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Abstract
Recent work has considered natural variations of
the multi-armed bandit problem, where the re-
ward distribution of each arm is a special function
of the time passed since its last pulling. In this
direction, a simple (yet widely applicable) model
is that of blocking bandits, where an arm becomes
unavailable for a deterministic number of rounds
after each play. In this work, we extend the above
model in two directions: (i) We consider the gen-
eral combinatorial setting where more than one
arms can be played at each round, subject to fea-
sibility constraints. (ii) We allow the blocking
time of each arm to be stochastic. We first study
the computational/unconditional hardness of the
above setting and identify the necessary condi-
tions for the problem to become tractable (even
in an approximate sense). Based on these condi-
tions, we provide a tight analysis of the approx-
imation guarantee of a natural greedy heuristic
that always plays the maximum expected reward
feasible subset among the available (non-blocked)
arms. When the arms’ expected rewards are un-
known, we adapt the above heuristic into a bandit
algorithm, based on UCB, for which we provide
sublinear (approximate) regret guarantees, match-
ing the theoretical lower bounds in the limiting
case of absence of delays.

1. Introduction
It is only recently that researchers have focused their atten-
tion on variants of the stochastic multi-armed bandit (MAB)
problem where the mean reward of each arm is a specific
function of the time passed since its last pulling (Klein-
berg & Immorlica, 2018; Pike-Burke & Grünewälder, 2019;

*Equal contribution 1Department of Electrical and Computer
Engineering, The University of Texas at Austin, USA 2Department
of Computer Science, The University of Texas at Austin, USA
3Google, Mountain View, USA. Correspondence to: Alexia Atsi-
dakou <atsidakou@utexas.edu>, Orestis Papadigenopoulos <pa-
padig@cs.utexas.edu>.

Proceedings of the 38 th
International Conference on Machine

Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Cella & Cesa-Bianchi, 2019). These variants capture appli-
cations where the mean outcome of an action temporarily
decreases or fluctuates after each use. A simple yet very
expressive model in this direction is that of blocking ban-

dits (Basu et al., 2019), where each arm becomes blocked
(i.e., it cannot be played again) for a deterministic number
of subsequent rounds after each play, known as the delay.

In this paper, we generalize blocking bandits to model
two important and well-motivated properties: (i) Stochastic

blocking, where the delay of each arm is randomly sampled
from a distribution after each pull, and (ii) Combinatorial

actions, where more than one arm can be pulled at each
round, subject to general feasibility constraints.

Our model can accommodate a variety of settings where
arm pulling is subject to combinatorial constraints, while
the repeated selection of a certain arm is undesirable or even
infeasible. For example, in ride sharing platforms, where
the users are matched with rides, the allocation of resources
imposes matching constraints, while the transit times of
rides give rise to stochastic blocking of resources (Dicker-
son et al., 2018). Matching constraints are also natural in
task assignment in the cloud, and combinatorial network
optimization where the processing/serving times of tasks
can be modeled as stochastic blocking. Further, knapsack

constraints emerge inherently in ad placement (multiple ad
slots in a webpage) (Chen et al., 2016b), and movie/song
recommendation (multiple recommendation slots) (Kveton
et al., 2015b); while repetitive ads and recommendations
should be avoided for user satisfaction by introducing (pos-
sibly) random delays. Whereas these varied applications
naturally are within the scope of our results, to the best of
our knowledge, they are beyond the reach of prior works,
and in particular (Basu et al., 2019; 2021; Papadigenopoulos
& Caramanis, 2021; Bishop et al., 2020).

1.1. Central Challenges and Main Contributions

Model. A player is given a set of arms, each corresponding
to an unknown reward-delay distribution. At each round,
the player plays a subset of the available arms, subject to
feasibility constraints, and collects, for each arm played,
the realized reward of the round. Additionally, each of the
selected arms becomes unavailable for a random duration
equal to the realized delay of the round. The player has
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access to an oracle that takes as input a subset of arms
and a weight vector, and returns an approximately/probably
maximum weight feasible subset. The high-level goal is to
maximize cumulative reward that is acquired over time.

There are three central challenges towards the player’s goal
described above. We outline these challenges, and use these
as an organizing principle to describe our main contribu-
tions.

Challenge: Inapproximability. In the full-information set-

ting, where we assume prior knowledge of the arm mean
rewards, the blocking bandits problem is already NP-hard,
even in the simple case where the player can pull at most one
arm per round and the arm delays are deterministic (Sgall
et al., 2009). In the generic combinatorial bandit setting,
the resulting scheduling problem may be NP-hard to even

approximate, even if the underlying feasible set of arms is
“easy” to optimize. Thus, a fundamental challenge is to iden-
tify sufficient conditions on the combinatorial structure of
the feasibility constraints under which our problem accepts
efficient O(1)-approximation algorithms.

Contribution 1: We show that if the family of feasible sets
satisfies the hereditary property (subsets of feasible sets are
feasible), then our problem accepts O(1)-approximations.
This is a natural property that appears in many practical ap-
plications (e.g., knapsack and matching constraints). Specif-
ically, using a gap-preserving reduction from the Edge-

Disjoint Paths (EDP) problem, we prove that, without
the hereditary property, there exists no polynomial-time
⌦(k�

1
2+✏)-approximation algorithm for any ✏ > 0, where

k is the number of arms, unless P = NP. Interestingly, this
hardness result holds even when the underlying combina-
torial set accepts a polynomial-time algorithm for linear
maximization. Finally, we show that even assuming feasible
sets that satisfy the hereditary property and admit efficient
linear program solution, no efficient algorithm can achieve
an approximation ratio greater than 1� 1

e + ✏, for any ✏ > 0,
unless P = NP. We prove this result using a reduction from
the Max-k-Cover problem. Hence, constant approximations
are the best one can hope for.

Challenge: Analyzing the Greedy Algorithm. A natural
heuristic for the full-information setting can be obtained
by greedily playing the maximum expected reward feasible
subset among the available arms of each round. Though
this greedy step may itself be hard, we follow the paradigm
of the combinatorial bandits literature (see (Wang & Chen,
2017) and references therein) and assume access to a black-
box (approximate/randomized) oracle for this (static) greedy
problem. Though natural, the performance of such a greedy
heuristic in our setting remains unknown. In part, the tech-
nical challenge stems from the black-box oracle assumption.
Because we have only oracle-access to the greedy algorithm,
there is no easy way to characterize the solution returned by

the oracle at each round. Further, as opposed to the case of
deterministic delays considered in prior work, in our case,
any optimal algorithm in hindsight is inherently online and
adaptive to random delay realizations.

Contribution 2: We provide a tight approximation analysis

of the greedy heuristic when the feasible sets of arms satisfy
the hereditary property. Specifically, assuming access to an
oracle such that, given a weight vector and a set of arms, it
returns an ↵-approximation of the maximum weight feasible
subset with probability �, we prove that the greedy heuristic
yields an ↵�

1+↵� -approximation (asymptotically) for the full-
information setting. The key in proving the above bound
is to consider the expected pulling rate of each arm in an
optimal solution. Then, by the hereditary property and the
fact that the optimal solution is not a priori aware of the
delay realizations, we show properties of these rates and,
thus, provide the above guarantee.

Challenge: Bandit algorithm. In the case where distribu-
tional knowledge of rewards and delays is not assumed, our
problem seems significantly harder than standard combina-
torial bandits. Even in the absence of blocking, the analysis
of bandit algorithms based on the technique of Upper Con-

fidence Bound (UCB) (Auer et al., 2002) becomes highly
non-trivial in the combinatorial setting and it required a
considerably long line of research to achieve optimal regret
guarantees (Wang & Chen, 2017; Gai et al., 2012; Chen
et al., 2013; Combes et al., 2015; Kveton et al., 2015a; Chen
et al., 2016b). These guarantees are obtained by measur-
ing the loss compared to the optimal feasible subset, which
is fixed throughout the time horizon. In the presence of
stochastic blocking, these results do not seem to apply, as
the optimal solution in hindsight changes dynamically over
time according to the set of available arms.

Contribution 3: We develop a UCB-based variant of the
greedy heuristic for the bandit case of our problem, where
the reward and delay distributions are initially unknown.
As already mentioned, the optimal arm-pulling schedule in
our case is not fixed, but depends on the randomness of the
delays and the player’s actions. Our key insight is to control
regret by comparing to a static fractional (hence fictitious)
solution, rather than to the dynamics of the optimal solution.
By leveraging and extending the framework of (Wang &
Chen, 2017) in a way to capture dynamically changing sets
of available arms, we are able to provide logarithmic ↵�

1+↵� -
approximate regret guarantees. As we note, these guarantees
are optimal in the sense that they match the theoretically
proven lower bound presented in (Kveton et al., 2015a) in
the limiting case of absence of delays.

1.2. Related Work

Following its introduction (Thompson, 1933; Lai & Rob-
bins, 1985), several variants of the stochastic MAB frame-
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work have been thoroughly studied (see (Lattimore &
Szepesvári, 2020; Slivkins, 2019) for an overview). We
focus on the case of stochastic combinatorial bandits that is
mostly related to our setting. In this direction, a long line
of work (Chen et al., 2013; Combes et al., 2015; Kveton
et al., 2015a;b; Chen et al., 2016a;b; Wang & Chen, 2017)
focuses on variations of the MAB problem, where more
than one arm can be played at each round. The above model
has been studied in a high level of generality, including
arbitrary feasible sets of arms where linear optimization is
achieved via (approximate/randomized) oracles, non-linear
reward functions of bounded smoothness, probabilistically
triggered arms and more. Starting with the work of Gai et al.
(2012), the case of arbitrary feasible sets and linear reward
functions has been particularly studied. Given k arms and a
time horizon T , the state-of-the-art (Wang & Chen, 2017;
Kveton et al., 2015a) in that case is a UCB-based bandit
policy of O(k·r� log(T )) regret against the best possible so-
lution that is achievable in polynomial time, where r is the
maximum cardinality of a feasible set and � is the gap in
expected reward between the optimal and the best subopti-
mal feasible set. As proved in (Kveton et al., 2015a), the
above regret bound matches the theoretical lower bound for
this setting.

Our model falls into the area of stochastic non-stationary

bandits. Important lines in this area include restless bandits,
where the arms’ mean rewards change at every round (Whit-
tle, 1988; Guha et al., 2010), and rested bandits, where the
means can change only when the arm is played (Gittins,
1979; Tekin & Liu, 2012). The above classes appear to
contain notoriously hard problems from a computational
viewpoint. In fact, even approximating the optimal solution
for the class of restless bandits is PSPACE-hard (Papadim-
itriou & Tsitsiklis, 1999). Moreover, our model also belongs
to the class of Markov Decision Processes (MDPs) (Puter-
man, 1994). However, modeling our problem as an MDP
would be inefficient, as it would require a state space that
grows exponentially in the number of arms.

Recently, there has been much interest in several variants of
the non-stationary model where reward distributions exhibit
special temporal correlations with the player’s past actions
(Kleinberg & Immorlica, 2018; Pike-Burke & Grünewälder,
2019; Cella & Cesa-Bianchi, 2019; Leqi et al., 2020). In
(Basu et al., 2019), the authors first study the blocking ban-
dits problem, where each arm becomes blocked for a deter-
ministic number of time steps after it has been played. The
above problem has also been studied in an adversarial set-
ting (Bishop et al., 2020) and in a contextual setting (Basu
et al., 2021), where the mean rewards of the arms depend
on a stochastic context that is observed by the player at the
beginning of each round. Very recently, (Papadigenopoulos
& Caramanis, 2021) generalize the problem to the setting
where more than one arms can be played at each round, sub-

ject to matroid constraints. However, none of these studies
handle either stochastic delays, or a general class of inde-
pendence systems, both of which are important in practice
(e.g., knapsack problems cannot be handled by any prior
studies). Furthermore, in terms of techniques, the analysis
of (Papadigenopoulos & Caramanis, 2021) (the only one
above addressing combinatorial constraints) heavily relies
on the submodularity of the matroid rank function and the
fact that the delays are known and deterministic. We require
neither of these to hold in our setting.

2. Preliminaries
We consider a set of k arms, denoted by A, and an unknown

time horizon T 2 N. Each arm i 2 A is associated with
a reward distribution Xi that is bounded w.l.o.g. in [0, 1].
We denote by µi the mean reward of arm i. In the blocking
setting, whenever an arm i is pulled at some round t, it can-
not be played again for Di,t� 1 subsequent rounds, namely,
within the interval {t, ..., t+Di,t�1} (i.e., Di,t = 1 implies
that the arm is not blocked). For each arm i 2 A, the value
Di,t 2 N�1, which we refer to as the delay, is a random
variable drawn from some arm-dependent distribution Di

of mean di = E[Di,t], 8t 2 [T ] and bounded support in
[1, dmax

i ]. At each round t and for each arm i 2 A, the
reward and delay realization, Xi,t and Di,t, respectively,
are drawn independently from the joint distribution Xi,Di

and, thus, they are allowed to be correlated. We denote
by dmax = maxi2A{dmax

i } the maximum delay in a given
instance.

We consider the setting of combinatorial bandits, where
more than one arm can be played at each round, subject to
feasibility constraints. Let I ✓ {0, 1}k be the family of
feasible subsets of A. For any subset of arms S ✓ A, we
denote by I(S) = {S0

2 I | S0
✓ S} the subset of feasible

sets that only contain arms from S ✓ A. Let r be the maxi-
mum cardinality of a set in I, namely, r = maxS2I{|S|}.
Since the problem of maximizing a linear function over a
feasible family I can be NP-hard, following the paradigm
of combinatorial bandits as in (Wang & Chen, 2017; Chen
et al., 2016b), access to the feasible set is given through an
oracle. Given a non-negative weight vector µ 2 Rk

�0 and a
set S ✓ A, let OPTµ(S) be the maximum weight feasible
set in I(S) w.r.t. µ. For any S ✓ A and vector µ 2 Rk

�0,
we use the notation µ(S) =

P
i2S µi. For ↵,� 2 (0, 1], we

assume access to a polynomial-time (↵,�)-approximation
oracle, f↵,�

µ , for the underlying combinatorial problem, de-
fined as follows:
Definition 1 ((↵,�)-approximation oracle). Given a weight

vector µ 2 Rk
and a subset S ✓ A, an (↵,�)-

approximation oracle for ↵,� 2 (0, 1] outputs a set

f↵,�
µ (S) 2 I(S), such that

P
�
µ(f↵,�

µ (S)) � ↵ · µ(OPTµ(S))
�
� �.
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We are now ready to describe the setting: At each round t,
after observing the set of available arms (that is, the arms
that are not blocked by some previous pulling), the player

plays any feasible subset At of these arms, namely, At 2 I

and collects the realized rewards. At that point, each arm
i 2 At becomes blocked with delay Di,t. We emphasize
that the player is initially unaware of the delay distributions

and can only infer each delay realization Di,t by observing
the time where arm i becomes available again. The player
seeks to maximize her total expected reward in T rounds,
formally defined as:

Rew⇡(T ) = E

2

4
X

t2[T ]

X

i2A

Xi,t I (i 2 A⇡
t )

3

5,

where A⇡
t denotes the subset of arms played by an algorithm

⇡ at round t. We refer to the above setting as Combinatorial

Blocking Bandits with Stochastic Delays (CBBSD).

In the bandit setting, we compare the performance of our
algorithm with the expected reward of an optimal algorithm
that has distributional knowledge of the arm rewards and
delays, is aware of the time horizon T and has infinite com-
putational power. Let Rew⇤(T ) be the optimal expected
reward. To evaluate our algorithm we compute its approxi-
mate regret compared to the optimal. The following defini-
tion of ⇢-approximate regret (or ⇢-regret) is standard in the
field of combinatorial bandits for underlying feasibile sets
where linear maximization is NP-hard:

Reg⇡⇢ (T ) := ⇢Rew⇤(T )� Rew⇡(T ).

We present two important conditions and investigate their
necessity for proving the approximation guarantee of our
proposed algorithm. In the standard MAB framework, it is
assumed that the optimal algorithm only knows the distribu-
tions of the rewards, but not the realizations. The following
condition states that the optimal algorithm is also unaware
of the delay realizations before pulling an arm:

Condition 1. The optimal online algorithm has knowledge

of the delay distributions, but is not a priori aware of the

delay realizations.

A family I of feasible subsets is called an independence

system, if it satisfies the following property:

Definition 2 (Hereditary Property). Every subset of a feasi-

ble set in I is a also a feasible set, that is, S0
⇢ S ✓ A and

S 2 I implies that S0
2 I.

We introduce the following condition on the family of feasi-
ble sets of our problem:

Condition 2. We assume that the family of feasible set I in

every instance of our problem is an independence system.

The above two conditions are critical. Indeed, as we show
in Section 3, dropping any of these makes the problem
intractable, even in an approximate sense.

3. Computational-Unconditional Hardness
In this section, we study the hardness of the CBBSD prob-
lem. We emphasize that all the results of this section hold
even in the simple case where the arm rewards are determin-
istic and known to the player.

We first show that even in the simple case of a single arm that
is always feasible to play (if available), we cannot compete
withing a !(1/dmax)-factor against an optimal solution that
knows the delay realizations.

Theorem 1. In the case where Condition 1 does not hold

(that is, the optimal algorithm knows the delay realizations

of all rounds), there exists no algorithm (not even one of

infinite computational power) for the CBBSD problem that

achieves an approximation ratio of !( 1
dmax

).

Proof sketch. We consider the case of an infinite time hori-
zon and a single arm (k = 1) of deterministic reward, equal
to 1. The delay of the arm is either d > 1 or 1, each with
probability 1

2 . The proof of the theorem follows by model-
ing the optimal policy in the above example as a Markov
Chain, and comparing its expected average reward with that
of a possibly sub-optimal policy, which is a priori aware
of the delay realizations and plays the arm only when the
realized delay is 1.

We now focus on the hardness of the problem, restricting
our attention to the simpler case where the arm rewards
and delays are deterministic and known. In the next result,
we show that if the underlying feasible set I does not sat-
isfy Condition 2, then, for any ✏ > 0, there cannot exist
any polynomial-time algorithm of approximation guaran-
tee better than ⌦(k�

1
2+✏), where k is the number of arms,

unless P = NP. Interestingly, the above result holds even if
linear maximization over the family of feasible sets I can
be done efficiently at every round (i.e., having access to a
(1, 1)-approximation oracle). We prove the above claim by
a gap-preserving reduction from the following problem:

Definition 3 (Edge-disjoint paths (EDP)). Given a di-

rected graph G = (V,E), where V is the set of vertices

and E is the set of k0 edges, and m pairs of vertices

T = {(si, ti) | si, ti 2 V, i 2 [m]}, compute the maxi-

mum number of (si, ti) pairs that can be connected using

edge-disjoint paths.

As we show, the full-information case of our bandit problem
captures the hardness of EDP, if we do not assume that
the underlying feasible set of arms in I is an independence
system (that is, satisfying Condition 2). The following result
is known for the EDP problem.
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Theorem 2 ((Guruswami et al., 1999)). For any ✏ > 0,

given a directed graph G = (V,E) with k0 = |E| and a set

of m pairs of vertices T = {(si, ti) | si, ti 2 V, i 2 [m]},

it is NP-hard to distinguish whether all pairs in T or at

most a fraction of
1

k01/2�✏ of the pairs can be connected by

edge-disjoint paths.

We now prove the following theorem:
Theorem 3. Unless P = NP and for any ✏ > 0, there exists

no polynomial-time ⌦(k�
1
2+✏)-approximation algorithm for

CBBSD problem, in the case of feasible sets that are not

independence systems. The above holds even for feasible

sets where linear optimization can be performed efficiently.

Proof sketch. The key idea is to construct an instance of
CBBSD, where each arm represents an edge in a given di-
rected graph. In this instance, a subset of arms is feasible
only if it includes a unique path between some (si, ti) pair.
Our instance is constructed in a way that any feasible so-
lution yields a reward equal to 1 (using linear rewards on
the arms). Further, finding a feasible solution in a given
subset of arms/edges can be achieved in polynomial-time
via breadth/depth first search. As we show, the existence of
a polynomial-time ⌦(k�

1
2+✏)-approximation algorithm for

CBBSD problem would allow us to resolve the gap problem
of Theorem 2.

Finally, we focus on the hardness of the CBBSD problem,
in the case of feasible sets that are independence systems
(i.e., satisfying Condition 2). As we show, although under
this assumption the problem is easier, yet it still exhibits
⌦(1)-hardness of approximation. Specifically, we prove the
hardness of CBBSD in that case, using a reduction from
Max-k-Cover:
Definition 4 (Max-k-Cover). Given a universe U =
{e1, . . . , ek} of k of elements and a collection of m subsets

S1, . . . , Sm ✓ U , choose l sets that maximize the number

of covered elements.

The following hardness result is known for Max-k-Cover:
Theorem 4 ((Feige, 1998)). Unless P = NP, there is no

polynomial-time 1 � 1
e + ✏-approximation algorithm for

Max-k-Cover, for any ✏ > 0.

Using the above result, we are able to show the following
hardness result for our problem:
Theorem 5. Unless P = NP and for any ✏ > 0, there exists

no polynomial-time (1� 1
e + ✏)-approximation algorithm

for the full-information CBBSD problem, even for feasible

sets that satisfy the hereditary property. The above holds

even for feasible sets where linear optimization can be done

efficiently.

Proof sketch. For any instance of Max-k-Cover, we can con-
struct in polynomial-time an instance of the CBBSD prob-

lem by considering an arm of reward 1 and delay l for each
element of U , where l is the number of sets that can be cho-
sen in Max-k-Cover. Further, a subset of arms S is feasible,
only if S ✓ Sj for at least one given subset Sj ✓ U (no-
tice that this construction satisfies the hereditary property).
As we show, any ⇢-approximation algorithm for the above
instance of CBBSD, would imply a ⇢-approximation for
Max-k-Cover, which, in turn, implies the hardness of the
former.

4. Full-Information Setting
We first study the full-information setting of our problem,
where we assume that the player has prior knowledge of

the arm mean rewards. In the case where Conditions 1
and 2 hold, we analyze the approximation guarantee of the
following greedy heuristic:

GREEDY-HEURISTIC: At each time t = 1, 2, . . . , observe
the set Ft ✓ A of available (not blocked) arms. Let At =
f (↵,�)
µ (Ft) be the subset returned by the (↵,�)-oracle for

support Ft and weight function µ. Play the arms of At and
collect the associated rewards.

We remark there are two sources of randomness: arm re-
wards and stochastic delays. In the full information setting,
we assume that the player knows the mean rewards of the
arms, beforehand. We drop this assumption in the bandit
setting, studied in Section 5. Moreover, we note that the
algorithm provided above does not make use, and thus does
not require knowledge of the delay distributions (or realiza-
tions). As we prove in the rest of this section, the above
algorithm is ⇢(↵,�)-competitive in expectation, against an
optimal online algorithm, for ⇢(↵,�) = ↵�

1+↵� .

Theorem 6. Given any (↵,�)-oracle and assuming Condi-

tion 1 and Condition 2, the algorithm GREEDY-HEURISTIC
is a

↵�
1+↵� -approximation (asymptotically) for the full-

information case of CBBSD.

The rest of this section is dedicated to proving the above
result. For an algorithm ⇡, we denote as A⇡

t the set of arms
played by ⇡ at time t and F⇡

t ✓ A (resp., B⇡
t ✓ A) the set

of available (resp., blocked) arms at the beginning of the
round. Finally, for any S ✓ A and vector µ 2 Rk

�0, we use
the notation µ(S) =

P
i2S µi. Let A⇤

t be the set of arms
played by an optimal algorithm at time t 2 [T ]. For proving
the performance guarantee of our algorithm in the presence
of stochastic delays, the first step is to consider the expected

pulling rate of each arm i 2 A by the optimal algorithm,
defined as: zi = E

h
1
T

P
t2[T ] I (i 2 A⇤

t )
i
.

Given the fact that the optimal algorithm is not aware of
{Xi,t}i2A before deciding which arms to pull at time t, its
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expected cumulative reward is:

E

2

4
X

t2[T ]

X

i2A

Xi,t I (i 2 A⇤
t )

3

5 =
X

t2[T ]

X

i2A

µi E [I (i 2 A⇤
t )],

where the equality follows by the fact that Xi,t and
I (i 2 A⇤

t ) are independent. Thus, we obtain that:

Rew⇤(T ) = T
X

i2A

µizi. (1)

We now prove two important properties of the expected
pulling-rates {zi}i2A, each following from Condition 1 and
Condition 2, respectively. In the following lemma, we pro-
vide an upper bound on zi, for each arm i 2 A.
Lemma 1. Let i 2 A be an arm of expected delay di =
E[Di,t] and maximum delay dmax

i . We have:

zi 
1

di
+O

⇣dmax
i

T

⌘
.

For proving the above claim, we make crucial use of Condi-
tion 1. Indeed, it is not hard to see that in the construction
of Theorem 1, the above inequality does not hold.
Lemma 2. For any subset S ✓ A and reward vector µ,

assuming that I is an independence system, we have:

µ(OPTµ(S)) �
X

i2S

µizi.

Proof. Let A⇤
t be the set of arms played by the optimal

algorithm at time t. Since for any set S and time t the
intersection S \ A⇤

t is strictly contained in S and A⇤
t , by

Condition 2 we have that S\A⇤
t 2 I(S). Therefore, for the

expected reward of the optimal solution in I(S), we have:

µ(OPTµ(S)) � µ(S \A⇤
t ) =

X

i2S

µiI (i 2 A⇤
t ). (2)

By averaging over time and taking the expectation over the
randomness of the delays and the possible random bits of
the optimal algorithm, we can conclude that:

µ(OPTµ(S)) �
1

T

X

t2[T ]

X

i2S

µi P (i 2 A⇤
t ) =

X

i2S

µizi.

Equipped with the above lemmas, we can now complete the
approximation analysis of GREEDY-HEURISTIC.

Proof of Theorem 6. Using the fact that the choices of
GREEDY-HEURISTIC do not depend on the reward realiza-
tions, for each round t 2 [T ] we have:
X

i2A

E [Xi,t I (i 2 At)] =
X

i2A

E [µi I (i 2 At)] = E [µ(At)] .

We denote by F⇡
t and B⇡

t the set of available and blocked
arms at the beginning of round t, respectively. Let Qt de-
note the event that the oracle succeeds in returning an ↵-
approximate solution at time t. By taking expectation over
the randomness of the oracle and the delay realizations, for
every t 2 [T ], we have that:

E [µ(At)] � E [↵ · µ(OPTµ(F
⇡
t )) I (Qt)]

� ↵ · � · E [µ(OPTµ(F
⇡
t )])

� ↵ · � · E

2

4
X

i2F⇡
t

µizi

3

5,

where the first inequality follows by definition of the oracle,
the second by the fact that Qt is independent of the set F⇡

t

and that P (Qt) � �, and the third by Lemma 2. Thus,
using Equation (1), we have:

X

t2[T ]

E
"
X

i2A

Xi,t I (i 2 At)

#

� ↵ · �
X

t2[T ]

E

2

4
X

i2F⇡
t

µizi

3

5

= ↵ · � · T
X

i2A

µizi � ↵ · �
X

t2[T ]

E

2

4
X

i2B⇡
t

µizi

3

5

= ↵ · � Rew⇤(T )� ↵ · �
X

t2[T ]

E

2

4
X

i2B⇡
t

µizi

3

5, (3)

where, for the first equality, we use that at any round t 2 [T ],
we have F⇡

t [B
⇡
t = A⇡

t and F⇡
t \B

⇡
t = ;.

Note that for any time t 2 [T ] and arm i 2 B⇡
t , we have:

I (i 2 B⇡
t ) =

X

t0<t

I (i 2 A⇡
t0) I (Di,t0 > t� t0) .

Indeed, in order for an arm to be blocked at time t, it must
be played at some earlier round t0 < t, and the realized
delay at t0 must be greater than t� t0. Using this fact, we
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have:

E

2

4
X

t2[T ]

X

i2B⇡
t

µizi

3

5

= E

2

4
X

t2[T ]

X

i2A

µizi
X

t0<t

I (i 2 A⇡
t0) I (Di,t0 > t� t0)

3

5

=
X

t2[T ]

X

i2A

µizi
X

t0<t

P (i 2 A⇡
t0)P (Di,t0 > t� t0)

=
X

t02[T ]

X

i2A

P (i 2 A⇡
t0)µizi

X

t>t0

P (Di > t� t0)



X

t02[T ]

X

i2A

P (i 2 A⇡
t0)µizidi

 Rew⇡(T ) +O (dmax · k) , (4)

where the second equality holds since the realization Di,t0

is independent of the event i 2 A⇡
t0 . The first inequality is

due to the fact that Di,t0 is a non-negative integer random
variable, thus, di = E [Di,t0 ] =

P1
⌧=1 P (Di,t0 � ⌧). Fi-

nally, the last inequality is due to Lemma 1. By combining
Inequalities (3) and (4), we get:

Rew⇡(T ) �
↵ · �

1 + ↵ · �
Rew⇤(T )�O (dmax · k) .

The above analysis is tight, since there exists an instance of
the CBBSD problem where GREEDY-HEURISTIC collects an
exact ↵·�

1+↵·� -fraction of the optimal reward (see Appendix
E in (Papadigenopoulos & Caramanis, 2021)).

5. Bandit Setting
We now turn our attention to the bandit setting where the
player is initially unaware of the mean rewards. Given
an (↵,�)-oracle for the feasible set of arms and assuming
Conditions 1 and 2, we develop a UCB-based variant of
GREEDY-HEURISTIC, for which we prove ⇢(↵,�)-regret
guarantees.

Bandit algorithm. Let us denote by Ti,t the number of
times arm i has been played up to and including round t 2
[T ], and by µ̂i,t the empirical average of Ti,t independent
samples from the distribution Xi. We design a UCB-based
variant of GREEDY-HEURISTIC, which we call CBBSD-UCB,
that maintains at each time t the following estimates (UCB-
indices) of the mean rewards:

µ̄i,t = min
n
µ̂i,t�1 +

s
3 ln t

2Ti,t�1
, 1
o
, 8t 2 A, t 2 [T ].

In the following, we use ⇡̃ for any reference to CBBSD-UCB.

Algorithm 1 CBBSD-UCB
Input: Set of arms A and oracle f↵,� .
For every arm i 2 A, set Ti  0 and µ̂i  1.
for t=1,2,... do

For every arm i 2 A, µ̄i  min{µ̂i +
q

3 ln t
2Ti

, 1}

Play the set A⇡̃
 f↵,�

µ̄ (F⇡̃).
Observe the realization Xi of Xi, for i 2 A⇡̃ .
Set Ti  Ti + 1 and µ̂i  µ̂i

Ti�1
Ti

+ Xi
Ti

, for i 2 A⇡̃ .
end for

The CBBSD-UCB algorithm ( Algorithm 1) works as fol-
lows: Let F⇡̃

t denote the set of available arms. At each time
t 2 [T ] the algorithm observes F⇡̃

t , and computes and plays
the feasible set of arms f↵,�

µ̄t
(F⇡̃

t ) returned by the oracle,
where µ̄t 2 Rk

�0 is the vector of the UCB-indices, such that
(µ̄t)i = µ̄i,t. Then, it observes and collects the reward real-
izations of the played arms and updates the UCB-indices.

Regret analysis. We now provide ⇢(↵,�)-regret guaran-
tees for algorithm CBBSD-UCB, with ⇢ = ⇢(↵,�) = ↵�

1+↵� .
As opposed to the non-blocking combinatorial bandits set-
ting, where the optimal solution in hindsight is to repeatedly
play the maximum expected reward feasible subset of arms,
the mean reward collected at each round by an optimal
solution in the blocking setting might exhibit significant
fluctuations over time due to blocking. Standard regret anal-
ysis typically uses the optimal solution’s value as a baseline;
but these fluctuations require a different idea.

Instead, we use as a baseline the expected reward collected
by an optimal full-information algorithm that can play arms
fractionally yet consistently over time. Indeed, the (optimal)
expected pulling rates, {zi}i2A, as defined in Section 4,
precisely characterize such a baseline. These rates can be
used to mirror the analysis of Theorem 6, this time for
CBBSD-UCB, keeping track of the extra loss due to the lack
of information. In order to quantify the above loss, which
is due to the fact that CBBSD-UCB calls the (↵,�)-oracle
using the vector of UCB-indices µ̄t at each time t, we use
the notion of instantaneous regret:
Definition 5 (Instantaneous Regret). At every time t 2 [T ],
the instantaneous regret of ⇡̃ is defined as:

�⇡̃
t = ↵ · � · µ(OPTµ(F

⇡̃
t ))� µ(A⇡̃

t ).

Informally, �⇡̃
t measures the difference between an ↵�-

fraction of the expected reward of the optimal feasible subset
of the available arms, and the expected reward collected by
⇡̃ at time t.

Using the properties of the expected pulling rates in Equa-
tion (1) and Lemmas 1 and 2, and following Theorem 6, we
provide the following upper bound to the regret:
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Lemma 3. The ⇢-approximate regret of our algorithm,

where ⇢ = ↵·�
1+↵·� can be upper bounded as:

⇢Reg
⇡̃(T ) 

1

1 + ↵ · �
E

2

4
X

t2[T ]

�⇡̃
t

3

5+O(dmax · k).

Thus in order to upper bound the ⇢-regret, we need to con-
trol the instantaneous regret over time. While this task now
resembles the regret analysis of standard (non-blocking)
combinatorial bandits, our setting poses an additional tech-
nical challenge: the instantaneous regret �⇡̃

t depends on
the history of arm pulling and reward/delay realizations,
not only via the state of the UCB-indices at time t, but also
through the set of available arms F⇡̃

t . As we show, any poten-
tial issue due to these additional correlations can be avoided
by carefully defining the suboptimality gaps of our problem
and adapting the techniques in (Wang & Chen, 2017) in a
way to capture the constantly changing availability state.
Definition 6 (Bad Feasible Set). We refer to a feasible set

S 2 I(F) as bad w.r.t. a availability set F, when µ(S) <
↵ · µ(OPTµ(F)). Moreover, the family of bad feasible sets

w.r.t. the availability set F is defined as:

SB(F) = {S 2 I(F) | µ(S) < ↵ · µ(OPTµ(F))}.

Finally, we denote by Si,B(F) the family of feasible sets in

SB(F) that contain arm i 2 A.

As opposed to (Chen et al., 2013; Wang & Chen, 2017), the
following notion of suboptimality gap is now a function of
both the availability set F, which depends on the choices of
the algorithm, and the played set S 2 I(F).
Definition 7 (Suboptimality Gap). The suboptimality gap
of a bad feasible set S 2 I(F) w.r.t. an availability set F is

defined as:

�(S,F) = ↵ · µ(OPTµ(F))� µ(S).

Focusing on the bad feasible sets that contain arm i, we can
further define the minimum possible gap of any such set
as: �i

min = minF✓A, S2Si,B(F) �(S,F). Further, we can
define maximum gap of any bad feasible set that can be
played as: �max = maxF✓A, i2A, S2Si,B(F) �(S,F). We
remark that the above choice of �i

min captures the following
crucial aspect of our problem: the algorithm needs to be
able to distinguish between optimal and suboptimal choices
over any possible availability set F in the worst case.

For the rest of our analysis, we adapt the ideas introduced in
(Wang & Chen, 2017) to accommodate stochastic blocking.
The key technical challenge we circumvent stems from the
dynamic (un)availability of the arms, which impacts our
ability to obtain accurate estimates of µ. This becomes
important in our proofs of Lemma 5 and Theorem 7.

Definition 8 (Nice sampling). At each the beginning of

each round t, we say that CBBSD-UCB has a nice sampling
if | µ̂i,t�1�µi| 

q
3 ln (t)
2Ti,t�1

for each arm i 2 A.

Let Nt denote the event that the algorithm has a nice sam-
pling at time t. We can bound the probability of the event
Nt as follows:

Lemma 4. The event Nt holds for CBBSD-UCB at round t
with probability at least 1� 2k

t2 .

Intuitively, the event Nt implies that the UCB-indices of
the arms at time t are a good approximation of the actual
mean rewards. At each round t, there are three reasons why
our algorithm might play a suboptimal set of arms: (i) Fail-
ure of the oracle, denoted by ¬Qt, (ii) Non-representative
collection of samples, denoted by ¬Nt, and (iii) Insuffi-
cient number of samples for distinguishing the gaps. The
probabilities of ¬Qt and ¬Nt at each round t can be upper
bounded by 1 � �, using the definition of the oracle, and
by 2k

t2 , using Lemma 4, respectively. Thus, we focus on the
rounds where Qt and Nt hold.

Definition 9 (Sampling Threshold). We define the sampling
threshold as:

`T (�) =
24r2 ln(T )

�2
,

where r = maxS2I{|S|}. We also define the following
function:

T (�, s) =

8
>><

>>:

2, if s = 0,q
24 ln(T )

s , if 1  s  `T (�),

0, if s > `T (�).

In the above definitions, which appear in the framework of
(Wang & Chen, 2017), the domain of � is over any possible
suboptimality gap given by a combination of availability
set F and feasible set S 2 I(F). Specifically, the sampling
threshold `T has the following property: When the number
of times an arm i has been played exceeds `T (�i

min), then
the bad feasible sets containing this arm cannot further con-
tribute to the regret (assuming that Qt and Nt hold). This
idea is depicted in the following result:

Lemma 5. For any t 2 [T ], if the event {Qt,Nt,A
⇡̃
t 2

SB(F
⇡̃
t )} holds, then

�(A⇡̃
t ,F

⇡̃
t ) 

X

i2A⇡̃
t

T (�
i
min, Ti,t�1).

By combining Lemmas 3 to 5 with the techniques of (Wang
& Chen, 2017), we obtain the following regret bounds:

Theorem 7. For the
↵·�

1+↵·� -approximate regret of our al-

gorithm, we provide the following distribution-dependent
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bound:

48

1 + ↵�

X

i2A

r · lnT

�i
min

+ k · (2 +
⇡2

3
�max) +O(dmax · k),

and the following distribution-independent bound:

14
p
k · r · T lnT

1 + ↵�
+ k · (2 +

⇡2

3
�max) +O(dmax · k),

where r = maxS2I{|S|}.

Note that except for the additive O(dmax ·k) term, the above
regret bounds match the theoretical lower bounds for com-
binatorial bandits setting presented in (Kveton et al., 2015a)
in the absence of delays. Indeed, given that our problem
strictly generalizes the setting of standard combinatorial ban-
dits with linear rewards and without blocking constraints
(in which case our regret is exact and the O(dmax · k) term
disappears), our dependence on k, r, T and �min is unim-
provable.

6. Experimental Evaluation
We evaluate our results on synthetic experiments, where the
feasible set is defined by knapsack and matching constraints.
We compare the performance of our greedy heuristic for
deterministic and stochastic delays of the same mean. In
both experimental settings we used k = 50 arms, exact
oracles for the underlying feasibility problem (↵ = � = 1)
and averaged the results over 50 trials. The empirical ratio
in both settings is computed against an LP relaxation (see
appendix D for a detailed description of the experimental
settings). In the case of stochastic delays, the empirical ratio
is slightly worse but regret is smaller (Fig. 1).

apx. ratio apx. ratio
arms fixed d rand. d
10 0.5730 0.565113
20 0.8997 0.8803
30 0.9463 0.9208
40 0.9628 0.9331
50 0.9760 0.9494

apx. ratio apx. ratio
arms fixed d rand. d
10 0.9727 0.9332
20 0.9693 0.9383
30 0.8797 0.8454
40 0.9063 0.8609
50 0.9094 0.8686

Figure 1. Empirical ↵-regret (for 50 arms) and approximation ratio
(“apx. ratio”) for the cases of: i) 1-D knapsack constraints (left)
and ii) matching constraints (right), for deterministic (“fixed d”)
and stochastic (“rand. d”) delays.
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