

0

gα
′,λ

s (X) ds+

kλ(t)∑
k=1

hλtk(Xtk).

The second term is obtained by application of Girsanov’s formula, since Λ̄αt and Λ̄α
′,λ
t are mutually absolutely continuous

as they share the same volatility term by construction:

log

(
dΛ̄αt

dΛ̄α
′,λ
t

)
:=

1√
2

∫ t

0

(bαs (Xs)− bα
′,λ
s (X))> dBs +

1

4

∫ t

0

‖bαs (Xs)− bα
′,λ
s (X)‖2 ds. (70)

We obtain the desired expression forDλt (α, α′) by plugging (69) and (70) in (68). Finally, the relative entropy between Λ̄αt
and Λ̄α

′,λ
t is obtained directly by taking the expectation of (70) under Λ̄αt .

E.5. Relative entropy bounds

In this section, we provide bounds on the relative entropy Dλt (α, α) in Proposition 27 and difference in relative entropies
∆λ
t (α, α′) in Proposition 26. We start by Proposition 25 which will be crucial in the proofs of Propositions 26 and 27.

Proposition 25 provides estimates of the expectations under Λ̄αt of product of functions, where one of the functions depend
only on the value of the process at an earlier time s. We defer the proof of Proposition 25 to Appendix E.8.1 which crucially
relies on a coupling argument later provided in Lemma 14.
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Proposition 25. Let 0 ≤ s ≤ s′ ≤ t. Consider a function f of the processXs at time s such that E[‖f(Xs)‖2] <∞ and let
hu(Xu, Xs) be a function of the sample path (Xt)[s,s′] satisfying E[

∫ s′
s
‖hu(Xu, Xs)‖2 du] <∞. Under Assumptions (a)

to (c) and provided α satisfies Assumption (g), the following holds:

‖E[wαt f(Xs)]‖ . Πs[‖f(Xs)‖] (71)∣∣∣∣∣E
[
wαt f(Xs)

>
∫ s′

s

dBu

]∣∣∣∣∣ . (s′ − s)Πs

[
‖f‖2

] 1
2

(72)

∣∣∣∣∣E
[
wαt f(Xs)

>
∫ s′

s

hu(Xu, Xs) du

]∣∣∣∣∣ . √s′ − sΠs

[
‖f‖2

] 1
2E

[∫ s′

s

‖hu(Xu, Xs)‖2 du

] 1
2

(73)

In particular, if tk−1 ≤ s ≤ s′ ≤ tk for some k ≤ kλ(t) + 1 and hu(x, y) = bαu(x)− βα,λu′ (y) with tk−1 ≤ u′ ≤ tk, then∣∣∣∣∣E
[
wαt f(Xs)

>
∫ s′

s

h(Xu, Xs) du+ dBu

]∣∣∣∣∣ . λΠs

[
‖f‖2

] 1
2

.

We can now provide an upper-bound on the difference in relative entropies ∆λ
t (α, α′) in terms of the time discretization

step-size λ and the time-discrete discrepancy Sλt (α, α′) between the controls α and α′, defined in (62).

Proposition 26. Let α and α′ be two continuous time controls inA. Under Assumptions (a) to (c) and provided α satisfies
Assumption (g), then the following upper-bound holds:∣∣∆λ

t (α, α′)
∣∣ .Sλt (α, α′) + Sλt (α, α′)

1
2 + λ,

where Sλt is defined in (62).

Proof. By direct computation using the expression of the relative entropy in Proposition 24, we have that:

−∆λ
t (α, α′) =Dλt (α, α′)−Dλt (α, α)

=E

[
wαt

(∫ τλ(t)

0

(
gα,λs (X)− gα

′,λ
s (X)

)
ds

)]

+
1

4
E
[
wαt

∫ t

0

∥∥∥bαs (Xs)− bα
′,λ
s (X)

∥∥∥2

−
∥∥bαs (Xs)− bα,λs (X)

∥∥2
ds

]
We further introduce:

∆δs(x) := δα,λs (x)− δα
′,λ

s (x), ∆βs(x) := βα,λs (x)− βα
′,λ

s (x),

hu,s(x, y) = bαu(x)− βα,λs (y).

Recalling the definition of gα,λs (X) from (59), we can express ∆λ
t (α, α′) in terms of ∆δ, ∆β and hu,s(x, y):

−∆λ
t (α, α′) =λ

kλ(t)∑
k=1

E
[
wαt

(
∆δtk(Xtk−1

) +
1

4

∥∥∆βtk(Xtk−1
)
∥∥2
)]

+
1

2

kλ(t)∑
k=1

E

[
wαt
(
∆βtk(Xtk−1

)
)> ∫ tk

tk−1

(
hu,tk(Xu, Xtk−1

) du+
√

2 dBu

)]

+
1

2
E

[
wαt
(
∆βτλ(t)+λ(Xτλ(t))

)> ∫ t

τλ(t)

(
hu,τλ(t)+λ(Xu, Xτλ(t)) du+

√
2 dBu

)]
.

(74)
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By Proposition 25, we know that the remainder term in the last line of (74) is of order λ. Moreover, Proposition 25 allows
us to control the first two terms in (74) so that the following bound holds:

∣∣∆λ
t (α, α′)

∣∣ . λ

kλ(t)∑
k=1

Πtk−1

[
|∆δtk |+ ‖∆βtk‖

2
]

+ λ

kλ(t)∑
k=1

Πtk−1

[
‖∆βtk‖

2
] 1

2

+ λ (75)

. λ

kλ(t)∑
k=1

Πtk−1

[
|∆δtk |+ ‖∆βtk‖

2
]

+

λ kλ(t)∑
k=1

Πtk−1

[
‖∆βtk‖

2
] 1

2

+ λ

. Mλ
t [|∆δ|] + Mλ

t

[
‖∆β‖2

]
+ Mλ

t

[
‖∆β‖2

] 1
2

+ λ,

where we used Cauchy–Schwarz inequality in the second line and introduced the notation Mλ
t from (63) in the last line,

|∆δ| and ‖∆β‖ being viewed as functions from [0, 1]×X to R. Thus, we only need to control Mλ
t [|∆δ|] and Mλ

t

[
‖∆β‖2

]
.

To control Mλ
t [|∆δ|], we can rely on the following pointwise estimate from Lemma 17:∣∣∣δα,λtk

(x)− δα
′,λ

tk
(x)
∣∣∣ . ((1 + ‖x‖)

∥∥αtk(x)− α′tk(x)
∥∥+ ‖∇αtk(x)−∇α′tk(x)‖

)
.

Further defining L : [0, 1]× X→ R to be (s, x) 7→ Ls(x) = 1 + ‖x‖, this allows us to write

Mλ
t

[
‖∆β‖2

]
. Mλ

t

[
‖α− α′‖2

]
Mλ
t [|∆δ|] . Mλ

t

[
L‖α− α′‖

]
+ Mλ

t [‖∇α−∇α′‖]

. Mλ
t

[
L

2
] 1

2Mλ
t

[
‖α− α′‖2

] 1
2

+ Mλ
t [‖∇α−∇α′‖]

where we used Cauchy–Schwarz inequality to get the last inequality. The factor Mλ
t

[
L

2
]

is also bounded as it is a Riemann
sum and converges towards:

Mλ
t

[
L

2
]
−−−→
λ→0

∫ t

0

Πt

[
(1 + ‖X‖)2

]
dt,

which is finite by Assumption (c). Again using the pointwise estimate from Lemma 17:

‖βα,λt (x)− βα
′,λ

t (x)‖ . ‖αt(x)− α′t(x)‖,

it follows directly that Mλ
t

[
‖∆β‖2

]
. Mλ

t

[
‖α− α′‖2

]
. Therefore, we have shown:

Mλ
t

[
‖∆β‖2

]
. Mλ

t

[
‖α− α′‖2

]
(76)

Mλ
t [|∆δ|] . Mλ

t

[
‖α− α′‖2

] 1
2

+ Mλ
t [‖∇α−∇α′‖].

The desired upper-bound follows using (76) in (75).

Next we control the relative entropy Dλt (α, α) between the Feynman-Kac measure Π̄α
t and the interpolating measure Π̄α,λ

t

using the same control α.

Proposition 27. Under Assumptions (a) to (d) and if α satisfies Assumption (g), the following upper bound holds:

Dλt (α, α) := KL(Π̄α
t ||Π̄

α,λ
t ) .

√
λ.
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Proof. of Proposition 27. We use the expression of the relative entropyDλt (α, α) provided in Proposition 24, then recalling
that the normalized weights w̄αt are bounded by Lemma 8 we have

Dλt (α, α′) .E

[∣∣∣∣∣
∫ τλ(t)

0

(
gαs (Xs)− gα

′,λ
s (X)

)
ds

∣∣∣∣∣
]

+ E

[∣∣∣∣∣
∫ t

τλ(t)

ḡαs (Xs) ds

∣∣∣∣∣
]

+
1

4
E
[∫ t

0

‖bαs (Xs)− bα
′,λ
s (X)‖2 ds

]
+

1√
2
E
[∣∣∣∣∫ t

0

(
bαs (Xs)− bα

′,λ
s (X)

)>
dBs

∣∣∣∣]

+ E

wαt
kλ(t)∑

k=1

∣∣hλtk(Xtk)
∣∣.

Now by a direct application of Cauchy–Schwarz inequality and triangular inequalities, we get the following upper-bound
on Dλt (α, α)

Dλ
t (α, α) .

(
EW + ER + EH +

1

4
EKL +

1√
2
E

1
2

KL

)
where EW , ER, EH and EKL are given by

EW := E

[∣∣∣∣∣
∫ τλ(t)

0

gαs (Xs)− gα,λs (X) ds

∣∣∣∣∣
]
, ER := E

[∫ t

τλ(t)

ḡαs (Xs) ds

]
,

EKL := E
[∫ t

0

∥∥bαs (Xs)− bα,λs (X)
∥∥2
]
, EH := E

wαt kλ(t)∑
k=1

∣∣hλtk ∣∣
.

Bound on ER. E[|gαs (Xs)|] has a quadratic growth by Lemma 17 and the process Xs has a bounded second moment by
Lemma 13, therefore ER . |t− τλ(t)| ≤ λ.

Bound on EW . We first start by applying a triangular inequality:

EW ≤
kλ(t)∑
k=1

E

[∫ tk

tk−1

∣∣gαs (Xs)− δα,λs (Xtk−1)

∣∣ds]︸ ︷︷ ︸
EW,k

where by definition of gα,λs (X) = δα,λs (Xtk−1
) for tk−1 ≤ s ≤ tk. We then use the point-wise upper-bound on the

difference gαs (x′)− δα,λt (x) provided in Lemma 15:∣∣∣gαs (x′)− δα,λt (x)
∣∣∣ . (1 + ‖x‖+ ‖x′‖)‖x− x′‖+ λ(1 + ‖x‖+ ‖x′‖)2

.

This allows to control each integral EW,k after a simple application of Cauchy–Schwarz inequality:

EW,k .λ
∫ tk

tk−1

E
[(

1 + ‖Xs‖+
∥∥Xtk−1

∥∥)2] ds

+

(∫ tk

tk−1

E
[∥∥Xs −Xtk−1

∥∥2
]

ds

) 1
2
(∫ tk

tk−1

E
[(

1 + ‖Xs‖+
∥∥Xtk−1

∥∥)2] ds

) 1
2

where we also used Fubini’s theorem to exchange the order of the expectation and time integral. By Lemma 13, we
know that the second moments of the process Xt are bounded over the time interval [0, 1] and that E

[∥∥Xs −Xtk−1

∥∥2
]
.

|s − tk−1|. Therefore, we get the upper-bound E[EW,k] . λ2 + λ
√
λ. Finally, summing over k ranging from 1 to kλ(t)

yields:

EW ≤
kλ(t)∑
k=1

E[EW,k] .
√
λ.
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Bound on EH . By a direct application of Proposition 25, we know that:

EH .
kλ(t)∑
k=1

Πtk

[∣∣hλtk ∣∣].
We just need to control each term Πtk

[∣∣hλtk ∣∣] as a function of λ. The technical Lemma 18 provides an upper-bound on
|hλt (x)| that is point-wise in x and of the form:

|hλt (x)| ≤ λ
√
λ

Q1(x)

1 +Q2(x)
exp(Cλ‖∇Vt(x)‖2)

where Q1 and Q2 are non-negative functions of ‖x‖ of polynomial growth and independent from λ and t and C is a non-
negative constant. Taking the expectation under Πt and using the integrability condition of Assumption (d), it follows that
Πtk

[∣∣hλtk ∣∣] . λ
√
λ. Thus summing over k directly yields EH .

√
λ.

Bound on EKL. We start by decomposing EKL as a sum of kλ(t) + 1 integral terms over intervals of size less or equal
to λ:

EKL =

∫ t

τλ(t)

E
[
‖bαs (Xs)− βα,λτλ(t)+1(Xτλ(t))‖2

]
ds+

kλ(t)∑
k=1

∫ tk

tk−1

E
[
‖bαs (Xs)− βα,λtk

(Xtk−1
)‖2
]

ds

where we used that bα,λs (X) = βα,λtk
(Xtk−1

) for tk−1 ≤ s ≤ tk by definition of bα,λs (X). We can then use Lemma 9 which
allows to control each term by λ2. Hence, after summing, we directly get that EKL . λ|t− τλ(t)|+

∑kλ(t)
k=1 λ2 . λ.

We finally get the desired result by combining upper-bounds on each quantity EW , ER, EH and EKL which are all of order√
λ at least.

Lemma 9. Let s and s′ be such that tk−1 ≤ s ≤ s′ ≤ tk for 0 ≤ k ≤ K and tk−1 ≤ u′ ≤ tk. Under Assumptions (a)
to (c) it holds that:

E

[∫ s′

s

∥∥∥bαu(Xu)− βα,λu′ (Xs)
∥∥∥2

du

]
. λ|s′ − s|.

Proof. By a direct application of Proposition 31, we have

E

[∫ s′

s

∥∥∥bαu(Xu)− βα,λu′ (Xs)
∥∥∥2

du

]
.
∫ s′

s

E
[
‖Xu −Xs‖2 + λ2

(
1 + ‖Xs‖2

)]
du.

Moreover, by Lemma 13, we directly know that the second moments of the process are bounded at any time and that
E[‖Xu′ −Xu‖2] ≤ |u− u′|, hence:

E

[∫ s′

s

∥∥∥bαu(Xu)− βα,λu′ (Xs)
∥∥∥2

du

]
.
∫ s′

s

(
|u− s|+ λ2

)
du . λ|s′ − s|.

E.6. Convergence towards an optimal Feynman-Kac measure

In this section, we show that the optimal interpolating controls αλ converge towards the continuous-time limit optimal con-
trol α?. We will first need proposition Proposition 28 bellow showing that the discrete-time loss Ltotλ (α) converges towards
M(α) uniformly over the class of admissible controls with a rate of λ. Proposition 28 is a restatement of Proposition 1,
we defer its proof to Appendix E.7.
Proposition 28. Under Assumptions (a) to (c) and for λ ≤ 1

2L , it holds that:∣∣Ltotλ (α)−M(α)
∣∣ . λ,

whereM(α) and Ltotλ (α) are defined in (13) and (14).
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Using Proposition 28 we can show that the interpolating control αλ, which exists by Assumption (f), converges towards
the continuous-time limit optimal control α?. This essentially relies on the local behavior of the objective M near the
optimum α? as described by Assumption (e). Proposition 29 makes this idea more precise.

Proposition 29 (Convergence of the controls). Under Assumptions (a) to (c), (e) and (f), it holds that:

Sλt (α?, αλ) . λ, S(α?, αλ) . λ,

where S and Sλt are defined in (62).

Proof. Recall that αλ is a minimizer of Ltotλ (α) defined in (53) overA, while α? is a minimizer ofM(α) (defined in (56) )
overA. By Assumptions (c), (e) and (f) both exist and belong toA. We will first show that

∣∣M(α?)−M(αλ)
∣∣ . λ, then,

we will use the coercivity property of the lossM ( Assumption (e)) to obtain convergence rates in terms of the divergence
S between α? and αλ. Finally, we establish the convergence of the discrete sums Sλt , by interpreting it as a Riemann sum.

Bounds on |M(α?)−M(αλ)| and |Ltotλ (α?)−Ltotλ (αλ)|. By definition of the minimizers, the following lower bound
holds 0 ≤M(αλ)−M(α?) holds. It remains to find an upper-bound. For this purpose, we use the following decomposi-
tion:

M(αλ)−M(α?) =
(
M(αλ)− Ltotλ (αλ)

)
+
(
Ltotλ (αλ)− Ltotλ (α?)

)
+
(
Ltotλ (α?)−M(α?)

)
≤
(
M(αλ)− Ltotλ (αλ)

)
+
(
Ltotλ (α?)−M(α?)

)
,

where we used that Ltotλ (αλ)− Ltotλ (α?) ≤ 0 to get the second line. Moreover, Proposition 28 provides an error bound of
the form |M(α)− Ltotλ (α)| . λ that holds uniformly over the set A. This directly impliesM(αλ)−M(α?) . λ. Thus,
we have shown: ∣∣M(αλ)−M(α?)

∣∣ . λ. (77)

Convergence in Sobolev norm S(α?, αλ). By Assumption (e), we know that the minimizer α? is well-separated, i.e.
for any δ > 0 it holds that

M(α?) < inf
S(α,α?)>δ

M(α) (78)

Along with (77), this necessarily implies that S(αλ, α?) −−−→
λ→0

0. Indeed, if by contradiction, S(αλ, α?) does not converge

to 0, then there exists a positive number δ0 and a sequence of elements (λl)l≥0 such that λl → 0 and S(αλl , α?) > δ0.
If we set Mδ0 = infS(α,α?)>δ0M(α), then (78) implies that Mδ0 >M(α?). Hence,M(αλl) > Mδ0 >M(α?). This
contradicts the fact thatM(αλl) −−−→

λ→0
M(α?).

Convergence rate in Sobolev norm. Now, we can get a convergence rate for S(αλ, α?). By Assumption (e), we know
that for δ small enough, the following local coercivity property holds:

S(α, α?) .M(α)−M(α?), ∀α ∈ A : S(α, α?) ≤ δ

Since S(αλ, α?) −−−→
λ→0

0, there exists λ0 small enough such that S(αλ, α?) ≤ δ for all λ ≤ λ0. The convergence rate

follows directly using (77): S(αλ, α?) . λ for all λ ≤ λ0.

Convergence of discrete sums. We will first show Sλt (α?, αλ) . λ for t = 1. The result will follow for any t ≤ 1 since
by definition we have Sλt (α, α′) ≤ Sλ1 (α, α′) for any α and α′ in A. By the triangular inequality, we have:

Sλ1 (α?, αλ) ≤ S(α?, αλ) +
∣∣Sλ1 (α?, αλ)− S(α?, αλ)

∣∣
. λ+

∣∣Sλ1 (α?, αλ)− S(α?, αλ)
∣∣

where we used that S(α?, αλ) . λ to get the second line. Therefore, it suffices to show that:∣∣Sλ1 (α, α′)− S(α, α′)
∣∣ . λ.
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uniformly over α and α′ in A. The term Sλ1 (α, α′) is simply a Riemann sum converging towards S(α, α′) and whose
convergence rate depends on the smoothness in time of the integrand. The finiteness of the moments of Πt, along with the
controls α? and αλ and their gradient being locally Lipschitz in time and the variations of the potential V̇t having a linear
growth allows to get the desired rate.

We are now ready to prove our main result of Theorem 3 which we restate as Theorem 6 below for convenience and to
keep a consistent notation. The proof simply combines the estimates in Propositions 26 and 27 along with the convergence
results of the controls in Proposition 29 and loss (Proposition 28).

Theorem 6. Under Assumptions (a) to (f) and if α? satisfies Assumption (g), then it holds that:

KL
(

Π̄α?

t

∣∣∣∣∣∣Π̄αλ,λ
t

)
.
√
λ

Moreover, the discrete-time objective Ltotλ (α) converges towardsM(α) uniformly over the class A with at rate λ.

Proof. By Assumptions (e) and (f) , we know that both αλ and α? exist and belong to the class of admissible controls A.
We can then use the following decomposition of the relative entropy Dλt (α?, αλ):∣∣Dλt (α?, αλ)

∣∣ ≤ ∣∣Dλt (α?, α?)
∣∣+
∣∣Dλt (α?, αλ)−Dλt (α?, α?)

∣∣.
Proposition 27 ensures that

∣∣Dλt (α?, α?)
∣∣ . √λ, while Proposition 26 shows that:∣∣Dλt (α?, αλ)−Dλt (α?, α?)

∣∣ . λ+ Sλt (α?, αλ) + Sλt (α?, αλ)
1
2 .

We can then use Proposition 29 to ensure the discrepancy Sλt (α?, αλ) . λ for λ small enough. This directly yields:∣∣Dλ
t (α?, αλ)

∣∣ . √λ.
Finally, Proposition 28 shows that the discrete time losses Ltotλ converge towardsM uniformly over the class A at rate λ.
This concludes the proof.

E.7. Uniform convergence of the objective: Proof of Proposition 1 (Proposition 28)

We will first introduce some notations that are used only in this section. In all what follows, Tk are normalizing flows of
the form Tk(x) = x + λαtk(x) for some fixed α ∈ A. We further denote by Tt,s(x) = x + (s − t)αs(x) and introduce
Rs,t:

Rt,s := log(
Zt
Zs

) + Πt[(Vs ◦ Tt,s − Vt − log |∇Tt,s|))]

With the above notations we clearly have Tk = Ttk−1,tk and Rtk,tk+1
= KL((Tk)#Πtk ||Πtk+1

). The discrete time
objective can then be expressed in terms of R:

F totλ (α) =
1

λ

K−1∑
k=0

Rtk,tk+1
. (79)

We will show that such sum can be written as a double integral of the form:

F totλ (α) = − 1

λ

K−1∑
k=0

∫ tk+1

tk

∫ s

tk

∂t∂sRt,s dtds.

This allows to view (79) as a Riemann’s sum whose limit is determined by the local behavior of the function ∂t∂sRt,s
when |t− s| is small. We first show in Proposition 30 that −∂t∂sRt,s approaches Πt[(g

α
t )2] when t and s are close. The

proof of Proposition 30 is deferred to Appendix E.7.1 and relies on Lemmas 10 and 11. Lemma 10 provides closed form
expressions for the derivatives ∂sRt,s and ∂t∂sRt,s as expectations of some integrable functions under Πt. Then Lemma 11
shows that the integrand in −∂t∂sRt,s approaches (gαt )2(x) with an error that is polynomial in x and proportional to the
distance |t− s|.
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Proposition 30. Under Assumptions (a) to (c) and for t and s such that |t− s| ≤ 1
2L , it holds that:∣∣∣∂t∂sRt,s + Πt

[
(gαt )

2
]∣∣∣ . |t− s| (80)∣∣∣Πt

[
(gαt )

2
]
−Πs

[
(gαs )

2
]∣∣∣ . |t− s| (81)

Moreover, when s = t, we have: ∂sRs,s = 0 and ∂t∂sRt,t = Πt

[
(gαt )

2
]
.

Now that we have described the behavior of ∂t∂sRt,s when |t− s| is small, we can proceed to the proof of Proposition 28.

Proof. of Proposition 28 By the fundamental theorem of calculus, we can directly write:

Rtk,tk+1
=

∫ tk+1

tk

∂sRtk,s ds = −
∫ tk+1

tk

∫ s

tk

∂t∂sRt,s dtds

where we used that Rtk,tk = 0 and that ∂sRs,s = 0 by Proposition 30. Moreover, defineMλ such that:

Mλ(α) :=
1

2

K−1∑
k=0

∫ tk+1

tk

Πtk

[(
gαtk
)2]

dt =
1

λ

K−1∑
k=0

∫ tk+1

tk

∫ s

tk

Πtk

[(
gαtk
)2]

dtds,

where the second expression ofMλ(α) is obtained by direct calculation. We will control both errors |F totλ (α)−Mλ(α)|
and |Mλ(α)−M(α)|. We get an upper-bound on |Mλ(α)−M(α)| directly using the first expression ofMλ(α) and
using the Lipschitz smoothness of Πt

[
(gαt )

2
]

as shown in (81) of Proposition 30:

|Mλ(α)−Mλ(α)| =

∣∣∣∣∣12
K−1∑
k=0

∫ tk+1

tk

Πtk

[(
gαtk
)2]−Πt

[
(gαt )

2
]

dt

∣∣∣∣∣
.
K−1∑
k=0

∫ tk+1

tk

|tk − t|dt . λ

To control |F totλ (α)−Mλ(α)| we use the second expression ofMλ(α) and rely on the following decomposition:

∣∣F totλ (α)−Mλ(α)
∣∣ ≤ 1

λ

K−1∑
k=0

∫ tk+1

tk

∫ s

tk

∣∣∣∂t∂sRt,s + Πtk

[(
gαtk
)2]∣∣∣dtds

≤ 1

λ

K−1∑
k=0

∫ tk+1

tk

∫ s

tk

(∣∣∣∂t∂sRt,s + Πt

[
(gαt )

2
]∣∣∣+

∣∣∣Πt

[
g2
t

]
−Πtk

[(
gαtk
)2]∣∣∣) dtds

.
1

λ

K−1∑
k=0

∫ tk+1

tk

∫ s

tk

|t− s|+ |t− tk|dtds . λ

where we used the estimates (80) and (81) in Proposition 30 to get the last line. The result follows by direct application of
triangular inequality.

E.7.1. PROOF OF THE TECHNICAL LEMMAS

We first provide expressions for ∂sRt,s and ∂t,sRt,s
Lemma 10. Under Assumptions (a) to (c), we have the following expressions for ∂sRt,s and ∂t,sRt,s:

∂sRt,s =

∫
ct,s(y)qt,s(y) dy,

∂t∂sRt,s = E
(1)
t,s + E

(2)
t,s ,
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where we define ct,s, qt,s, E
(1)
t,s and E(2)

t,s as:

qt,s(y) := Πt(T
−1
t,s (y))|∇Tt,s

(
T−1
t,s (y)

)
|−1

ct,s(y) := V̇s(y)−Πs[V̇s] +∇Vs(y)>αt
(
T−1
t,s (y)

)
− Tr

(
∇T−1

t,s (y)∇αt
(
T−1
t,s (y)

))
E

(1)
t,s =Πt

[(
∂tαt + (∇Tt,s)−1∇αt

)>
∇ log

(
qt,s
Πs

)
◦ Tt,s

]
E

(2)
t,s =Πt[(ct,s ◦ Tt,s)(∂t log(qt,s) ◦ Tt,s)]

In particular, when s = t, we have: ∂sRt,t = 0 and ∂t∂sRt,t = Πt

[
(gαt )

2
]
.

Proof. • Computing ∂sRt,s.

First, recall that the control α satisfies (52) of Lemma 7 under Assumption (b). In addition and under Assumptions (a)
and (c), it is possible to apply the dominated convergence theorem, thus yielding:

∂sRt,s = −Πs

[
V̇s

]
+ Πt

[
V̇s ◦ Tt,s + (∇Vs ◦ Tt,s)>αt − Tr

(
∇T−1

t,s ∇αt
)]

We can then perform a change of variables y = Tt,s(x) in the above expression to get:

∂sRt,s =

∫ (
V̇s(y)−Πs[V̇s] +∇Vs(y)>αt

(
T−1
t,s (y)

)
− Tr

(
∇T−1

t,s (y)∇αt
(
T−1
t,s (y)

)))
qt,s(y) dy

=

∫
ct,s(y)qt,s(y) dy.

When s = t, we get ct,t(x) = gαt (x) and qt,t(x) = Πt(x), thus ∂sRt,t = 0.

• Computing ∂t∂sRt,s.

To compute ∂t∂sRt,s we will introduce an auxiliary function rt,t′,s:

rt,t′,s :=

∫ (
V̇s(y)−Πs[V̇s] +∇Vs(y)>αt

(
T−1
t,s (y)

))
qt′,s(y) dy (82)

−
∫ (

Tr
(
∇T−1

t,s (y)∇αt
(
T−1
t,s (y)

)))
qt′,s(y) dy.

=

∫
ct,s(y)qt,s(y) dy.

Hence, from the expression of ∂sRt,s, it always holds that ∂sRt,s = rt,t,s. Moreover, provided the partial derivatives
∂trt,t′,s and ∂t′rt,t′,s are continuous, the partial derivative ∂t∂sRt,s is simply given by:

∂t∂sRt,s = ∂trt,t′,s|t′=t + ∂t′rt,t′,s|t′=t.

Thus, we only need to compute each term E
(1)
t,s = ∂trt,t′,s|t′=t and E(2)

t,s = ∂t′rt,t′,s|t′=t separately.

Computing E(1)
t,s = ∂trt,t′,s|t′=t. First, a simple computation shows that

∇ · [αt(T−1
t,s (y))] = Tr(∇αt(T−1

t,s (y))∇T−1
t,s (y))

hence, we can perform integration by parts on the last term of (82) to obtain a second expression for rt,t′,s

rt,t′,s =

∫ (
V̇s(y)−Πs

[
V̇s

])
qt′,s(y) dy +

∫
αt
(
T−1
t,s (y)

)>∇ log

(
qt′,s(y)

Πs(y)

)
qt′,s(y) dy. (83)
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After differentiating (83) w.r.t. t, only the second integral in (83) contributes to the expression of the derivative:

∂trt,t′,s =

∫ (
∂tαt

(
T−1
t,s (y)

)
+∇T−1

t,s (y)∇αt
(
T−1
t,s (y)

))>∇ log

(
qt′,s(y)

Πs(y)

)
qt′,s(y) dy.

Taking t′ = t and performing again a change of variables y = Tt,s(x), it follows that:

E
(1)
t,s =

∫ (
∂tαt(x) + (∇Tt,s(x))

−1∇αt(x)
)>
∇ log

(
qt,s
Πs

)
(Tt,s(x))Πt(x) dx.

= Πt

[(
∂tαt + (∇Tt,s)−1∇αt

)>
∇ log

(
qt,s
Πs

)
◦ Tt,s

]

Computing E(2)
t,s = ∂t′rt,t′,s|t′=t. From (82) we have that rt,t′,s =

∫
ct,s(y)qt′,s(y) dy. Therefore, by the dominated

convergence theorem, we can write:

∂t′rt,t′,s =

∫
ct,s(y)∂t log (qt′,s(y))qt′,s(y)) dy.

Taking t′ = t and applying a change of variables y = Tt,s(x), we get:

E
(2)
t,s =

∫
ct,s(Tt,s(x))∂t log(qt,s)(Tt,s(x))Πt(x) dx

=Πt[(ct,s ◦ Tt,s)(∂t log(qt,s) ◦ Tt,s)].

Next we show that the functions ∂t log(qt,s(Tt,s(x))) and −ct,s(Tt,s(x)) appearing in the expression of ∂t∂sRt,s provided
in Lemma 10, approach gαt (x) point-wise with an error proportional to |t− s|.
Lemma 11. Under Assumptions (a) to (c) and for t and s such that |t− s| ≤ 1

2L , it holds:

|∂t log(qt,s(Tt,s(x)))− gαt (x)| . |t− s|
(

1 + ‖x‖+ ‖x‖2
)

(84)

|ct,s(Tt,s(x)) + gαt (x)| . |t− s|
(

1 + ‖x‖+ ‖x‖2
)

(85)∥∥∥∥∇ log

(
qt′,s
Πs

)
(Tt,s(x))

∥∥∥∥ . |t− s|
(

1 + ‖x‖+ ‖x‖2
)

(86)

The proof of Lemma 11 relies on the expressions of the time derivatives ∂tT−1
t,s (y), ∂t∇T−1

t,s (y) and ∂t log
∣∣∇T−1

t,s (y)
∣∣

which we provide in Lemma 12 without proof as they follow by direct calculations.

Lemma 12. Let y be in X and denote xt,s := T−1
t,s (y) and Ct,s = ∇T−1

t,s (y). Under Assumptions (a) to (c) and using (52)
of Lemma 7, it holds that:

∂tT
−1
t,s (y) = Ct,s(αt(x)− (s− t)∂tαt(x))

∂t∇T−1
t,s (y) = Ct,s∇αt(xt,s)Ct,s − (s− t)Ct,sGt,s(y)Ct,s

∂t log
∣∣∇T−1

t,s (y)
∣∣ = tr(Ct,s∇αt(x))− (s− t)Tr(Ct,sGt,s(y))

with

Gt,s(y) := ∂t∇αt(xt,s) +Hαt(xt,s)∂tT
−1
t,s (y)

We can now prove Lemma 11.

Proof. of Lemma 11 Let y ∈ X and define xt,s = T−1
t,s (y) and Ct,s = ∇T−1

t,s (y).
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Equation (84). We first express the partial derivative ∂t log(qt,s):

∂t log(qt,s(y)) =−
(
V̇t(xt,s)−Πt

[
V̇t

]
+∇Vt(xt,s)∂tT−1

t,s (y)− ∂t log |∇T−1
t,s (y)|

)
=−

(
V̇t(xt,s)−Πt

[
V̇t

]
+∇Vt(xt,s)Ct,sαt(xt,s)− Tr(Ct,s∇αt(xt,s))

)
+ (s− t)∇Vt(xt,s)∇Ct,s∂tαt(xt,s)
− (s− t)Tr(Ct,s(∂t∇αt(xt,s) +Hαt(xt,s)Ct,s(αt(xt,s)− (s− t)∂tαt(xt,s))))

where the expressions of the time derivatives ∂tT−1
t,s (y) and ∂t log |∇T−1

t,s (y)| are given by Lemma 12. We can then
evaluate ∂t log(qt,s(y)) at y = Tt,s(x) for some x ∈ X :

∂t log(qt,s(Tt,s(x))) :=−
(
V̇t(x)−Πt

[
V̇t

]
+∇Vt(x)Ct,sαt(x)− Tr(Ct,s∇αt(x))

)
+ (s− t)∇Vt(x)Ct,s∂tαt(x)

− (s− t)Tr(Ct,s(∂t∇αt(x) +Hαt(x)Ct,s(αt(x)− (s− t)∂tαt(x))))

Hence, by definition of gαt , we have:

∂t log(qt,s(Tt,s(x)))− gαt (x) =−∇Vt(x)>(Ct,s − I)αt(x) + Tr((Ct,s − I)∇αt(x))

+ (s− t)∇Vt(x)Ct,s∂tαt(x)

− (s− t)Tr(Ct,s(∂t∇αt(x) +Hαt(x)Ct,s(αt(x)− (s− t)∂tαt(x))))

We first note that:

Ct,s − I = ∇T−1
t,s (y)− I = (∇Tt,s(x))−1 − I

= (I + (s− t)∇αt(x))− I
= (t− s)Ct,s∇αt(x).

This implies:

∂t log(qt,s(Tt,s(x)))− gαt (x) =(s− t)
(
∇Vt(x)>Ct,s∇αt(x)αt(x)− Tr

(
Ct,s∇αt(x)2

))
+ (s− t)∇Vt(x)Ct,s∂tαt(x)

− (s− t)Tr(Ct,s(∂t∇αt(x) +Hαt(x)Ct,s(αt(x)− (s− t)∂tαt(x)))).

Finally, we know by Lemma 16 that ∇Vt and αt have at most a linear growth in x and by Lemma 7 we also have that
∇αt and ∂tαt are bounded, that Hαt(x) and ∂t∇αt have at most a linear growth in x. This directly yields the desired
upper-bound:

|∂t log(qt,s(Tt,s(x)))− gαt (x)| . |t− s|
(

1 + ‖x‖+ ‖x‖2
)
.

Equation (85) We will first control the term ct,s(Tt,s(x)) + gαs (x), then we will show that gαt (x)− gαs (x) is of the same
order. By definition of ct,s(x) and gαs , we can write:

ct,s(Tt,s(x)) + gαs (x) =
(
V̇s(Tt,s(x))− V̇s(x)

)
+ (∇Vs(Tt,s(x))−∇Vs(x))

>
αt(x)

+∇Vs(x)>(αt(x)− αs(x)) + Tr(∇αs(x)−∇αt(x))

+ (s− t)Tr
(
Ct,s∇αt(x)2

)
.

Hence, using Assumption (a) nad Lemma 7 we have:

‖ct,s(Tt,s(x)) + gαs (x)‖ . |t− s|
(

1 + ‖x‖+ ‖x‖2
)
.

Similarly, we can show that gαt (x)− gαs (x) satisfies a similar bound. This allows to get (85) using triangular inequality.
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Equation (86) By direct calculation, we have:

∇ log

(
qt,s
Πs

)
(y) = ∇Vs(y)− Ct,s∇Vt(xt,s)− (s− t)Tr(Ct,sHαt(xt,s)Ct,s).

In particular, choosing y = Tt,s(x), we get:

∇ log

(
qt,s
Πs

)
(Tt,s(x)) =∇Vs(Tt,s(x))− Ct,s∇Vt(x)− (s− t)Tr(Ct,sHαt(x)Ct,s)

=∇Vs(Tt,s(x))− Vt(x)− (Ct,s − I)∇Vt(x)− (s− t)Tr(Ct,sHαt(x)Ct,s).

The result follows directly by a similar argument as done previously.

Proof. of Proposition 30

Equation (80) For the first inequality, we use the expression of ∂t∂sRt,s from Lemma 10:

∂t∂sRt,s = E
(1)
t,s + E

(2)
t,s

where

E
(1)
t,s =Πt

[(
∂tαt + (∇Tt,s)−1∇αt

)>
∇ log

(
qt,s
Πs

)
◦ Tt,s

]
,

E
(2)
t,s =Πt[(ct,s ◦ Tt,s)(∂t log(qt,s) ◦ Tt,s)].

Recall that ∇αt and ∂tαt are bounded by Lemma 7 and that since λ ≤ 1
2L , we also have that ‖∇Tt,s‖−1 is bounded.

Moreover, (86) allows to write: ∣∣∣E(1)
t,s

∣∣∣ . |t− s|Πt

[
1 + ‖X‖+ ‖X‖2

]
. (87)

For E(2)
t,s , we use the following decomposition:

E
(2)
t,s + Πt

[
(gαt )

2
]

=Πt[(ct,s ◦ Tt,s + gαt )(∂t log(qt,s) ◦ Tt,s)]

−Πt[g
α
t (∂t log(qt,s) ◦ Tt,s − gαt )].

The functions ct,s ◦ Tt,s and gαt have at most a quadratic growth and by (84) and (85) we get:∣∣∣E(2)
t,s + Πt

[
(gαt )

2
]∣∣∣ . |t− s|Πt

[
1 + ‖X‖+ ‖X‖2 + ‖X‖3 + ‖X‖4

]
. (88)

Both bound (87) and (88) are finite due to Assumption (c), which implies the result.

Equation (81). To get the last inequality it suffice to differentiate in time and use the growth assumptions and integrability
conditions.

E.8. Diffusion estimates

Lemma 13. Under Assumptions (a) to (c), the following inequalities hold:

E
[
‖Xt‖2

]
. 1 E

[
‖Xt‖4

]
. 1, E

[
‖Xt −Xs‖2

]
. |t− s|

Proof. This is a direct consequence of the drift bt(x) being jointly Lipschitz in t and x and the initial distribution Π0 having
finite moments of order 4.
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E.8.1. PROOF OF PROPOSITION 25

Proof. of Proposition 25

Bound on Equation (71) We use the decomposition of wαt as a product of wαs and a bounded term:

E[wαt f(Xs)] = E
[
wαs f(Xs) exp

(∫ t

s

gαu du

)]
.

By Lemma 8, we know that the normalized weight w̄αt is upper-bounded by a term of the form exp(C(t − s)), hence we
get

‖E[wαt f(Xs)]‖ . E[wαs ‖f(Xs)‖] = Πs[‖f‖]

where we used Proposition 22 to get the final result.

Bound on Equation (72) We first define the random variable:

Ψt
s,s′ := E

[
exp

(∫ t

s

ḡαu (Xu) du

)∫ s′

s

dBu

∣∣∣∣∣Fs
]
,

where Fs is the filtration associated to the Brownian motion Bt defining the process Xt. Using the tower property for
conditional expectations and Cauchy-Schwartz, we have∣∣∣∣∣E

[
wαt f(Xs)

>
∫ s′

s

dBu

]∣∣∣∣∣ =
∣∣E[wαt f(Xs)

>Ψt
s,s′
]∣∣ ≤ E

[
wαt ‖f‖

2
] 1

2E
[
wαt
∥∥Ψt

s,s′

∥∥2
] 1

2

.

Using (71) for both terms on the r.h.s., we obtain∣∣∣∣∣E
[
wαt f(Xs)

>
∫ s′

s

dBu

]∣∣∣∣∣ . Πs

[
‖f‖2

] 1
2E
[∥∥Ψt

s,s′

∥∥2
] 1

2

.

It remains to show that E
[∥∥Ψt

s,s′

∥∥2
]
. (s′− s)2. To achieve this, we first introduce the notation Es for the conditional ex-

pectation knowing the process up to time s. We also write ws,s′(X) = exp(
∫ s′
s
gαu(Xu) du) and rs,t(Xs) = Es[ws,t(X)].

We consider now a second process (X ′t)t≥0 that is coupled to (Xt)t≥0 as follows. Xu = X ′u up to time s, then on the
interval [s, s′], X ′t is driven by a Brownian motion B′t that is independent from Bt. Finally, stating from time s′ up to time
t, the processX ′t is driven again by the same Brownian motionBt asXt. Hence, (Xs, X

′

s) defines a coupling of two SDEs.
We denote by Es′,s the conditional expectation knowing the process (Xt) up to time s′ and the process (X ′t) up to time s.
Such coupling is shown in Lemma 14 to satisfy E[

∫ t
s
‖Xu −X ′u‖

2
du] . |s′ − s|. To use this property, we will express

Ψt
s,s′ in terms of the two coupled processes. We start by noting that Es[Es[ws,t(X ′)](Bs′ −Bs)] = 0 by independence of

the increments of Brownian motions. Hence, we can write∥∥Ψt
s,s′

∥∥ = ‖Es[(ws,t(X)− Es[ws,t(X ′)])(Bs′ −Bs)]‖
≤ Es[|Es′,s[ws,t(X)− ws,t(X ′)]|‖Bs′ −Bs‖]

≤ eC(t−s)Es,s
[
‖Bs′ −Bs‖

∫ t

s

|gαu (Xu)− gαu (X ′u)|du
]

For the last line, we rely on local Lipschitzness of the exponential along with the fact ḡαu (Xu) ≤ C by Assumption (g).
Moreover, Lemma 17 shows that

|gαt (x)− gαt (x′)| . (1 + ‖x‖+ ‖x′‖)‖x− x′‖,
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hence we have:∥∥Ψt
s,s′

∥∥ . Es,s
[
‖Bs′ −Bs‖

∫ t

s

(1 + ‖Xu‖+ ‖X ′u‖)‖Xu −X ′u‖ du

]
. Es,s

[
‖Bs′ −Bs‖2

∫ t

s

(1 + ‖Xu‖+ ‖X ′u‖)
2

du

] 1
2

Es,s
[∫ t

s

‖Xu −X ′u‖
2

du

] 1
2

. |s′ − s|Es,s
[∫ t

s

‖Xu −X ′u‖
2

du

] 1
2

where for the second line we used Cauchy-Schwarz inequality. For the last line, we used the fact that the processes Xs and
X ′s have finite moments of order 4 by Lemma 13 and that the increment Bs′ −Bs follows a zero-mean multivariate normal
of covariance given by (s′ − s)Id. Finally, by application of Lemma 14, we get the desired bound and conclude the proof

E
[∥∥Ψt

s,s′

∥∥2
]
. |s′ − s|E

[∫ t

s

‖Xu −X ′u‖
2

du

]
. |s′ − s|2.

Bound on Equation (73) We first apply Cauchy-Schwarz inequality:

∣∣∣∣∣E
[
wαt f(Xs)

>
∫ s′

s

hu(Xu, Xs) du

]∣∣∣∣∣ ≤ E
[
wαt ‖f(Xs)‖2

] 1
2E

wαt
∥∥∥∥∥
∫ s′

s

hu(Xu, Xs) du

∥∥∥∥∥
2
 1

2

. Πs

[
‖f‖2

] 1
2E

∥∥∥∥∥
∫ s′

s

hu(Xu, Xs) du

∥∥∥∥∥
2
 1

2

.
√
s′ − sΠs

[
‖f‖2

] 1
2E

[∫ s′

s

‖hu(Xu, Xs)‖2 du

] 1
2

To get the second line in the above inequality, we use (71) for the first expectation in the r.h.s. and use that w̄αt is bounded
by Lemma 8 to bound the second expectation. The last line follows by direct application of Cauchy-Schwarz inequality in
time and yields the desired result. In the particular case when hu(x, y) = bαu(x)− βα,λu′ (y) we further use Lemma 9 which
yields:

E

[∫ s′

s

‖hu(Xu, Xs)‖2
]

= E

[∫ s′

s

∥∥∥bαu(Xu)− βα,λu′ (Xs)
∥∥∥2

du

]
. λ|s′ − s|

The result then follows directly by applying this bound to (73) and recalling that |s′ − s| ≤ λ by assumption.

Lemma 14. Let s and s′ be two numbers in [0, t] with s ≤ s′. Let (Xt)t≥0 and (X ′t)t≥0 be two coupled processes
following the SDE (54) and such that Xt = X ′t up to time s, then on the interval [s, s′] the two processes are driven with
two independent motions Bt and B′t and finally, starting from time s′, the two processes are again diffused with the same
Brownian motion. Then, under Assumption (a) and Lemma 7, we have the following:

E
[∫ t

s

‖Xu −X ′u‖
2

du

]
. |s− s′|

Proof. By definition of the Xt and X ′t, since they share the same Brownian motion starting from time s′, we have

Xu = Xs′ +

∫ u

s′
bl(Xl) dl +

√
2

∫ u

s′
dBl,

X ′u = X ′s′ +

∫ u

s′
bl(X

′
l) dl +

√
2

∫ u

s′
dBl.
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Hence,

‖Xu −X ′u‖ ≤ ‖Xs′ −X ′s‖+

∫ u

s′
‖bl(Xl)− bl(X ′l)‖ dl.

By Assumption (a) and Lemma 7, we have that ‖bl(x)− bl(x′)‖ . ‖x− x′‖, hence we have:

‖Xu −X ′u‖ . ‖Xs′ −X ′s‖+

∫ u

s′
‖Xl −X ′l‖ dl.

By application of Gronwall’s lemma, we have for any s′ ≤ u ≤ t:

‖Xu −X ′u‖ . ‖Xs′ −X ′s‖. (89)

Now, for s ≤ u ≤ s′, we have

Xu = Xs +

∫ u

s

bl(Xl) dl +
√

2

∫ u

s

dBl,

X ′u = Xs +

∫ u

s

bl(X
′
l) dl +

√
2

∫ u

s

dB′l.

Hence, we have the following bound:

‖Xu −X ′u‖ .
∫ u

s

‖Xl −X ′l‖ dl +
√

2(‖Bu −Bs‖+ ‖B′u −B′s‖).

This allows to upper-bound the expectation E[‖Xu −X ′u‖2]
1
2 :

E
[
‖Xu −X ′u‖

2
] 1

2

.
∫ u

s

E
[
‖Xl −X ′l‖

2
] 1

2

+ 2
√

2
√

(u− s)d

Using Gronwall’s lemma a second time, we get for any s ≤ u ≤ s′:

E
[
‖Xu −X ′u‖

2
] 1

2

.
√
u− s. (90)

For u > s′, we can then use (89) along with (90) to write

E
[
‖Xu −X ′u‖

2
]
. s′ − s. (91)

Finally, using (90) and (91) and integrating over u on the interval [s, t], we get the desired result after applying Fubini’s
theorem to exchange the order of the expectation and time integral:

E
[∫ t

s

‖Xu −X ′u‖
2

du

]
. |s′ − s|.

E.9. Pointwise estimates

Lemma 15. Under Assumptions (a) to (c), and for any tk−1 ≤ s ≤ tk and 0 ≤ u ≤ 1, it holds that∣∣∣gαs (x′)− δα,λt (x)
∣∣∣ . (1 + ‖x‖+ ‖x′‖)‖x− x′‖+ λ(1 + ‖x‖+ ‖x′‖)2

.

Proof. By definition of δα,λt (x) in (57) and using the fundamental theorem of calculus we have:

δα,λt (x) =

∫ 1

0

Tr
((

(I + λu∇αt(x))
−1 − I

)
∇αt(x)

)
+ Tr(∇αt(x)) du

−
∫ 1

0

(
V̇t−λu(yu) +∇Vt−λu(yu)>αt(x)

)
du,



Annealed Flow Transport Monte Carlo

where we introduced yu = x+ λ(1− u)αt(x). This directly yields:

gαs (x)− δα,λt (x′) =

∫ 1

0

(Bu + Cu +Du + Eu) du (92)

where:

Bu = Tr(∇αs(x′))− Tr(∇αt(u)),

Cu = −Tr
((

(I + λu∇αt(x))
−1 − I

)
∇αt(x)

)
,

Du = ∇Vt−λu(yu)>αt(x)−∇Vs(x′)αs(x′),
Eu = V̇t−λu(yu)− V̇s(x′).

Bound on Bu. Under Assumption (b), Lemma 7 applies and we directly have:

|Bu| . (1 + ‖x‖+ ‖x′‖)(‖x− x′‖+ |t− s|) (93)
. (1 + ‖x‖+ ‖x′‖)(‖x− x′‖+ λ)

where we used that t− λ ≤ s ≤ t to get the last line.

Bound on |Cu|. By direct calculation we get:

Cu = Tr
((

(I + λu∇αt(x))
−1 − I

)
∇αt(x)

)
= λuTr

(
(I + λu∇αt(x))

−1∇αt(x)2
)

By Lemma 7, we know that ∇αt(x) is bounded by a constant term L. Hence, when λ < 1
2L , it follows that:

‖(I + uλ∇αt(x))−1‖ ≤ 1

1− uλL
≤ 2.

This directly implies that:

|Cu| ≤ 2L2λ. (94)

Bound on Du.

|Du| =
∣∣∣(∇Vt−λu(yu)> −∇Vs(x′)

)>
αt(x) +∇Vs(x′)>(αt(x)− αs(x′))

∣∣∣
≤
∥∥∇Vt−λu(yu)> −∇Vs(x′)

∥∥‖αt(x)‖+ ‖∇Vs(x′)‖‖αt(x)− αs(x′)‖
. (|t− s− λu|+ ‖yu − x′‖)‖αt(x)‖+ ‖∇Vs(x′)‖(‖x− x′‖+ |t− s|)
. (λ+ ‖yu − x′‖)‖αt(x)‖+ ‖∇Vs(x′)‖(‖x− x′‖+ λ)

where we used Assumption (a) and (52) of Lemma 7 for the third line and that |t− s− λu| ≤ λ and |t− s| ≤ λ to get the
last line. Moreover, by Lemma 16, we have that:

‖αt(x)‖ . (1 + ‖x‖), ‖∇Vt(x)‖ . (1 + ‖x‖). (95)

This allows to further write:

|Du| . (λ(1 + ‖x‖) + ‖x− x′‖)(1 + ‖x‖). (96)

Bound on Eu. Using Assumption (a), we directly have:

|Eu| . (1 + ‖yu‖+ ‖x′‖)(‖yu − x′‖+ |t− s− λu|)
. (1 + ‖x‖+ ‖x′‖+ λu‖αt(x)‖)(‖x− x′‖+ λu‖αt(x)‖+ |t− s− λu|)
. (1 + ‖x‖+ ‖x′‖+ λu‖αt(x)‖)(‖x− x′‖+ λu‖αt(x)‖+ λ),

where we used that |t− s− λu| ≤ λ since t− λ ≤ s ≤ t and 0 ≤ u ≤ 1. Moreover, using that α has a linear growth in x
(by (95)) we have:

|Eu| . (1 + ‖x‖+ ‖x′‖)(‖x− x′‖+ λ(1 + ‖x‖)). (97)
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Final bound. Using (93), (94), (96) and (97) in (92), it follows:∣∣∣gαs (x)− δα,λt (x′)
∣∣∣ . (1 + ‖x‖+ ‖x′‖)(‖x− x′‖+ λ(1 + ‖x‖)).

Proposition 31. Let t and s be in [0, 1] such that |t− s| ≤ λ. Under Assumptions (a) and (b), it holds that:∥∥∥bαs (x′)− βα,λt (x)
∥∥∥ . ‖x− x′‖+ λ(1 + ‖x‖).

Proof. By definition of bαs (x′) and βα,λt (x), the following identity holds:∥∥∥bαs (x′)− βα,λt (x)
∥∥∥ = ‖αs(x′)− αt(x)−∇Vs(x′) +∇Vt(x+ λαt(x))‖.

Therefore, since αt(x) and∇Vt(x) are Lipschitz by Assumption (a) and Lemma 7, we have:∥∥∥bαs (x′)− βα,λt (x)
∥∥∥ ≤ L(2‖x− x′‖+ 2|t− s|+ λ‖αt(x)‖)

≤ L(2‖x− x′‖+ 2λ+ λ‖αt(x)‖).

Moreover, Lemma 16 below ensures that ‖αt(x)‖ . (1 + ‖x‖), therefore:∥∥∥bαs (x′)− βα,λt (x)
∥∥∥ . ‖x− x′‖+ λ(1 + ‖x‖).

Lemma 16. Under Assumption (a) the gradient of the potential has a linear growth in x, i.e:

‖∇xVt(x)‖ . (1 + ‖x‖), ∀x ∈ X ,∀t ∈ [0, 1]. (98)

Under Assumption (b), there exists a positive constant D > 0, such that for all α ∈ A.

‖αt(x)‖ ≤ D(1 + ‖x‖), ∀x ∈ X ,∀t ∈ [0, 1]. (99)

Proof. The equation (98) is a simple consequence of the Lipschitz assumption on ∇Vt. For (99), we recall that under
Assumption (b), Lemma 7 holds. Therefore we have

‖αt(x)‖ ≤ ‖α0(0)‖+ ‖αt(x)− α0(0)‖
≤ C + L(‖x‖+ |t|)
≤ C + L(1 + ‖x‖).

The result follows since the constants C and L are independent of the choice of the control α in A.

Lemma 17. Under Assumptions (a) and (b), the following bounds hold:∥∥∥βα,λt (x)− βα
′,λ

t (x)
∥∥∥ . ‖αt(x)− α′t(x)‖,∣∣∣δα,λt (x)− δα

′,λ
t (x)

∣∣∣ . ((1 + ‖x‖)‖αt(x)− α′t(x)‖+ ‖∇αt(x)−∇α′t(x)‖),

|gαt (x)− gαt (x′)| . (1 + ‖x‖+ ‖x′‖)‖x− x′‖.

Proof. Bound on |βα,λt − βα
′,λ

t |. By Assumption (a) and Lemma 7 we have that:∥∥∥βα,λt (x)− βα
′,λ

t (x)
∥∥∥ ≤ (1 + Lλ)‖αt(x)− α′t(x)‖.
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Bound on |δα,λt − δα
′,λ

t |. For the second inequality, we use that:

λ
(
δα,λt (x)− δα

′,λ
t (x)

)
=Vt(x+ λα′t(x))− Vt(x+ λαt(x))

+ log |I + λ∇αt(x)| − log |I + λ∇α′t(x)|.

Hence, for λ ≤ 1
2L , we get by Assumption (a) and Lemma 7 that

λ
∣∣∣δα,λt (x)− δα

′,λ
t (x)

∣∣∣ .λ[(1 + ‖x‖) + λ(‖αt(x)‖+ ‖α′t(x)‖)]‖αt(x)− α′t(x)‖

+ λ‖∇αt(x)−∇α′t(x)‖.

Moreover, by Lemma 16, we know that α and α′ have at most a linear growth. This allows to further write:∣∣∣δα,λt (x)− δα
′,λ

t (x)
∣∣∣ . ((1 + ‖x‖)‖αt(x)− α′t(x)‖+ ‖∇αt(x)−∇α′t(x)‖).

Bound on |gαt (x)− gαt (x′)|. It follows by direct computation.

Lemma 18. Under Assumptions (a) and (c) there exists a constant λ0 independent on t such that for λ ≤ λ0, there exists
M > 0 such that for all 0 ≤ t ≤ 1 it holds that:

|hλt (x)| ≤ λ
√
λ

Q1(x)

1 +Q2(x)
exp(Cλ‖∇Vt(x)‖2)

where Q1 and Q2 are non-negative functions of ‖x‖ of polynomial growth and independent from λ and t and C is a
non-negative constants.

Proof. Let us perform a change of variables u = x−y√
2λ

in the integral appearing in the definition of hλt (x):

hλt (x) := log

∫
h(x, u, λ) du,

where we introduce the function h(x, u, λ):

h(x, u, λ) =
1

(
√

2π)d
exp

Vt(x)− Vt(yλ)− 1

2

∥∥∥∥∥u+

√
λ

2
∇Vt(yλ)

∥∥∥∥∥
2
,

and where yλ := x−
√

2λu for conciseness. By the fundamental theorem of calculus and using the dominated convergence
theorem we can write:

hλt (x) = λ

∫ 1

0

∫
∂λh(x, u, sλ) du∫
h(x, u, sλ) du

ds. (100)

Upper-bound on |
∫
∂λh(x, u, sλ) du|. We now find an expression for

∫
∂λh(x, u, sλ) du which exhibits an explicit

factor
√
λ. By simple computation, we have that ∂λh(x, u, sλ) is given by:

∂λh(x, u, λ) =
1

2

(
1√
2λ
∇Vt(yλ)>u+ u>HVt(yλ)u− 1

2
‖∇Vt(yλ)‖2

)
h(x, u, λ),

where HVt is the Hessian of V . Integrating w.r.t u, we get:∫
∂λh(x, u, λ) du =

1

2

1√
2λ
φλ(1) +

1

2

∫ (
u>HVt(yλ)u− 1

2
‖∇Vt(yλ)‖2

)
h(x, u, λ) du,
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where the function s 7→ φλ(s) is defined for 0 ≤ s ≤ 1 as

φλ(s) =

∫
∇Vt(ysλ)>uh(x, u, sλ) du,

with φλ(0) = 0. By the fundamental theorem of calculus and using the dominated convergence theorem, we have that:

φλ(1) =

∫ 1

0

∂sφλ(s) ds

=−
√

2λ

∫ 1

0

1

2
√
s

∫
u>HVt(ysλ)uh(x, u, sλ) duds

+
λ

2

∫ 1

0

1√
2sλ

∫
(∇Vt(ysλ)>u)2h(x, u, sλ) duds

+
λ

2

∫ 1

0

∫
∇Vt(ysλ)>u

(
u>HVt(ysλ)u− 1

2
‖∇Vt(ysλ)‖2

)
h(x, u, sλ) duds.

We can further use that h(x, u, sλ) = h(x, u, λ) + λ
∫ 1

s
∂λh(x, y, s′λ) ds′ and express

∫
∂λh(x, u, λ) du as:∫

∂λh(x, u, λ) du = Aλ(x) +Bλ(x) + Cλ(x) +Dλ(x),

where Aλ, Bλ, Cλ and Dλ are given by:

Aλ(x) =
1

2

∫ 1

0

∫
1

2
√
s
u>(HVt(yλ)−HVt(ysλ))uh(x, u, λ) duds,

Bλ(x) =
1

4

∫ 1

0

1

2
√
s

∫ (
(∇Vt(ysλ)>u)2 − ‖∇Vt(yλ)‖2

)
h(x, u, λ) duds,

Cλ(x) =
1

4
√

2

√
λ

∫ 1

0

∫
∇Vt(ysλ)>u

(
u>HVt(ysλ)u− 1

2
‖∇Vt(ysλ)‖2

)
h(x, u, sλ) duds,

Dλ(x) =
λ

4

∫ 1

0

∫ ∫ 1

s

∂λh(x, u, s′λ)
(
(∇Vt(ysλ)>u)2 − 2HVt(ysλ)

)
duds′ ds.

We can further decomposeBλ(x) in two termsB(1)
λ (x) andB(2)

λ (x) by adding and subtracting∇Vt(x) inside each square:

Bλ(x) := B
(1)
λ (x) +B

(2)
λ (x),

with:

B
(1)
λ (x) :=

1

4

∫ 1

0

1

2
√
s

∫
u>((∇Vt(ysλ)−∇Vt(x))(∇Vt(ysλ)−∇Vt(x))

>
ududs

− 1

4

∫ 1

0

1

2
√
s

∫
(∇Vt(yλ)−∇Vt(x))

>
(∇Vt(yλ) +∇Vt(x)) duds,

B
(2)
λ (x) :=

1

4

∫ (
∇Vt(x)>u

)2
(h(x, u, λ)− h(x, u, 0)) du

=
λ

4

∫ 1

0

1

2
√
s

∫ (
∇Vt(x)>u

)2
∂λh(x, u, sλ) duds.

For B(2)
λ (x) we used that

∫ (
∇Vt(x)>u

)2
h(x, u, 0) du = ‖∇Vt(x)‖2 and then applied the fundamental theorem of calcu-

lus for the difference (h(x, u, λ) − h(x, u, 0) to exhibit a factor λ. Using that ∇Vt(x) and HVt(x) are Lipschitz in x and
the growth assumptions, it can be shown that each of the terms Aλ, B(1)

λ , B(2)
λ , Cλ and Dλ:

|B(2)
λ (x)|+ |Cλ(x)| ≤

√
λ

∫
E2
λ(x, u) du, |Aλ(x)|+ |B(1)

λ (x)| ≤
√
λ

∫
E1
λ(x, u) du,

|Dλ(x)| ≤
√
λ

∫
E3
λ(x, u) du,
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with E1
λ(x, u), E2

λ(x, u) and E3
λ(x, u) given by:

E1
λ(x, u) = Q1(x, u)

(∫ 1

0

∫ 1

s

h(x, u, s′λ) ds′ ds

)
,

E2
λ(x, u) = Q2(x, u)

(∫ 1

0

h(x, u, sλ) ds

)
,

E3
λ(x, u) = Q3(x, u)h(x, u, sλ).

Here Q1(x, u), Q2(x, u) and Q3(x, u) are polynomials in ‖x‖ and ‖u‖ with non-negative coefficients independent from λ
and t. Using again the Lipschitz regularity of∇Vt(x), we can further find an upper-bound on h(x, u, λ) of the form:

h(x, u, λ) ≤ C exp(Mλ‖∇Vt(x)‖2 − α(λ)‖u‖2 + β(λ)‖u‖‖∇Vt(x)‖),
h(x, u, λ) ≥ C ′ exp(M ′λ‖∇Vt(x)‖2 − α′(λ)‖u‖2 − β(λ)‖u‖‖∇Vt(x)‖).

Here, C,C ′ and M,M ′ are independent of λ and t. The functions α(λ) and α′(λ) are positive for λ small enough and
converge to 1

2 with rate λ when λ → 0. Finally β(λ) converges to 0 with rate
√
λ. Using those bounds for E1

λ(x, u),
E2
λ(x, u) and E3

λ(x, u) and h(x, y, λ) and integrating over u, it follows that:{∣∣∫ ∂λh(x, u, λ) du
∣∣ ≤ √λQ1(‖x‖) exp(Lλ‖∇Vt(x)‖2),∫

h(x, u, λ) du ≥ (1 +Q2(‖x‖)) exp(L′λ‖∇Vt(x)‖2),
(101)

where Q1 and Q2 are non-negative functions of ‖x‖ of polynomial growth and independent from λ and t and L,L′ are
some positive constants.

Upper-bound on |hλt (x)|. Recalling (100), and using (101) we directly have:

|hλt (x)| ≤ λ
√
λ

Q1(‖x‖)
1 +Q2(‖x‖)

exp(|L− L′|λ‖∇Vt(x)‖2).

F. Variant of the algorithm for unbiased estimates
Algorithm 2 and Algorithm 3 give details of the full practical implementation described in Section 6 of the main paper.

G. Additional experimental details and discussion
The algorithm is implemented in JAX (Bradbury et al., 2018), Haiku (Hennigan et al., 2020) and Optax (Hessel et al.,
2020). In all cases we use the Adam optimizer (Kingma and Ba, 2014) for learning the flow with the Optax defaults for all
parameters except for the learning rates which are chosen for each example and are given below. For the MCMC kernels
we used the TensorFlow Probability (Dillon et al., 2017) JAX substrate.

Each experimental configuration was performed using an NVIDIA v100 GPU and 4 CPUs. All experimental configurations
took under 30 minutes and most were much shorter.

In all cases Ntest = 2000 and this was the batch size for SMC and for VI ensuring fair comparison of trained estimators.
Note VI is not sensitive to the training batch size because samples are replenished at each training step.

G.1. Two dimensional example

For each transition, we used 10 iterations of Hamiltonian Monte Carlo with 10 leapfrog steps per iteration. The rational
quadratic splines closely match the implementation described by (Durkan et al., 2019). We used ten bins and padded with
the identity outside of the range [−4, 4]. The bins height and widths were parameterized in terms of unconstrained real
values. We then took the soft-max of these values and scaled and shifted them so that they had a minimal value of 10−4

and fitted with the range [−4, 4]. The derivatives were again parameterized using unconstrained real values and then made
positive using the transformation ν + log(1 + exp(x)) where ν = 10−4.
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Algorithm 2 Annealed Flow Transport: Detailed Version

1: Input: Number of training, test and validation particles Ntrain, Ntest, Nval, unnormalized annealed targets {γk}Kk=0

such that γ0 = π0 and γK = γ, resampling thresholds Aa ∈ [1/Na, 1) for a ∈ {train, test, val}, number of training
iterations J .

2: Ouput: Approximations πNtest
K and ZNtest,test

K of π and Z.
3: for a ∈ {train, test, val} do
4: Sample Xi,a

0 ∼ π0 and set W i,a
0 ← 1

Na
and ZN,a0 ← 1.

5: end for
6: for k = 1, . . . ,K do

7: Learn the flow Tk ← LearnFlow

(
J,
{
Xi,train
k−1 ,W

i,train
k−1

}Ntrain

i=1
,
{
Xi,val
k−1,W

i,val
k−1

}Nval

i=1

)
8: for a ∈ {train, test, val} do
9: Transport particles: X̃i,a

k ← Tk(Xi,a
k−1).

10: Estimate normalizing constant Zk:
ZNa,ak ← ZNa,ak−1

(∑Na
i=1W

i,a
k−1Gk,Tk(Xi,a

k−1)
)

.
11: Compute IS weights:

wi,ak ←W i,a
k−1Gk,Tk(Xi,a

k−1) // unnormalized

W i,a
k ← wi,ak∑N,a

j=1 w
j,a
k

// normalized

12: Compute effective sample size ESSNak

ESSNak ←
(∑Na

i=1

(
W i,a
k

)2
)−1

.

13: if ESSNak /Na ≤ Aa then
14: Resample Na particles from split a denoted abusively also X̃i,a

k according to the weights W i,a
k ,

15: Set W i,a
k ← 1

Na
.

16: end if
17: Sample Xi,a

k ∼ Kk(X̃i,a
k , ·). // MCMC

18: end for
19: end for

Algorithm 3 LearnFlow

1: Input: Number of training iterations J , training and validation particles and weights
{
Xi,train
k−1 ,W

i,train
k−1

}Ntrain

i=1
and{

Xi,val
k−1,W

i,val
k−1

}Nval

i=1
.

2: Ouput: Estimated flow Tk
3: Initialize flow to identity Tk = Id.
4: Initialize list of flows Topt ← {Tk}.
5: Initialize list of validation losses
E ←

{∑Nval
i=1W

i,val
k−1hTk

(
Xi,val
k−1

)}
6: for j = 1, ..., J do
7: Compute training loss using (8)

LNtrain
k (Tk)←

∑Ntrain
i=1 W i,train

k−1 hTk

(
Xi,train
k−1

)
.

8: Update Tk using SGD to minimize LNtrain
k (Tk).

9: Update list of flows Topt ← Topt ∪ {Tk}
10: Initialize list of validation losses E

E ← E ∪
{∑Nval

i=1W
i,val
k−1hTk

(
Xi,val
k−1

)}
11: end for
12: Return flow with smallest validation error from the list of flows Topt.
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Figure 3: Larger version of Figure 1. Weighted samples for a 2-D target density with AFT. The colours show the normalized
weights which are clipped at the 95th percentile for clarity.

The inverse autoregressive flow used the same autoregressive network detailed in the Funnel example below but with a
changed input dimensionality and outputting the spline parameters instead of the parameters of an affine transformation.

The Adam learning rate was 10−3 the training period J was 1000. AFT flow estimation particle numbers were Ntrain =
Nval = 2000.

With the total time number of time steps scaled to be in the interval [0, 1] with 0 being the initial distribution and 1 the final
distribution, the HMC step sizes were interpolated between the times [0., 0.25, 0.5, 1.] using the step sizes [0.5, 0.5.0.5, 0.3].

G.2. Additional details of Funnel example

We used 1000 steps of slice sampling per temperature with a maximum of 5 step size doublings as defined in the TensorFlow
probability interface. For the affine inverse regressive flow we used an autoregressive neural network (Germain et al., 2015)
where the correct autoregressive structure is achieved by masking network weights. We used a Leaky Relu non-linearity.
The unmasked network would have 30 hidden units per input dimension and we used 3 hidden layers. To achieve identity
initialisation of the flow we initialised the final weights and biases of the network to zero. The weights of the rest of
network where initialised using a truncated normal distribution scaled by the fan-in and biases were initialised to zero. The
final output of the MLP was taken and mapped directly into the mean and also the scale of the network after adding one to
give the identity transformation overall.

The Adam learning rate was 10−3 the training period J was 4000. AFT flow estimation particle numbers were Ntrain =
Nval = 6000.

With the total time number of time steps scaled to be in the interval [0, 1] with 0 being the initial distribution and 1 the final
distribution, the slice sampling step sizes were interpolated between the times [0., 0.25, 0.5, 0.75, 1.] using the step sizes
[0.9, 0.7.0.6, 0.5, 0.4].

G.3. Additional details of Variational Autoencoder example

G.3.1. AUTOENCODER TRAINING AND ARCHITECTURE DETAILS

The VAE encoder architecture was as follows. The encoder, which parameterized the amortized variational distribution
started with two convolutional layers each followed by a Rectified Linear non-linearity. The first convolution had kernel
shape 4 × 4, stride 2 × 2, 16 output channels and ‘valid’ padding. The second convolution had 4 × 4, stride 2 × 2, 32
output channels and ‘valid’ padding. In all cases layers where initialized using the Haiku defaults. The output of the second
convolution was fed into linear layers which parameterized the variational mean, and the value of the diagonal variational
standard deviation. After each of these linear layers we used layer normalization (Lei Ba et al., 2016) with the standard
additional scale and translation parameters to ensure no loss in expressivity. Positivity of the standard deviation parameter
was ensured by transforming the real valued vector through a softplus non-linearity.

The VAE decoder architecture was as follows. We affinely projected the 30 dimensional latents into a 7× 7× 32 = 1568
dimensional space, which we then followed again by layer normalization. We then reshaped this vector to 7×7×32 ready
for feeding into the deconvolutional layers. There were three such deconvolutional layers separated by two rectified linear
non-linearity layers. The first deconvolutional layer had kernel shape 3× 3, a stride of 2× 2 and 64 channels. The second
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Figure 4: Larger version of results from the four different examples. Cyan lines denote gold standard values of the log
normalizing constant. In (c) and (d) green horizontal lines denote the median value for an importance sampling estimate
based on variational inference. Note that in (d) the small AFT error bars can make it difficult to see- it can be found next
to the gold standard value in each case.
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deconvolutional layer had kernel shape 3× 3, a stride of 2× 2 and 32 channels. The third and final deconvolutional layer
had kernel shape 3× 3, a stride of 1× 1 and one output channel to match the target image shape.

Next we describe the training algorithm for learning the VAE, which is distinct from the experiments we ran evaluating the
latent space. We used the ADAM optimizer with a small learning rate of 5× 10−5. We used gradient clipping with value
of 105 and trained for 5× 105 iterations. We used the reparameterization trick (Kingma and Welling, 2014; Rezende et al.,
2014) for estimating the expectation of the log likelihood and the analytic expression for the KL divergence between the
normal approximating distribution and the standard normal prior.

G.3.2. ADDITIONAL DETAILS AND DISCUSSION OF VAE EXPERIMENTAL RESULTS

Figure 5 shows reconstructions and samples for the trained autoencoder. Note that we adopt the common practice of
plotting the pixel probabilities for the reconstructions and the samples. In the latter case, this has the effect of making the
samples look smoother than if we sampled pixel values.

As discussed in the main text, the experiments on the test set were divided into two types. One group of experiments
(Group A) was run over the whole test set. These experiments were used to verify the quality of the autoencoder and
identify interesting/challenging examples for the more detailed study. The detailed study (Group B) mirrored the pattern
of the other examples.

We now give more detail of the Group A experiments. For each image in the binarized MNIST test set we ran SMC once
with 1000 temperatures. The variance in the log likelihood estimate from these runs was small relative to our the variational
inference experiments. For each image in the binarized MNIST test set we did four repeats of the unamortized normal
variational approximation with diagonal covariance and associated importance estimates. Figure 8 shows log likelihood
estimates for SMC and the VI based importance sampler. We have averaged the VI estimates over the four repeats. The plot
shows strong correlation- the variation in log likelihood from different digits is the chief source of variance as reported by
(Wu et al., 2017). The four VI repeats were then used to estimate the mean absolute error in the variational approximation
relative to SMC as shown in Figure 7. These errors were used to identify challenging inference digits. In particular we
chose digits on the 99.8-th percentile of error, which implies about 1 in 500 digits is more challenging than the ones we
chose. The three digits selected- one used for the main paper and two for repeats in this Appendix are shown in Figure 9.
The experiment repeats are shown in Figures 9 and 10.

As discussed in the main text we found that the variational inference performed well considering the simple form of the
approximate posterior. This is likely a consequence of the fact that the training objective favours posteriors that are well
matched by the variational approximation. Whilst there can be bias from this effect relative to using an exact marginal
likelihood (Hoffman, 2017) the ability of a flexible generative network to adapt to this constraint can make the effect less
extreme than in simpler statistical models (Turner and Sahani, 2011).

G.4. Additional details of Cox process example

We experimented with transforming the problem to a whitened representation x̃ where x = Lx̃+ µ and L is the Cholesky
decomposition of K (Beskos et al., 2011; Neal, 2011). This can also be viewed as choosing a non-identity pre-conditioner
or mass matrix. We found that this rendered the problem easier to the extent of no longer being a challenging benchmark,
and that in this circumstance there was little that a NF could contribute. To maintain the difficulty of the baseline we
therefore focused our comparison on the unwhitened space of the latent function.

The covariance K is taken to be K(u, v) = σ2 exp
(
− ||u−v||2Mβ

)
, where σ2 = 1.91 and the mean vector has a constant

value of log(126)− σ2, and a = 1/M2, matching (Møller et al., 1998).

The Adam learning rate was 10−2 the training period J was 500. AFT flow estimation particle numbers were Ntrain =
Nval = 2000.

For each transition, we used ten iterations of Hamiltonian Monte Carlo with 10 leapfrog steps per iteration. With the total
time number of time steps scaled to be in the interval [0, 1] with 0 being the initial distribution and 1 the final distribution,
the slice sampling step sizes were interpolated between the times [0., 0.25, 0.5, 1.] using the step sizes [0.3, 0.3, 0.2, 0.2].
The gold standard value for the normalizing constant shown in Figure 2 was found using 1000 repeats of SMC with 1000
temperatures and using the Cholesky whitening.
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Figure 5: Variational Autoencoder samples and reconstructions. Top line: Images from the binarized MNIST dataset.
Middle line: Reconstructions of the same images. Bottom line. Free samples from the model- these have no particular
relationship to the images above them.

Figure 6: Estimated log likelihood from long run and SMC and mean estimated log likelihood from VI proposal for the
binarized MNIST test set. The VI means are estimated based on four repeats of the VI training and sampling. The dotted
line shows equality for reference.
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Figure 7: Histogram showing the mean absolute error of the variational proposal importance sampler for the binarized
MNIST test set relative to a long run of SMC. The means are estimated based on four repeats of the VI training and
sampling. The cyan line shows the discrepancy of the challenging digit chosen for detailed investigation in the main text

Figure 8: Binarized MNIST digits used in detailed experiments. These digits were selected as challenging for the varia-
tional approximation. Left: The digit used in the main paper. Centre and Right: Respectively the digits used for the repeat
experiments in Figure 9 and 10.
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Figure 9: Results for a second challenging digit VAE likelihood, selected from the tail of plot 7 similar to the result in the
main text.

Figure 10: Results for a third challenging digit VAE likelihood, selected from the tail of plot 7 similar to the result in the
main text.
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Figure 11: Left: data points for the spatial point process example. Right: Inferred posterior rate for the Cox process with a
40 × 40 discretization using AFT. The plot area is defined as having unit area. The samples were taken from a single run
of AFT with 30 temperatures and other parameters as discussed in the text.

We found that to obtain best performance for AFT in this example, it was important to have sufficient HMC updates per
transition.

An example of the samples produced using AFT can be seen in Figure 11.


