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Abstract
Random forests on the one hand, and neural net-
works on the other hand, have met great success
in the machine learning community for their pre-
dictive performance. Combinations of both have
been proposed in the literature, notably leading to
the so-called Deep Forests (DF) (Zhou & Feng,
2017). In this paper, our aim is not to benchmark
DF performances but to investigate instead their
underlying mechanisms. Additionally, DF archi-
tecture can be generally simplified into more sim-
ple and computationally efficient shallow forests
networks. Despite some instability, the latter may
outperform standard predictive tree-based meth-
ods. We exhibit a theoretical framework in which
a shallow tree network is shown to enhance the
performance of classical decision trees. In such
a setting, we provide tight theoretical lower and
upper bounds on its excess risk. These theoretical
results show the interest of tree-network archi-
tectures for well-structured data provided that the
first layer, acting as a data encoder, is rich enough.

1. Introduction
Deep Neural Networks (DNNs) are among the most widely
used machine learning algorithms. They are composed of
parameterized differentiable non-linear modules trained by
gradient-based methods, which rely on the backpropagation
procedure. Their performance mainly relies on layer-by-
layer processing as well as feature transformation across
layers. Training neural networks usually requires complex
hyper-parameter tuning (Bergstra et al., 2011) and a huge
amount of data. Although DNNs recently achieved great
results in many areas, they remain very complex to handle
and unstable to input noise (Zheng et al., 2016).

Recently, several attempts have been made to consider net-
works with non-differentiable modules. Among them the
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Deep Forest (DF) algorithm (Zhou & Feng, 2017), which
uses Random Forests (RF) (Breiman, 2001) as neurons, has
received a lot of attention in recent years in various appli-
cations such as hyperspectral image processing (Liu et al.,
2020), medical imaging (Sun et al., 2020), drug interactions
(Su et al., 2019; Zeng et al., 2020) or even fraud detection
(Zhang et al., 2019).

Since the DF procedure stacks multiple layers, each one
being composed of complex nonparametric RF estimators,
the rationale behind the procedure remains quite obscure.
However DF methods exhibit impressive performances in
practice, suggesting that stacking RFs and extracting fea-
tures from these estimators at each layer is a promising way
to leverage on the RF performance in the neural network
framework. The goal of this paper is not an exhaustive em-
pirical study of prediction performances of DF (see Zhou &
Feng, 2019) but rather to understand how stacking trees in a
network fashion may result in competitive infrastructure.

Related Works. Different manners of stacking trees exist
(see Ghods & Cook, 2020, for a general survey on stacking
methods), as the Forwarding Thinking Deep Random Forest
(FTDRF), proposed by (Miller et al., 2017), for which the
proposed network contains trees which directly transmit
their output to the next layer (contrary to Deep Forest in
which their output is first averaged before being passed
to the next layer). A different approach by (Feng et al.,
2018) consists in rewriting tree gradient boosting as a simple
neural network whose layers can be made arbitrary large
depending on the boosting tree structure. The resulting
estimator is more simple than DF but does not leverage on
the ensemble method properties of random forests.

In order to prevent overfitting and to lighten the model,
several ways to simplify DF architecture have been investi-
gated. (Pang et al., 2018) considers RF whose complexity
varies through the network, and combines it with a confi-
dence measure to pass high confidence instances directly to
the output layer. Other directions towards DF architecture
simplification are to play on the nature of the RF involved
(Berrouachedi et al., 2019a) (using Extra-Trees instead of
Breiman’s RF), on the number of RF per layer (Jeong et al.,
2020) (implementing layers of many forests with few trees),
or even on the number of features passed between two con-
secutive layers (Su et al., 2019) by relying on an importance
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measure to process only the most important features at each
level. The simplification can also occur once the DF ar-
chitecture is trained, as in (Kim et al., 2020) selecting in
each forest the most important paths to reduce the network
time- and memory-complexity. Approaches to increase the
approximation capacity of DF have also been proposed by
adjoining weights to trees or to forests in each layer (Utkin
& Ryabinin, 2017; Utkin & Zhuk, 2020), replacing the for-
est by more complex estimators (cascade of ExtraTrees)
(Berrouachedi et al., 2019b), or by combining several of the
previous modifications notably incorporating data prepro-
cessing (Guo et al., 2018). Overall, the related works on
DF exclusively represent algorithmic contributions without
a formal understanding of the driving mechanisms at work
inside the forest cascade.

Contributions. In this paper, we analyze the benefit of
combining trees in network architecture both theoretically
and numerically. As the performances of DF have already
been validated by the literature (see Zhou & Feng, 2019),
the main goals of our study are (i) to quantify the potential
benefits of DF over RF, and (ii) to understand the mecha-
nisms at work in such complex architectures. We show in
particular that much lighter configuration can be on par with
DF default configuration, leading to a drastic reduction of
the number of parameters in few cases. For most datasets,
considering DF with two layers is already an improvement
over the basic RF algorithm. However, the performance of
the overall method is highly dependent on the structure of
the first random forests, which leads to stability issues. By
establishing tight lower and upper bounds on the risk, we
prove that a shallow tree-network may outperform an indi-
vidual tree in the specific case of a well-structured dataset
if the first encoding tree is rich enough. This is a first step
to understand the interest of extracting features from trees,
and more generally the benefit of tree networks.

Agenda. DF are formally described in Section 2. Sec-
tion 3 is devoted to the numerical study of DF, by evaluating
the influence of the number of layers in DF architecture,
by showing that shallow sub-models of one or two layers
perform the best, and finally by understanding the influence
of tree depth in cascade of trees. Section 4 contains the
theoretical analysis of the shallow centered tree network.
For reproducibility purposes, all codes together with all ex-
perimental procedures are to be found in the supplementary
materials.

2. Deep Forests
2.1. Description

Deep Forest (Zhou & Feng, 2017) is a hybrid learning pro-
cedure in which random forests are used as the elementary

components (neurons) of a neural network. Each layer of
DF is composed of an assortment of Breiman’s forests and
Completely-Random Forests (CRF) (Fan et al., 2003) and
trained one by one. In a classification setting, each forest
of each layer outputs a class probability distribution for any
query point x, corresponding to the distribution of the labels
in the node containing x. At a given layer, the distributions
output by all forests of this layer are concatenated, together
with the raw data. This new vector serves as input for the
next DF layer. This process is repeated for each layer and
the final classification is performed by averaging the forest
outputs of the best layer (without raw data) and applying
the argmax function. The overall architecture is depicted
in Figure 1.

Figure 1. Deep Forest architecture (the scheme is taken from Zhou
& Feng (2017)).

2.2. DF hyperparameters

Deep Forests contain an important number of tuning pa-
rameters. Apart from the traditional parameters of random
forests, DF architecture depends on the number of layers,
the number of forests per layer, the type and proportion of
random forests to use (Breiman or CRF). In Zhou & Feng
(2017), the default configuration is set to 8 forests per layer,
4 CRF and 4 RF, 500 trees per forest (other forest parame-
ters are set to sk-learn (Pedregosa et al., 2011) default
values), and layers are added until 3 consecutive layers do
not show score improvement.

Due to their large number of parameters and the fact that
they use a complex algorithm as elementary bricks, DF
consist in a potential high-capacity procedure. However, as
a direct consequence, the numerous parameters are difficult
to estimate (requiring specific tuning of the optimization
process) and need to be stored which leads to high prediction
time and large memory consumption. Besides, the layered
structure of this estimate, and the fact that each neuron is
replaced by a powerful learning algorithm makes the whole
prediction hard to properly interpret.

As already pointed out, several attempts to lighten the archi-
tecture have been conducted. In this paper, we will propose
and assess the performance of a lighter DF configuration on
tabular datasets.
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Remark 1. DF (Zhou & Feng, 2017) was first designed to
classify images. To do so, a pre-processing network called
Multi Grained Scanning (MGS) based on convolutions is
first applied to the original images. Then the Deep Forest
algorithm runs with the newly created features as inputs.

3. Refined numerical analysis of DF
architectures

In order to understand the benefit of using a complex archi-
tecture like Deep Forests, we compare different configura-
tions of DF on six datasets in which the output is binary,
multi-class or continuous, see Table 1 for description. All
classification datasets belong to the UCI repository, the
two regression ones are Kaggle datasets (Housing data and
Airbnb Berlin 2020)1. Note that the Fashion Mnist features
are built using the Multi Grained Scanning process from the
DF original article (Zhou & Feng, 2017) (see A.3 for the
encoding details).

Dataset Type (Nb of classes) Train/Val/Test Size Dim
Adult Class. (2) 26048/ 6512/ 16281 14
Higgs Class. (2) 120000/ 28000/ 60000 28

Fashion Mnist Class (10) 24000/ 6000/ 8000 260
Letter Class. (26) 12800/ 3200/ 4000 16
Yeast Class. (10) 830/ 208/ 446 8

Airbnb Regr. 73044/ 18262/ 39132 13
Housing Regr. 817/ 205/ 438 61

Table 1. Description of the datasets.

In what follows, we propose a light DF configuration. We
show that our light configuration performance is comparable
to the performance of the default DF architecture of Zhou &
Feng (2017), thus questioning the relevance of deep models.
Therefore, we analyze the influence of the number of layers
in DF architectures, showing that DF improvements mostly
rely on the first layers of the architecture. To gain insights
about the quality of the new features created by the first layer,
we consider a shallow tree network for which we evaluate
the performance as a function of the first-tree depth.

3.1. Towards DF simplification

Setting. We compare the performances of the following
DF architectures on the datasets summarized in Table 1:

(i) the default setting of DF, described in Section 2;

(ii) the best DF architecture obtained by grid-searching
over the number of forests per layer, the number of
trees per forest and the maximum depth of each tree.
The selected architecture is chosen with respect to the
performances achieved on validation datasets;

1https://www.kaggle.com/raghavs1003/airbnb-berlin-2020
https://www.kaggle.com/c/house-prices-advanced-regression-
techniques/data

(iii) a new light DF architecture, composed of 2 layers, 2
forests per layer (one RF and one CRF) with only 50
trees of depth 30 trained only once;

(iv) the first layer of the best DF;

(v) the first layer of the light DF;

(vi) a “Flattened best DF as RF” which consists in one RF
with as many trees as in the best DF with similar forest
parameters (refer to Supplementary Materials A.2 and
Table S3 for details);

(vii) a “Flattened light DF as RF” which corresponds to one
RF with as many trees as in the light DF with similar
forest parameters.

Results. Results are presented in Figures 2 and 3. Each
bar plot respectively corresponds to the average accuracy or
the average R2 score over 10 tries for each test dataset; the
error bars stand for accuracy or R2 standard deviation. The
description of the resulting best DF architecture for each
dataset is given in Table S3 (Supplementary Materials).

Figure 2. Accuracy of different DF architectures for classification
datasets (10 runs per bar plot).

Figure 3. R2 score of different DF architectures for regression
datasets (10 runs per bar plot).

As highlighted in Figure 2, the performance of the light
configuration for classification datasets is comparable to
the default and the best configurations’ one, while being
much more computationally efficient: faster to train, faster
at prediction, cheaper in terms of memory (see Table S2 in
the Supplementary Materials for a comparison of computing
time and memory consumption). Moreover, except on the
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Letter dataset, the DF performs better than its RF equivalent.
The results for the Letter dataset can be explained by the fact
that the CRFs within the DF are outperformed by Breiman
RFs in this specific case. Overall, for classification tasks, the
small performance enhancement of Deep Forests (Default or
Best DF) over our light configuration should be assessed in
the light of their additional complexity. This questions the
usefulness of stacking several layers made of many forests,
resulting in a heavy architecture. We further propose an
in-depth analysis of the role of each layer to the global DF
performance.

3.2. Tracking the best sub-model

Setting. On all the previous datasets, we train a DF archi-
tecture by specifying the maximal number p of layers. Un-
specified hyper-parameters are set to default value (see Sec-
tion 2). For each p, we consider the truncated sub-models
composed of layer 1, layer 1-2, . . ., layer 1-p, where layer
1-p is the original DF with p layers. For each value of p,
we consider the previous nested sub-models with 1, 2, . . . , p
layers, and compute the predictive accuracy of the best sub-
model.

Results. We only display results for the Adult dataset in
Figure 4 (all the other datasets show similar results, see
Section A.5 of the Supplementary Materials). The score
(accuracy or R2-score) corresponds to the result on the test
dataset. We observe that adding layers to the Deep Forest
does not significantly change the accuracy score. Even
if the variance changes by adding layers, we are not able
to detect any pattern, which suggests that the variance of
the procedure performance is unstable with respect to the
maximal number of layers.
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Figure 4. Adult dataset. Boxplots over 10 runs of the accuracy of
a DF sub-model with 1 (Breiman) forest by layer (left) or 4 forests
(2 Breiman, 2 CRF) by layer (right), depending on the maximal
number of layers of the global DF model.

Globally, we observe that the sub-models with one or two
layers often lead to the best performance (see Figure 5 for
the Adult dataset and Supplementary Materials A.5). When
the dataset is small (Letter or Yeast), the sub-model with
only one layer (i.e. a standard RF or an aggregation of RFs)
is almost always optimal since a single RF with no max-
imum depth constraint already overfits on most of these
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Figure 5. Adult dataset. Heatmap counting the optimal layer index
over 10 tries of a default DF with 1 (Breiman) forest per layer
(left) or 4 forests (2 Breiman, 2 CRF) per layer (right), with respect
to the maximal number of layers. The number corresponding to
(n,m) on the x- and y-axes indicates how many times out of 10
the layer m is optimal when running a cascade network with a
maximal number n of layers.

datasets. Therefore the second layer, building upon the pre-
dictions of the first layer, entails overfitting as well, therefore
leading to no improvement of the overall model. Besides,
one can explain the predominance of small sub-models by
the weak additional flexibility created by each layer: on the
one hand, each new feature vector size corresponds to the
number of classes times the number of forests which can
be small with respect to the number of input features; on
the other hand, the different forests within one layer are
likely to produce similar probability outputs, especially if
the number of trees within each forest is large. The story is
a little bit different for the Housing dataset, for which the
best submodel is between 2 and 6. As noticed before, this
may be the result of the frustratingly simple representation
of the new features created at each layer. Eventually, these
numerical experiments corroborate the relevance of shal-
low DF as the light configuration proposed in the previous
section.

We note that adding forests in each layer decreases the num-
ber of layers needed to achieve a pre-specified performance.
This is surprising and is opposed to the common belief that
in Deep Neural Networks, adding layers is usually better
than adding neurons in each layer.

We can conclude from the empirical results that the first
two layers convey the performance enhancement in DF.
Contrary to NNs, depth is not an important feature of DFs.
The following studies thus focus on two-layer architectures
which are deep enough to reproduce the improvement of
deeper architectures over single RFs.

3.3. A precise understanding of depth enhancement

In order to finely grasp the influence of tree depth in DF, we
study a simplified version: a shallow CART tree network,
composed of two layers, with one CART per layer.
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Setting. In such an architecture, the first-layer tree is fitted
on the training data. For each sample, the first-layer tree
outputs a probability distribution (or a value in a regression
setting), which is referred to as “encoded data” and given
as input to the second-layer tree, with the raw features as
well. For instance, considering binary classification data
with classes 0 and 1, with raw features (x1, x2, x3), the
input of the second-layer tree is a 5-dimensional feature
vector (x1, x2, x3, p0, p1), with p0 (resp. p1) the predicted
probabilities by the first-layer tree for the class 0 (resp. 1).

For each dataset of Table 1, we first determine the optimal
depth k? of a single CART tree via 3-fold cross validation.
Then, for a given first-layer tree with a fixed depth, we fit a
second-layer tree, allowing its depth to vary. We then com-
pare the resulting shallow tree networks in three different
cases: when the (fixed) depth of the first tree is (i) less than
k?, (ii) equal to k?, and (iii) larger than k?. We add the
optimal single tree performance to the comparison.
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Figure 6. Adult dataset. Accuracy on the test dataset of a two-
layer tree architecture w.r.t. the second-layer tree depth, when the
first-layer (encoding) tree is of depth 2 (top), 9 (middle), and 15
(bottom). rtree is a single tree of respective depth 2 (top), 9
(middle), and 15 (bottom), applied on raw data. For this dataset,
the optimal depth of a single tree is 9 and the tree with the optimal
depth is depicted as rtree 9 in each plot. The green dashed
line indicates the median score of the rtree. All boxplots are
obtained by 10 different runs.

Results. Results are displayed in Figure 6 for the Adult
dataset only (see Supplementary Materials A.4 for the re-
sults on the other datasets). Specifically noticeable in Figure
6 (top), the tree network architecture can introduce perfor-

mance instability when the second-layer tree grows (e.g.
when the latter is successively of depth 7, 8 and 9).

Furthermore, when the encoding tree is not deep enough
(top), the second-layer tree improves the accuracy until it
approximately reaches the optimal depth k?. In this case,
the second-layer tree compensates for the poor encoding,
but cannot improve over a single tree with optimal depth
k?. Conversely, when the encoding tree is more developed
than an optimal single tree (bottom) - overfitting regime,
the second-layer tree may not lead to any improvement, or
worse, may degrade the performance of the first-layer tree.
On all datasets, the second-layer tree is observed to always
make its first cut over the new features (see Figure 7 and
Supplementary Materials). In the case of binary classifi-
cation, a single cut of the second-layer tree along a new
feature yields to gather all the leaves of the first tree, pre-
dicted respectively as 0 and 1, into two big leaves, therefore
reducing the predictor variance (cf. Figure 6 (middle and
bottom)). Furthermore, when considering multi-label clas-
sification with nclasses, the second-layer tree must cut over
at least nclasses features to recover the partition of the first
tree (see Figure S15). Similarly, in the regression case, the
second tree needs to perform a number of splits equal to
the number of leaves of the first tree in order to recover the
partition of the latter.
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Figure 7. Adult dataset. Focus on the first levels of the second-
layer tree structure when the first layer tree is of depth 9 (optimal
depth). Raw features range from X[0] to X[13], X[14] and X[15]
are the features built by the first-layer tree.

In Figure 6 (middle), one observes that with a first-layer tree
of optimal depth, the second-layer tree may outperform an
optimal single tree, by improving both the average accuracy
and its variance. We aim at theoretically quantifying this
performance gain in the next section.

4. Theoretical study of a shallow tree network
In this section, we focus on the theoretical analysis of a
simplified tree network. Our aim is to exhibit settings in
which a tree network outperforms a single tree. Recall that
the second layer of a tree network gathers tree leaves of
the first layer with similar distributions. For this reason, we
believe that a tree network is to be used when the dataset has
a very specific structure, in which the same link between the
input and the output can be observed in different subareas
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of the input space. Such a setting is described in Section 4.2

To make the theoretical analysis possible, we study centered
trees (see Definition 1) instead of CART. Indeed, studying
the original CART algorithm is still nowadays a real chal-
lenge and analyzing stacks of CART seems out-of-reach
in short term. As highlighted by the previous empirical
analysis, we believe that the results we establish theoret-
ically are shared by DF. All proofs are postponed to the
Supplementary Materials.

4.1. The network architecture

We assume to have access to a dataset Dn = {(X1, Y1),
. . . , (Xn, Yn)} of i.i.d. copies of the generic pair (X,Y )
with X living in [0, 1]d and Y ∈ {0, 1} being the label
associated to X .

Notations. Given a decision tree, we denote by Ln(X)
the leaf of the tree containing X and Nn(Ln(X)) the num-
ber of data points falling into Ln(X). The prediction of
such a tree at point X is given by

r̂n(X) =
1

Nn(Ln(X))

∑
Xi∈Ln(X)

Yi

with the convention 0/0 = 0, i.e. the prediction for X in a
leaf with no observations is arbitrarily set to zero.

A shallow centered tree network. We want to theoreti-
cally analyze the benefits of stacking trees. To do so, we
focus on two trees in cascade and will try to determine,
in particular, the influence of the first (encoding) tree on
the performance of the whole tree network. To catch the
variance reduction property of tree networks already em-
phasized in the previous section, we consider a regression
setting: let r(x) = E[Y |X = x] be the regression func-
tion and for any function f , its quadratic risk is defined as
R(f) = E[(f(X)−r(X))2], where the expectation is taken
over (X,Y,Dn).
Definition 1 (Shallow centered tree network). The shallow
tree network consists in two trees in cascade:

• (Encoding layer) The first-layer tree is a cycling cen-
tered tree of depth k. It is built independently of the
data by splitting recursively on each variable, at the
center of the cells. The first cut is made along the first
coordinate, the second along the second coordinate,
etc. The tree construction is stopped when exactly k
cuts have been made. For each point X , we extract the
empirical mean ȲLn(X) of the outputs Yi falling into
the leaf Ln(X) and we pass the new feature ȲLn(X) to
the next layer, together with the original features X .

• (Output layer) The second-layer tree is a centered tree
of depth k′ for which a cut can be performed at the

center of a cell along a raw feature (as done by the
encoding tree) or along the new feature ȲLn(X). In
this latter case, two cells corresponding to {ȲLn(X) <
1/2} and {ȲLn(X) ≥ 1/2} are created.

The resulting predictor composed of the two trees in cas-
cade, of respective depth k and k′, trained on the data
(X1, Y1), . . . , (Xn, Yn) is denoted by r̂k,k′,n.

The two cascading trees can be seen as two layers of trees,
hence the name of the shallow tree network. Note in par-
ticular that r̂k,0,n(X) is the prediction given by the first
encoding tree only and outputs, as a classical tree, the mean
of the Yi’s falling into a leaf containing X .

4.2. Problem setting

Data generation. The data X is assumed to be uniformly
distributed over [0, 1]d and Y ∈ {0, 1}. Let k? be a multiple
of d and let p ∈ (1/2, 1]. We build a regular partition of
the space with cells C1, . . . , C2k? of generic form

d∏
k=1

[
ik

2k?/d
,
ik + 1

2k?/d

)
,

for i1, ..., id ∈ {0, ..., 2k
?/d−1}. We arbitrary assign a color

(black or white) to each cell, which has a direct influence
on the distribution of Y in the cell. More precisely, for x in
a given cell C,

P[Y = 1|X = x] =

{
p if C is a black cell,

1− p if C is a white one.
(1)

We define B (resp. W) as the union of black (resp. white)
cells and NB ∈ {0, . . . , 2k

?} (resp. NW ) as the number
of black (resp. white) cells. Note that NW = 2k

? − NB.
The location and the numbers of the black and white cells
are arbitrary. This distribution corresponds to a generalized
chessboard structure. The whole distribution is thus para-
meterized by k? (2k

?

is the total number of cells), p and NB.
Examples of this distribution are depicted in Figures 8 and
9 for different configurations and d = 2.

Why such a structured setting? The data distribution
introduced above is highly structured, which can be seen
as a restrictive study setting. However, the generalized
chessboard is nothing but a discretized quantification of the
regression function r using only 2 values (see Equation (1)).
Going further than quantification towards general discretiza-
tion does not seem appropriate for tree networks. To see
this, consider a more general distribution such as

P[Y = 1|X = x] = Pij when x ∈ Cij ,

where Pij is a random variable drawn uniformly in [0, 1].
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Figure 8. Arbitrary chessboard data distribution for k? = 6 and
NB = 40 black cells (p is not displayed here). Partition of the
(first) encoding tree of depth 4, 6, 8 (from left to right) is dis-
played in blue. The optimal depth of a single centered tree for this
chessboard distribution is 6.

Lemma 1. Consider the previous setting with k ≥ k?. In
the infinite sample setting, the risks of a single tree and a
shallow tree network are given by R(r̂k,0,∞) = 0 and

R(r̂k,1,∞) ≥ 1

48

(
1− 8

2k? − 1

)
+

1

22k
?

9

24
.

Lemma 1 highlights the fact that a tree network has a posi-
tive bias, which is not the case for a single tree. Besides, by
letting k? tend to infinity (that is the size of the cells tends
to zero), the above chessboard distribution boils down to a
very generic classification framework. In this latter case, the
tree network performs poorly since its risk is lower bounded
by 1/48. In short, when the data distribution is disparate
across the feature space, the averaging performed by the
second tree leads to a biased regressor. Note that Lemma 1
involves a shallow tree network, performing only one cut on
the second layer. But similar conclusions could be drawn
for a deeper second-layer tree, until its depth reaches k?.
Indeed, considering r̂k,k?,∞ would result in an unbiased
regressor, with comparable performances as of a single tree,
while being much more complex.

Armed with Lemma 1, we believe that the intrinsic structure
of DF and tree networks makes them useful to detect similar
patterns spread across the feature space. This makes the
generalized chessboard distribution particularly well suited
for analyzing such behavior. The risk of a shallow tree
network in the infinite sample regime for the generalized
chessboard distribution is studied in Lemma 2.

Lemma 2. Assume that the data follows the generalized
chessboard distribution described above with parameter k?,
NB and p. In the infinite sample regime, the following holds
for the shallow tree network r̂k,k′,n (Definition 1).

(i) Shallow encoding tree. Let k < k?. The risk of the
shallow tree network is minimal for all configurations
of the chessboard if the second-layer tree is of depth
k′ ≥ k? and if the k? first cuts are performed along
raw features only.

(ii) Deep encoding tree. Let k ≥ k?. The risk of the
shallow tree network is minimal for all configurations
of the chessboard if the second-layer tree is of depth
k′ ≥ 1 and if the first cut is performed along the new
feature ȲLn(X).

In the infinite sample regime, Lemma 2 shows that the pre-
processing is useless when the encoding tree is shallow
(k < k?): the second tree cannot leverage on the partition
of the first one and needs to build a finer partition from zero.

Lemma 2 also provides an interesting perspective on the
second-layer tree which either acts as a copy of the first-
layer tree or can simply be of depth one.

Remark 2. The results established in Lemma 2 for centered-
tree networks also empirically hold for CART ones (see
Figures 6,S12,S15,S17,S19,S21: (i) the second-layer CART
trees always make their first cut on the new feature and
always near 1/2; (ii) if the first-layer CART is biased, then
the second-layer tree will not improve the accuracy of the
first tree (see Figure 6 (top)); (iii) if the first-layer CART
is developed enough, then the second-layer CART acts as a
variance reducer (see Figure 6, middle and bottom).

4.3. Main results

Building on Lemma 1 and 2, we now focus on a shallow
network whose second-layer tree is of depth one, and whose
first cut is performed along the new feature ȲLn(X) at 1/2.
Two main regimes of training can be therefore identified
when the first tree is either shallow (k < k?) or deep (k ≥
k?).

In the first regime (k < k?), to establish precise non-
asymptotics bounds, we study the balanced chessboard
distribution (see Figure 9). Such a distribution has been
studied in the unsupervised literature, in order to generate
distribution for X via copula theory (Ghosh & Henderson,
2002; 2009) or has been mixed with other distribution in
the RF framework (Biau et al., 2008). Intuitively, this is a
worst-case configuration for centered trees in terms of bias.
Indeed, if k < k?, each leaf contains the same number of
black and white cells. Therefore in expectation the mean
value of the leaf is 1/2 which is non informative.

Proposition 3 (Risk of a single tree and a shallow tree net-
work when k < k?). Assume that the data is drawn accord-
ing to a balanced chessboard distribution with parameters
k?, NB = 2k

?−1 and p > 1/2 (see Figure 9).

1. Consider a single tree r̂k,0,n of depth k ∈ N?. We
have,

R(r̂k,0,n) ≤
(
p− 1

2

)2

+
2k

2(n+ 1)
+

(1− 2−k)n

4
;
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Figure 9. Chessboard data distribution for k? = 6 and NB =
2k

?−1. Partition of the (first) encoding tree of depth 4, 6, 8 (from
left to right) is displayed in blue. The optimal depth of a single
centered tree for this chessboard distribution is 6.

and

R(r̂k,0,n) ≥
(
p− 1

2

)2

+
2k

4(n+ 1)

+
(1− 2−k)n

4

(
1− 2k

n+ 1

)
.

2. Consider the shallow tree network r̂k,1,n. We have

R(r̂k,1,n) ≤
(
p− 1

2

)2

+
2k/2+3(p− 1

2 )
√
πn

+
7 · 22k+2

π2(n+ 1)
(1 + εk,p) +

p2 + (1− p)2

2

(
1− 2−k

)n
where εk,p = o(2−k/2) uniformly in p, and

R(r̂k,1,n) ≥
(
p− 1

2

)2

.

First, note that our bounds are tight in both cases (k < k?

and k ≥ k?) since the rates of the upper bounds match
that of the lower ones. The first statement in Proposition 3
quantifies the bias of a single tree of depth k < k?: the term
(p − 1/2)2 appears in both the lower and upper bounds,
which means that no matter how large the training set is,
the risk of the tree does not tend to zero. The shallow tree
network suffers from the same bias term as soon as the
first-layer tree is not deep enough. Here, the flaws of the
first-layer tree transfer to the whole network. In all bounds,
the term (1− 2−k)n corresponding to the probability of X
falling into an empty cell is classic and cannot be eliminated
for centered trees, whose splitting strategy is independent
of the dataset.

Proposition S8 in the Supplementary Materials extends the
previous result to the case of a random chessboard, in which
each cell has a probability of being black or white. The
same phenomenon is observed: the bias of the first layer
tree is not reduced, even in the infinite sample regime.

In the second regime (k ≥ k?), the tree network may im-
prove over a single tree as shown in Proposition 4.

Proposition 4 (Risk of a single tree and a shallow tree
network when k ≥ k?). Consider a generalized chessboard
with parameters k?, NB and p > 1/2.

1. Consider a single tree r̂k,0,n of depth k ∈ N?. We have

R(r̂k,0,n) ≤ 2kp(1− p)
n+ 1

+
(
p2 + (1− p)2

) (1− 2−k)n

2
,

and

R(r̂k,0,n) ≥ 2k−1p(1− p)
n+ 1

+

(
p2 + (1− p)2 − 2kp(1− p)

n+ 1

)
(1− 2−k)n

2
.

2. Consider the shallow tree network r̂k,1,n. Letting

p̄2B =

(
NB
2k?

p2 +
2k

? −NB
2k?

(1− p)2
)

(1− 2−k)n,

we have

R(r̂k,1,n) ≤ 2 · p(1− p)
n+ 1

+
2k+1εn,k,p

n
+ p̄2B,

where εn,k,p = n(1− 1−e−2(p− 1
2
)2

2k
)n, and for all n ≥

2k+1(k + 1),

R(r̂k,1,n) ≥ 2p(1− p)
n

− 2k+3(1− ρk,p)n

n
+ p̄2B,

where 0 < ρk,p < 1 depends only on p and k.

Proposition 4 shows that there exists a benefit from using
this network when the first-layer tree is deep enough. In
this case, the risk of the shallow tree network is O(1/n)
whereas that of a single tree is O(2k/n). In presence of
complex and highly structured data (large k? and similar
distribution in different areas of the input space), the shallow
tree network benefits from a variance reduction phenomenon
by a factor 2k. These theoretical bounds are numerically
assessed in the Supplementary Materials (see Figures S35
to S40) showing their tightness for a particular choice of the
chessboard configuration.

Finally, note that although the dimension d does not explic-
itly appear in our bounds, it is closely related to k?. Indeed,
in high dimensions, modelling the regression function re-
quires a finer partition, hence a direct relation of the form
k? � d. Therefore, obtaining an unbiased estimator with
a reduced variance as in Proposition 3 is more stringent in
high dimensions, since it requires to choose k ≥ k? � d.
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5. Conclusion
In this paper, we study both numerically and theoretically
DF and its elementary components. We show that stacking
layers of trees (and forests) may improve the predictive
performance of the algorithm. However, most of the im-
provements rely on the first DF-layers. We show that the
performance of a shallow tree network (composed of single
CART) depends on the depth of the first-layer tree. When
the first-layer tree is deep enough, the second-layer tree
may build upon the new features created by the first tree by
acting as a variance reducer.

To quantify this phenomenon, we propose a first theoretical
analysis of a shallow tree network (composed of centered
trees). Our study exhibits the crucial role of the first (en-
coding) layer: if the first-layer tree is biased, then the entire
shallow network inherits this bias, otherwise the second-
layer tree acts as a good variance reducer. One should note
that this variance reduction cannot be obtained by averaging
many trees, as in RF structure: the variance of an averag-
ing of centered trees with depth k is of the same order as
one of these individual trees (Biau, 2012; Klusowski, 2018),
whereas two trees in cascade (the first one of depth k and the
second of depth 1) may lead to a variance reduction by a 2k

factor. This highlights the benefit of tree-layer architectures
over standard ensemble methods. We thus believe that this
first theoretical study of this shallow tree network paves the
way of the mathematical understanding of DF.

First-layer trees, and more generally the first layers in DF
architecture, can be seen as data-driven encoders. More
precisely, the first layers in DF create an automatic embed-
ding of the data, building on the specific conditional relation
between the output and the inputs, therefore potentially im-
proving the performance of the overall structure. Since
preprocessing is nowadays an important part of all machine
learning pipelines, we believe that our analysis is interesting
beyond the framework of DF.
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A. Supplementary materials
A.1. Computation times for Section 3

Yeast Housing Letter Adult Airbnb Higgs
Default DF time 13m19s 9m38s 20m31 13m57s 23m23s 43m53s
Light DF time 7s 6s 8s 8s 10s 13s

Default DF MC (MB) 11 6 174 139 166 531
Light DF MC (MB) 5 4 109 72 100 318

Table S2. Comparing the time and memory consumption of DF and Light DF.

A.2. Table of best configurations, supplementary to Section 3.2

Dataset Best configuration hyperparam. Optimal sub-model
Adult 6 forests, 20 trees, max depth 30 2
Higgs 10 forests, 280 trees, max depth None 2

Fashion Mnist 8 forests, 500 trees, max depth None (default) 2
Letter 8 forests, 500 trees, max depth None (default) 1
Yeast 6 forests, 200 trees, max depth 30 1

Airbnb 10 forests, 400 trees, max depth None 1
Housing 8 forests, 280 trees, max depth 100 14

Table S3. Details of the best configurations obtained in Figures 2 and 3.

To find the best configuration, we ran a grid search over the following parameters : number of forests per layer (from 2 to
10) , number of trees per forest (from 30 to 1000), max depth of each tree (from 5 to 100 plus None).

A.3. Fashion Mnist MGS encoding

The Fashion Mnist dataset was encoded using the MGS process with two forests, one Breiman RF, one CRF, both of
them having 150 trees, 10 samples per leaf minimum and other parameters set to default. Three windows were used of
sizes/strides. Then we apply a mean pooling process of size (3,3) to each created filter.
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A.4. Additional figures to Section 3.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
rtr
ee

rtr
ee
_9

0.725

0.750

0.775

0.800

1 2 3 4 5 6 7 8 9 10 11 12 13 14
rtr
ee

rtr
ee
_9

0.725

0.750

0.775

0.800

1 2 3 4 5 6 7 8 9 10 11 12 13 14
rtr
ee

rtr
ee
_9

0.725

0.750

0.775

0.800

Figure S10. Adult dataset. Accuracy of a two-layer tree architecture w.r.t. the second-layer tree depth, when the first-layer (encoding) tree
is of depth 2 (top), 9 (middle), and 15 (bottom). rtree is a single tree of respective depth 2 (top), 9 (middle), and 15 (bottom), applied
on raw data. For this dataset, the optimal depth of a single tree is 9 and the tree with the optimal depth is depicted as rtree 9 in each
plot. The green dashed line indicates the median score of the rtree. All boxplots are obtained by 10 different runs.
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Figure S11. Adult dataset. Second-layer tree structure of depth 4 when the first-layer tree is of depth 9 (optimal depth). Raw features
range from X[0] to X[13], X[14] and X[15] are the features built by the first-layer tree.
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Figure S12. Higgs dataset. Accuracy of a two-layer tree architecture w.r.t. the second-layer tree depth, when the first-layer (encoding) tree
is of depth 2 (top), 9 (middle), and 15 (bottom). rtree is a single tree of respective depth 2 (top), 9 (middle), and 15 (bottom), applied
on raw data. For this dataset, the optimal depth of a single tree is 9 and the tree with the optimal depth is depicted as rtree 9 in each
plot. The green dashed line indicates the median score of the rtree. All boxplots are obtained by 10 different runs.
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Figure S13. Higgs dataset. Second-layer tree structure of depth 5 when the first-layer tree is of depth 2 (low depth). Raw features range
from X[0] to X[13], X[14] and X[15] are the features built by the first-layer tree.
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Figure S14. Higgs dataset. Second-layer tree structure of depth 4 when the first-layer tree is of depth 9 (optimal depth). Raw features
range from X[0] to X[27], X[28] and X[29] are the features built by the first-layer tree.
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Figure S15. Letter dataset. Accuracy of a two-layer tree architecture w.r.t. the second-layer tree depth, when the first-layer (encoding) tree
is of depth 10 (top), 18 (middle), and 26 (bottom). rtree is a single tree of respective depth 10 (top), 18 (middle), and 26 (bottom),
applied on raw data. For this dataset, the optimal depth of a single tree is 18 and the tree with the optimal depth is depicted as rtree 18
in each plot. The green dashed line indicates the median score of the rtree. All boxplots are obtained by 10 different runs.
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Figure S16. Letter dataset. Second-layer tree structure of depth 30 when the first-layer tree is of depth 18 (optimal depth). We only show
the first part of the tree up to depth 10. Raw features range from X[0] to X[15]. The features built by the first-layer tree range from X[16]
to X[41].
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Figure S17. Yeast dataset. Accuracy of a two-layer tree architecture w.r.t. the second-layer tree depth, when the first-layer (encoding) tree
is of depth 1 (top), 3 (middle), and 8 (bottom). rtree is a single tree of respective depth 1 (top), 3 (middle), and 8 (bottom), applied on
raw data. For this dataset, the optimal depth of a single tree is 3 and the tree with the optimal depth is depicted as rtree 3 in each plot.
The green dashed line indicates the median score of the rtree. All boxplots are obtained by 10 different runs.
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Figure S18. Yeast dataset. Second-layer tree structure of depth 4 when the first-layer tree is of depth 3 (optimal depth). Raw features
range from X[0] to X[7]. The features built by the first-layer tree range from X[8] to X[17].
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Figure S19. Airbnb dataset. R2 score of a two-layer tree architecture w.r.t. the second-layer tree depth, when the first-layer (encoding)
tree is of depth 10 (top), 27 (middle), and 32 (bottom). rtree is a single tree of respective depth 10 (top), 27 (middle), and 32 (bottom),
applied on raw data. For this dataset, the optimal depth of a single tree is 27 and the tree with the optimal depth is depicted as rtree 27
in each plot. The green dashed line indicates the median score of the rtree. All boxplots are obtained by 10 different runs.
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Figure S20. Airbnb dataset. Second-layer tree structure of depth 28 when the first-layer tree is of depth 26 (optimal depth). We only show
the first part of the tree up to depth 5. Raw features range from X[0] to X[12], X[13] is the feature built by the first-layer tree.
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Figure S21. Housing dataset. R2 score of a two-layer tree architecture w.r.t. the second-layer tree depth, when the first-layer (encoding)
tree is of depth 3 (top), 7 (middle), and 12 (bottom). rtree is a single tree of respective depth 3 (top), 7 (middle), and 12 (bottom),
applied on raw data. For this dataset, the optimal depth of a single tree is 9 and the tree with the optimal depth is depicted as rtree 7 in
each plot. The green dashed line indicates the median score of the rtree. All boxplots are obtained by 10 different runs.
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Figure S22. Housing dataset. Second-layer tree structure of depth 10 when the first-layer tree is of depth 7 (optimal depth). We only show
the first part of the tree up to depth 5. Raw features range from X[0] to X[60], X[61] is the feature built by the first-layer tree.

A.5. Additional figures to Section 3.2
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Figure S23. Adult dataset. Boxplots over 10 tries of the accuracy of a DF with 1 forest by layer (left) or 4 forests by layer (right), with
respect to the DF maximal number of layers.

A.6. Additional figures to Section 4
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Figure S24. Adult dataset. Heatmap counting the index of the sub-optimal model over 10 tries of a default DF with 1 (Breiman) forest per
layer (left) or 4 forests (2 Breiman, 2 CRF) per layer (right), with respect to the maximal number of layers.
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Figure S25. Higgs dataset. Boxplots over 10 tries of the accuracy of a DF with 1 forest by layer (left) or 4 forests by layer (right), with
respect to the DF maximal number of layers.
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Figure S26. Higgs dataset. Heatmap counting the index of the sub-optimal model over 10 tries of a default DF with 1 (Breiman) forest per
layer (left) or 4 forests (2 Breiman, 2 CRF) per layer (right), with respect to the maximal number of layers.
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Figure S27. Letter dataset. Boxplots over 10 tries of the accuracy of a DF with 1 forest by layer (left) or 4 forests by layer (right), with
respect to the DF maximal number of layers.
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Figure S28. Letter dataset. Heatmap counting the index of the sub-optimal model over 10 tries of a default DF with 1 (Breiman) forest per
layer (left) or 4 forests (2 Breiman, 2 CRF) per layer (right), with respect to the maximal number of layers.
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Figure S29. Yeast dataset. Boxplots over 10 tries of the accuracy of a DF with 1 forest by layer (left) or 4 forests by layer (right), with
respect to the DF maximal number of layers.
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Figure S30. Yeast dataset. Heatmap counting the index of the sub-optimal model over 10 tries of a default DF with 1 (Breiman) forest per
layer (left) or 4 forests (2 Breiman, 2 CRF) per layer (right), with respect to the maximal number of layers.
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Figure S31. Airbnb dataset. Boxplots over 10 tries of the accuracy of a DF with 1 forest by layer (left) or 4 forests by layer (right), with
respect to the DF maximal number of layers.
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Figure S32. Airbnb datase. Heatmap counting the index of the sub-optimal model over 10 tries of a default DF with 1 (Breiman) forest
per layer (left) or 4 forests (2 Breiman, 2 CRF) per layer (right), with respect to the maximal number of layers.
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Figure S33. Housing dataset. Boxplots over 10 tries of the accuracy of a DF with 1 forest by layer (left) or 4 forests by layer (right), with
respect to the DF maximal number of layers.
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Figure S34. Housing dataset. Heatmap counting the index of the sub-optimal model over 10 tries of a default DF with 1 (Breiman) forest
per layer (left) or 4 forests (2 Breiman, 2 CRF) per layer (right), with respect to the maximal number of layers.
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Figure S35. Illustration of the theoretical bounds for a single tree of Proposition 3 1. for a chessboard with parameters k? = 4,
NB = 2k

?−1, and p = 0.8. The single tree is of depth k = 2. We draw a sample of size n (x-axis), and a single tree rk,0,n is fitted
for which the theoretical risk is evaluated. Each boxplot is built out of 20 000 repetitions. The outliers are not shown for the sake of
presentation.
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Figure S36. Illustration of the theoretical bounds for a single tree of Proposition 4 1. for a chessboard with parameters k? = 4,
NB = 2k

?−1 and p = 0.8. The single tree is of depth k = 4. We draw a sample of size n (x-axis), and a single tree rk,0,n is fitted
for which the theoretical risk is evaluated. Each boxplot is built out of 20 000 repetitions. The outliers are not shown for the sake of
presentation.
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Figure S37. Illustration of the theoretical bounds for a single tree of Proposition 4 1. for a chessboard with parameters k? = 4,
NB = 2k

?−1 and p = 0.8. The single tree is of depth k = 6. We draw a sample of size n (x-axis), and a single tree rk,0,n is fitted
for which the theoretical risk is evaluated. Each boxplot is built out of 20 000 repetitions. The outliers are not shown for the sake of
presentation.
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Figure S38. Illustration of the theoretical bounds for a shallow tree network of Proposition 3 2. for a chessboard with parameters k? = 4,
NB = 2k

?−1 and p = 0.8. The first-layer tree is of depth k = 2. We draw a sample of size n (x-axis), and a single tree rk,0,n is fitted
for which the theoretical risk is evaluated. Each boxplot is built out of 20 000 repetitions. The outliers are not shown for the sake of
presentation. Note that in such a case, the theoretical lower bound is constant and equal to the bias term.
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Figure S39. Illustration of the theoretical bounds for a shallow tree network of Proposition 4 2. for a chessboard with parameters k? = 4,
NB = 2k

?−1 and p = 0.8. The first-layer tree is of depth k = 4. We draw a sample of size n (x-axis), and a single tree rk,0,n is fitted
for which the theoretical risk is evaluated. Each boxplot is built out of 20 000 repetitions. The outliers are not shown for the sake of
presentation. Note that in such a case, the theoretical lower bound is constant and equal to the bias term. Note that the lower bound and
the upper bound are merged.
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Figure S40. Illustration of the theoretical bounds for a shallow tree network of Proposition 4 2. for a chessboard with parameters k? = 4,
NB = 2k

?−1 and p = 0.8. The first-layer tree is of depth k = 6. We draw a sample of size n (x-axis), and a single tree rk,0,n is fitted
for which the theoretical risk is evaluated. Each boxplot is built out of 20 000 repetitions. The outliers are not shown for the sake of
presentation. Note that in such a case, the theoretical lower bound is constant and equal to the bias term.
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B. Technical results on binomial random variables
Lemma S5. Let Z be a binomial B(n, p), p ∈ (0, 1], n > 0. Then,

(i)
1− (1− p)n

(n+ 1)p
≤ E

[
1Z>0

Z

]
≤ 2

(n+ 1)p

(ii)

E

[
1

1 + Z

]
≤ 1

(n+ 1)p

(iii)

E

[
1

1 + Z2

]
≤ 3

(n+ 1)(n+ 2)p2

(iv)

E

[
1Z>0√
Z

]
≤ 2
√
np

(v) Let k be an integer ≤ n. Then,

E [Z | Z ≥ k] = np+ (1− p)k P (Z = k)
n∑
i=k

P (Z = i)

.

(vi) Let Z be a binomial B(n, 12 ), n > 0. Then,

E

[
Z | Z ≤ bn+ 1

2
c − 1

]
≥ n

2
−

(√
n√
π

+
2
√

2n

π
√

2n+ 1

)
.

(vii) Let Z be a binomial B(n, 12 ), n > 0. Then,

E

[
Z | Z ≥ bn+ 1

2
c
]
≤ n

2
+ 1 +

1√
π(n+ 1)

.

Proof. The reader may refer to the Lemma 11 of (Biau, 2012) to see the proof of (ii), (iii) and the right-hand side of (i). The
left-hand side inequality of (i) can be found in the Section 1 of (Cribari-Neto et al., 2000).

(iv) The first two inequalities rely on simple analysis :

E

[
1Z>0√
Z

]
≤ E

[
2

1 +
√
Z

]
≤ E

[
2√

1 + Z

]
.
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To go on, we adapt a transformation from Section 2 of (Cribari-Neto et al., 2000) to our setting:

E

[
2√

1 + Z

]
=

2

Γ(1/2)

∫ ∞
0

e−t√
t

E
[
e−tZ

]
dt

=
2

Γ(1/2)

∫ ∞
0

e−t√
t

(1− p+ pe−t)ndt

=
2

Γ(1/2)

∫ − log(1−p)

0

g(r)e−rndr,

with g(r) := p−1e−r
(
− log(1 + 1−e−r

p )
)−1/2

after the change of variable (1− p+ pe−t) = e−r.

Let’s prove that

g(r) ≤ 1
√
rp
. (2)

It holds that log(1 + x) ≤ 2x
2+x when −1 < x ≤ 0, therefore

g(r)2 = p−2e−2r
(
− log(1 +

1− e−r

p
)

)−1
≤ p−2e−2r 2p+ e−r − 1

2(1− e−r)
.

Furthermore,

2p ≥ 2p
(
e−r + re−2r

)
≥ 2p

(
e−r + re−2r

)
+ r

(
e−3r − e−2r

)
= re−2r(2p− 1 + e−r) + 2pe−r,

and then dividing by rp2,

2

rp
(1− e−r) ≥ 1

p2
e−2r(2p− 1 + e−r) ⇐⇒ 1

rp
≥ p−2e−2r 2p+ e−r − 1

2(1− e−r)
,

which proves (2).

Equation (2) leads to

E

[
2√

1 + Z

]
≤ 2

Γ(1/2)

∫ − log(1−p)

0

1
√
pr
e−rndr. (3)

Note that Γ(1/2) =
√
π. After the change of variable u =

√
rn, we obtain :

E

[
2√

1 + Z

]
≤ 4
√
npπ

∫ √−n log(1−p)

0

e−u
2

du ≤ 4
√
npπ

∫ ∞
0

e−u
2

du ≤ 2
√
np

which ends the proof of (iv).

(v).(a) We recall that p = 1/2. An explicit computation of the expectation yields :

E

[
Z | Z < bn+ 1

2
c
]

=
1

P
(
Z ≤ bn+1

2 c − 1
) bn+1

2 c−1∑
i=1

i

2n

(
n

i

)
=

2

1

n

2n

(
2n

2
− 1

2

(
n− 1
n−1
2

))
1n%2=1

+
n

1
2 −

1
2P (Z = n/2)

n/2∑
i=1

i

(
n

i

)
− n

2

(
n

n/2

) 1n%2=0

2n

= n

(
1

2
− 1

2n

(
n− 1
n−1
2

))
1n%2=1 +

n · 1n%2=0

1− P (Z = n/2)

(
1

2
− 1

2n

(
n

n/2

))
.
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We use that for all m ∈ 2N∗, (
m

m/2

)
≤ 2m√

π(m/2 + 1/4)
(4)

and
1

1− P (Z = m/2)
≥ 1 +

√
2√
πn

where the last inequality can be obtained via a series expansion at n =∞. Replacing the terms by their bounds, we have :

E

[
Z | Z < bn+ 1

2
c
]
≥ n

((
1

2
− 1√

π(2m− 1)

)
1n%2=1 +

(
1 +

√
2√
πn

)(
1

2
− 2√

π(2n+ 1)

)
1n%2=0

)

≥ n

(
1

2
− 1√

nπ
− 2

√
2

π
√
n(2n+ 1)

)

≥ n

2
+
√
n

(
1√
π
− 2
√

2

π

√
(2n+ 1)

)
which ends the proof of this item (v)(a).

(v).(b) We also begin with an explicit computation of the expectation :

E

[
Z | Z ≥ bn+ 1

2
c
]

=
1

P
(
Z ≥ bn+1

2 c
) n∑
i=bn+1

2 c

i

2n

(
n

i

)

=
2

1

1

2n

(
2n−2 + 2n−1 +

1

2

(
n− 1
n−1
2

))
1n%2=1 +

n
1
2 + 1

2P (Z = n/2)

 n∑
i=bn+1

2 c

i

(
n

i

) 1n%2=0

2n

=

(
n

2
+ 1 +

1

2n

(
n− 1
n−1
2

))
1n%2=1 +

n · 1n%2=0

1 + P (Z = n/2)

(
1

2
+

1

2n

(
n

n/2

))
.

The computation of the upper bound relies on the following inequalities : ∀m ∈ 2N∗,(
2m

m

)
≤ 22m√

π(m+ 1/4)
(5)

as well as
1

1 + P (Z = n/2)
≤ 1−

√
2√
πn

+
2

πn

where the last bound can be found via a series expansion at n =∞. Replacing all terms by their bound and simplifying
roughly gives the result.

Lemma S6 (Uniform Bernoulli labels: risk of a single tree). Let K be a compact in Rd, d ∈ N. Let X,X1, ..., Xn, n ∈ N∗
be i.i.d. random variables uniformly distributed over K, Y, Y1, ..., Yn i.i.d Bernoulli variables of parameter p ∈ [0, 1] which
can be considered as the labels of X,X1, ..., Xn. We denote by r0,k,n, k ∈ N∗ a single tree of depth k. Then we have, for all
k ∈ N∗,

(i)

E
[
(r0,0,n(X)− r(X))2

]
=
p(1− p)

n
(6)

(ii)

2k · p(1− p)
n

+

(
p2 − 2k

n

)
(1− 2−k)n ≤ E

[
(r0,k,n(X)− r(X))2

]
≤ 2k+1 · p(1− p)

n
+ p2(1− 2−k)n (7)
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Proof. (i) In the case k = 0, r0,0,n simply computes the mean of all the (Yi)’s over K:

E
[
(r0,0,n(X)− r(X))2

]
= E

( 1

n

∑
i

Yi − p

)2
 (8)

= E

[
1

n2

∑
i

(Yi − p)2
]

(Yi independent) (9)

=
p(1− p)

n
. (10)

(ii)

E
[
(r0,k,n(X)− r(X))2

]
= E


 1

Nn(Ln(X))

∑
Xi∈Ln(X)

Yi − p

2

1Nn(Ln(X))>0

+ p2P (Nn(Ln(X)) = 0) (11)

= E

1Nn(Ln(X))>0

Nn(Ln(X))2

∑
Xi∈Ln(X)

(Yi − p)2
+ p2P (Nn(Ln(X)) = 0) (12)

= p(1− p)E
[

1Nn(Ln(X))>0

Nn(Ln(X))

]
+ p2(1− 2−k)n (13)

Noticing that Nn(Ln(X)) is a binomial B(n, 1
2k

), we obtain the upper bound using Lemma S5 (i) :

E

[
1Nn(Ln(X))>0

Nn(Ln(X))

]
≤ 2 · 2k

n
(14)

the lower bound is immediately obtained by applying Lemma S5, (i):

E

[
1Nn(Ln(X))>0

Nn(Ln(X))

]
≥ 2k

n

(
1− (1− 2−k)n

)
(15)

C. Proof of Lemma 1
Note that

E[(r̂k,1,∞(X)− r(X))2] = E[(r̂k,1,∞(X)− r(X))21X∈B] (16)

+ E[(r̂k,1,∞(X)− r(X))21X∈W ]. (17)

Now, we analyze the first term in Equation (17). We have

E[(r̂k,1,∞(X)− r(X))21X∈B] = E[E[(r̂k,1,∞(X)− r(X))21X∈B|NB]] (18)

=
∑
i

E[E[
( 1

NB

∑
i∈B

pi′ − pi
)2

1X∈Ci∩B|NB]]

=
∑
i

E

[
E[1X∈Ci1X∈B1NB>0

( 1

NB

∑
i′∈B

pi′ − pi
)2
|NB]

]
+
∑
i

E
[
E
[
1X∈Ci∩B1NB=0p

2
i | NB

]]
. (19)
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We begin with the second term in Equation (19). We have, for all i,

E
[
E
[
1X∈Ci∩B1NB=0p

2
i | NB

]]
= E

[
1X∈Ci1NB=0E

[
p2i1X∈B | X,NB

]]
(20)

= E
[
1X∈Ci

1NB=0E
[
p2i1pi≥ 1

2

]]
. (21)

As pi is drawn uniformly in [0, 1],

E
[
p2i1pi≥ 1

2

]
= E

[
p2i | pi ≥

1

2

]
P

(
pi ≥

1

2

)
=

7

24
.

Therefore,

E
[
E
[
1X∈Ci∩B1NB=0p

2
i | NB

]]
=

7

24
P (X ∈ Ci) P (NB = 0) (22)

=
1

22k
?

7

24
. (23)

Regarding the first term of Equation (19),

E[1X∈Ci
1X∈B1NB>0

( 1

NB

∑
i′∈B

pi′ − pi
)2
|NB]

= E

1X∈Ci
E

1X∈B1NB>0

(
1

NB

∑
i′

(pi′ − pi)

)2

| X,NB

 (24)

= E [1X∈Ci
] E

1pi≥ 1
2
1NB>0

(
1

NB

∑
i′∈B

(pi′ − pi)

)2

| NB

 (25)

= E [1X∈Ci ] E

 1

N2
B

 ∑
i′,i′′∈B
i′ 6=i′′

(pi′ − pi)(pi′′ − pi) +
∑
i′∈B,
i′ 6=i

(pi′ − pi)2

 | NB, NB > 0, pi ≥
1

2


· P
(
pi ≥

1

2
∩NB > 0

)
. (26)

Recall that pi is drawn uniformly over [0, 1]. Therefore, P
(
pi ≥ 1

2 ∩NB > 0
)

= P
(
pi ≥ 1

2

)
= 1

2 . Thus,

E[1X∈Ci1X∈B1NB>0

( 1

NB

∑
i′∈B

pi′ − pi
)2
|NB]

=
1

2k?
E

 1

N2
B

(NB − 1)(NB − 2)Var(pi | pi ≥
1

2
) +

∑
i′∈B,
i′ 6=i

2Var(pi | pi ≥
1

2
) | NB, NB > 0, pi ≥

1

2


=

1

2k?
E

[
1

N2
B

(
(NB − 1)(NB − 2)

1

48
+ 2

1

48
(NB − 1)

)
| NB, NB > 0

]
P

(
pi ≥

1

2
∩NB > 0

)
=

1

2k?+1
E

[
1

48N2
B

(
N2
B −NB

)
| NB, NB > 0

]
=

1

48 · 2k?+1

(
1− E

[
1

NB
| NB, NB > 0

])
.
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We now have:

E

[
E[1X∈Ci

1X∈B1NB>0

( 1

NB

∑
i′∈B

pi′ − pi
)2
|NB]

]
= E

[
1

48 · 2k?+1

(
1− E

[
1

NB
| NB, NB > 0

])]
=

1

48 · 2k?+1

(
1− E

[
1

NB
| NB > 0

])
.

Notice that NB is a binomial variable of parameters 2k
?

, 1/2. Thus we can apply Lemma S5 to deduce

E

[
1

NB
| NB > 0

]
= E

[
1Z>0

Z

]
1

P (Z > 0)

≤ 4

2k? + 1

1

P (Z > 0)

Moreover, as P (Z > 0) ≥ 1
2 , we have:

E

[
E[1X∈Ci

1X∈B1NB>0

( 1

NB

∑
i′∈B

pi′ − pi
)2
|NB]

]
≥ 1

48 · 2k?+1

(
1− 8

2k? + 1

)
In the end, the first term of Equation (17) verifies

E[(r̂k,1,∞(X)− r(X))21X∈B] ≥ 1

2

( 1

48

(
1− 8

2k? − 1

))
+

1

22k
?

7

24
.

Similar computations show that the second term of Equation (27) verifies:

E[(r̂k,1,∞(X)− r(X))21X∈W ]. ≥ 1

2

( 1

48

(
1− 8

2k? − 1

))
+ E

[
E
[
1X∈Ci∩W1NW=0p

2
i | NW

]]
(27)

≥ 1

2

( 1

48

(
1− 8

2k? − 1

))
+

1

2k?
1

22k
? E

[
p2i | pi <

1

2

]
(28)

≥ 1

2

( 1

48

(
1− 8

2k? − 1

))
+

1

22k
?

1

12
. (29)

All in all, we have

E[(r̂k,1,∞(X)− r(X))2] ≥ 1

48

(
1− 8

2k? − 1

)
+

1

22k
?

9

24
.

D. Proof of Lemma 2
First, note that since we are in an infinite sample regime, the risk of our estimators is equal to their bias term. We can thus
work with the true distribution instead of a finite data set.

(i) The risk of a second-layer tree cutting k′ times, k′ ≥ k? along the raw features equals 0 (thus being minimal) as each
leaf is included in a cell. We now exhibit one configuration for which any second-layer tree of depth k′ < k? is biased.
We consider the balanced chessboard with parameters k?, NB = 2k

?−1 and p, defined in Proposition 3 and shown in
Figure 9. For all k < k?, each leaf of the first tree contains exactly half black and half white cells, thus predicting
1/2 and having a risk of (p − 1

2 )2. Therefore a second-layer tree building on raw features only would predict 1/2
everywhere and would also be biased. If the second-layer tree performs a cut on the new feature provided by the
first-layer tree, it creates two leaves: all the leaves where the prediction of the first tree is greater than or equal to 1/2
are gathered in the right leaf, all the other leaves are gathered in the left leaf. The left leaf is empty and the prediction
of the second-layer tree is also 1/2 everywhere. Any new cut along the new feature would create one leaf predicting
1/2 on [0, 1]2 and other leaves being empty. In any case, the second-layer tree is biased. Thus the minimal risk for all
configurations is obtained by a second-layer tree of depth k′ ≥ k? which cuts along the raw features only.

(ii) When k ≥ k?, the first tree is unbiased since each of its leaves is included in only one chessboard data cell. Splitting
on the new feature in the second-layer tree induces a separation between cells for which P[Y = 1|X ∈ C] = p and
cells for which P[Y = 1|X ∈ C] = 1− p since p 6= 1/2. Taking the expectation of Y on these two regions leads to a
shallow tree network of risk zero.
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E. Proof of Proposition 3
E.1. Proof of statement 1.: risk of a single tree

Recall that if a cell is empty, the tree prediction in this cell is set (arbitrarily) to zero. Thus,

E
[
(rk,0,n(X)− r(X))2

]
= E

[
(rk,0,n(X)− r(X))21Nn(Ln(X))>0

]
+ E

[
(r(X))21Nn(Ln(X))=0

]
, (30)

= E


 1

Nn(Ln(X))

∑
Xi∈Ln(X)

Yi − r(X)

2

1Nn(Ln(X))>0

+ E
[
(r(X))21Nn(Ln(X))=0

]
, (31)

where

E
[
(r(X))21Nn(Ln(X))=0

]
= E

[
(r(X))21Nn(Ln(X))=01X∈B

]
+ E

[
(r(X))21Nn(Ln(X))=01X∈W

]
(32)

=

(
p2

2
+

(1− p)2

2

)
P (Nn(Ln(X)) = 0) (33)

= (p2 + (1− p)2)
(1− 2−k)n

2
. (34)

We now study the first term in (162), by considering that X falls into B (the same computation holds when X falls intoW).
Letting (X ′, Y ′) a generic random variable with the same distribution as (X,Y ), one has

E


 1

Nn(Ln(X))

∑
Xi∈Ln(X)

Yi − p

2

1Nn(Ln(X))>01X∈B

 (35)

=
1

2
E


 1

Nn(Ln(X))

∑
Xi∈Ln(X)

(Yi − E [Y ′|X ′ ∈ Ln(X)])

2

1Nn(Ln(X))>0

 (36)

+ E
[
(E [Y ′|X ′ ∈ Ln(X)]− p)2 1X∈B1Nn(Ln(X))>0

]
=

1

2
E

1Nn(Ln(X))>0

Nn(Ln(X))2
E


 ∑
Xi∈Ln(X)

(Yi − E [Y ′|X ′ ∈ Ln(X)])

2

| Nn(Ln(X))




+
1

2

(
p− 1

2

)2

P (Nn(Ln(X)) > 0) , (37)

where we used the fact that E [Y ′|X ′ ∈ Ln(X)] = 1/2 as in any leaf there is the same number of black and white cells.
Moreover, conditional to Nn(Ln(X)),

∑
Xi∈Ln(X) Yi is a binomial random variable with parameters B(Nn(Ln(X)), 12 ).

Hence we obtain :

E

1Nn(Ln(X))>0

Nn(Ln(X))2
E


 ∑
Xi∈Ln(X)

(Yi − E [Y ′|X ′ ∈ Ln(X)])

2

|Nn(Ln(X))


 (38)

=
1

4
E

[
1Nn(Ln(X))>0

Nn(Ln(X))

]
. (39)

The same computation holds when X falls into W . Indeed, the left-hand side term in (167) is unchanged, as for the
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right-hand side term, note that ( 1
2 − p)

2 = ( 1
2 − (1− p))2. Consequently,

E


 1

Nn(Ln(X))

∑
Xi∈Ln(X)

Yi − r(X)

2

1Nn(Ln(X))>0

 (40)

=
1

4
E

[
1Nn(Ln(X))>0

Nn(Ln(X))

]
+

(
p− 1

2

)2

(1− (1− 2−k)n). (41)

Injecting (41) into (162), we have

E
[
(rk,0,n(X)− r(X))2

]
(42)

=
1

4
E

[
1Nn(Ln(X))>0

Nn(Ln(X))

]
+

(
p− 1

2

)2

(1− (1− 2−k)n) + (p2 + (1− p)2)
(1− 2−k)n

2
(43)

=
1

4
E

[
1Nn(Ln(X))>0

Nn(Ln(X))

]
+

(
p− 1

2

)2

+

(
p2 + (1− p)2 − 2

(
p− 1

2

)2
)

(1− 2−k)n

2
(44)

=
1

4
E

[
1Nn(Ln(X))>0

Nn(Ln(X))

]
+

(
p− 1

2

)2

+
(1− 2−k)n

4
. (45)

Noticing that Nn(Ln(X)) is a binomial random variable B(n, 1
2k

), we obtain the upper and lower bounds with Lemma S5
(i):

E

[
1Nn(Ln(X))>0

Nn(Ln(X))

]
≤ 2k+1

n+ 1
, (46)

and,

E

[
1Nn(Ln(X))>0

Nn(Ln(X))

]
≥
(
1− (1− 2−k)n

) 2k

n+ 1
. (47)

Gathering all the terms gives the result,

E
[
(rk,0,n(X)− r(X))2

]
≤
(
p− 1

2

)2

+
2k

2(n+ 1)
+

(1− 2−k)n

4

and

E
[
(rk,0,n(X)− r(X))2

]
≥
(
p− 1

2

)2

+
2k

4(n+ 1)
+

(1− 2−k)n

4

(
1− 2k

n+ 1

)
.

E.2. Proof of statement 2.: risk of a shallow tree network

Let k ∈ N. Denote by Lk = {Li,k, i = 1, . . . , 2k} the set of all leaves of the encoding tree (of depth k). We let LB̃k
be the

set of all cells of the encoding tree containing at least one observation, and such that the empirical probability of Y being
equal to one in the cell is larger than 1/2, i.e.

B̃k = ∪L∈LB̃k {x, x ∈ L}

LB̃k
= {L ∈ Lk, Nn(L) > 0,

1

Nn(L)

∑
Xi∈L

Yi ≥
1

2
}.

Accordingly, we let the part of the input space corresponding to LB̃k
as

B̃k = ∪L∈LB̃k {x, x ∈ L}
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Similarly,

LW̃k
= {L ∈ Lk, Nn(L) > 0,

1

Nn(L)

∑
Xi∈L

Yi <
1

2
}.

and

W̃k = ∪L∈LW̃k
{x, x ∈ L}

E.2.1. PROOF OF 2. (UPPER-BOUND)

Recall that k < k?. In this case, each leaf of the encoding tree is contains half black square and half white square (see Figure
(9a)). Hence, the empirical probability of Y being equal to one in such leaf is close to 1/2. Recalling that our estimate is
rk,1,n, we have

E
[
(rk,1,n(X)− r(X))2

]
= E

[
(rk,1,n(X)− p)21X∈B1X∈B̃k

]
+ E

[
(rk,1,n(X)− p)21X∈B1X∈W̃k

]
+ E

[
(rk,1,n(X)− (1− p))21X∈W1X∈B̃k

]
+ E

[
(rk,1,n(X)− (1− p))21X∈W1X∈W̃k

]
(48)

+ E
[
(rk,1,n(X)− p)21X∈B(1− 1X∈B̃k

− 1X∈W̃k
)
]

+ E
[
(rk,1,n(X)− (1− p))21X∈W(1− 1X∈B̃k

− 1X∈W̃k
)
]

Note that X /∈ B̃k ∪ W̃k is equivalent to X belonging to an empty cell. Besides, the prediction is null by convention in an
empty cell. Therefore, the sum of the last two terms in (48) can be written as

E
[
p21X∈B1Nn(Cn(X))=0)

]
+ E

[
(1− p)21X∈W1Nn(Cn(X))=0)

]
=
p2 + (1− p)2

2

(
1− 1

2k

)n
. (49)

To begin with we focus on the first two terms in (48). We deal with the last two terms at the very end as similar computations
are conducted.

E
[
(rk,1,n(X)− p)21X∈B1X∈B̃k

]
+ E

[
(rk,1,n(X)− p)21X∈B1X∈W̃k

]
= E

E


 1

Nn(B̃k)

∑
Xi∈B̃k

Yi − p

2 ∣∣∣B̃k
P

(
X ∈ B̃k, X ∈ B|B̃k

)
+ E

E


 1

Nn(W̃k)

∑
Xi∈W̃k

Yi − p

2 ∣∣∣∣∣W̃k

P
(
X ∈ W̃k, X ∈ B|W̃k

) . (50)

Regarding the left-hand side term in (50),

E


 1

Nn(B̃k)

∑
Xi∈B̃k

Yi − p

2 ∣∣∣B̃k
 ≤ (p− 1

2

)2

, (51)

since p > 1/2 and, by definition of B̃k, ∑
Xi∈B̃k

Yi ≥ Nn(B̃k)/2.

Now, regarding right-hand side term in (50), we let

ZW̃k
= E

 ∑
Xi∈W̃k

Yi | N1, ..., N2k , W̃k

 ,
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where N1, ..., N2k denote the number of data points falling in each leaf L1, . . . , L2k of the encoding tree. Hence,

E


 1

Nn(W̃k)

∑
Xi∈W̃k

Yi − p

2 ∣∣∣W̃k

 = E

 1

Nn(W̃k)2
E


 ∑
Xi∈W̃k

Yi − ZW̃k

2

+
(
ZW̃k

−Nn(W̃k)p
)2

+2

 ∑
Xi∈W̃k

Yi − ZW̃k

(ZW̃k
−Nn(W̃k)p

)
| N1, ..., N2k , W̃k

 ∣∣∣W̃k

 (52)

The cross-term is null according to the definition of ZW̃k
, and since (ZW̃k

−Nn(W̃k)) is (N1, ..., N2k , W̃k)-measurable.
Therefore,

E


 1

Nn(W̃k)

∑
Xi∈W̃k

Yi − p

2 ∣∣∣W̃k

 = E

 1

Nn(W̃k)2
E


 ∑
Xi∈W̃k

Yi − ZW̃k

2

| N1, ..., N2k , W̃k

 ∣∣∣W̃k


+ E

[
1

Nn(W̃k)2
E

[(
ZW̃k

−Nn(W̃k)p
)2
| N1, ..., N2k , W̃k

] ∣∣∣W̃k

]
= In + Jn, (53)

where In and Jn can be respectively identified as variance and bias terms. Indeed,

E


 ∑
Xi∈W̃k

Yi − ZW̃k

2

| N1, ..., N2k , W̃k


is the variance of a binomial random variable B(Nn(W̃k), 12 ) conditioned to be lower or equal to Nn(W̃k)/2. According to
Technical Lemma S7, we have

In ≤
1

4
E

 1Nn(W̃k)>0

Nn(W̃k)P
(
B(Nn(W̃k), 1/2) ≤ Nn(W̃k)/2

)∣∣∣W̃k

 ≤ 1

2
E

[1Nn(W̃k)>0

Nn(W̃k)

∣∣∣W̃k

]
. (54)

Regarding Jn,

ZW̃k
−Nn(W̃k)p = E

 ∑
Xi∈W̃k

Yi | N1, ..., N2k , W̃k

−Nn(W̃k)p (55)

= E

 2k∑
j=1

∑
Xi∈Lj

Yi1Lj⊂W̃k
| N1, ..., N2k , W̃k

−Nn(W̃k)p (56)

=

2k∑
j=1

E

 ∑
Xi∈Lj

Yi | N1, ..., N2k , W̃k

− pNj
1Lj⊂W̃k

, (57)

since 1Lj⊂W̃k
is W̃k -measurable and Nn(W̃k) =

2k∑
i=1

Nj . Noticing that

E

 ∑
Xi∈Lj

Yi | N1, ..., N2k , W̃k

 = E

 ∑
Xi∈Lj

Yi | Nj , W̃k

 , (58)

we deduce

ZW̃k
−Nn(W̃k)p =

2k∑
j=1

E

 ∑
Xi∈Lj

Yi | Nj , W̃k

−Njp
 1Lj⊂W̃k

(59)



Analyzing the tree-layer structure of Deep Forests

and

(ZW̃k
−Nn(W̃k)p)2 =

 2k∑
j=1

fj1Lj⊂W̃k

2

(60)

with fj =
(
Njp− E

[∑
Xi∈Lj

Yi | Nj , W̃k

])
. For all j, such that Lj ⊂ W̃k, E

[∑
Xi∈Lj

Yi | Nj , W̃k

]
is a binomial

random variable B(Nn(W̃k), 12 ) conditioned to be lower or equal to Nn(W̃k)/2. Using Lemma S5 (vi), we obtain :

fj ≤ Nj
(
p− 1

2

)
+
√
Nj

(
1√
π

+
2
√

2

π
√

(2n+ 1)

)
(61)

≤ Nj
(
p− 1

2

)
+
√
Nj +

2

π
. (62)

Therefore,

(ZW̃k
−Nn(W̃k)p)2 ≤

Nn(W̃k)

(
p− 1

2

)
+

2k∑
j=1

√
Nj1Lj⊂W̃k

+
2k+1

π

2

(63)

≤
(
Nn(W̃k)

(
p− 1

2

)
+ 2k/2

√
Nn(W̃k) +

2k+1

π

)2

, (64)

since, according to Cauchy-Schwarz inequality,

2k∑
j=1

√
Nj1Lj⊂W̃k

≤ 2k/2Nn(W̃k)1/2. (65)

Overall

Jn ≤ E

[
1

Nn(W̃k)2
E

[(
Nn(W̃k)

(
p− 1

2

)
+ 2k/2Nn(W̃k)1/2 +

2k+1

π

)2

| N1, ..., N2k , W̃k

] ∣∣∣W̃k

]
(66)

≤
(
p− 1

2

)2

+ 2kE

[1Nn(W̃k)>0

Nn(W̃k)

∣∣∣W̃k

]
+

22k+2

π2
E

[1Nn(W̃k)>0

Nn(W̃k)2

∣∣∣W̃k

]
+ 2k/2+1

(
p− 1

2

)
E

[ 1Nn(W̃k)>0

Nn(W̃k)1/2

∣∣∣W̃k

]
(67)

+
2k+2

π

(
p− 1

2

)
E

[1Nn(W̃k)>0

Nn(W̃k)

∣∣∣W̃k

]
+

2
3k
2 +2

π
E

[ 1Nn(W̃k)>0

Nn(W̃k)3/2

∣∣∣W̃k

]
. (68)

All together, we obtain

In + Jn ≤
(
p− 1

2

)2

+

(
2k +

1

2
+

2k+2

π

(
p− 1

2

))
E

[1Nn(W̃k)>0

Nn(W̃k)

∣∣∣W̃k

]
+

22k+2

π2
E

[1Nn(W̃k)>0

Nn(W̃k)2

∣∣∣W̃k

]
+ 2k/2+1

(
p− 1

2

)
E

[ 1Nn(W̃k)>0

Nn(W̃k)1/2

∣∣∣W̃k

]
+

2
3k
2 +2

π
E

[ 1Nn(W̃k)>0

Nn(W̃k)3/2

∣∣∣W̃k

]
We apply Lemma S5(i)(iv) to Nn(W̃k) which is a binomial B(n, p′) where p′ = P(X ∈ W̃k|W̃k) :

E

[1Nn(W̃k)>0

Nn(W̃k)

∣∣∣W̃k

]
≤ 2

(n+ 1)p′
,

E

[ 1Nn(W̃k)>0

Nn(W̃k)1/2

∣∣∣W̃k

]
≤ 2√

n · p′
.
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We deduce that

In + Jn ≤ (p− 1

2
)2 +

2k/2+2(p− 1
2 )

√
πn · p′

+
2

(n+ 1) · p′

(
2k +

1

2
+

2k+2

π
+

23k/2+2

π
√
π

+ 3 · 22k+2

π2

)
.

Finally,

E
[
(rk,1,n(X)− p)21X∈B1X∈B̃k

]
+ E

[
(rk,1,n(X)− p)21X∈B1X∈W̃k

]
≤
(
p− 1

2

)2

P
(
X ∈ B̃k, X ∈ B

)
+ E

[
(In + Jn)P

(
X ∈ W̃k, X ∈ B|W̃k

)]
Since for all B̃k, there is exactly the same number of black cells and white cells in B̃k, we have

P
(
X ∈ W̃k, X ∈ B|W̃k

)
=

P
(
X ∈ W̃k|W̃k

)
2

,

yielding

E
[
(rk,1,n(X)− p)21X∈B1X∈B̃k

]
+ E

[
(rk,1,n(X)− p)21X∈B1X∈W̃k

]
(69)

≤1

2

(
p− 1

2

)2

+
2k/2+1(p− 1

2 )
√
πn

+
1

(n+ 1)

(
2k +

1

2
+

2k+2

π
+

23k/2+2

π
√
π

+ 3 · 22k+2

π2

)
(70)

≤1

2

(
p− 1

2

)2

+
2k/2+1(p− 1

2 )
√
πn

+
3 · 22k+2

(n+ 1)π2
(1 + ε1(k)) (71)

where ε1(k) = π2

3·2(2k+2)

(
2k + 1

2 + 2k+2

π + 23k/2+2

π
√
π

)
.

The two intermediate terms of (48) can be similarly bounded from above. Indeed,

E
[
(rk,1,n(X)− (1− p))21X∈W1X∈B̃k

]
+ E

[
(rk,1,n(X)− (1− p))21X∈W1X∈W̃k

]
(72)

= E

E


 1

Nn(B̃k)

∑
Xi∈B̃k

Yi − (1− p)

2 ∣∣∣B̃k
P

(
X ∈ B̃k, X ∈ W|B̃k

)
+ E

E


 1

Nn(W̃k)

∑
Xi∈W̃k

Yi − (1− p)

2 ∣∣∣∣∣W̃k

P
(
X ∈ W̃k, X ∈ W|W̃k

) , (73)

where, by definition of W̃k,

E


 1

Nn(W̃k)

∑
Xi∈W̃k

Yi − (1− p)

2 ∣∣∣W̃k

 ≤ (p− 1

2

)2

.

The first term in (73) can be treated similarly as above:

E


 1

Nn(B̃k)

∑
Xi∈B̃k

Yi − (1− p)

2 ∣∣∣B̃k
 = E

 1

Nn(B̃k)2
E


 ∑
Xi∈B̃k

Yi − ZB̃k

2

| N1, ..., N2k , B̃k

 ∣∣∣B̃k


+ E

[
1

Nn(B̃k)2
E

[(
ZB̃k
−Nn(B̃k)(1− p)

)2
| N1, ..., N2k , B̃k

] ∣∣∣B̃k]
= I ′n + J ′n, (74)
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where

ZB̃k
= E

 ∑
Xi∈B̃k

Yi | N1, ..., N2k , B̃k

 ,
and the cross-term in (74) is null according to the definition of ZB̃k

. Regarding I ′n, note that

E


 ∑
Xi∈B̃k

Yi − ZB̃k

2

| N1, ..., N2k , B̃k


is the variance of a binomial random variable B(Nn(B̃k), 12 ) conditioned to be strictly larger than Nn(B̃k)/2. According to
Technical Lemma S7, we have

I ′n ≤
1

4
E

 1Nn(B̃k)>0

Nn(B̃k)P
(
B(Nn(B̃k), 1/2) > Nn(B̃k)/2

)∣∣∣B̃k
 ≤ E

[1Nn(B̃k)>0

Nn(B̃k)

∣∣∣B̃k] . (75)

To obtain the last inequality, notice that

P
(
B(Nn(B̃k), 1/2) > Nn(B̃k)/2

)
=

1

2
− 1

2
P
(
B(Nn(B̃k), 1/2) = Nn(B̃k)/2

)
≥ 1

2

(
1− 1√

π(n/2 + 1/4)

)
≥ 1

4

as soon as n ≥ 4.

Regarding J ′n, we have

E

[
1

Nn(B̃k)2
E

[(
ZB̃k
−Nn(B̃k)(1− p)

)2
| N1, ..., N2k , B̃k

]]
(76)

= E

 1

Nn(B̃k)2
E


 2k∑
i=1

(
E

[ ∑
Xi∈Li

Yi | Nj , B̃k

]
−Nj(1− p)

)
1Lj⊂B̃k

2

| N1, ..., N2k , B̃k


 . (77)

For all j, such that Lj ⊂ B̃k, E
[∑

Xi∈Lj
Yi | Nj , B̃k

]
is a binomial random variable B(Nj ,

1
2 ) conditioned to be larger

than b(Nj + 1)/2c. Then, according to Technical Lemma (vii)

E

 ∑
Xi∈Lj

Yi | Nj , B̃k

 ≤ Nj
2

+ 1 +
1√

π(Nj + 1)
.

Hence,

E

[ ∑
Xi∈Li

Yi | Nj , B̃k

]
−Nj(1− p) ≤ Nj(p−

1

2
) + 1 +

1√
π(Nj + 1)

(78)

≤ Nj
(
p− 1

2

)
+
√
Nj +

2

π
, (79)
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for Nj ≥ 1. Thus,

E

[
1

Nn(B̃k)2
E

[(
ZB̃k
−Nn(B̃k)(1− p)

)2
| N1, ..., N2k , B̃k

]]
(80)

≤ E

 1

Nn(B̃k)2
E


 2k∑
i=1

(
Nj

(
p− 1

2

)
+
√
Nj +

2

π

)
1Lj⊂B̃k

2

| N1, ..., N2k , B̃k


 (81)

≤ E

[
1

Nn(B̃k)2
E

[(
Nn(B̃k)

(
p− 1

2

)
+ 2k/2

√
Nn(B̃k) +

2k+1

π

)2

| N1, ..., N2k , B̃k

]]
. (82)

All together, we obtain

I ′n + J ′n ≤
(
p− 1

2

)2

+

(
2k + 1 +

2k+2

π

(
p− 1

2

))
E

[1Nn(B̃k)>0

Nn(B̃k)

∣∣∣B̃k]+
22k+2

π2
E

[1Nn(B̃k)>0

Nn(B̃k)2

∣∣∣B̃k]
+ 2k/2+1

(
p− 1

2

)
E

[ 1Nn(B̃k)>0

Nn(B̃k)1/2

∣∣∣B̃k]+
2

3k
2 +2

π
E

[ 1Nn(B̃k)>0

Nn(B̃k)3/2

∣∣∣B̃k]

The computation is similar to (69), with p′′ = P
(
X ∈ B̃k | B̃k

)
:

In + Jn ≤
(
p− 1

2

)2

+
2k/2+3(p− 1

2 )
√
πn · p′′

+

(
2k + 1 +

2k+2

π

(
p− 1

2

)
+

23k/2+2

π
+

22k+2

π2

)
2

(n+ 1)p′′

≤
(
p− 1

2

)2

+
2k/2+3(p− 1

2 )
√
πn · p′′

+
22k+3

π2(n+ 1)p′′
(1 + ε2(k))

with ε2(k) = π2

2(2k+3)

(
2k + 1 + 2k+2

π (p− 1/2) + 23k/2+2

π

)
. Finally,

E
[
(rk,1,n(X)− (1− p))21X∈W1X∈B̃k

]
+ E

[
(rk,1,n(X)− (1− p))21X∈W1X∈W̃k

]
≤E
[
(I ′n + J ′n)P

(
X ∈ W, X ∈ B̃k|B̃k

)]
+

(
p− 1

2

)2

P
(
X ∈ W, X ∈ W̃k

)
≤E

[((
p− 1

2

)2

+
2k/2+3(p− 1

2 )
√
πn · p′′

+
22k+3

π2(n+ 1)p′′
(1 + ε2(k))

)
P
(
X ∈ W, X ∈ B̃k|B̃k

)]

+

(
p− 1

2

)2

P
(
X ∈ W, X ∈ W̃k

)
.

Since for all B̃k, there is exactly the same number of black cells and white cells in B̃k, we have

P
(
X ∈ W, X ∈ B̃k|B̃k

)
=
p′′

2
,

yielding

E
[
(rk,1,n(X)− (1− p))21X∈W1X∈B̃k

]
+ E

[
(rk,1,n(X)− (1− p))21X∈W1X∈W̃k

]
≤ 1

2

(
p− 1

2

)2

+
2k/2+2(p− 1

2 )
√
πn

+
22k+3

2 · π2(n+ 1)
(1 + ε2(k)). (83)

Gathering (49), (71) and (83), we have

E
[
(rk,1,n(X)− r(X))2

]
≤
(
p− 1

2

)2

+
2k/2+3(p− 1

2 )
√
πn

+
7 · 22k+2

π2(n+ 1)
(1 + ε(k)) +

p2 + (1− p)2

2

(
1− 1

2k

)n
where ε(k) = 6ε1(k)+ε2(k)

7 .
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E.2.2. PROOF OF 2. (LOWER-BOUND)

We have, according to (49),

E
[
(rk,1,n(X)− r(X))2

]
= E

[
(rk,1,n(X)− r(X))21Nn(Cn(X)>0)

]
+ E

[
(r(X))21Nn(Cn(X)=0)

]
= E

[
(rk,1,n(X)− r(X))21Nn(Cn(X)>0)

]
+
p2 + (1− p)2

2
P (Nn(Cn(X) = 0) . (84)

Letting Z2 = E
[∑

Xi∈Cn(X) Yi | N1, ..., N2k , Cn(X)
]
, we have

E
[
(rk,1,n(X)− r(X))21Nn(Cn(X)>0)

]
(85)

= E


1Nn(Cn(X)>0)

Nn(Cn(X))

∑
Xi∈Cn(X)

Yi − r(X)

2

1Nn(Cn(X)>0)

 (86)

= E

1Nn(Cn(X)>0)

Nn(Cn(X))2
E


 ∑
Xi∈Cn(X)

Yi −Nn(Cn(X))r(X)

2

| N1, ..., N2k , Cn(X)


 (87)

= E

1Nn(Cn(X)>0)

Nn(Cn(X))2
E


 ∑
Xi∈Cn(X)

Yi − Z2

2

+ (Z2 −Nn(Cn(X))r(X))
2 (88)

+2

 ∑
Xi∈Cn(X)

Yi − Z2

 (Z2 −Nn(Cn(X))r(X)) | N1, ..., N2k , Cn(X)

 . (89)

The cross-term is null according to the definition ofZ and because (Z2−Nn(Cn(X))) is (N1, ..., N2k , Cn(X)) - measurable.
Therefore,

E


1Nn(Cn(X)>0)

Nn(Cn(X))

∑
Xi∈Cn(X)

Yi − r(X)

2

1Nn(Cn(X)>0)

 (90)

= E

1Nn(Cn(X)>0)

Nn(Cn(X))2
E


 ∑
Xi∈Cn(X)

Yi − Z2

2

| N1, ..., N2k , Cn(X)


 (91)

+ E

[
1Nn(Cn(X)>0)

Nn(Cn(X))2
E
[
(Z2 −Nn(Cn(X))r(X))

2 | N1, ..., N2k , Cn(X)
]]

= In + Jn, (92)

where In and Jn are respectively a variance and bias term. Now, note that

E
[
(Z2 −Nn(Cn(X))r(X))

2 | N1, ..., N2k , Cn(X)
]

= E
[
(Z2 −Nn(Cn(X))p)

2 1X∈B + (Z2 −Nn(Cn(X))(1− p))2 1X∈W | N1, ..., N2k , Cn(X)
]
. (93)

Additionally,

P (X ∈ B | N1, ..., N2k , Cn(X)) = P (X ∈ W | N1, ..., N2k , Cn(X)) = 1/2.

Consequently,

E
[
(Z2 −Nn(Cn(X))r(X))

2 | N1, ..., N2k , Cn(X)
]

=
1

2
E
[
(Z2 −Nn(Cn(X))p)

2
+ (Z2 −Nn(Cn(X))(1− p))2 | N1, ..., N2k , Cn(X)

]
. (94)
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A small computation shows that for all x ∈ R, for all N ∈ N

(x−Np)2 + (x−N(1− p))2 ≥ 2N2(p− 1

2
)2,

which leads to

Jn ≥
(
p− 1

2

)2

P (Nn(Cn(X)) > 0) .

All in all,

E
[
(rk,1,n(X)− r(X))2

]
= In + Jn +

p2 + (1− p)2

2
P (Nn(Cn(X)) = 0) (95)

≥
(
p− 1

2

)2

P (Nn(Cn(X)) > 0) +
p2 + (1− p)2

2
P (Nn(Cn(X)) = 0) (96)

≥
(
p− 1

2

)2

. (97)
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F. Proof of Proposition 4
F.1. Proof of statement 1.: risk of a single tree

As in the precedent proof, we distinguish the case where the cell containing X might be empty, in such a case the tree will
predict 0:

E
[
(rk,0,n(X)− r(X))2)

]
= E

[
(rk,0,n(X)− r(X))21Nn(Ln(X))>0

]
+ E

[
(r(X))21Nn(Ln(X))=0

]
(98)

= E
[
(rk,0,n(X)− r(X))21Nn(Ln(X))>0

]
+ (p2 + (1− p)2)

(1− 2−k)n

2
. (99)

We denote by L1, ..., L2k the leaves of the tree. Let b ∈ {1, . . . , 2k} such that Lb belongs to B. We have

E
[
(rk,0,n(X)− p)2)1X∈B1Nn(Ln(X))>0

]
=
∑
Lj⊂B

E


1Nn(Lj)>0

Nn(Lj)

∑
Xi∈Lj

(Yi − p)

2

1X∈Lj

 (100)

=
2k

2
· E

(1Nn(Lb)>0

Nn(Lb)

∑
Xi∈Lb

(Yi − p)

)2
P (X ∈ Lb) (101)

=
1

2
E

(1Nn(Lb)>0

Nn(Lb)

∑
Xi∈Lb

(Yi − p)

)2
 (102)

=
1

2
E

1Nn(Lb)>0

Nn(Lb)2
E

( ∑
Xi∈Lb

(Yi − p)

)2

|Nn(Lb)

 (103)

=
1

2
E

[
1Nn(Lb)>0

Nn(Lb)2
E

[ ∑
Xi∈Lb

(Yi − p)2|Nn(Lb)

]]
(by independence of the Yi) (104)

=
1

2
E

[
1Nn(Lb)>0

Nn(Lb)
p(1− p)

]
. (105)

Remark that the above computation holds when X ∈ W after replacing p by (1− p), B byW and Lb by Lw: indeed when
Y is a Bernoulli random variable, Y and 1− Y have the same variance. Hence, using Equation (99), the computation in
(105) and its equivalence forW , we obtain

E
[
(rk,0,n(X)− r(X))2)

]
=

1

2
E

[
1Nn(Lb)>0

Nn(Lb)
p(1− p)

]
+

1

2
E

[
1Nn(Lw)>0

Nn(Lw)
p(1− p)

]
+ (p2 + (1− p)2)

(1− 2−k)n

2

= p(1− p)E
[

1Nn(Lw)>0

Nn(Lw)

]
+ (p2 + (1− p)2)

(1− 2−k)n

2
,

since Nn(Lb) and Nn(Lw) are both binomial random variables B(n, 1
2k

). Therefore we can conclude using Lemma S5 (i):

E
[
(rk,0,n(X)− r(X))2)

]
≤ 2kp(1− p)

n+ 1
+
(
p2 + (1− p)2

) (1− 2−k)n

2

and

E
[
(rk,0,n(X)− r(X))2)

]
≥ 2k−1p(1− p)

n+ 1
+

(
p2 + (1− p)2 − 2kp(1− p)

n+ 1

)
(1− 2−k)n

2
.
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F.2. Proof of statement 2.: risk of a shallow tree network

Let k ∈ N. Denote by Lk = {Li, i = 1, . . . , 2k} the set of all leaves of the encoding tree (of depth k). We let LB̃k
be the

set of all cells of the encoding tree containing at least one observation, and such that the empirical probability of Y being
equal to one in the cell is larger than 1/2, i.e.

B̃k = ∪L∈LB̃k {x, x ∈ L}

LB̃k
= {L ∈ Lk, Nn(L) > 0,

1

Nn(L)

∑
Xi∈L

Yi ≥
1

2
}.

Accordingly, we let the part of the input space corresponding to LB̃k
as

B̃k = ∪L∈LB̃k {x, x ∈ L}

Similarly,

LW̃k
= {L ∈ Lk, Nn(L) > 0,

1

Nn(L)

∑
Xi∈L

Yi <
1

2
}.

and

W̃k = ∪L∈LW̃k
{x, x ∈ L}

F.2.1. PROOF OF 2. (UPPER-BOUND)

Recall that k ≥ k?. In this case, each leaf of the encoding tree is included in a chessboard cell. As usual,

E
[
(rk,1,n(X)− r(X))2)

]
= E

[
(rk,1,n(X)− r(X))21Nn(Ln(X))>0

]
+
p2 + (1− p)2

2

(
1− 1

2k

)n
. (106)

Note that

E
[
(rk,1,n(X)− r(X))21Nn(Ln(X))>0

]
= E


 1

Nn(B̃k)

∑
Xi∈B̃k

Yi − p

2

1X∈B1X∈B̃k

+ E


 1

Nn(W̃k)

∑
Xi∈W̃k

Yi − p

2

1X∈B1X∈W̃k


+ E


 1

Nn(B̃k)

∑
Xi∈B̃k

Yi − (1− p)

2

1X∈W1X∈B̃k

+ E


 1

Nn(W̃k)

∑
Xi∈W̃k

Yi − (1− p)

2

1X∈W1X∈W̃k


≤ 1

2
E


 1

Nn(B̃k)

∑
Xi∈B̃k

Yi − p

2

1Nn(B̃k)>0

+
1

2
E


 1

Nn(W̃k)

∑
Xi∈W̃k

Yi − (1− p)

2

1Nn(W̃k)>0


+ E

[
1X∈B,X∈W̃k

]
+ E

[
1X∈W,X∈B̃k

]
. (107)
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Let L be a generic cell. The third term in (107) can be upper-bounded as follows:

E
[
1X∈B,X∈W̃k

]
=

2k∑
j=1

E
[
1X∈Lj1Lj⊂W̃k∩B

]
(108)

=

2k∑
j=1

P (X ∈ Lj) P
(
Lj ⊂ W̃k ∩ B

)
(109)

=

2k∑
j=1

P (X ∈ Lj) P
(
Lj ⊂ W̃k | Lj ⊂ B

)
P (Lj ⊂ B) (110)

=
1

2
P
(
L ⊂ W̃k | L ⊂ B

)
, (111)

by symmetry. Now,

P
(
L ⊂ W̃k | L ⊂ B

)
= P

(
1

Nn(L)

∑
Xi∈L

1Yi=0 >
1

2
| L ⊂ B

)
(112)

≤ E

P

 1

Nn(L)

∑
Xi∈L,L⊂B

1Yi=0 − (1− p) ≥ 1

2
− (1− p)|Nn(L), L ⊂ B

 | L ⊂ B
 (113)

≤ E
[
e−2Nn(L)(p− 1

2 )
2
]

(114)

(according to Hoeffding’s inequality)

=

n∏
i=1

E
[
e−2(p−

1
2 )

21Xi∈L
]

(115)

(by independence of Xi’s)

=

(
e−2(p−

1
2 )

2

2k
+ 1− 1

2k

)n
. (116)

Consequently,

E
[
1X∈B,X∈W̃k

]
≤ 1

2

(
e−2(p−

1
2 )

2

2k
+ 1− 1

2k

)n
.

Similar calculations show that

E
[
1X∈W,X∈B̃k

]
=

1

2
P
(
L ⊂ B̃k | L ⊂ W

)
≤ 1

2

(
e−2(p−

1
2 )

2

2k
+ 1− 1

2k

)n
. (117)

Therefore,

E
[
(rk,1,n(X)− r(X))2)

]
≤ 1

2
E


 1

Nn(B̃k)

∑
Xi∈B̃k

Yi − p

2

1Nn(B̃k)>0

+
1

2
E


 1

Nn(W̃k)

∑
Xi∈W̃k

Yi − (1− p)

2

1Nn(W̃k)>0


+

(
e−2(p−

1
2 )

2

2k
+ 1− 1

2k

)n
+
p2 + (1− p)2

2

(
1− 1

2k

)n
. (118)
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Now, the first term in (118) can be written as

E


 1

Nn(B̃k)

∑
Xi∈B̃k

Yi − p

2

1Nn(B̃k)>0

 (119)

= E


 1

Nn(B̃k)

∑
Xi∈B̃k

Yi − p

2

1Nn(B̃k)>01B=B̃k

+ E


 1

Nn(B̃k)

∑
Xi∈B̃k

Yi − p

2

1Nn(B̃k)>01B6=B̃k

 (120)

≤ E


 1

Nn(B̃k)

∑
Xi∈B̃k

Yi − p

2

1Nn(B̃k)>01B=B̃k

+ P
(
B 6= B̃k

)
(121)

Now, using a union bound, we obtain

P
(
B 6= B̃k

)
≤
∑
Lj⊂B

P
(
Lj 6⊂ B̃k

)
+
∑
Lj⊂W

P
(
Lj ⊂ B̃k

)
(122)

≤ 2k

2
· P
(
L 6⊂ B̃k | L ⊂ B

)
+

2k

2
· P
(
L ⊂ B̃k | L ⊂ W

)
(123)

≤ 2k

(
e−2(p−

1
2 )

2

2k
+ 1− 1

2k

)n
, (124)

according to (116) and (117). Additionally, the left term in (121) satisfies

E


 1

Nn(B̃k)

∑
Xi∈B̃k

Yi − p

2

1Nn(B̃k)>01B=B̃k

 ≤ E

( 1

Nn(B)

∑
Xi∈B

Yi − p

)2

1Nn(B)>0

 (125)

≤ E

1Nn(B)>0

Nn(B)2

(∑
Xi∈B

Yi − pNn(B)

)2
 (126)

= p(1− p)E
[

1Nn(B)>0

Nn(B)

]
, (127)

noticing that the square term of (126) is nothing but the conditional variance of a binomial distribution B(Nn(B), p). By
Lemma S5 (i) on Nn(B) which is a binomial random variable B(n, p) with p = 1/2 (exactly half of the cells are black),

E


 1

Nn(B̃k)

∑
Xi∈B̃k

Yi − p

2

1Nn(B̃k)>01Nn(B̃k)>0

 ≤ 2p(1− p)
n+ 1

.

Hence

E


 1

Nn(B̃k)

∑
Xi∈B̃k

Yi − p

2

1B=B̃k

 ≤ 2p(1− p)
n+ 1

+ 2k

(
e−2(p−

1
2 )

2

2k
+ 1− 1

2k

)n
. (128)

Similarly,

E


 1

Nn(W̃k)

∑
Xi∈W̃k

Yi − (1− p)

2

1Nn(W̃k)>0

 ≤ 2p(1− p)
n+ 1

+ 2k

(
e−2(p−

1
2 )

2

2k
+ 1− 1

2k

)n
. (129)

Finally,
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Injecting (128) and (129) into (118), we finally get

E
[
(rk,1,n(X)− r(X))2)

]
≤ p2 + (1− p)2

2

(
1− 1

2k

)n
+ 2k ·

(
e−2(p−

1
2 )

2

2k
+ 1− 1

2k

)n

+
2p(1− p)
n+ 1

+

(
e−2(p−

1
2 )

2

2k
+ 1− 1

2k

)n
,

which concludes this part of the proof.

F.2.2. PROOF OF 2. (LOWER BOUND)

We have

E
[
(rk,1,n(X)− r(X))2)

]
= E

[
(rk,1,n(X)− r(X))21Nn(Ln(X))>0

]
+

(
p2 + (1− p)2

2

)(
1− 1

2k

)n
,

where

E
[
(rk,1,n(X)− r(X))21Nn(Ln(X))>0

]
≥ E


 1

Nn(B̃k)

∑
Xi∈B̃k

Yi − p

2

1X∈B1X∈B̃k
1Nn(B̃k)>01B=B̃k


+ E


 1

Nn(W̃k)

∑
Xi∈W̃k

Yi − (1− p)

2

1X∈W1X∈W̃k
1Nn(W̃k)>01W=W̃k


≥ P (X ∈ B) E


 1

Nn(B̃k)

∑
Xi∈B̃k

Yi − p

2

1B=B̃k
1Nn(B̃k)>0


+ P (X ∈ W) E


 1

Nn(W̃k)

∑
Xi∈W̃k

Yi − (1− p)

2

1W=W̃k
1Nn(W̃k)>0

 . (130)

The first expectation term line (130) can be written as

E


 1

Nn(B̃k)

∑
Xi∈B̃k

Yi − p

2

1B=B̃k
1Nn(B̃k)>0

 = P
(
B = B̃k

)
E

( 1

Nn(B)

∑
Xi∈B

Yi − p

)2

|B = B̃k

 (131)

According to (124),

P
(
B = B̃k

)
≥ 1− 2k ·

(
1 +

e−2(p−
1
2 )

2 − 1

2k

)n
. (132)

Similarly,

P
(
W = W̃k

)
≥ 1− 2k ·

(
1 +

e−2(p−
1
2 )

2 − 1

2k

)n
.

Furthermore,

E

( 1

Nn(B)

∑
Xi∈B

Yi − p

)2

|B = B̃k

 = E

 1

Nn(B)2
E

(∑
Xi∈B

Yi −Nn(B)p

)2

|N1, ...N2k ,B = B̃k

 |B = B̃k


(133)
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where we let Z =
∑
Xi∈B Yi. A typical bias-variance decomposition yields

E

(∑
Xi∈B

Yi −Nn(B)p

)2

|N1, ...N2k ,B = B̃k

 (134)

= E

[(
Z − E

[
Z | N1, ...N2k , B̃k = B

])2
+
(

E
[
Z | N1, ...N2k , B̃k = B

]
−Nn(B)p

)2
| N1, ...N2k , B̃k = B

]
(135)

≥ E

[(
Z − E

[
Z | N1, ...N2k , B̃k = B

])2
| N1, ...N2k , B̃k = B

]
(136)

= E


∑
Lj⊂B

Zj − E
[
Zj | Nj , Lj ⊂ B̃k

]2

| N1, ...N2k , B̃k = B

 (137)

=
∑
Lj⊂B

E

[(
Zj − E

[
Zj | Nj , Lj ⊂ B̃k

])2
| Nj , Lj ⊂ B̃k

]
+ 2

∑
Li,Lj⊂B,Li 6=Lj

E
[(
Zi − E

[
Zi | Ni, Li ⊂ B̃k

])(
Zj − E

[
Zj | Nj , Lj ⊂ B̃k

])
| N1, ...N2k , B̃k = B

]
(138)

=
∑
Lj⊂B

E

[(
Zj − E

[
Zj | Nj , Lj ⊂ B̃k

])2
| Nj , Lj ⊂ B̃k

]
. (139)

with Zj =
∑
Xi∈Lj

Yi, and L1, . . . , L2k the leaves of the first layer tree. Note that Zj |Nj , Lj ⊂ B are i.i.d binomial

variable B(Nj , p). In (137) and (138), we used that that given a single leaf Lj ⊂ B, E
[
Zj | N1, ...N2k , B̃k = B

]
=

E
[
Zj | Nj , Lj ⊂ B̃k

]
. To obtain (139), we used that conditional to N1, ...N2k , B̃k = B, Zi and Zj are independent.

Therefore the double sum equals 0. Let j be an integer in {1, ..., 2k},

E

[(
Zj − E

[
Zj | Nj , Lj ⊂ B̃k

])2
| Nj , Lj ⊂ B̃k

]
(140)

= E
[
Z2
j | Nj , Lj ⊂ B̃k

]
− E

[
Zj | Nj , Lj ⊂ B̃k

]2
(141)

≥ E
[
Z2
j | Nj

]
− E

[
Zj | Nj , Lj ⊂ B̃k

]2
(142)

= Njp(1− p) +N2
j p

2 −


Njp+

Nj
2

(1− p)
P
(
Zj =

Nj

2 | Nj
)

Nj∑
i=

Nj
2

P (Zj = i)



2

(143)

≥ Nj(1− p)

(
p−Nj(1− p)P

(
Zj =

Nj
2
| Nj

)2

− 2Njp · P
(
Zj =

Nj
2
| Nj

))
(144)

≥ Nj(1− p)

p− Nj(1− p)

π
(
Nj

2 + 1
4

) (4p(1− p))Nj − 2Nj√
π
(
Nj

2 + 1
4

) (4p(1− p))Nj/2

 (145)

≥ Njp(1− p)−
(

2(1− p)2

π
+ 2
√

2(1− p)
)
·N3/2

j · (4p(1− p))Nj/2 . (146)

We deduced Line (142) from the fact that Z2
j is a positive random variable, (143) from Lemma (S5) (v), Line (144) from the

fact that p > 1/2 and Line (145) from the inequality (4) on the binomial coefficient. Injecting (138) and (146) into (133)
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yields

E

( 1

Nn(B)

∑
Xi∈B

Yi − p

)2

|B = B̃k


≥ E

 1

Nn(Bk)2

∑
Lj⊂B

(
Njp(1− p)−

(
2(1− p)2

π
+ 2
√

2(1− p)
)
·N3/2

j · (4p(1− p))Nj/2

)
|B = B̃k

 (147)

≥ E

[
p(1− p)
Nn(B)

| B = B̃k
]
−
(

2(1− p)2

π
+ 2

) ∑
Lj⊂B

E
[
(4p(1− p))Nj/2 | B = B̃k

]
(148)

≥ p(1− p)E
[

1

Nn(B)
| B = B̃k

]
− 3 · 2k−1E

[
(4p(1− p))Nb/2 | B = B̃k

]
(149)

where the last inequality relies on the fact that the Nj , Lj ⊂ B are i.i.d, with b ∈ 1, ..., 2k be the index of a cell included in
B. Nj is a binomial random variable B(n, 2−k).

E
[
(4p(1− p))Nj/2 | B = B̃k

]
≤ E

[
(4p(1− p))Nj/2

] 1

P
(
B = B̃k

) (150)

=
(√

4p(1− p) · 2−k + (1− 2−k)
)n 1

P
(
B = B̃k

) . (151)

From the inequality Line (132), we deduce that as soon as n ≥ (k+1) log(2)

log(2k)−log(e−2(p−1/2)2−1+2k)
,

1

P
(
B = B̃k

) ≤ 2. (152)

Therefore,

E
[
(4p(1− p))Nj/2 | B = B̃k

]
≤ 2

(√
4p(1− p) · 2−k + (1− 2−k)

)n
. (153)

Moreover,

E

[
1

Nn(B)
|B = B̃k

]
≥ 1

E
[
Nn(B)|B = B̃k

] (154)

≥
P
(
B = B̃k

)
E [Nn(B)]

(155)

≥ 2

n
− 2k+1

n

(
1 +

e−2(p−
1
2 )

2 − 1

2k

)n
(156)

where the last inequality comes from the probability bound line (132) and the fact that Nn(B) is a binomial random variable
B(n, 1/2).

Finally,

E

( 1

Nn(B)

∑
Xi∈B

Yi − p

)2

|B = B̃k

 (157)

≥ 2p(1− p)
n

− 3 · 2k
(

1− 2−k
(

1−
√

4p(1− p)
))n
− 2k+1p(1− p)

n

(
1 +

e−2(p−
1
2 )

2 − 1

2k

)n
. (158)
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Similarly, regarding the second term of (130), note that P
(
B̃k = B

)
= P

(
W̃k =W

)
and

E

( ∑
Xi∈W

Yi −Nn(W)(1− p)

)2

|Nn(W),W = W̃k

 = E

( ∑
Xi∈W

1Yi=0 −Nn(W)p

)2

|Nn(W),W = W̃k

 .
Thus we can adapt the above computation to this term :

E

( 1

Nn(W)

∑
Xi∈W

Yi − p

)2

|W = W̃k

 (159)

≥ 2p(1− p)
n

− 3 · 2k
(

1− 2−k
(

1−
√

4p(1− p)
))n
− 2k+1p(1− p)

n

(
1 +

e−2(p−
1
2 )

2 − 1

2k

)n
. (160)

Rearranging all terms proves the result :

E
[
(rk,1,n(X)− r(X))2

]
≥
(

2p(1− p)
n

− 2k+2 ·
(

1− 2−k
(

1−
√

4p(1− p)
))n

− 2k+1p(1− p)
n

·

(
1 +

e−2(p−
1
2 )

2 − 1

2k

)n)(
1− 2k ·

(
1 +

e−2(p−
1
2 )

2 − 1

2k

)n)

+
p2 + (1− p)2

2

(
1− 1

2k

)n
≥ 2p(1− p)

n
− 2k+2 ·

(
1− 2−k

(
1−

√
4p(1− p)

))n
− 2k+1p(1− p)

n
·

(
1 +

e−2(p−
1
2 )

2 − 1

2k

)n

− 2k+1p(1− p)
n

·

(
1 +

e−2(p−
1
2 )

2 − 1

2k

)n
+
p2 + (1− p)2

2

(
1− 1

2k

)n
≥ 2p(1− p)

n
− 2k+2 ·

(
1− 2−k

(
1−

√
4p(1− p)

))n
− 2k+2p(1− p)

n
·

(
1− 1− e−2(p− 1

2 )
2

2k

)n
+
p2 + (1− p)2

2

(
1− 1

2k

)n
≥ 2p(1− p)

n
− 2k+3 · (1− ρk,p)n

n
+
p2 + (1− p)2

2

(
1− 1

2k

)n
where

ρk,p = 2−k min
(

1−
√

4p(1− p), 1− e−2(p− 1
2 )

2
)
.

Note that, since p > 1/2, 0 < ρk,p < 1.

Lemma S7. Let S be a positive random variable. For any real-valued α ∈ [0, 1], for any n ∈ N,

P (S ≤ αn) V[S|S ≤ αn] ≤ V[S]

Proof. We start by noticing that:

An = P (S > αn) E
[
(S − E [S | S > αn])

2 | S > αn
]

+ P (S ≤ αn) E
[
(S − E [S | S ≤ αn])

2 | S ≤ αn
]

≤ P (S > αn) E
[
(S − a)

2 | S > αn
]

+ P (S ≤ αn) E
[
(S − b)2 | S ≤ αn

]
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for any (a, b) ∈ R2.

Then,

An ≤ P (S > αn) E
[
(S − a)

2 | S > αn
]

+ P (S ≤ αn) E
[
(S − a)

2 | S ≤ αn
]

= E
[
(S − a)

2
]

for any a ∈ R.

Choosing a = E [S], we obtain

An ≤ V[S].

Therefore,
P (S ≤ αn) V[S | S ≤ αn] ≤ V[S].

G. Extended results for a random chessboard
Proposition S8 (Risk of a single tree and a shallow tree network when k < k?). Let N ∈ {1, ..., 2k?}. We consider the
data distribution defined by a random chessboard with i.i.d. cells such that for each cell Ci, i ∈ {1, ..., 2k

?}

P (Ci ⊂ B) =
N

2k?

and P (Ci ⊂ W) = 1− N
2k? . Notice that the (random) numbers NW and NB of white and black cells satisfy 0 ≤ NW =

2k
? −NB ≤ 2k

?

. We study the risk of the shallow tree network r̂k,1,n.

1. Consider a single tree r̂k,0,n of depth k ∈ N?,

R(r̂k,0,n) ≤ 4(p− 1

2
)2
N

2k?

(
1− N

2k?

)(
1 +

1

2k?−k

)
+

2k−1

n+ 1
+

(
(1− p)2 − N

2k?
(1− 2p)

)
(1− 2−k)n

and

R(r̂k,0,n) ≥ 4(p− 1

2
)2
N

2k?

(
1− N

2k?

)
+

2k

n+ 1
(1− p)2 + Ck?,k,N,p(1− 2−k)n

where Ck?,k,N,p = (1− p)2 − N
2k? (1− 2p)− (1−p)22k

n+1 − 4(p− 1
2 )2 N

2k?

(
1− N

2k?

) (
1 + 1

2k∗−k

)
.

2. Consider the shallow tree network r̂k,1,n, in the infinite sample regime,

R(r̂k,1,n) ≥
(
p− 1

2

)2

min

(
1− N

2k?
,
N

2k?

)2

and

R(r̂k,1,n) ≤ 4

(
p− 1

2

)2(
1− N

2k?

)
N

2k?
+ p2 min

(
N

2k?
, 1− N

2k?

)
.

H. Proof of Proposition S8
H.1. First statement: risk of a single tree

To see the definitions of B̃ and W̃ refer to the notations of the second statement of the proof of Proposition 3, in Appendix
F.2.
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Recall that k < k?, meaning that a tree leaf may contain black and white cells. If a cell is empty, the tree prediction in this
cell is set (arbitrarily) to zero. Thus,

E
[
(r̂k,0,n(X)− r(X))2

]
= E

[
(r̂k,0,n(X)− r(X))21Nn(Ln(X))>0

]
+ E

[
(r(X))21Nn(Ln(X))=0

]
(161)

= E


 1

Nn(Ln(X))

∑
Xi∈Ln(X)

Yi − r(X)

2

1Nn(Ln(X))>0

+ E
[
(r(X))21Nn(Ln(X))=0

]
, (162)

where the expectation is taken over the distribution of the chessboard, (X,Y ) and the dataset (Xi, Yi)1≤i≤n. Besides,

E
[
(r(X))21Nn(Ln(X))=0

]
= E

[
(r(X))21Nn(Ln(X))=01X∈B

]
+ E

[
(r(X))21Nn(Ln(X))=01X∈W

]
(163)

= ((1− p)2 − NB
2k?

(1− 2p))(1− 2−k)n (164)

We now study the first term in (162), by considering that X falls into B (the same computation holds when X falls intoW).
We denote |Ln(X) ∩ B|| (resp. |Ln(X) ∩W|) the number of black (resp. white) cells included in the cell containing X .
Letting (X ′, Y ′) generic random variables with the same distribution as (X,Y ), one has

E


 1

Nn(Ln(X))

∑
Xi∈Ln(X)

Yi − p

2

1Nn(Ln(X))>01X∈B

 (165)

= P (X ∈ B) E


 1

Nn(Ln(X))

∑
Xi∈Ln(X)

(Yi − E [Y ′|X ′ ∈ Ln(X), |Ln(X) ∩ B|])

2

1Nn(Ln(X))>0

 (166)

+ P (X ∈ B) E
[
(E [Y ′|X ′ ∈ Ln(X), |Ln(X) ∩ B|]− p)2 1Nn(Ln(X))>0

]
= P (X ∈ B) ·

E

1Nn(Ln(X))>0

Nn(Ln(X))2
E


 ∑
Xi∈Ln(X)

(Yi − E [Y ′|X ′ ∈ Ln(X), |Ln(X) ∩ B|])

2

| Nn(Ln(X)), |Ln(X) ∩ B|


 (167)

+ P (X ∈ B) P (Nn(Ln(X)) > 0) E
[
(E [Y ′|X ′ ∈ Ln(X), |Ln(X) ∩ B|]− p)2

]
= P (X ∈ B)

(
E

[
1Nn(Ln(X))>0

Nn(Ln(X))2
· VB

]
+ βB

)
(168)

where

βB = P (Nn(Ln(X)) > 0) E
[
(E [Y ′|X ′ ∈ Ln(X), |Ln(X) ∩ B|]− p)2

]
(169)

and

VB = E


 ∑
Xi∈Ln(X)

(Yi − E [Y ′|X ′ ∈ Ln(X), |Ln(X) ∩ B|])

2

| Nn(Ln(X)), |Ln(X) ∩ B|

 (170)

Similarly we define βW and VW by replacing in the expressions (169) and (170) B byW so that:

E
[
(r̂k,0,n(X)− r(X))2

]
= P (X ∈ B)

(
E

[
1Nn(Ln(X))>0

Nn(Ln(X))2
· VB

]
+ βB

)
+ P (X ∈ W)

(
E

[
1Nn(Ln(X))>0

Nn(Ln(X))2
· VW

]
+ βW

)
+ ((1− p)2 − NB

2k?
(1− 2p))(1− 2−k)n. (171)
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This last expression can be read as a bias-variance decomposition. We already know the probability to be in a non-empty
cell, see (164), then

P (X ∈ B) = E [P (X ∈ B|NB)] = E

[
NB
2k?

]
=

N

2k?
.

We now make explicit the terms in Equation (171) starting with the bias term βB:

E [Y ′|X ′ ∈ Ln(X), |Ln(X) ∩ B|] =
p · |Ln(X) ∩ B|+ (1− p)|Ln(X) ∩W|

2k?−k
(172)

= (1− p) +
|Ln(X) ∩ B|

2k?−k
(2p− 1) (173)

= p+
|Ln(X) ∩W|

2k?−k
(1− 2p), (174)

where |Ln(X) ∩ B| stands for the number of black cells in Ln(X). In the same way, |Ln(X) ∩W| stands for the number
of white cells in Ln(X). Hence,

E
[
(E [Y ′|X ′ ∈ Ln(X), |Ln(X) ∩ B|]− p)2

]
=

4(p− 1
2 )2

22(k?−k)
E
[
|Ln(X) ∩W|2

]
(175)

Note that |Ln(X) ∩W||NB ∼ B(2k
?−k, 1−N/2k?). Thus, we have

E
[
|Ln(X) ∩W|2

]
=
N

2k

(
1− N

2k?

)
+

1

22k
(2k

?

−N)2. (176)

Therefore,

E
[
(E [Y ′|X ′ ∈ Ln(X), |Ln(X) ∩ B|]− p)2

]
=

4(p− 1
2 )2

22(k?−k)

(
N

2k

(
1− N

2k?

)
+

1

22k
(2k

?

−N)2
)
. (177)

Similar computations show that when X ∈ W ,

E
[
(E [Y ′|X ′ ∈ Ln(X), |Ln(X) ∩W|]− (1− p))2

]
=

4(p− 1
2 )2

22(k?−k)

(
N

2k

(
1− N

2k?

)
+
N2

22k

)
. (178)

We deduce from Equations (177) and (178) that

βB + βW =
4(p− 1

2 )2

22(k?−k)
P (Nn(Ln(X)) > 0)

(
P (X ∈ B)

(
N

2k

(
1− N

2k?

)
+

1

22k
(2k

?

−N)2
)

+ P (X ∈ W)

(
N

2k

(
1− N

2k?

)
+
N2

22k

))
= 4(p− 1

2
)2
N

2k?

(
1− N

2k?

)(
1 +

1

2k?−k

)(
1− (1− 2−k)n

)
. (179)

Clearly,

βB + βW ≥ 4(p− 1

2
)2
N

2k?

(
1− N

2k?

)(
1− (1− 2−k)n

)
. (180)

Now we compute the variance term VB. Letting Z =
∑
Xi∈Ln(X) Yi,

Z|Nn(Ln(X)), |Ln(X) ∩ B| ∼ B(Nn(Ln(X)), p′)

where p′ = (1−p)+ |Ln(X)∩B|
2k?−k (2p−1) (see Equations (172) to (174)). Therefore, recall that VB is nothing but the variance

of the binomial random variable Z conditional on |Ln(X) ∩ B| defined in Equation (170), consequently

VB = Nn(Ln(X))p′(1− p′). (181)
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By independence of Nn(Ln(X)) and |Ln(X) ∩ B|, we can write that

E

[
1Nn(Ln(X))>0

Nn(Ln(X))2
· VB

]
= E

[
1Nn(Ln(X))>0

Nn(Ln(X))

]
E

 p′(1− p)′︸ ︷︷ ︸
(1−p)2≤p′(1−p′)≤1/4

 . (182)

From Technical Lemma S5, we deduce that

2k

n+ 1

(
1− (1− 2−k)n

)
≤ E

[
1Nn(Ln(X))>0

Nn(Ln(X))

]
≤ 2k+1

n+ 1
.

Hence,

2k

n+ 1

(
1− (1− 2−k)n

)
(1− p)2 ≤ E

[
1Nn(Ln(X))>0

Nn(Ln(X))
VB

]
≤ 2k−1

n+ 1
. (183)

By symmetry, VW is also the variance of a binomial random variable with parameters Nn(Ln(X)), 1− p′ conditional on
|Ln(X) ∩W|. Thus VB = VW . To conclude, combining Equations (171), (180) and (183) leads to

R(r̂k,0,n(X)) ≤ 4(p− 1

2
)2
(

1− N

2k?
(1− N

2k?
)

)
+

2k−1

n+ 1
+ ((1− p)2 − N

2k?
(1− 2p))(1− 2−k)n

and

R(r̂k,0,n(X)) ≥ 4(p− 1

2
)2
(

1− N

2k?
(2− N

2k?
)

)
2k

n+ 1

(
1− (1− 2−k)n

)
(1− p)2

+ ((1− p)2 − N

2k?
(1− 2p))(1− 2−k)n.

H.2. Second statement: risk of a shallow tree network

Recall that we are in the infinite sample regime and that k < k?.

E
[
(r̂k,1,n(X)− r(X)2

]
= E

[
(r̂k,1,n(X)− p)2 1X∈B∩B̃

]
+ E

[
(r̂k,1,n(X)− (1− p))2 1X∈W∩W̃

]
+ E

[
(r̂k,1,n(X)− (1− p))2 1X∈W∩B̃

]
+ E

[
(r̂k,1,n(X)− p)2 1X∈B∩W̃

]
. (184)

We begin with the computation of the first term.

E
[
(r̂k,1,n(X)− p)2 1X∈B∩B̃

]
= P

(
X ∈ B ∩ B̃

)
E
[
(r̂k,1,n(X)− p)2 | X ∈ B ∩ B̃

]
(185)

= P
(
X ∈ B ∩ B̃

)
E

[(
E
[
Y ′ | X ′ ∈ B̃

]
− p
)2
| X ∈ B ∩ B̃

]
. (186)

Regarding the probability term,

P
(
X ∈ B ∩ B̃

)
= P (X ∈ B) P

(
X ∈ B̃ | X ∈ B

)
(187)

≤ N

2k?
. (188)

We denote by B1, ..., B2k the number of black cells in the leaves L1, ..., L2k . Then,

E
[
Y ′ | X ′ ∈ B̃

]
= E

(1− p) + (2p− 1)

∑2k

i=1Bi1Li⊂B̃

|B̃|


= (1− p) + (2p− 1)E

 2k∑
i=1

1Li⊂B̃

|B̃|
E
[
Bi

∣∣∣|B̃|]


= (1− p) + (2p− 1)E

[
Bj

2k?−k
| Bj ≥

|Lj |
2

]
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where Lj is a leaf included in B̃. Moreover,

E

[
Bj | Bj ≥

|Lj |
2

]
=
N

2k
+

(
1− N

2k?

)(
2k

?−k−1 − 1
) P

(
Bj = 2k

?−k−1 − 1
)

P (Bj ≥ 2k?−k−1 − 1)

≤ N

2k
+

(
1− N

2k?

)
2k

?−k−1.

Therefore,

E
[
Y ′ | X ′ ∈ B̃

]
≤ (1− p) + (2p− 1)

1

2

(
1 +

N

2k?

)
and

E

[(
E
[
Y ′ | X ′ ∈ B̃

]
− p
)2
| X ∈ B ∩ B̃

]
≥ (p− 1

2
)2
(

1− N

2k?

)2

. (189)

To compute the upper bound, note that

E

[
Bj | Bj ≥

|Lj |
2

]
≥ E [Bj ] =

N

2k
.

Thus,

E

[(
E
[
Y ′ | X ′ ∈ B̃

]
− p
)2
| X ∈ B ∩ B̃

]
≤ 4

(
p− 1

2

)2(
1− N

2k?

)2

. (190)

We adapt the previous computations to the term E
[
(r̂k,1,n(X)− (1− p))2 1X∈W∩W̃

]
from Equation (184). We have

E
[
(r̂k,1,n(X)− (1− p))2 | X ∈ W ∩ W̃

]
≥ (p− 1

2
)2
N2

22k?
(191)

and

E
[
(r̂k,1,n(X)− (1− p))2 | X ∈ W ∩ W̃

]
≤ 4

(
p− 1

2

)2
N2

22k?
(192)

Moreover, note that

E
[
(r̂k,1,n(X)− p)2 1X∈B∩W̃

]
≤ p2P

(
X ∈ B ∩ W̃

)
(193)

and

E
[
(r̂k,1,n(X)− p)2 1X∈B∩W̃

]
≥
(
p− 1

2

)2

P
(
X ∈ B ∩ W̃

)
. (194)

Similarly,

E
[
(r̂k,1,n(X)− p)2 1X∈W∩B̃

]
≤ p2P

(
X ∈ W ∩ B̃

)
(195)

and

E
[
(r̂k,1,n(X)− p)2 1X∈W∩B̃

]
≥
(
p− 1

2

)2

P
(
X ∈ W ∩ B̃

)
. (196)
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Gathering Equation (184) and Equations (189) to (196) yields

E
[
(r̂k,1,n(X)− r(X)2

]
≥ (p− 1

2
)2
(

1− N

2k?

)2

P
(
X ∈ B ∩ B̃

)
+ (p− 1

2
)2
N2

22k?
P
(
X ∈ W ∩ W̃

)
+

(
p− 1

2

)2

P
(
X ∈ W ∩ B̃

)
+

(
p− 1

2

)2

P
(
X ∈ B ∩ W̃

)
≥
(
p− 1

2

)2

min

(
1− N

2k?
,
N

2k?

)2

as well as

E
[
(r̂k,1,n(X)− r(X)2

]
≤ 4

(
p− 1

2

)2(
1− N

2k?

)2

P
(
X ∈ B ∩ B̃

)
+ 4

(
p− 1

2

)2
N2

22k?
P
(
X ∈ W ∩ W̃

)
+ p2P

(
X ∈ W ∩ B̃

)
+ p2P

(
X ∈ B ∩ W̃

)
≤ 4

(
p− 1

2

)2(
1− N

2k?

)2
N

2k?
P
(
X ∈ B̃ | X ∈ B

)
+ 4

(
p− 1

2

)2
N2

22k?

(
1− N

2k?

)
P
(
X ∈ W̃ | X ∈ W

)
+ p2

(
1− N

2k?

)
P
(
X ∈ B̃ | X ∈ W

)
+ p2

N

2k?
P
(
X ∈ W̃ | X ∈ B

)
≤ 4

(
p− 1

2

)2(
1− N

2k?

)2
N

2k?
+ 4

(
p− 1

2

)2
N2

22k?

(
1− N

2k?

)
+ p2

(
1− N

2k?

)
P
(
X ∈ B̃

)
+ p2

N

2k?
P
(
X ∈ W̃

)
≤ 4

(
p− 1

2

)2(
1− N

2k?

)
N

2k?
+ p2 max

(
N

2k?
1− N

2k?

)
.


