
Locally Adaptive Label Smoothing for Predictive Churn

A. Proofs
For the proofs, we make use of the following result from Jiang (2019) which bounds the number of distinct k-NN sets on
the sample across all k:

Lemma 1 (Lemma 3 of Jiang (2019)). Let M be the number of distinct k-NN sets over X , that is, M := |{Nk(x) : x ∈
X}|. Then M ≤ D · nD.

Proof of Theorem 1. We have by triangle inequality and the smoothness condition in Assumption 1 that:
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We now bound each of the two terms separately.

To bound rk(x), let r =
(

2k
ω·vD·n·pX,0

)1/D

. We haveP(B(x, r)) ≥ ω infx′∈B(x,r)∩X pX(x′)·vDrD ≥ ωpX,0vDrD = 2k
n ,

where P is the distribution function w.r.t. pX . By Lemma 7 of Chaudhuri & Dasgupta (2010) and the condition on k, it
follows that with probability 1 − δ/2, uniformly in x ∈ X , |B(x, r) ∩X| ≥ k, where X is the sample of feature vectors.
Hence, rk(x) < r for all x ∈ X uniformly with probability at least 1− δ/2.

Define ξi := yi − η(xi). Then, we have that −1 ≤ ξi ≤ 1 and thus by Hoeffding’s inequality, we have that Ax :=∑n
i=1(yi − η(xi)) · 1[xi∈Nk(x)]
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By Lemma 3 of Jiang (2019), the number of unique random variables Ax across all x ∈ X is bounded by D · nD. Thus,
by union bound,
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The result follows.

Proof of Theorem 2. Let X be the n sampled feature vectors and let x ∈ X . Define k′(x) := |X ∩B(x, rβ(x))|. We have:

|ηk(x)− η̃β(x)| ≤ |ηk′(x)(x)− ηk(x)|+ |ηk′(x)(x)− η̃β(x)|.

We bound each of the two terms separately. We have
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By Hoeffding’s inequality we have
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Dataset (m=5) Accuracy (%) Churn (%) Churn Correct Churn Incorrect
SVHN 90.34 (0.31) 6.61 (0.19) 2.75 (0.28) 43.12 (1.49)
MNIST 98.5 (0.07) 0.94 (0.14) 0.44 (0.09) 33.74 (4.39)
Fashion MNIST 89.71 (0.12) 4.05 (0.14) 1.85 (0.05) 23.16 (1.29)
CelebA Smiling 90.56 (0.09) 3.35 (0.16) 1.82 (0.11) 17.95 (0.99)
CelebA High Cheekbone 85.12 (0.16) 4.95 (0.2) 2.87 (0.1) 16.81 (1.24)
Phishing 96.11 (0.06) 0.54 (0.08) 0.29 (0.08) 6.77 (1.31)

Table 2. Ensemble results for all datasets. In all settings, the optimal m (number of subnetworks) is 5. We see that compared to the other
methods presented, ensembling does well in both predictive performance and in reducing churn. It does come at a cost, however: the
model is effectively 5 times larger, making both training and inference more expensive.

By Lemma 3 of Jiang (2019), the number of unique sets of points consisting of balls intersected with the sample is bounded
by D · nD and thus by union bound, we have with probability at least 1− δ/2:

sup
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where the first inequality follows by comparing the difference contributed by the shared neighbors among the k-NN and
k′(x)-NN (first term on RHS) and contributed by the neighbors that are not shared (second term on RHS).

For the second term, define Ax := X ∩ B(x, rβ(x)). For any x′ sampled from B(x, rβ(x)), we have that the expected
label is η̃β(x). Since ηk′(x)(x) is the mean label among datapoints in Ax, then we have by Hoeffding’s inequality that
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By Lemma 3 of Jiang (2019), the number of unique sets Ax across all x ∈ X is bounded by D ·nD. Thus, by union bound,
with probability at least 1− δ/2L

|ηk′(x)(x)− η̃β(x)| ≤
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The result follows immediately for n sufficiently large.

B. Ensemble Results
In Table 2 we present the experimental results for the ensemble baseline. The method performs remarkably well, beating
the proposed method and the other baselines on both accuracy and churn reduction across datasets. We do note, however,
that ensembling does come at a cost which may prove prohibitive in many practical applications. Firstly, having m times
the number of trainable parameters, training time (if done sequentially) takes m times as long, as does inference, since
each subnetwork must be evaluated before aggregation.
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Fixed Ablated Accuracy (%) Churn (%) Churn Correct
k = 10, a = 1 b = 0 86.54 (0.67) 13.43 (0.58) 5.86 (0.57)

b = 0.05 87.37 (0.38) 12.22 (0.31) 5.34 (0.31)
b = 0.1 86.94 (0.65) 13.41 (0.39) 5.69 (0.57)
b = 0.5 88.48 (0.52) 11.12 (0.5) 4.37 (0.35)
b = 0.9 88.98 (0.33) 10.98 (0.28) 4.64 (0.29)

k = 10, a = 0.5 b = 0 84.44 (2.43) 15.85 (2.39) 6.73 (2.47)
b = 0.05 79.64 (3.1) 22.02 (5.15) 10.28 (4.06)
b = 0.1 79.88 (2.63) 21.09 (3.59) 10.25 (1.85)
b = 0.5 84.44 (2.54) 14.33 (1.78) 6.52 (2.83)
b = 0.9 81.06 (2.35) 20.53 (4.52) 8.68 (3.36)

k = 10, b = 0.9 a = 0.005 73.91 (3.01) 28.02 (5.66) 13.85 (4.82)
a = 0.01 72.41 (4.86) 25.57 (5.78) 13.66 (7.01)
a = 0.02 72.03 (1.79) 31.25 (7.25) 17.26 (6.56)
a = 0.05 73.2 (3.33) 30.41 (6.2) 17.96 (6.04)
a = 0.1 75.28 (1.98) 23.96 (4.76) 10.13 (4.25)
a = 0.5 81.06 (2.35) 20.53 (4.52) 8.68 (3.36)
a = 0.8 85.99 (0.73) 13.76 (0.75) 6 (0.83)
a = 0.9 87.27 (0.41) 13.72 (0.41) 5.68 (0.32)
a = 1.0 88.98 (0.33) 10.98 (0.28) 4.64 (0.29)

k = 10, b = 0.5 a = 0.005 71.45 (3.81) 21.14 (4.37) 11.5 (5.46)
a = 0.01 74.73 (6.24) 25.24 (3.84) 8.28 (4.35)
a = 0.02 73.59 (3.72) 29.47 (6.89) 17.52 (6.13)
a = 0.05 74.17 (3.88) 20.26 (4.15) 5.79 (3.7)
a = 0.1 72.43 (2.75) 25.77 (5.41) 13.42 (4.89)
a = 0.5 84.44 (2.54) 14.33 (1.78) 6.52 (2.83)
a = 0.8 87.26 (0.41) 11.76 (0.24) 4.62 (0.21)
a = 0.9 86.85 (0.54) 12.54 (0.44) 5.25 (0.48)
a = 1.0 88.48 (0.52) 11.12 (0.5) 4.37 (0.35)

a = 1, b = 0.9 k = 10 88.98 (0.33) 10.98 (0.28) 4.64 (0.29)
k = 100 88.19 (0.19) 11.15 (0.23) 4.67 (0.17)
k = 500 87.98 (0.62) 11.33 (0.35) 4.72 (0.55)

Table 3. Ablation on k-NN label smoothing’s hyperparameters: a, b, and k for the SVHN dataset.

C. Ablation Study
In Table 3, we report SVHN results ablating k-NN label smoothing’s hyperparameters: k, a, and b. We observe the
following trends: with a fixed to 1, both accuracy and churn improve with increasing b, and a similar relationship holds as
a increases with b fixed to 0.9. Lastly, both key metrics are stable with respect to k.

D. Hyperparameter Search
Our experiments involved performing a grid search over hyperparameters. We detail the search ranges per method below.

k-NN label smoothing.

• k ∈ [5, 10, 100, 500]

• a ∈ [0.005, 0.01, 0.02, 0.05, 0.1, 0.5, 0.8, 0.9, 1.0]

• b ∈ [0, 0.05, 0.1, 0.5, 0.9]

Anchor.
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• a ∈ [0.005, 0.01, 0.02, 0.05, 0.1, 0.5, 0.8, 0.9, 1.0]

`1, `2 Regularization.

• a ∈ [0.001, 0.01, 0.05, 0.1, 0.2, 0.5]

Co-distill

• a ∈ [0.001, 0.01, 0.05, 0.1, 0.2, 0.5]

• nwarm ∈ [1000, 2000]

Bi-tempered

• t1 ∈ [0.3, 0.5, 0.7, 0.9]

• t2 ∈ [1., 2., 3., 4.]

• niters always set to 5.

Mixup

• a ∈ [0.2, 0.3, 0.4, 0.5]

Ensemble

• m ∈ [3, 5]


