Supplementary material

A. Explaining the Model of Stochastic Delayed Oracle

In Section 2, we model the delayed gradient oracle as follows,

8t—r, = VI(Xe—r,) + & ,

where E[£;|x¢] = 0, as well as E[&;|w;] =0

Recall that standard stochastic optimization problems in ML can be described as follows,

Lnellrcl f(x) =E. p[f(x:2)],

when we assume we have an access to i.i.d. samples 21, 25 ... 2z ~ D, which can be used to compute gradient estimates.
Thus, using this formulation, in the delayed setting we can assume that,

gt—7, = vf(xtf'rﬁ Zt)

where z; is the random sample that is used by the (possibly stale) machine that provides g;_.,, which is the gradient
estimate that we use during our ¢’th update.

Since 21, 22 . .. z; are i.i.d., and since w; and x; depend only on w1, 21, 22 . .. z;—1, Which are independent of z;, we have,

:

E [V f(xe_r)xi] | @®)

E[gtf‘rt |Xt] =E [Ezt (Vf(xtfﬂ;ztﬂxta th‘rt)

where we have used the law of total expectation.

Similarly,

Elgi—r|wi] =E

Ezt (vf(xtf‘rﬁzt)‘wh thﬂ) ‘Wt‘|

=E [Vf(Xt_-,-t”Wtjl . (9)

Thus, the above Equations immediately imply E[£;|x;] = 0, as well as E[&;|w] = 0.

B. Proof of Theorem 3.1

Proof. First, note that from the definition of x;,

at(Xt - Wt) = al:tfl(xtfl - Xt) )
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where we define a1.0 = 0 and X is an arbitrary element in &C. Now, we use the standard gradient inequality to obtain:

T [T
E Y a(f(xe) = f(w)) | <E|D e VF(xe) " (x — w")

[T T
=E | ) o Vi) (xe —wi) + Y auVF(xe) (Wi — w")
t=1 t=1

T

T
=K Z 11 V(%) T (i1 — %) + Z V[ (xi—r,) " (Wy — W)

t=1 t=1

+E [at<vf(xt) = VI (x-r) " (we = W*)}

T T
<E Z a1 V(%) T (k1 — %) + Z g, (wy — w*)
t=1 t=1
T
+B D V) = VI xer) | lwe —w7l| (10)

t=1
where the third line uses the note above o (x; — W¢) = @1.4—1(Xt—1 — X¢), and the last is due to Cauchy-Schwarzt
inequality and the definition of g;_,.

The second term of Equation (10) is bounded by the OCO algorithm regret. Focusing on the last term, we wish to apply
smoothness assumption to bound ||V f(x:) — Vf(x¢—~,)||. For this purpose, we will examine the difference in iterate
average ||x: — X¢—, ||, and show that ||x; — x¢—., || < O(7/t).

Bounding ||x; — x:—,|| : Let z be the tail average of x; after t — 7, i.e.

t

1

QO .
tometlit

Clearly z € K and the following holds,

t
a1:¢X¢ = E ;W
=1

t—T7¢ t
= E QW + E QWi
i=1 i=t—Ti+1

=a1t—7 Xt—r, T 1, +1:4Z

Therefore, 14—, (Xt — X¢—r,) = Q4—r,+1:¢(Z — X¢), and by taking o, = ¢, we obtain:

Qp—7yi1:
3¢ = Xp—r, || = ——"F |z — x|

Q1:t—7y
t—m+1+1)

=Gt —n eyl

Ltn)?{t e L o e
2t Nz =l

S{u—mz

1z — x|



Supplementary material

Ift > 27, we have:

87',5D
7 .

xt — %t || <

Now Recall that the domain is bounded and therefore ||x; —x:—.,|| < D ; Vt. In addition, for t < 27, we have D < @.
Combining this with the above equation we conclude that,

8TtD

%t — x¢—r || < Vi, <t. (11)

Using the property of smooth functions,

8 LD
IV (00 = V. ()| < Ll = 1, ]| < 5= (12)

Final Bound : Combining Equations (10), (12) together with oy = ¢ and ||w; — w*|| < D yields:

T

T T
E Y a(f(xe) = f(w))| <E D ane1VI(xe) T (xem1 = x0) + Y auglr, (Wi —w")

= t=1

T
FE | Y il V) — VI xir,)[lwi — w¥
t=1

T T
=K Zalzt,1Vf(xt)T(xt,1 —x¢)| + E[Regp(w*)] + ZthLDQ

t=1 t=1

T
=E Zal:t,1Vf(xt)T(xt,1 —x;)| +E[Regy(w*)] +8LD*Tp, .

t=1

T
where p, = # is the average delay.

Next, we follow similar steps as in the proof of Theorem 1 of (Cutkosky, 2019). Using gradient inequality we have,
E [Vf(l‘t)T(Xt_l — Xt)] S E [f(xt_l) — f(Xt)] HCI’ICC,

T T
E Zat(f<xt) —f(w"))| <E Zm:tq(f(xtq) — f(x4))| +E[Regp(w*)] +8LD*Tyu, .

By subtracting E {Zle o f (xt)] from both sides of the equation we obtain,

T
—ar.rE [f(w"))] <E Z ar—1f(xe—1) — a1 f(x¢) | +E[Regp(w*)] +8LD* T, .

t=1

T(T+1)

Telescoping the above sum and dividing by a1, = =—=— conveys,
. 2Reg(w*) 16LD?p.,
E — <E 13
[f(xT) flw )] > { T2 + T+1 ° (13)

as desired. O
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C. SGD for Delayed Setting

Lemma C.1. Assume that f : IC — R is L-smooth. Let the online learning algorithm, A, be SGD algorithm, with update
rule

Wi = e (We — neougi—r,) -

Then, for oy = 1, np = \/ﬁ we obtain,
T
. 3D\/T(2G? + 20?)
S o (wi —we)| < VIO 20D
while for oy = t, n, = m we obtain,

T
> gl (wi—w)| < DT3/2\/2G? + 202 .
t=1

The above bounds yield,

o <RegT(w*)) o (D G+a> .
LT T
Remark: Note that in both cases if we denote the effective learning rate by 7j; = a7, implies 7j; = 0(1//1).

Proof. Using the Pythagorean Theorem we obtain,

Wi — w*[|* < [lwi — neovigi—r, — w2
= |lwe — w*|* = 2mcug (Wi —w*) + nof g |° -
Re-arranging,
w; — W% — ||wip — W*
2048/, (W —w*) < ” ” 77t|| I + || gi—r, |12
_ *(12 _ *[|2
o bW P e =W e 00
t

Summing from ¢t = 1 to 7" in expectation and applying oy = 1,y = \/ﬁ gives,

T T
2B | > gl (wi—w) <DQZ(— )+ (262 4 202) S
t=1 —1

M M-

D T
< = +(2G* + 20?)
- Z

< 3D+/T(2G? + 202)

where we define - = 0. In the last line we used i 7 S2VT.
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Summing from ¢ = 1 to 7" in expectation and applying o, = ¢, 7, = gives,

D
/13 (2G2+202)

T T T
1 1
) E tg_,, (w—w*)| <D? E < - ) + (2G? + 20?) E 2,
t=1

=1 =\t M1

T

D2
< — +(2G? +20?) Z 21
nr =

< 2DT3/?\/2G2? + 202,

where we again define - = 0. In the last line we used S VE< T3,
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D. Proof of theorem 3.3

Proof. As stated in Theorem 3.3, under optimistic OCO algorithm, we assume,

T T
Reg(w*) =Y aug/ . (Wi —w*) <O | D> oMy, — g1 o (14)
t=1 T=1

To bound the regret, we examine one summand, which depends on the difference between the hint M;_,, = g¢—1_-, ,,
and the received gradient g;_,.

HMt—Tt — 8t—7, H = ”gt—ﬂ, — 8t—1-71_, ||
< IVf(xt—r,) = VI (xem1—r )l 4 (1€ — &1l
< L”Xt*‘l't — Xt—1-71 || + ||£t - £t71||
< Lllx¢ = x¢—all + Lllxe—1 = x¢—1—r, || + Lllxe = xe—r || + 1€l + [[€-1 ]
2LD 8LDt1; 1 8LDmy
< _

where the first inequality is achieved by plugging in the equation for the gradients and triangle inequality and the second
uses smoothness. The third line uses again triangle inequality, and in the forth line we plugged in Eq. (11).

n . n 2
Using the Root Mean Square and Arithmetic Mean inequality, i.e. Zijll i</ Z"fll % | we obtain:

2LD 8LDr_; S8LDr, ?
. 21 _ t—1 t
BIIM. . — gr ] = (225 + 2227204 BEDT 4 e+ )
4L°D?*  64L2D?7? , 64L>D?r?
<5 = L1207 .
= ((15—1)2+ 1) g T

Therefore, for oy = ¢,

T
ERegr(w*)] <E |D,[2) " af[Mi—r, — gr—r,I?

t=1

T T T T
< Dy | > 160L2D% + Y "2560L2D%72 | + 640L2D2 Y " 72 + 2002 Y 2
t=1 t=1

= t=1 = t=1
T T
< D, |160L2D2T + 640L2D% > (472, + 77) + 2002 > 12
t=1 t=1
T T
<13LD>VT + D, |3200L2D2 Y " 72 + D, | 2002 ) 2
t=1 t=1

< 13LD?*VT +57LD*\/T(02 + ;i2) + 5D (T + 1)%/? |
where /i, is the delay average and o2 is the delay variance. The third line uses 79 = 0 to combine the sums, the forth line
exploits the known inequality 1/ Zf\;1 a; < sz\; a;, and in the last we plugged in Zthl 12 < M

Adding this to Equation (13), concludes the proof:

E[fGer) = f(w)] =0 (LDm tyeEti) oD, LDQm)

T3/2 \/T T
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E. Proof of Theorem 4.2

Proof. First we state a technical lemma that will be used throughout the proof of Theorem 4.2. Its proof is given in Section
E.l.

Lemma E.1. Foranyt > 1let oy = t2, and n, = C’i where C' is some constant. Also define avg 1= a1 and 19 := 1.
Then, the following holds V0 <t < s,

ey > agns s & afng < 4o ma

In addition, we require the following Lemma (see proof in Section E.3),

Lemma E.2. Under the same conditions of Theorem 4.2, the following holds,

T
> alxi—w) g < Zatmﬂg - M|f? +2Z(
=1

()

X W* 2
P t) [x¢41 — w7

T-1

1
+2Z(—)nxt+l vl + 207 (s)

Tt+1 n

Next, we relate term (i) to Zle ai(x; — w*) TV £(x). To do so, we require the following lemma,
Lemma E.3. Let f : K — R be an L-smooth function, then,
IVF(x) = VI)II* < LVF(x) = Vf(y) (x~y)

Concretely, if y € argmin, g f(x) then for any x € K we have
IVf(x) = V@I < LVf(x) " (x —y)

Proof of Lemma E.3. The first part is proven in (Needell et al., 2013). For the second part, notice that if y €
arg min, . f(x) then optimality condition imply that Vf(y)"(x —y) > 0; ¥x € K. Combining this with the first
part of the lemma establishes the second part. O

Using Lemma E.3 we obtain,

lge — My||> =V f(x4) = Vf(xe-1) + & — St—lHQ
=V f(x:) = V(W) + V(W) =V (xi1) + & — &l
<AV f(xe) = VW) P+ 4|V f(x-1) = VW) P+ 4l €N + 4] &1 |7
<ALV f(x,) " (x¢ — W) + 4LV f(x-1) " (01 — W) + 4)| &> + 4]|&—1))? (16)

n 2
where we used 2= Y. Z"j; %% in the third line.

Thus, we can bound (i) as follows,

T

OEDY ath g — M|

t=1

T T T
<S2LY iV f(xe) (ke = W)+ 20 aim V(1) (ko — W) +2 ) afm([1&7 + 16101
t=1 t=1 t=1
T T T
<20 afmVE(x) T (xe — W) + 8L af ymaVE(xem)  (xemr = W)+ 2> (€ (afm + afyymig)
t=1 t=1 t=1
T T
<10LY iV (x) (e = w*) +10> afm&l|? (17)

t=0 t=1
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where we define &y = 0. The third and forth line use V f(x;) " (x; — w*) > 0, which holds due to convexity of f and
optimality of w*, together with Lemma E.1.

Now, lets define, t* := min{¢ : 10Lafv7t < %at}. Note that according to Lemma E.1 ayn; is monotonic decreasing and
therefore V¢t > t*; 10La2n, < %at. Using this together with Eq. (17), as well as using the convexity of f that implies
V()" (x¢ —w*) > 0;Vt gives,

T T

() < 10LY afmVf(x) (e —a*) + 10 afml|&*

t=0 t=1

-1 T T
=10L Z 2V f(x) T (xy — w*) + 10L Z 2V f(x) T (xp — w*) + 102@?77,5”5,5”2
t=0 t=t* t=1

t*—1

T T
1
<10L Z a7neV (%) (x¢ = W) + B Z arVf(xe) " (% — w*) + 10204%7%”&”2
=1

t=0 t=t*

-1 T T
1
< 10L ; afntVf(Xt)T(xt —w*) + 3 ;atVf(xt)T(xt —w*) + 10t_21afnt|\£t||2 , (18)

where in the last line we use again the fact that V f(x;) " (x; — w*) > 0 ; Vt.

Plugging the above into Eq. (15) and re-arranging we obtain,

T
Zat(xt - Zat Xt — vf x¢) + Zat Xt — )Tft
t=1 t=1
t—1 -1,
< 10L a2V f(z)" )+ 2 (—)x w1 + D2
= tz% iV f(ze) (% Z T T [[xt41 — W™ m
1
+2 Z (771 - ) i1 — yell* + 102%7%”&”2 Zat X, = W) 'V f(x) -
o+ U P

which implies,

t*—1

onzt x; — w*) 'V f(x;) < 10L Z 2V f (x0) " (x4 +22 (

t=0

+22(

. 1
) |xtr1 — W ||2 + =D?
77t+1 Mt m

Nt+1

T
1 *

- ) e = yil? 4103 aZn &l =3 anlocs = w) e
M t=1 t=1

Combining the above with the strong-convexity of f(-) implies

T T
S auflxe) = £w)) < 3 (ulxe = w) VS - S5~ )
t=1

=1
1 1 H

< 20L a;nVf(x ) +4 ( - — — —« )x —w*|?
g iV f(xe) " ( Z o T 3 [[%e+1 |

(A) B)

2
- ) e 1 — yell? +77 D? + 202% nll&ell® — 220% X —w*) &
Tt

t=1 t=1

+4Z<

Tt+1

©
19)

Next we bound the above three terms.
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Bounding (A) Using the expression for 7, and assumption 1,3 we have,

t*—1

(A) :=10L Z a?ntVf(Xt)T(xt —w")
t=0

80LGD
< Z E

AR0LGD '
< — > o(t+1)

t=0

240LGD , .,
< - - *
<—% )

where in the two last lines we have used o, = t2. Now, using the weights together with the definition of ¢* := min{¢ :
10Laf77t < %at} and the expression of 7; implies,

L
t* <160—
< 60H

Plugging this back to the above bound on (A) we finally obtain,

L\?
(A) < 2-10°GD () (20)
H
Bounding (B) Recalling that ;. := oy immediately implies,
T-1
1 1 H
B) := Sl X1 — w2 =0 21)
( ; (Ut+1 m 8 t+1> %41 | (

Bounding (C) To bound term (C) we use Remark 4.1, in conjunction with the contraction property of the projection
operator to obtain in expectation,

E [[xe41 = yell] < 1B [[Megall] < g1V2G? + 202

The above enables to bound term (C)

T—1
E[C)]:=E ( >||xt+1 yill?
Mt+1

t=1
g [t
=7 o ||Xei1 — yil?
t=1
H(G? +0%) .
< 5 Z at+177t2+1
t=1
32(G? + 0?) = ( Qi )2
= — Qg1
H ] Qi1
<1200c:2+o )~ (t+1)
S S (t(t+1)(2t + 3))?
2
_120(E 407 @

H

where we used ay = 2.
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Final Bound Combining the bounds in Equations (20) (21) and (22) and assumption 2 into Eq. (19) and taking expec-
tation implies,

T
E | Y a(f(x) = f(w)| <O(GD(L/H)" +(G* +0%)/H)T + HD® + (o> /H)T?) (23)
t=1
Recalling X7 Z;‘FZI a;x and using Jensen’s inequality established the theorem. O
E.1. Proof of Lemma E.1

Proof of Lemma E.I. When s > t,

Ny 2 gl
(3

1 1
<

My~ Qs

)
1 1
A+3+ - <2543+
S

)

t_
o€t —s)< 2

ts11

1
2> —
ts
which is true Vt,s > 1. For s = ¢, aymy > g7 1s trivially true.

The second part follows from

ajm < 4o yme—y
X
t3 At - 1)3
t+D)Et+1) = (2t —1)

which is true for ¢t > 2. For t = 1, the inequality is true by definition of o, 71, ag, 7.

E.2. Proof of Remark 4.1

Proof. According to the update rule for x; as stated in Alg. 3,
xeX

| 1
x; = argmin |aux' M, + —|x - yt_1||2}
L 2n:

1 2 T 2
= — -2 1 - M — )
arg min o (||x|| X (yeo1 — ameMy) + |lye—1|

= argmin [[pe (v — o)

=k (yi—1 — un:My)
Plugging in 1y = ﬁm concludes the first part of the Remark. The proof of the second part is equivalent to the above, for

update rule y;, = argmin |,y 'g; + %Hy — yt,1||2}. O
yeK: Mt
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E.3. Proof of Lemma E.2

Proof.
T
D aulxi—w) g = Zoét x: = ye) ' (8 — Mp) +ar(x; — yi) ' My + ai(ye — w*) g (24)
t=1 (A) (B) ©)

For simplicity, we will denote D (x,y) := 3|x — y||?. Note that since 3||x — y||? is the Bregman Divergence of

R(x) = 3|/x||?, inequalities of Bregman Divergence hold true. Specifically, we make use of the three point property,
Dr(x,y) + Dr(y,2) = Dr(x,2) + V,Dr(2,y)" (x —y) .

Bounding (A)

S (e —yo) (g — M) <> ayllgr — Mylll|x — vl (Cauchy Schwartz Inequality)

2
o 2
+ Lx¢ — vl

T
P 2
§Z§Hgt—Mt” 2

o~
I
A

where the last line is due to Young’s Inequality, ab < inf,~o (pa®/2 + b%/(2p)).
By setting p = a2, we get the following upper bound for term (A)

1
Mt”2 + Tm”xt - Yt||2

T T
z;at(xt —Yt) -M,) < Z
= =1

Bounding (B)
T T 4
Z ai(x; —yi) "M, < Z ;VzDR(Xtv yi-1)" (yt —x;) (Optimality for x;) 25
t=1 =11t
1
= Z P (Dr(yt,yi-1) — Dr(xt,yi-1) — Dr(y:,%¢)) (Bregman Divergence property )
=11t
(26)
Bounding (C)
T T 4
Sy —w) g <Y VDRt yi-1)"(w* —y;) (Optimality fory,) 27
t=1 t=1 1t

T
1 * * .
= Z P (Dr(W*,y1-1) — Dr(yt,yi-1) — Dr(w*,y:)) (Bregman Divergence property )
il

(28)



Supplementary material

Final Bound Combining the bounds in Equations (25) (26) and (28) into Eq. (24) implies,

T
> nlx—w) g < Z f”‘fngt M, + —nxt yil?
= t=1

1 * *

+ 777 (DR(W aytfl) - -DR(W ayt) - DR(Xtaytfl) - DR(yt7xt))
t
T 9
« 1
= Z ik gt — M| + Tm”Xt —yel?

2
1 . . 1 2 2
+ — ( Dr(W",ye-1) = Dr(w"y0) = 5 (Ixe = yel* +lx = yia )
%’
g~ M +Z<

1 1
g — My|” + < —> yi —w||* + —D?
" lg, - My E o m [yt | m

1
) Dr(w",yi) + —D?
77t+1 Nt m

T-1

T
1
<30 - M 2 Y (S = o e - w P
; Z M+1 N
T-1
11 s 1o,
+2 ( —> Xt4+1 — Yt + —D (29)
S (s~ e el
where in the third line we used D (x,y) := 1[jx — y|*.

This establishes the lemma. O
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F. Proof of Theorem 4.3

Recall that under assumptions 1,2 from Section 2, we can show the following bound on the expected norm of the gradients,
Elg: < G = V/2G? 4 202. Nevertheless, working with this in-expectation bound makes the proof a bit cumbersome.
Therefore, to simplify the analysis, from now on we will assume that ||g|| < G with probability 1. Both assumptions lead
to exactly the same in expectation guarantees as those we state in Theorem 4.3.

Proof. We first Note that Lemma E.2 is true for the delayed setting as well,

L d a?n — /1 1
a(xy —w) Tg_r, < g, o — My, ||?+2 (—)x 1 —w?
; (X ) 8t—r tz::l 5 I8t—r. = Me—r | ; o m l[xe+ |

T-1
1 1 1
+2 ( - ) lIx¢11 — Yt||2 + —D? (30)
M+1 Tt m

Next, we relate term (i) to Y7, vy (x¢ — w*) TV f(x¢).

lgt—r, = My, | = IV F(Xt—7,) = VI (Re-1-m, ) + Etmry = Em1-r, |12

= |V f(xi—r,) = Vf(xe) + V(x0) + VI (xim1) = VI(xi—1) = VI (Kem1-r,y) + Emry — Et1—ri |1

<5V f(ximr,) = V() + 51V F(xe) = VF(xem1) |+ 5V f(x6-1) =V (xem1-7, )|
+5([|€—r |I” + 1€—1-r, . [I7)

<5V F(xe) = VI (xe-1) 12+ 5L %0 = Xemr, |2+ 5L [ xm1 = X1y [P+ 5([€—r |1 + [ €—1-7, . [1%)

<10V f(xe) = VAW +10[V f(xe—1) = VF(W*)|[* + 5L2||x¢ = x—7 |* + 5L 30 —1 — Xgm1—7,, ||
+5([1€—r I” + 1€—1-r, . [I7)

<10LVf(x) " (x¢ — W) + 10LV f(x1) T (x¢—1 — W*) + 5L2||x; — x4, ||* + 5L2||x—1 — X¢— 17, ||?
+5([[€e—r, I + 1€e—1—r,_ I17) 3D

n . n 2 . .
where we used Lo \/ ==t % and smoothness. The last line is due to Lemma E.3.

n =

Next, we wish to bound ||x; — X;_,||. Using Remark 4.1 with the contraction property of the projection operator, we
obtain for o, = t2,

24G

Ht '’
48G

_ < ||M,; — < —

HXt .Yt|| _77tH t gtH— Ht °

lye — yio1ll <mellgell <

48G

th*Tt _yt*Tt” Sﬁt*TtHMt*Tt - gt*TtH < m !
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Combining all of the above, we obtain

t

Ixe = Xer, || < lIxe = yell + yer, = Xe—r 4+ D ys =yl

s=t—T¢
48G 48G 2UG 1
STH TH(G-n) | H 2. 5

48G 24G(1 +2)
- Ht H(t — Tt)
- 48G N 48G(1; + 1)
= Ht Ht
< 48G(Tt + 2)
= Ht

where in the forth line we assume 27; + 2 < t. When t < 27; + 2, we have,

26 _ 246G - 48G!(11 +2)
H - H -  Ht

Recalling that for strongly convex functions we have,

Vi) = VI _ 26

I~ I < - <=

which we also prove in Subsection F.1 for completeness, we obtain,

48G!(1; + 2)

vt .
Ht

%t — Xt || <

Combining Equations (31) and (33), we obtain

T

2

. (0%

M= > gir, — Mio |
t=1

T T
< 5LZ 2V f(x) " (x¢ — w*) + 5L Z 2 Vf(xe-1) (x4-1 — W)
t=1 t=1

(32)

(33)

+3L22atﬁt||xt Xt— n||2+3L2204t77t||Xt 1= X1 | +3Zat7h 1€ 1? + €17, IIP)

t=1 = t=1
T T
<BLY i Vf(xe) T (xe = w*) + 200> af o VF(xeo1) (xeo1 — W)
t=1 t=1
2. 243G (1, + 2)2 2-243G?(1y_1 +2)?
12172 3L%n D + 12172
* Z H3t oL E ; H3(t—1)

+ 3Za?nt(||£mt 1+ 1€—1-r 0 1%)
t=1
T

< 25LZaf77tVf(xt)T(xt —w") +

t=1

2244 L2GPT (02 + 2 + 4y + 4)
H3

T
+3Y aim((|€—r 17 + 1€-1-r, P)

t=1

+3L%m,

(34)
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where in the second inequality we used Lemma E.1 with V f(x;) " (x; —w*) > 0; the third inequality uses again the bound
Vix) T (x¢ —w*) > 0.

Now, lets define, t* := min{t : 25La?nt < %at}. Similarly to the proof of Theorem 4.2, since ayn; is monotonic
decreasing, Vt > t*; 25La?n;, < %at. Using this in (34) together with the convexity of f that implies V f(x;) " (x; —
w*) > 0;Vt gives,

T .
. 2244 L2G2T (02 + 2 + 4pr + 4
(1) <25L E 2V f(x) " (x¢ — w*) +3L%m D + (o AN A )

3
t=1 H
T
+ 3Zat2ﬁt(|\£t—n 12+ [1€—1-7_, 1)
t=1
"1 T
=25L Z 2V f(xe) " (xg — w*) + 25L Z 2V f(x) " (xg — w*) + 3L D

t=1 t=t*

L2 44 L2G?T (02 + p2 + 4, + 4

T
)
+3Y aini((l€—r 1 + 1€—1-r, |*)

H3
t=1
= 2 T * 1 a T * 2
<25L ; agneV fxe) (xe —=w") + 5 t;: aVf(xe) (x¢ —w") +3L°m D
= T
e R Y IS R P
'« 2 T * 1 = - T * 2
<251 ; AV f (xe) " (% —w") + 5 ;atw(xt) (x¢ — W*) + 3L*n, D
= T
4 22U i 2 e 2 ) |5 S (e, 2+ i)
' 2 T * 1 a - T *
=25L ; a;mVf(xy) ' (xg —w") + 3 ;atVf(xt,n) (x¢ —w™)

T
+ % ;at(vf(xt) — Vf(xir)) " (x¢ — W*) + 3L* D

2244 L2GPT (02 + 2 + 4y, + 4
+ e

T
) 43 a2l + [E1om ). (35)

t=1

where in the third inequality we use again the fact that V f(x;) " (x; — w*) > 0 ; Vt.
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Plugging the above into Eq. (30) and re-arranging we obtain,

T
Zat(xt— gt T Zat Xt — Vf Xt—7, +Zat Xt — )Tét
t=1

t=1
. -1,
< 5L S a0,V f(x)T )+2 ( _>X v
; iV (%) (% Z Ner1 M i1 = w7
1 *
+ZZ (Tll_)|xt+1 yel® + 5 ZatVf (xt—r) " (e = w7)
4

T % Zat(Vf(Xt) - vf(xt—Tt))T(Xt _ W*) + 3L2771D 4 %Dz
1

2. UAL2GAT (02 + 2 + Apr +4)
+ e +3 aim(lé—n | + [1€-1-r, 17)
t=1

which implies,

t—1 T—1
1
—Zat (W) TS0 < 50 3 b)) +2 3 (e w1
t=0 t
T-1 1
”Z<nl>”"t+l yall2+ 1 Zatw xi-n) (%1 — W)
t+ U

S k) — Vo) e~ W) 4 82D ¢ Lps
1

2. UAL2CRT (02 + 2 + 4 +4) o
+ e +3) afm(l€e—r|® + ll€e—1-r, . |1*)

T
— Z Oét(Xt — W*)Tft .
t=1

Combining the above with the strong-convexity of f-) implies,

T T
S elf )~ Fw ) < 3 (m(xt W) TV = - w )

T
aH
Z (O‘t X = W) 'V f(xmr,) + r(VF(xe) = V(%e-7,)) " (x0 — W) — t2 (b
t*—1 1 J24
< 50L Y 4 - —w*|?
- ; oim VI )" b =)+ Z (Ut+1 n 8 aHl) e = =]
(A) B)
+4 Z ( - ) e 1 — yell? +2204f Vi(xe) = VI(xe-r)) T (%0 = W)
Ne+1 ui —
© (D)
4248 L2GPT (02 + 12 + 4y + 4 d
+ (H3 ,u H )+ D2+6L277 D—ZZat Xt W)TEt
t=1

T
+6)_ aim(|€—r? + 1€-1-r, *)

t=1

(36)
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Terms (A) — (C) can be bounded exactly as in Theorem 4.2 proof, with t* < 320%, ie.:

(W) <0 (GD (§)3> ,

B)=0,

G?’T
(C)zO( T ) .

So, we are left with bounding term (D).

Bounding (D)

D) : ar(Vf(xe) = V(%e-r,)) " (x¢ = W")

-

~
Il
-

M=

Q;y HVf(Xt) - Vf(xtfn)” x¢ — w*||
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[\VR ISt
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* (12 Ck? 2
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o
Il
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o 2o

H
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-

20 L
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INES
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~~
Il
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N 10°L2G2T (02 + p2 + 4y + 4)
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(37)
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INES
=
%
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Il
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where the second line is due to Cauchy-Schwartz Inequality, the third line is due to Young’s Inequality, ab <
inf,~0 (pa?/2 + b/(2p)), when in the fourth line we took p = <. The fifth line utilizes smoothness and strong

convexity which implies £ ||x — w*||> < f(x) — f(w*). The last line uses (33) and Root Mean Square with Arithmetic

n . n 2
Mean inequality, i.e. i %o \/ &=Lt
n n

Final pound As we mentioned at the beginning of this proof, under assumption 1,2 from Section 2, in expectation we
have G = v/2G? + 202. Combining the bounds in Equations (20) (21) (22), (37) and assumption 2 into Eq. (36) and
taking expectation implies,

H H3 H
(38)

T
GDL3 G2 2 T L2D2 L2 G2 2 T 2 2 2T2
E § at(f(xt) _f(w*)) <O< e + ( "I_{U ) +HD2+ + ( +o ) (0'7—“1‘/147-) + o >
t=1

Recalling X7 23:1 X and using Jensen’s inequality established the theorem. O
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F.1. Proof of Inequality (32)

Proof. Let us define F'(x) £ f(x) — £ ||x||%. Note that F'(x) is convex, which follows from,

F(y) ~ F(x) = £(y) ~ 1) — o (lyll> — [xI?)
> V()T (y —x) + eyl 5 (vl — xIP)
=Vix)(y—x) - Hx' (y —x)
= VF()T(y %)

From the monotone gradient condition for convexity of F'(x) we obtain,

(V)= Vi) (y—x) =(VF(y) - VF(x) (y —x) + H(y = x) " (y = x) > H|ly — x|]?

b

where the second line uses strong convexity of f(-). Using Cauchy-Schwartz on the above inequality gives,
IVF(y) = VIl = xll = (Vi(y) = V) (v —%) = Hly - x|

Dividing both sides of the inequality above by |y — x|| concludes the proof.
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Algorithm Delay
g X — SGD —— False
\ —— Anytme SGD == True
\
2 6 \
— \
2 \
1]
8 a1\
I‘\\
24 / B S
S ) A A
0 1 1 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Figure 3. Expected excess loss as function of epochs when 7+ = 500, with learning rate optimized for each of the algorithms for zero
delay regime.
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Figure 4. Accuracy as a function of learning rate when 7; ~ Lognormal(7,0.47)

G. Further Experiments

As was mentioned in Section 5, Figure 1 demonstrates the final test accuracy for different delay regimes. Figure 3 expands
on the regime of 7, = 500, and compares between the expected excess loss of our algorithm and that of SGD as was
suggested by (Stich & Karimireddy, 2020). While the addition of the delay affects the convergence, as evident from the
theoretical bounds as well, in anytime SGD the expected loss approaches the optimal one, while that of SGD does not.

While Figure 2 demonstrates the performance of the algorithms on a wide range of learning rates when 7, = 500, in
Figure 4 the delay is distributed Lognormal(7,0.42), a heavy-tail distribution. This shows that anytime SGD performs
better when a high maximal delay, but reasonable mean, is present.



