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Abstract
Modern machine learning models with high ac-
curacy are often miscalibrated—the predicted top
probability does not reflect the actual accuracy,
and tends to be over-confident. It is commonly
believed that such over-confidence is mainly due
to over-parametrization, in particular when the
model is large enough to memorize the training
data and maximize the confidence.

In this paper, we show theoretically that over-
parametrization is not the only reason for over-
confidence. We prove that logistic regression is
inherently over-confident, in the realizable, under-
parametrized setting where the data is generated
from the logistic model, and the sample size is
much larger than the number of parameters. Fur-
ther, this over-confidence happens for general
well-specified binary classification problems as
long as the activation is symmetric and concave
on the positive part. Perhaps surprisingly, we also
show that over-confidence is not always the case—
there exists another activation function (and a
suitable loss function) under which the learned
classifier is under-confident at some probability
values. Overall, our theory provides a precise
characterization of calibration in realizable binary
classification, which we verify on simulations and
real data experiments.

1. Introduction
Modern machine learning models such as deep neural net-
works with high accuracy tend to be miscalibrated: The
predicted top probability (confidence) does not reflect the
actual accuracy of the model, and tends to be over-confident.
For example, a WideResNet 32 on CIFAR100 has on av-
erage a predicted top probability of 87%, while the actual
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Realizable Logistic Regression
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Figure 1. Reliability diagrams for calibration: Over-parametrized
deep network vs. well-specified, under-parametrized logistic re-
gression. The x-axes denote the confidences (predicted top proba-
bilities) of the models. Left: 50-layer WideResNet on ImageNet.
Right: Binary logistic regression on simulated data with n = 2000
and d = 100.

test accuracy is only 72% (Guo et al., 2017). As the con-
fidence is often comprehended as an estimate of the true
accuracy, such over-confidence could be dangerous, espe-
cially in risk-sensitive domains such as medical AI (Begoli
et al., 2019), self-driving cars (Michelmore et al., 2018),
and so on. To address this issue, there is a growing line of
research on improving the calibration of models, by either
performing recalibration of well-trained models to adjust
the confidence scores (Platt et al., 1999; Zadrozny & Elkan;
Naeini et al., 2015; Guo et al., 2017), or by averaging the
predictions over multiple models to make the confidence
scores more accurate (Lakshminarayanan et al., 2016; Gal
& Ghahramani, 2016). These methods in general can re-
duce the over-confidence and improve the calibration of the
model, while preserving (or even improving) the model’s
accuracy (Ovadia et al., 2019).

Despite these progresses, the more fundamental question
of why such over-confidence happens for vanillaly trained
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models remains not satisfactorily understood. One common
understanding is that over-confidence is a result of over-
parametrization: Models such as deep neural networks are
large enough to memorize the entire training dataset, and
are encouraged to magnify its weights and maximize the
confidence so as to minimize the training loss (Mukhoti
et al., 2020). Guo et al. (2017) also observed that increasing
the depth and width makes the over-confident more severe,
even when this improves the accuracy. However, so far it
is unclear whether over-parametrization is the only reason,
or whether there are other intrinsic reasons leading to over-
confidence.

In this paper, we show that over-confidence is not just a
result of over-parametrization and is more inherent. We
conduct a precise theoretical study on the calibration in
binary classification problems. Our main result shows that
standard logistic regression is also over-confident, even
in the well-specified, under-parametrized scenario where
the model is correct (data generated from a linear logistic
model), and there is abundant data (number of samples n
much greater than number of parameters d).

Figure 1 illustrates our main finding via simulation: Similar
to an over-parametrized neural network, the empirical risk
minimizer of logistic regression is also over-confident at
all confidence levels. Note that these two models have
rather different behaviors in terms of the distribution of
confidences, yet their over-confidence behaviors are similar.

Our contributions are summarized as follows:

• We show that well-specified logistic regression is in-
herently over-confident: Conditioned on the model
predicting p > 0.5, the actual probability of the label
being one is lower by an amount of Θ(d/n), in the
limit of n, d → ∞ proportionally and n/d is large
(Section 3). In other words, the calibration error is
always in the over-confident direction. We also show
that the overall Calibration Error (CE) of the logistic
model is Θ(d/n) in this limiting regime.

• We identify sufficient conditions for over- and under-
confidence in general binary classification problems,
where the data is generated from an arbitrary nonlinear
activation, and we solve a well-specified empirical
risk minimization (ERM) problem with a suitable loss
function (Section 4). Our conditions imply that any
symmetric, monotone activation σ : R → [0, 1] that
is concave at all z > 0 will yield a classifier that is
over-confident at any confidence level.

• Another perhaps surprising implication is that over-
confidence is not universal: We prove that there exists
an activation function for which under-confidence can
happen for a certain range of confidence levels.

• We perform simulation and real data experiments to
test our theory (Section 5). Our experiments suggest
that the over-confidence of logistic regression happens
broadly in a variety of under-parametrized settings,
within or beyond our theory’s assumptions. We also
verify that under-confidence can indeed happen in sim-
ulations with the activation function constructed above.

• On the technical end, our analysis develops a precise
understanding of the high-dimensional proportional
limit of ERM in the sufficient data regime (n/d is
large) by rigorously establishing the first-order behav-
ior of the solution to the characterizing system of non-
linear equations (Section 6), which may be of broader
interest.

1.1. Related work

Algorithms for model calibration Practitioners have ob-
served and dealt with the over-confidence of logistic re-
gression long ago. Recalibration algorithms fix this by
adjusting the output of a well-trained model, and dates back
to the classical methods of Platt scaling (Platt et al., 1999),
histogram binning (Zadrozny & Elkan) and isotonic regres-
sion (Zadrozny & Elkan, 2002). Platt et al. (1999) also uses
a particular kind of label smoothing as a way of mitigating
the over-confidence in logistic regression. Guo et al. (2017)
show that temperature scaling, a simple method that learns
a rescaling factor for the logits, is a competitive method
for calibrating neural networks. A number of recent recal-
ibration methods further improve the performances over
these approaches (Kull et al., 2017; 2019; Ding et al., 2020;
Rahimi et al., 2020; Zhang et al., 2020).

Another line of work improves calibration by aggregating
the probabilisitic predictions over multiple models, using
either an ensemble of models (Lakshminarayanan et al.,
2016; Malinin et al., 2019; Wen et al., 2020; Tran et al.,
2020), or randomized predictions such as Bayesian neural
networks (Gal & Ghahramani, 2016; Gal et al., 2017; Mad-
dox et al., 2019; Dusenberry et al., 2020). Finally, there are
techniques for improving the calibration of a single neural
network during training (Thulasidasan et al., 2019; Mukhoti
et al., 2020; Liu et al., 2020).

Theoretical analysis of calibration Kumar et al. (2019)
show that continuous rescaling methods such as tempera-
ture scaling is less calibrated than reported, and proposed
a method that combines temperature scaling and histogram
binning. Gupta et al. (2020) study the relationship between
calibration and other notions of uncertainty such as confi-
dence intervals. Shabat et al. (2020); Jung et al. (2020) study
the sample complexity of estimating the multicalibration
error (group calibration). A related theoretical result to ours
is (Liu et al., 2019) which shows that the calibration error
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of any classifier is upper bounded by its square root excess
logistic loss over the Bayes classifier. This result can be
translated to a O(

√
d/n) upper bound for well-specified

logistic regression, whereas our main result implies Θ(d/n)
calibration error in our high-dimensional limiting regime
(with input distribution assumptions).

High-dimensional behaviors of empirical risk minimiza-
tion There is a rapidly growing literature on limiting char-
acterizations of convex optimization-based estimators in the
n ∝ d regime (Donoho et al., 2009; Bayati & Montanari,
2011; El Karoui et al., 2013; Karoui, 2013; Stojnic, 2013;
Thrampoulidis et al., 2015; 2018; Mai et al., 2019; Sur &
Candès, 2019; Candès et al., 2020). Our analysis builds on
the characterization for unregularized convex risk minimiza-
tion problems (including logistic regression) derived in Sur
& Candès (2019).

2. Preliminaries
In this paper we consider binary classification problems,
where we observe n data points {(xi, yi)}ni=1

iid∼ P for
some distribution P on Rd × {0, 1}.

2.1. Calibration

Let f̂ : Rd → [0, 1] be a (probabilistic) classifier. f̂ is
said to be perfectly calibrated if P(Y = 1|f̂(X) = p) = p
for all p ∈ [0, 1], that is, the actual probability of Y = 1

conditioned on f̂ predicting p is exactly p. In reality, we
cannot hope for obtaining perfect calibration, and would
rather desire ways of measuring the calibration error.

A standard metric is the Calibration Error (CE), which mea-
sures the difference between the prediction and the condi-
tional mean of Y given the prediction (Guo et al., 2017):

CE(f̂) := E(X,Y )∼P

[∣∣∣f̂(X)− E[Y | f̂(X)]
∣∣∣]. (1)

Notably, CE is the population (unbinned) version of the
Expected Calibration Error (ECE), a commonly used cali-
bration metric in recent work (Naeini et al., 2015; Guo et al.,
2017; Ovadia et al., 2019; Nixon et al., 2019).

In this paper, we consider the calibration error of f̂ at level
p:

∆cal
p (f̂) := p− P(X,Y )∼P

(
Y = 1 | f̂(X) = p

)
(2)

for all p ∈ (0, 1). Note that ∆cal
p (f̂) is the quantity inside

the expectation in (1), and provides a more fine-grained
characterization of the calibration error by specifying which
p we are interested in.

Over-confidence and under-confidence The confidence
of f̂ at x is the predicted top probability, i.e. max{f̂(x), 1−

f̂(x)} for binary problems. In particular, when f̂(x) > 0.5,
the confidence is equal to f̂(x). We say that the model
is over-confident when the confidence is higher than the
actual accuracy: For example, when the model predicts
f̂(x) = 0.9, but we have E[Y |f̂(x) = 0.9] = 0.8, then f̂ is
over-confident at level p = 0.9. Note that in this case the
calibration error at level 0.9 is positive: ∆cal

0.9(f̂) = 0.1 > 0.
In other words, over- or under-confidence is determined by
the sign of the calibration error ∆cal

p (f̂) in definition (2):

For any p ∈ (0.5, 1):

• ∆cal
p (f̂) > 0: f̂ is over-confident at level p;

• ∆cal
p (f̂) < 0: f̂ is under-confident at level p.

We remark that we only state results for p > 0.5 in this
paper; all the results also hold for p ∈ (0, 0.5) by symmetry.

Extension to multi-class problems In our experiments
we also consider multi-class classification problems, for
which there is a standard generalization of definitions (2)
and (1) (Guo et al., 2017): Given a multi-class predic-
tor F̂ : Rd → ∆K where K ≥ 2 is the number
of classes, we replace Y with the indicator of correct
prediction: 1

{
Y = arg maxk F̂ (x)k

}
, and replace f̂(x)

with the confidence maxk F̂ (x)k. Thus the calibration
error of F̂ at level p ∈ [1/K, 1] is ∆cal

p (F̂ ) := p −
P
(
Y = arg maxk F̂ (X)k | maxk F̂ (X)k = p

)
.

2.2. Model and data distribution

We consider the following data distribution where X is
standard Gaussian and Y |X follows a binary linear model
with activation function σ : R→ [0, 1]:

P : X ∼ N(0, Id), P(Y = 1 | X = x) = σ(w>? x),
(3)

where w? ∈ Rd is the ground truth coefficient vector. (This
is also known as generalized linear models with link func-
tion σ (McCullagh, 2018)). We make the Gaussian input
assumption as our analysis requires a precise limiting cal-
culation; however, our real data experiments in Section 5.2
suggest that the implications of our theory may hold more
broadly without such distributional assumptions.

Realizable logistic regression Our primary focus is real-
izable logistic regression, in which σ(z) = 1

1+e−z is the
logistic (sigmoid) activation, and we solve the unregularized



Theoretical Analysis of Calibration in Binary Classification

ERM (empirical risk minimization) problem

ŵ = arg min
w

R̂n(w)

:=
1

n

n∑
i=1

[
log(1 + exp(w>xi))− yiw>xi

]
.

(4)

Let R(w) := E[R̂n(w)] denote the expected (population)
risk. It is a classical result that arg minw R(w) = w?, i.e.
logistic regression is well-specified when data comes from
the logistic model (Hastie et al., 2009).

Extension to general activations We also consider gener-
alizations where σ is a general monotone activation function,
and we wish to learn a linear classifier ŵ that is close to w?.
In this case, we consider solving the general ERM

minimize R̂n(w) :=
1

n

n∑
i=1

ρ(w>xi)− yiw>xi, (5)

where ρ : R → R is a loss function. Let R(w) :=

E[R̂n(w)] denote the expected (population) risk.

To make sure the problem is well-specified, we choose
ρ to be the (integrated) convex loss associated with σ:
ρ(z) =

∫ z
0
σ(u)du+C for some constant C; in other words

ρ′(z) = σ(z). It is known that for such a choice of ρ we
have arg minw R(w) = w? (Kakade et al., 2011). (For
completeness we also provide a proof in Appendix A.3.)

We require the following assumption on the activation func-
tion σ along with the loss function ρ, which only requires
the activation to be smooth along with some basic properties,
such as monotonicity and symmetry around 0.

Assumption A (Smooth activation). The loss function ρ :
R→ R is strictly convex and four-times continuously differ-
entiable with uniformly bounded {1, 2, 3, 4}-th derivatives.
The activation function σ = ρ′ is strictly increasing, and sat-
isfies σ(0) = 1/2, limz→−∞ σ(z) = 0, limz→∞ σ(z) = 1,
and σ′(z) = σ′(−z) > 0 for all z ∈ R.

3. Logistic regression is over-confident
As a warm-up, consider running unregularized (linear) logis-
tic regression in the over-parametrized setting where n < d
and the data is separable. In this case, it is known that the
(ERM) solution to the logistic regression (4) does not ex-
ist (Albert & Anderson, 1984; Candès et al., 2020); the gra-
dient descent path will also diverge to infinity norm (Soudry
et al., 2018). Using an approximate solution ŵ with a high
norm will cause the learned classifier σ(ŵ>x) to be nearly a
step function (outputs are close to either 0 or 1). Such classi-
fiers are clearly over-confident whenever the true conditional
distribution Y |X is not approximately deterministic.

We are now ready to present our main result, which states
that even in the most vanilla setting (well-specified, under-
parametrized), logistic regression is still over-confident.

Theorem 1 (Well-specified logistic regression is over-con-
fident). Consider the classifier f̂(x) = σ(ŵ>x) obtained
from logistic regression (4), where the data is generated
from the logistic model (3). Then we have the following.

• In the limit of n, d → ∞1 and d/n → κ, where κ ∈
(0, κ0] for some constant κ0 > 0 (which only depends
on ‖w?‖), for any p ∈ (0.5, 1), almost surely, we have

∆cal
p (f̂)→ Cp,κ for some Cp,κ > 0.

In words, logistic regression gives inherently over-
confident estimates of the actual probabilities.

• We have, for small enough κ > 0,

Cp,κ = Cp · κ+ o(κ).

In words, as the sample size n/d = 1/κ becomes large,
the over-confidence effect becomes weaker. The scaling
of this over-confidence effect is roughly Cp · d/n.

Over-confidence is inherent for logistic regression The-
orem 1 considers the under-parametrized setting, as we al-
low d/n = κ to be any small value, thus the sample size n
can be arbitrarily higher than the dimension d. It thus sug-
gests that over-confidence of logistic regression a rather fun-
damental property, and challenges the common belief that
over-confidence mostly comes from over-parametrization.
Furthermore, even though ∆cal

p (f̂) becomes smaller as the
sample size increases (κ becomes lower), Theorem 1 still
asserts the sign of ∆cal

p (f̂) being always positive in the pro-
portional limit of n, d→∞, d/n→ κ. This result perhaps
unveils another source of over-confidence in real-world ma-
chine learning models beyond linear logistic models.

Furthermore, Theorem 1 shows that logistic regression is
over-confident at all p ∈ (0.5, 1). This suggests that the
over-confidence in every confidence bin, as an empirical
observation in well-trained neural networks (Guo et al.,
2017), holds for logistic regression as well and is not unique
to large over-parametrized models.

Regularization; comparison with classical asymptotics
We remark that our result only holds for unregularized logis-
tic regression, while it is known that various regularization
can improve calibration (Gal & Ghahramani, 2016; Thu-
lasidasan et al., 2019). Indeed, in our model, applying
regularization (e.g. an L2 regularizer) will in general reduce
the calibration error, as long as the regularization reduces

1We assume ‖w?‖ is the same for all (n, d).
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the norm of ŵ and does not hurt its correlation with w?

too much. However, we intentionally focus on unregular-
ized logistic regression which resembles practical setups
such as neural networks in the memorizing regime. We
also note that, in general, the best regularization strength
for the optimal accuracy and the optimal calibration may be
different.

We also briefly remark that our setting of d, n → ∞,
d/n → ∞ is different from classical asymptotic statistics
(which considers fixed d and n→∞) (Van der Vaart, 2000).
Classical asymptotics would imply

√
n∆cal

p (f̂)
d→ N(0, V 2)

for some V 2, and thus ∆cal
p (f̂) has about equal chance to be

positive or negative; in contrast, we show that ∆cal
p (f̂) has

a positive bias in the proportional limit, a regime arguably
more realistic than classical asymptotics.

CE of logistic regression Theorem 1 further implies a
result on the calibration error (CE) of logistic regression.

Corollary 2 (Asymptotics of calibration error). In the same
setting as Theorem 1, as d, n → ∞, d/n → κ, the CE of
the logistic regression solution f̂ satisfies

CE(f̂)→ Cκ,

almost surely, where for small enough κ we have Cκ =
Cκ+ o(κ) for some absolute constant C > 0.

Corollary 2 implies that, in the limiting regime, the CE of
logistic regression is O(κ) = O(d/n). This improves over
the results of Liu et al. (2019) in certain aspects. First, Liu
et al. (2019, Corollary 2.4) showed that the CE of any clas-
sifier is bounded by the square root excess logistic loss over
the Bayes classifier. This implies the CE of well-specified
logistic regression is bounded by

√
d/n. Here we show the

CE has a better rate Θ(d/n) at small d/n in our limiting
regime2. Second, our Theorem 1 determines the sign of
the calibration error (confidence > accuracy), which is not
implied by their results.

The proof of Corollary 2 follows directly from Theorem 1
by integrating ∆cal

p (f̂) over p ∈ (0, 1) (with p distributed as
f̂(x) for x ∼ P ). The proof can be found in Appendix D.3.

3.1. Proof sketch of Theorem 1

We now provide a high-level overview of the proof of Theo-
rem 1. A more detailed overview of the most technical steps
is deferred to Section 6, and the full proofs can be found in
Appendix C & D.

2We remark that Corollary 2 does not readily imply a Θ(d/n)
result in the non-asymptotic setting. However, we believe a similar
result (with additional terms such as 1/

√
n) holds and can be

established via a more refined analysis.

Closed-form expression for calibration error Recall
that

∆cal
p (f̂) = p− Ex

[
σ(w>? x) | σ(ŵ>x) = p

]
.

As x is standard Gaussian, the conditional distribution of
x|σ(ŵ>x) = p can be characterized precisely in terms of
the projection of x onto the direction ŵ and its orthogonal
complement subspace. Standard calculation then yields the
closed form expression

∆cal
p (f̂)

= p− EZ
[
σ

(
‖w?‖
‖ŵ‖

cos θ̂ · σ−1(p) + sin θ̂ ‖w?‖Z
)]
,

(6)
where cos θ̂ = ŵ>w?

‖ŵ‖‖w?‖ is the angle between ŵ and w?, and
Z ∼ N(0, 1). (See Lemma B.1 for the detailed statement
and proof.)

Concentration of ŵ In the second step, we apply results
from recent advances in high-dimensional convex risk min-
imization (Sur & Candès, 2019; Taheri et al., 2020) to
show that ŵ concentrates around fixed values in the high-
dimensional limit, in terms of its norm and cosine angle
with w?. These results show that, in the limit of d, n→∞
and d/n→ κ, the following concentration happens almost
surely:

‖ŵ‖ → R? = R?(κ, ‖w?‖),

cos θ̂ → c? = c?(κ, ‖w?‖),
(7)

Above, R? and c? are determined by the solutions of a
system of nonlinear equations with three variables (α, σ, λ)
(see Section 6 and Theorem C.1 for the formal statement).

The concentration directly implies that ∆cal
p (f̂) converges

to the following limiting calibration error (Corollary C.1):

∆cal
p (f̂)→ Cp,κ

:= p− EZ
[
σ

(
‖w?‖
R?

c? · σ−1(p) +
√

1− c2? ‖w?‖Z
)]
.

(8)
This expression hints on potential sources of over- or
under-confidence: (1) R? and c? will affect the “multiplier”
‖w?‖ c?/R? in front of σ−1(p), drifting the expectation
away from p; (2) c? also affects the expectation over the√

1− c2? ‖w?‖Z term. This term itself has mean zero, but
can affect the overall expectation through the nonlinear acti-
vation function σ.

Calculating the limiting calibration error The final
part, as a technical crux of the proof, calculates the limiting
calibration error (8) by precisely analyzing the interplay
between the concentration values R?, c? and the activation
function σ. This is achieved by a novel analysis on the
solutions of the aformentioned system of equations at small
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κ. In particular, we show that Cp,κ = Cpκ+ o(κ) for small
κ, and Cp > 0 is positive, thereby establishing Theorem 1.
We present a more detailed description of this analysis in
Section 6.

4. Over-confidence is not universal
It is natural to ask—based on Theorem 1—whether over-
confidence is true in other well-specified problems as well,
or is due to some specific property about logistic regression.
This section makes steps towards this by looking at the
generalized problem (5) where σ is an arbitrary activation
and we solve the corresponding convex ERM.

Our main result in this section is the following characteri-
zation of sufficient conditions for whether over- or under-
confidence happens in the general convex ERM (5). The
proof of this result can be found in Appendix D.1.

Theorem 3 (Sufficient conditions for over- and under-con-
fidence). In the same setting as Theorem 1 except that the
activation function σ is general and satisfies Assumption A,
let f̂(x) = σ(ŵ>x) be the classifier obtained from the con-
vex ERM (5). We have simultaneously for any p ∈ (0.5, 1)
that, almost surely in the limit of d, n→∞, d/n→ κ,

∆cal
p (f̂)→ Cp,κ(σ) = Cp(σ)κ+ o(κ). (9)

Further, we have the following sufficient conditions for the
sign of Cp(σ): For any p ∈ (0.5, 1),

(a) If σ is concave at σ−1(p), i.e.,

σ′′(σ−1(p)) ≤ 0, (10)

then Cp(σ) > 0, and f̂ is over-confident at this p for
all sufficiently small κ.

(b) Conversely, if

EQ1∼N(0,‖w?‖2)[Q1σ
′′(Q1)] > 0, and (11)

σ′′(σ−1(p))− 2σ′(σ−1(p)) · σ−1(p)/ ‖w?‖2 > 0,
(12)

then Cp(σ) < 0, and f̂ is under-confident at this p for
all sufficiently small κ.

Interpretations Theorem 3 suggests that the curvature of
the activation function σ is critical for determining its over-
or under-confidence. We parse these sufficient conditions as
follows:

• Concavity of σ(z)|z>0 implies over-confidence: By
part (a), at any p where σ′′(σ−1(p)) ≥ 0, f̂ will be
over-confident at that p. Moreover, any σ that is con-
cave on the entire positive part (σ′′(z) ≤ 0 for all

z > 0) will result in over-confident at every p > 0.5.
This strictly generalizes Theorem 1, and suggests that
over-confidence is a common mode, as any σ that is
monotone and bounded must have some concave re-
gions on the positive part.

• Under-confidence is possible but cannot hold at ev-
ery p: Part (b) suggests that under-confidence may be
possible, provided we design σ that is sufficiently con-
vex at σ−1(p) (to counteract the other term in (12)),
and that additional condition (11) holds. However,
as σ′′(z) > 0 cannot happen for all z > 0, under-
confidence cannot happen at every p ∈ (0.5, 1).

Is the sufficient condition for under-confidence in Theo-
rem 3(b) indeed possible? We give an affirmative answer.

Corollary 4 (Under-confidence can happen). There exists
an activation function σ satisfying Assumption A, such that
Cp(σ) < 0 for some p ∈ (0.5, 1) and ‖w?‖ > 0. At these
p, the convex ERM (5) is under-confident in the limit of
d/n→ κ for all small κ.

The activation we find in Corollary 4 is very close to the
following activation function (up to minor tweaks in order
to satisfy Assumption A):

σunderconf(z) =


0, z < −2π,

1

2
+

1

4π
(z − sin z), |z| ≤ 2π,

1, z > 2π.

(13)

(See Figure 2a for the plot of this activation function.) The
unique feature about this σunderconf is that, unlike the lo-
gistic activation, this function is convex at all small values
of z > 0. This leads to both the convexity condition (12)
as well as the expectation condition (11) (which roughly
requires the positive part in the expectation of Q1σ

′′(Q1) to
supercede the negative part).

To the best of our knowledge, this is the first known case of
under-confidence for a well-specified classification problem,
though we remark this under-confidence effect is weak and
restricted to only a small region of p (see Figure 2c for
simulation results using this activation).

5. Experiments
5.1. Simulations

We test our theories via simulations on well-specified under-
parametrized logistic regression, as well as general convex
ERM with the under-confident activation σunderconf (13).

For both activations, we generate data {(xi, yi)}ni=1 from
the realizable model (3), where we fix d = 100, ‖w?‖ = 1,
and vary d/n ∈ {0.01, 0.05, 0.10, 0.25}. For each (d, n),
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(a) Illustration of σunderconf
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(c) Calibration of under-confident ERM
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Figure 2. Binary classification simulations on realizable data. (a) Illustration of the activation function σunderconf constructed in
Corollary 4 (cf. (13)), against the logistic (sigmoid) activation σlogistic. (b) Calibration curves for simulated logistic regression, with
d = 100 and d/n ∈ {0.01, 0.05, 0.1, 0.25}. Logistic regression is over-confident (prediction is higher than actual probability when
prediction> 0.5) at all d/n. (c) Zoomed-in calibration curves for simulated realizable ERM with the σunderconf activation. In contrast to
logistic regression, σunderconf leads to under-confidence for p ∈ (0.5, 0.51), verifying our Theorem 3 and Corollary 4. Here “analytical”
refers to our theoretical prediction p− Cp,κ(σ) from Theorem 3. (b)(c): Shaded area are one-std error bars over 5 runs.

we generate 5 problem instances, solve the ERM problem
on each instance, and plot the “calibration curves” (where
the x-axis is p and y-axis is the average probability given the
prediction: E[y|f̂ (i)(x) = p] = p−∆cal

p (f̂ (i))), visualizing
their mean and one-standard-deviation error bar. Notice
that by the closed-form expression (6), we are able to com-
pute ∆cal

p (f̂) exactly (using Gaussian integration) without
needing to introduce a test set.

In addition to the simulated calibration curves, we also plot
the limiting calibration curve suggested by Theorem 1 & 3,
in which we compute the concentration valuesR?, c? analyt-
ically by solving its defining equations (cf. Appendix C.1),
and plug these values into the closed-form expression (8).
This yields a curve of p against p − Cp,κ(σ), which we
compare against our simulated curves.

Results Figure 2 shows the results of our simulations. We
find logistic regression indeed yields over-confident calibra-
tion curves (Figure 2b): E[y|f̂(x) = p] = p − ∆cal

p (f̂) is
less than p for p > 0.5 (and greater than p for p < 0.5).
Further, notice that the gap ∆cal

p increases as we increase
κ. This agrees with our intuition that over-confidence is
more severe when d/n increases (effective sample size gets
lower), and further suggests that the conclusion of our the-
ory holds more broadly than its assumptions: κ can be as
large as κ = 0.25 and d can be as low as 100, both being
realistic values for modeling practice.

We also find that the under-confidence shown in Corol-
lary 4 does show up in the simulations: With the acti-
vation σunderconf , E[y|f̂(x) = p] is higher than p for
p ∈ (0.5, 0.51), although this range of p is fairly narrow
(Figure 2c).

Finally, we observe that our theoretical prediction Cp,κ

closely matches the simulation: the analytical calibration
curve p−Cp,κ(σ) and the mean simulated curve are almost
identical for both activations, which further confirms our
theory even at a realistic d = 100.

5.2. CIFAR10 with pseudo labels

We further test the generality of our theory beyond the Gaus-
sian input assumption and the binary classification setting.
We run multi-class logistic regression on the first 5 classes of
CIFAR10, which contains n = 25000 training images and
5000 test images, and each image has d = 3072 features.
We perform logistic regression on two kinds of labels:

• The true label ytrue ∈ {0, 1, 2, 3, 4}.

• The pseudo-label ypseudo ∈ {0, 1, 2, 3, 4} generated
as follows: After fitting the logistic classifier Ŵ ∈
R3072×5 on the true labels, we generate pseudo-labels
ypseudoi from the multi-class logistic (softmax) model

P
(
ypseudoi = k | xi

)
=

exp(Ŵ>
k xi)∑

k′ exp(Ŵ>
k′xi)

.

The motivation for the pseudo-labels is to construct a
well-specified problem (labels do come from a linear soft-
max model) and remove the potential effect of model-
misspecification with the true labels. Note that this problem
is still in the under-parametrized setting as d < n.

As the exact conditioning f̂(x) = p is no longer computable
on finite data, we compute the average confidence and ac-
curacy on the test set using binning (10 equally spaced
confidence bins in [0.2, 1.0]), similar as in the standard prac-
tice for evaluating the ECE (Guo et al., 2017). Additional
experimental details are provided in Appendix E.2.
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(a) True labels
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(b) Pseudo labels (realizable)
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Figure 3. Calibration of multi-class logistic regression on CIFAR10’s first 5-classes. The x-axes denote the confidences (predicted top
probabilities) of the models. (a)(b): Left: Confidence distribution across bins; Right: Average confidence against average accuracy within
each bin (right); both evaluated on the test set. (a) Logistic regression on the true labels. (b) Logistic regression on pseudo-labels generated
from the fitted logistic model (realizable setting) from step (a). Observe that over-confidence happens for both the pseudo-labels
generated from a multi-class logistic model, and the true labels.

Results We find that logistic regression on (the 5-class
subset of) CIFAR10 is over-confident on both the pseudo-
labels and true labels (Figure 3). A closer look reveals that
the over-confidence is more severe on the pseudo-labels
than the true labels, yet both tasks exhibit a reasonable
level of over-confidence (especially in the high confidence
bins). This suggests our result that logistic regression is
inherently over-confident may hold more broadly for other
under-parametrized problems without strong assumptions
on the input distribution, or even when the labels are not
necessarily realizable by the model.

6. Overview of analysis
This section provides an overview of the two novel proof
steps for our results in Section 3 & 4: (1) Characterization
of the high-dimensional limit (concentration value) of logis-
tic regression (4) and the general convex ERM (5) at small
κ = d/n. (2) Determining the sign of the limiting calibra-
tion error based on the above characterization, filling in the
(abbreviated) last part of the proof sketch in Section 3.1.

6.1. Local linear analysis at small κ

Let γ := ‖w?‖. By the results of Sur & Candès (2019),
the values R?, c? in (7) have the form R? =

√
α2
? + κσ2

?

and c? = (1 + κσ2
?/α

2
?γ

2)−1/2, where (α?, σ?, λ?) are the
solutions to the following system of nonlinear equations in
three variables (α, σ, λ):


σ2 =

1

κ2
E
[
2ρ′(Q1)λ2ρ′(proxλρ(Q2))2

]
,

0 = E
[
ρ′(Q1)Q1λρ

′(proxλρ(Q2))
]
,

1− κ = E
[
2ρ′(Q1)

/
(1 + λρ′′(proxλρ(Q2)))

]
.

Above, (Q1, Q2) has a bivariate normal distribution with
covariance depending on (α, σ, κ, γ), and prox is the prox
operator. (See Theorem C.1 and Appendix C.1 for a formal

statement.) These solutions are guaranteed to uniquely exist
for small enough κ. However, they are only implicitly de-
fined without closed-form expressions for these solutions,
which prohibits us from analyzing their behaviors.

We overcome this issue by performing a local analysis of
the solutions at small κ. We prove that, for small enough κ,
we have the local linear approximation

α? = α?(κ) = 1 + ᾱ0κ+O(κ2),

σ? = σ2
?(κ) = σ̄2

0 +O(κ),

λ? = λ?(κ) = λ̄0κ+O(κ2),

with closed-form expressions for (ᾱ0, σ̄0, λ̄0). For example,
we have σ̄2

0 = E[ρ′(Q1)ρ′(−Q1)]/(E[ρ′′(Q1)])
2 where

Q1 ∼ N(0, γ2). (See Lemma C.1 for the formal state-
ment.) These approximations imply similar approximations
for R?, c?, which allows us to analyze the behavior of the
limiting calibration error (8) locally at small κ.

6.2. Determining sign of the limiting calibration error

Towards proving Theorem 3 & 1, it remains for us to derive
the sufficient conditions for the sign of Cp,κ(σ). Using the
above local linear approximation for (R?, c?) and perform-
ing first-order calculus, we obtain

lim
κ→0

Cp,κ(σ)

κ
= σ′(σ−1(p)) · σ−1(p) ·

(
ᾱ0 + σ̄2

0/γ
2
)

− 1

2
σ′′(σ−1(p)) · σ̄2

0 .

(Lemma D.1). We prove that ᾱ0 + σ̄2
0/γ

2 > 0 always holds
regardless of the activation,γ, and p. This implies that, as
long as σ′′(σ−1(p)) ≤ 0, the right-hand side in the equation
above is positive. This gives part (a) of Theorem 3. On the
other hand, if σ′′(σ−1(p)) > 2σ′(σ−1(p))σ−1(p)/γ2 and
ᾱ0 < 0, then the right-hand side above is negative. These
are exactly the sufficient conditions we required in part (b)
of Theorem 3.
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7. Conclusion
This paper provides a precise theoretical study of the calibra-
tion error of logistic regression and a class of general binary
classification problems. We show that logistic regression
is inherently over-confident by Θ(d/n) when n/d is large,
and establish sufficient conditions for the over- or under-
confidence of unregularized ERM for general binary classi-
fication. Our results reveal that (1) Over-confidence is not
just a result of over-parametrization; (2) Over-confidence
is a common mode but not universal. We believe our work
opens up a number of future questions, such as the interplay
between calibration and model training (or regularization),
or theoretical studies of calibration on nonlinear models.
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