
Principled Exploration via Optimistic Bootstrapping and Backward Induction
(Appendix)

A. UCB Bonus in OB2I
Recall that we consider the following regularized least-square problem,

wt ← argmin
w∈Rd

m∑
τ=0

[
rt(s

τ
t , a

τ
t ) + max

a∈A
Qt+1(sτt+1, a)− w>φ(sτt , a

τ
t )
]2

+ λ‖w‖2. (7)

In the sequel, we consider a Bayesian linear regression perspective of (7) that captures the intuition behind the UCB-bonus
in OB2I. Our objective is to approximate the action-value function Qt via fitting the parameter w, such that

w>φ(st, at) ≈ rt(st, at) + max
a∈A

Qt+1(st+1, a),

where Qt+1 is given. We assume that we are given a Gaussian prior of the initial parameter w ∼ N (0, I/λ). With a slight
abuse of notation, we denote by wt the Bayesian posterior of the parameter w given the set of independent observations
Dm = {(sτt , aτt , sτt+1)}τ∈[0,m]. We further define the following noise with respect to the least-square problem in (7),

ε = rt(st, at) + max
a∈A

Qt+1(st+1, a)− w>φ(st, at), (8)

where (st, at, st+1) follows the distribution of trajectory. The following theorem justifies the UCB-bonus in OB2I under the
Bayesian linear regression perspective.

Theorem 2 (Formal Version of Theorem 1). We assume that ε follows the standard Gaussian distributionN (0, 1) given the
state-action pair (st, at) and the parameter w. Let w follows the Gaussian prior N (0, I/λ). We define

Λt =

m∑
τ=0

φ(xτt , a
τ
t )φ(xτt , a

τ
t )> + λ · I. (9)

It then holds for the posterior of wt given the set of independent observations Dm = {(sτt , aτt , sτt+1)}τ∈[0,m] that

Var
(
φ(st, at)

>wt
)

= Var
(
Q̃t(st, at)

)
= φ(st, at)

>Λ−1
t φ(st, at), ∀(st, at) ∈ S ×A.

Here we denote by Q̃t = w>t φ the estimated action-value function.

Proof. The proof follows the standard analysis of Bayesian linear regression. See, e.g., West (1984) for a detailed analysis.
We denote the target of the linear regression in (7) by

yt = rt(st, at) + max
a∈A

Qt+1(st+1, a).

By the assumption that ε follows the standard Gaussian distribution, we obtain that

yt | (st, at), w ∼ N
(
w>φ(st, at), 1

)
. (10)

Recall that we have the prior distribution w ∼ N (0, I/λ). Our objective is to compute the posterior density wt = w | Dm,
where Dm = {(sτt , aτt , sτt+1)}τ∈[0,m] is the set of observations. It holds from Bayes rule that

log p(w | Dm) = log p(w) + log p(Dm |w) + Const., (11)
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where p(·) denote the probability density function of the respective distributions. Plugging (10) and the probability density
function of Gaussian distribution into (11) yields

log p(w | Dm) = −‖w‖2/2−
m∑
τ=1

‖w>φ(sτt , a
τ
t )− yτt ‖2/2 + Const.

= −(w − µt)>Λ−1
t (w − µt)/2 + Const., (12)

where we define

µt = Λ−1
t

m∑
τ=1

φ(sτt , a
τ
t )yτt , Λt =

m∑
τ=0

φ(xτt , a
τ
t )φ(xτt , a

τ
t )> + λ · I.

Thus, by (12), we obtain that wt = w | Dm ∼ N (µt,Λ
−1
t ). It then holds for all (st, at) ∈ S ×A that

Var
(
φ(st, at)

>wt
)

= Var
(
Q̃t(st, at)

)
= φ(st, at)

>Λ−1
t φ(st, at),

which concludes the proof of Theorem 2.

Remark 1 (Extension to Neural Network Parameterization). We remark that our proof can be extended to explain deep
neural network parametrization under the overparameterized network regime (Arora et al., 2019). Under such a setting, a
two-layer neural network f(·;W ) with parameter W and ReLU activation function can be approximated by

f(x;W ) ≈ f(x;W0) + φW0
(x)>(W −W0) = φW0

(x)>W, ∀x ∈ X ,

where the approximation holds if the neural network is sufficiently wide (Arora et al., 2019). Here W0 is the Gaussian
distributed initial parameter and φW0

= ([φW0
]1, . . . , [φW0

]m)> is the feature embedding defined as follows,

[φW0(x)]r =
1√
m
σ
(
x>[W0]r

)
, ∀x ∈ X , r ∈ [m].

Hence, if we consider a Bayesian perspective of training neural network, where the parameter W is obtained by solving
a Bayesian linear regression with the feature φW0 , then the proof of Theorem 2 can be applied to the setting upon
conditioning on the random initialization W0. Thus, Theorem 2 applies to the neural network parameterization under such
an overparameterized neural network regime.
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B. Algorithmic Description

Algorithm 2 OB2I in DRL
1: Initialize: replay buffer D, bootstrapped Q-network Q(·; θ) and target network Q(·; θ−)
2: Initialize: total training frames H = 20M, current frame h = 0
3: while h < H do
4: Pick a bootstrapped Q-function to act by sampling k ∼ Unif{1, . . . ,K}
5: Reset the environment and receive the initial state s0

6: for step i = 0 to Terminal do
7: With ε-greedy choose ai = argmaxaQ

k(si, a)
8: Take action and observe ri and si+1, then save the transition in buffer D
9: if h % training frequency = 0 then

10: Sample an episodic experience E = {S,A,R,S′} with length T from D
11: Initialize a Q-table Q̃ = Q(S′,A; θ−) ∈ RK×|A|×T by the target Q-network
12: Compute the UCB-bonus for immediate reward for all steps to construct B ∈ RT
13: Compute the action matrix Ã = argmaxa Q̃[·, a, ·] ∈ RK×T to gather all a′ of next-Q
14: Compute the UCB-bonus for next-Q for all heads and all steps to construct B̃ ∈ RK×T
15: Compute the mask matrix M ∈ RK×T where M[k, t] = 1Ã[k,t]6=At+1

16: Initialize target table y ∈ RK×T to zeros, and set y[·, T − 1] = RT−1 + α1BT−1

17: for t = T − 2 to 0 do
18: Q̃[·, at+1, t]← βy[·, t+ 1] + (1− β)Q̃[·, at+1, t]
19: y[·, t]←

(
Rt + α1Bt

)
+ γ
(
Q̃[·, a′, t] + α2M[·, t] ◦ B̃[·, t]

)
where a′ = Ã[·, t]

20: end for
21: Compute the Q-value of (S,A) for all heads as Q = Q(S,A; θ) ∈ RK×T
22: Perform a gradient descent step on (y −Q)2 with respect to θ
23: end if
24: Every C steps reset θ− ← θ
25: h← h+ 1
26: end for
27: end while

Remark 2 (Remark on ε-Greedy). We adopt the ε-greedy technique based on the empirical concerns. Empirically, ε-
greedy is helpful at the early stage of training, since the bootstrapped Q-heads typically lack diversity at the early stage
of training. As shown in Figure 3, the bonus for OB2I is small at the begining of training. A similar observation also
arises in Randomized Prior Function (Osband et al., 2018), where each head is initialized together with a random but
fixed prior function to improves the diversity between Q-heads at the initialization. In OB2I, we use ε-greedy as an
empirical technique to improve the diversity of Q-heads at the beginning of training while diminishing ε-term to zero
as the training evolves. For a fair comparison, in our experiments, we preform ε-greedy for all BEBU-based baselines
(BEBU, BEBU-UCB, and BEBU-IDS) with the same values of ε. We remark that the ε-greedy technique is also widely
used in implementations of methods based on Bootstrapped DQN, including Bootstrapped DQN implementation at https:
//github.com/johannah/bootstrap_dqn, https://github.com/rrmenon10/Bootstrapped-DQN,
Sunrise (Chen et al., 2017; Lee et al., 2020) implementation at https://github.com/pokaxpoka/sunrise, and
the official IDS (Nikolov et al., 2019) implementation at https://github.com/nikonikolov/rltf. NoisyNet
(Fortunato et al., 2018) implementation also applies this technique at https://github.com/Kaixhin/Rainbow.

In addition, from a theoretical perspective, adopting ε-greedy policies in place of greedy policies will hinder the performance
difference term 〈πk, Q∗ −Qk〉 in the analysis of LSVI-UCB (Jin et al., 2020), which is upper bounded by zero if πk is the
greedy policy corresponding to Qk. In contrast, if πk is the ε-greedy policy, adding and subtracting the greedy policy yields
an εQmax upper bound, which propagates to an additional O(εT ) term in the regret. Therefore, if ε is sufficiently small, the
algorithm attains the optimal

√
T -regret. In OB2I, we diminish ε-term to zero as the training evolves, which does not incur a

large bias to the regret.

https://github.com/johannah/bootstrap_dqn
https://github.com/johannah/bootstrap_dqn
https://github.com/rrmenon10/Bootstrapped-DQN
https://github.com/pokaxpoka/sunrise
https://github.com/nikonikolov/rltf
https://github.com/Kaixhin/Rainbow
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Algorithm 3 BEBU & BEBU-UCB & BEBU-IDS
1: Input: Algorithm Type (BEBU, BEBU-UCB, or BEBU-IDS)
2: Initialize: replay buffer D, bootstrapped Q-network Q(·; θ) and target network Q(·; θ−)
3: Initialize: total training frames H = 20M, current frame h = 0
4: while h < H do
5: Pick a bootstrapped Q-function to act by sampling k ∼ Unif{1, . . . ,K}
6: Reset the environment and receive the initial state s0

7: for step i = 0 to Terminal do
8: if Algorithm type is BEBU then
9: With ε-greedy choose ai = argmaxaQ

k(si, a)
10: else if Algorithm type is BEBU-UCB then
11: With ε-greedy choose ai = argmaxa[Q̄(si, a) + α · σ(Q(si, a))], where Q̄(si, ai) = 1

K

∑K
k=1Q

k(si, ai) and

σ(Q(si, ai)) =
√

1
K

∑K
k=1(Qk(si, ai)− Q̄(si, ai))2 are the mean and standard deviation of the bootstrapped

Q-estimates
12: else if Algorithm type is BEBU-IDS then
13: With ε-greedy choose ai = argmina

∆̂i(si,a)2

Ii(si,a) by following the regret-information ratio, where ∆̂i(si, ai) =

maxa′∈A ui(si, a
′) − li(si, ai) is the expected regret, and [li(si, ai), ui(si, ai)] is the confidence interval.

In particular, ui(si, ai) = Q̄(si, ai) + λids · σ(Q(si, ai)) and li(si, ai) = Q̄(si, ai) − λids · σ(Q(si, ai)).
I(si, ai) = log(1 + σ(Q(si,ai))

2
/ρ2) + εids measures the uncertainty, where ρ and εids are constants.

14: else
15: Algorithm type error.
16: end if
17: Take action and observe ri and si+1, then save the transition in buffer D
18: if h % training frequency = 0 then
19: Sample an episodic experience E = {S,A,R,S′} with length T from D
20: Initialize a Q-table Q̃ = Q(S′,A; θ−) ∈ RK×|A|×T by the target Q-network
21: Compute the action matrix Ã = argmaxa Q̃[·, a, ·] ∈ RK×T to gather all a′ of next-Q
22: Initialize target table y ∈ RK×T to zeros, and set y[·, T − 1] = RT−1 + α1BT−1

23: for t = T − 2 to 0 do
24: Q̃[·, at+1, t]← βy[·, t+ 1] + (1− β)Q̃[·, at+1, t]
25: y[·, t]← Rt + γQ̃[·, a′, t] where a′ = Ã[·, t]
26: end for
27: Compute the Q-value of (S,A) for all heads as Q = Q(S,A; θ) ∈ RK×T
28: Perform a gradient descent step on (y −Q)2 with respect to θ
29: end if
30: Every C steps reset θ− ← θ
31: h← h+ 1
32: end for
33: end while

Remark 3 (Remark on Computational Efficiency). We remark that OB2I requires much less training time than BEBU-UCB
and BEBU-IDS, since both BEBU-UCB and BEBU-IDS requires computing the corresponding confidence bounds in each
time step of interaction. In contrast, OB2I only requires estimating the confidence bound for batch training. Meanwhile, the
number of interaction steps L1 with the environment are typically set to be much larger than the number of training steps L2

(e.g., in DQN, L1 ≈ 4L2). Hence, OB2I is more computational efficient under such a conventional setting.
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C. Additional Experiment: MNIST Maze
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Figure 4. An example MNIST maze (left) and the UCB-bonuses in the agent’s path (right).
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(a) Wall density of 30%
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(c) Wall density of 50%

Figure 5. Results of 200K steps training of MNIST maze with different wall-density setup.

We use 10× 10 MNIST maze with randomly placed walls to evaluate our method. The agent starts from the initial position
(0, 0) in the upper-left of the maze and aims to reach the goal position (9, 9) in the bottom-right. The state of position (i, j)
is represented by stacking two randomly sampled images with label i and j from the MNIST dataset. When the agent steps
to a new position, the state representation is reconstructed by sampling images. Hence the agent gets different states even
stepping to the same location twice, which minimizes the correlation among locations. Meanwhile, we introduce additional
stochasticity in the transition probability. Specifically, the agent has a probability of 10% to arrive in the adjacent locations
when taking an action. For example, when taking action ‘left’, the agent has a 10% chance of transiting to ‘up’, and a 10%
chance of transiting to ‘down’. The agent gets a reward of -1 when bumping into a wall, and gets 1000 when reaching the
goal.

We use the different setup of wall-density in the experiment. Here the wall-density means the proportion of walls among all
the locations. Figure 4 (left) shows a generated maze with wall-density of 50%, where the gray positions represent walls. We
train all methods with wall-density of 30%, 40%, and 50%. For each setup, we train 50 independent agents for 50 randomly
generated mazes. We use the relative length defined by lagent/lbest to evaluate the performance of algorithms, where lagent

is the length of the agent’s travel to reach the goal in an episode (maximum steps are 1000), and lbest is the length of the
shortest path to reach the goal. The performance comparison is shown in Figure 5. We observe that OB2I performs the best
among all the methods. In addition, BEBU-IDS also performs well. To further illustrate the performance of OB2I, We use a
trained OB2I agent to take action in the maze presented in Figure 4 (left). We present the corresponding UCB-bonuses of
state-action pairs along the agent’s visitation trajectory in Figure 4 (right).

We observe that OB2I assigns high UCB-bonus to positions that are critical to exploration. For example, the state-action
pairs in location (3, 3) and (6, 7) are assigned high UCB-bonus as they are the bottleneck positions in the maze illustrated in
Figure 4 (left), where the agent must visit (3, 3) and (6, 7) to reach the goal at (9, 9). The UCB-bonus encourages the agent
to walk through these bottleneck positions correctly. We refer to Appendix E for additional examples.
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D. Implementation Detail
D.1. MNIST Maze

Hyper-parameters of BEBU. BEBU is the basic algorithm of BEBU-UCB and BEBU-IDS. BEBU uses the same network-
architecture as Bootstrapped DQN (Osband et al., 2016). The diffusion factor and other training parameters are set by
following EBU paper (Lee et al., 2019). Details are summarized in Table 3.

Table 3. Hyper-parameters of BEBU for MNIST-Maze
Hyperparameters Value Description

state space 28× 28× 2 Stacking two images sampled from MNIST dataset with labels according
to the agent’s current location.

action space 4 Including left, right, up, and down.
K 10 Number of bootstrapped heads.
network-architecture conv(64,4,4)

conv(64,3,1)
dense{512, 4}Kk=1

Using convolution (channels, kernel size, stride) layers first, then fully
connected into K bootstrapped heads. Each head has 512 ReLUs and 4
linear units.

gradient norm 10 The gradient is clipped by 10. The gradient of each head is normalize by
1/K according to bootstrapped DQN.

learning starts 10000 The agent takes actions according to the initial policy before learning starts.
replay buffer size 170 A simple replay buffer is used to store episodic experience.
training frequency 50 Number of action-selection step between successive gradient descent steps.
H 200,000 Total timesteps to train a single maze.
target network update
frequency

2000 The target-network is updated every 2000 steps.

optimizer Adam Adam optimizer is used for training. Detailed parameters: β1 = 0.9,
β2 = 0.999, εADAM = 10−7.

learning rate 0.001 Learning rate for Adam optimizer.
ε (h−H)2

H2 Exploration factor. H is the total timesteps for training, and h is the current
timestep. ε starts from 1 and is annealed to 0 in a quadratic manner.

γ 0.9 Discount factor.
β 1.0 Diffusion factor of backward update.
wall density 30%, 40%, and 50% Proportion of walls in all locations of the maze.
reward -1 or 1000 Reward is -1 when bumping into a wall, and 1000 when reaching the goal.
stochasticity 10% Has a probability of 10% to arrive in the adjacent locations when taking an

action.
evaluation metric lrel = lagent/lbest Ratio between length of the agent’s path and the best length.

Hyper-parameters of BEBU-UCB. BEBU-UCB uses the upper-bound of Q-values to select actions. In particular, a =
arg maxa∈A [µ(s, a) + λucbσ(s, a)], where µ(s, a) and σ(s, a) are the mean and standard deviation of bootstrapped Q-
values {Qk(s, a)}Kk=1. We use λucb = 0.1 in our experiment.

Hyper-parameters of BEBU-IDS. The action-selection in IDS (Nikolov et al., 2019) follows the regret-information ratio
as at = argmina∈A

∆̂t(s,a)2

It(s,a) , which balances the regret and exploration. ∆̂t(s, a) is the expected regret that indicates

the loss of reward when choosing a suboptimal action a. IDS uses a conservative estimate of regret, namely, ∆̂t(s, a) =
maxa′∈A ut(s, a

′) − lt(s, a), where [lt(s, a), ut(s, a)] is the confidence interval of action-value function. In particular,
ut(s, a) = µ(s, a) + λidsσ(s, a) and lt(s, a) = µ(s, a)− λidsσ(s, a), where µ(s, a) and σ(s, a) are the mean and standard
deviation of bootstrapped Q-values {Qk(s, a)}Kk=1. The information gain It(a) measures the uncertainty of action-values
by I(s, a) = log(1 + σ(s,a)2

ρ(s,a)2 ) + εids, where ρ(s, a) is the variance of the return distribution, which can be measured by
C51 (Bellemare et al., 2017) in distributional RL and is a constant in ordinary Q-learning. We set λids = 0.1, ρ(s, a) = 1.0,
and εids = 10−5 for our experiment.

Hyper-parameters of OB2I. We set α1 and α2 to be 0.01 for our experiments. We find that adding a normalizer to
UCB-bonus B̃ of the next-Q value enables more stable performance. A similar technique was used in Burda et al. (2019a).
Specifically, we divide B̃ by a running estimate of its standard deviation. Since the UCB-bonuses for next-Q are typically
different among the Q-heads, such a normalization allows Q-networks to have a smooth and stable update.
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D.2. Atari games

Hyper-parameters of BEBU. We adopt the same basic setting of the Atari environment as (Mnih et al., 2015) and (Lee
et al., 2019). We summarize the details to Table 4.

Table 4. Hyper-parameters of BEBU for Atari games
Hyperparameters Value Description

state space 84× 84× 4 Stacking 4 recent frames as the input to network.
action repeat 4 Repeating each action 4 times.
K 10 The number of bootstrapped heads.
network-architecture conv(32,8,4)

conv(64,4,2)
conv(64,3,1)
dense{512, |A|}Kk=1

Using convolution(channels, kernel size, stride) layers first, then fully
connected into K bootstrapped heads. Each head has 512 ReLUs and |A|
linear units.

gradient norm 10 The gradient is clipped by 10, and also be normalize by 1/K for each head
by following bootstrapped DQN.

learning starts 50000 The agent takes random actions before learning starts.
replay buffer size 1M The number of recent transitions stored in the replay buffer.
training frequency 4 The number of action-selection step between successive gradient steps.
H 20M Total frames to train an environment.
target network update
frequency

10000 The target-network is updated every 10000 steps.

optimizer Adam Detailed Adam parameters: β1 = 0.9, β2 = 0.999, εADAM = 10−7.
mini-batch size 32 The number of training cases for gradient decent each time.
learning rate 0.00025 Learning rate for Adam optimizer.
initial exploration 1.0 Initial value of ε in ε-greedy exploration.
final exploration 0.1 Final value of ε in ε-greedy exploration.
final exploration frames 1M The number of frames that the initial value of ε linearly annealed to the

final value.
γ 0.99 Discount factor.
β 0.5 Diffusion factor of backward update.
εeval 0.05 Exploration factor in ε-greedy for evaluation.
evaluation policy ensemble vote The same evaluation method as in Bootstrapped DQN (Osband et al.,

2016).
evaluation length 108000 The policy is evaluated for 108000 steps.
evaluation frequency 100K The policy is evaluated every 100K steps.
max no-ops 30 Maximum number no-op actions before an episode starts.

Hyper-parameters of BEBU-UCB. BEBU-UCB selects actions by a = arg maxa∈A [µ(s, a) + λucbσ(s, a)]. The detail
is given in Appendix D.1. We use λucb = 0.1 in our experiment by searching coarsely.

Hyper-parameters of BEBU-IDS. The action-selection follows the regret-information ratio as at = argmina∈A
∆̂t(s,a)2

It(s,a) .
See detail in Appendix D.1. We use λids = 0.1, ρ(s, a) = 1.0 and εids = 10−5 in our experiment by searching coarsely.

Hyper-parameters of OB2I. We set α1 and α2 to the same value of 0.5× 10−4. The UCB-bonus B̃ for the next-Q value
is normalized by dividing a running estimate of its standard deviation to have a stable performance.

Implementation of Bayesian-DQN. Since Bayesian-DQN is not evaluated in the whole Atari suite, we adopt the official
release code in https://github.com/kazizzad/BDQN-MxNet-Gluon and make two modification for a fair
comparison. (1) We add the 30 no-op evaluation mechanism, which we use to evaluate OB2I and other baselines in our
work. (2) We set the frame-skip to 4 to be consistent with our baselines. We remark that inconsistency still exists since the
original implementation of Bayesian-DQN is based on MX-Net Library, while OB2I and other baselines are implemented
with Tensorflow. We release the modified code in https://github.com/review-anon/Bayesian-DQN.

Results of DQN, UBE, BootDQN, Noisy-Net, and BootDQN-IDS. These methods have been evaluated by the whole
Atari suite. We directly adopt the scores reported in the corresponding articles (Mnih et al., 2015; O’Donoghue et al.,
2018; Osband et al., 2016; Fortunato et al., 2018; Nikolov et al., 2019). However, we remark that inconsistency in the
comparison exists since (1) UBE, BootDQN, and BootDQN-IDS use double Q-learning, and (2) Noisy-Net uses both the
double Q-learning and dueling networks, in their original implementations. (3) In contrast, DQN, OB2I and BEBU-based
baselines all use the standard Q-learning without advanced techniques.

https://github.com/kazizzad/BDQN-MxNet-Gluon
https://github.com/review-anon/Bayesian-DQN
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E. Visualizing OB2I
OB2I uses the UCB-bonus that indicates the disagreement of bootstrapped Q-estimates to measure the uncertainty of
Q-functions. The state-action pairs with high UCB-bonuses signify the bottleneck positions or meaningful events. We
provide visualization in several tasks to illustrate the effect of UCB-bonuses. Specifically, we choose Mnist-maze and two
Atari games RoadRunner and Mspacman to analyze.

E.1. MNIST-maze

Figure 6 illustrates the UCB-bonus in four randomly generated mazes. The mazes in Figure 6(a) and 6(b) have a wall-density
of 40%. The mazes in Figure 6(c) and 6(d) have a wall-density of 50%. The left of each figure shows the map of maze,
where the black blocks represent the walls. We omit the MNIST representation of states in the illustrations for simplification.
A trained OB2I agent starts at the upper-left, then takes actions to achieve the goal at bottom-right. The UCB-bonuses of
state-action pairs along the agent’s visitation trajectory are computed and illustrated on the right of each figure. The value is
normalized to 0 ∼ 1 for visualization. We show the maximal value if the agent appears several times in the same location.

The positions with UCB-bonuses that higher than 0 draw the path of the agent. The path is usually winding and includes
positions beyond the shortest path because the state transition has stochasticity. The state-action pairs with high UCB-
bonuses are typically the bottleneck positions in the path. In maze 6(a), the agent slips from the right path in position (4, 7)
to (4, 9). The state-action in position (4, 8) produces high bonus to guide the agent back to the right path. In maze 6(b), the
bottleneck state in (3, 2) has high bonus to avoid the agent from entering into the wrong side of the fork. The other two
mazes also have bottleneck positions, like (3, 3) in maze 6(c) and (7, 6) in maze 6(d). Visiting these important locations is
crucial to reaching the goal. We remark that the UCB-bonus of OB2I encourages the agent to walk through these bottleneck
positions correctly.
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Figure 6. Visualization of UCB-bonus in Mnist-maze

E.2. RoadRunner

In RoadRunner, the agent is chased by Wile E. Coyote and run endlessly to the left to escape. Picking the bird seeds on the
street takes 100 points. Inducing Wile E. Coyote to be run over by a car takes 1000 points and also make the agent get rid of
the danger of being chased up. In this task, the performance of OB2I is 90% higher than that of BEBU. To illustrate how
OB2I works, we use an OB2I agent to play this game for an episode and records the UCB bonus in all 1152 steps. Figure 7
shows the UCB bonus and the corresponding frames in 16 chosen spikes.

We find almost all spikes of UCB-bonus correspond to avoiding trucks and using trucks to get rid of Wile E. Coyote’s chase
(spike 2-14). The uncertainty is high with the emergence of truck because such a scenario rarely occurs. More importantly,
utilizing the truck to get rid of Wile E. Coyote’s chase has more uncertainty because the agent may get hit by the truck and
lose its life. The UCB-bonus encourages the agent to learn skills that use the truck to gain advantages over the chaser and,
hence, obtaining high scores. In addition, the agent eats bird seeds in spike 1. In spikes 15 and 16, the agent comes to a
novel round.
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Figure 7. Visualization of the UCB-bonus in RoadRunner. We further record frames after each spike, and the video is available at
https://www.dropbox.com/sh/6ffgl9v53kkldau/AABzADhD9TW-9gjMYiJI-4jYa?dl=0

E.3. MsPacman

In MsPacman, the agent earns points by avoiding monsters and eating pellets. Eating an energizer causes the monsters
to turn blue, allowing them to be eaten for extra points. We use a trained OB2I agent to interact with the environment
for an episode. Figure 8 shows the UCB bonus in all 708 steps. We choose 16 spikes to visualize the frames. The spikes
of exploration bonuses correspond to meaningful events for the agent to get rewards: starting a new scenario (1,2,9,10),
changing direction (3,4,13,14,16), eating energizer (5,11), eating monsters (7,8,12), and entering the corner (6,15). These
state-action pairs with high UCB-bonuses make the agent explore the environment efficiently.
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Figure 8. Visualization of the UCB-bonus in MsPacman. We further record frames after each spike, and the video is available at
https://www.dropbox.com/sh/6ffgl9v53kkldau/AABzADhD9TW-9gjMYiJI-4jYa?dl=0

https://www.dropbox.com/sh/6ffgl9v53kkldau/AABzADhD9TW-9gjMYiJI-4jYa?dl=0
https://www.dropbox.com/sh/6ffgl9v53kkldau/AABzADhD9TW-9gjMYiJI-4jYa?dl=0
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F. Raw Scores of all 49 Atari Games

Table 5. Raw scores for Atari games. Bold scores signify the best score out of all methods.

Random Human BEBU BEBU-UCB BEBU-IDS OB2I
Alien 227.8 6,875.0 1,118.0 811.1 857.9 916.9
Amidar 5.8 1676.0 81.7 166.4 148.1 94.0
Assault 222.4 1,496.0 1,377.0 3,574.5 2,441.8 2,996.2
Asterix 210.0 8,503.0 2,315.0 2,709.3 2,433.9 2,719.0
Asteroids 719.1 13,157.0 962.8 1,025.0 868.8 959.9
Atlantis 12,850.0 29,028.0 3,020,500.0 3,191,600.0 3,144,440.0 3,146,300.0
Bank Heist 14.2 734.4 331.8 277.0 361.6 378.6
Battle Zone 2,360.0 37,800.0 5,446.4 16,348.8 10,520.0 13,454.5
BeamRider 363.9 5,775.0 2,930.0 3,208.3 3,391.0 3,736.7
Bowling 23.1 154.8 29.9 30.7 40.2 30.0
Boxing 0.1 4.3 72.4 68.3 69.8 75.1
Breakout 1.7 31.8 473.2 382.3 412.7 423.1
Centipede 2,090.9 11,963.0 2,547.2 2,377.9 3,328.4 2,661.8
Chopper Command 811.0 9,882.0 930.6 1,013.4 1,100.0 1,100.3
Crazy Climber 10,780.5 35,411.0 49,735.7 39,187.5 42,242.9 53,346.7
Demon Attack 152.1 3,401.0 6,506.3 6,840.4 7,080.0 6,794.6
Double Dunk -18.6 -15.5 -18.9 -16.5 -17.0 -18.2
Enduro 0.0 309.6 504.1 697.8 513.6 719.0
Fishing Derby -91.7 5.5 -56.7 -83.8 -53.3 -60.1
Freeway 0.0 29.6 21.5 21.6 21.3 32.1
Frostbite 65.2 4,335.0 393.4 470.4 466.2 1,277.3
Gopher 257.6 2,321.0 4,842.6 7,211.8 7,171.5 6,359.5
Gravitar 173.0 2,672.0 256.1 321.0 283.3 393.6
H.E.R.O 1,027.0 25,763.0 2,951.4 2,905.0 3,059.4 3,302.5
Ice Hockey -11.2 0.9 -5.4 -6.5 -4.6 -4.2
Jamesbond 29.0 406.7 650.0 360.3 302.1 434.3
Kangaroo 52.0 3,035.0 3624.2 2,711.1 4,448.0 2,387.0
Krull 1,598.0 2,395.0 15,716.7 11,499.0 10,818.0 45,388.8
Kung-Fu Master 258.5 22,736.0 56.0 20,738.9 26,909.7 16,272.2
Montezuma’s Revenge 0.0 4,376.0 0.0 0.0 0.0 0.0
Ms. Pacman 307.3 15,693.0 1,723.8 1,706.8 1,615.5 1,794.9
Name This Game 2,292.3 4,076.0 8,275.3 6,573.9 8,925.0 8,576.8
Pong -20.7 9.3 18.1 18.5 17.2 18.7
Private Eye 24.9 69,571.0 1,185.8 1,925.2 1,897.1 1,174.1
Q*Bert 163.9 13,455.0 3,588.4 3,783.2 3,696.0 4,275.0
River Raid 1,338.5 13,513.0 3,127.5 3,617.7 3,169.1 2,926.5
Road Runner 11.5 7,845.0 11,483.0 20,990.7 17,281.4 21,831.4
Robotank 2.2 11.9 10.3 13.3 10.7 13.5
Seaquest 68.4 20,182.0 447.0 492.3 332.4 332.1
Space Invaders 148.0 1,652.0 814.4 782.2 794.7 904.9
Star Gunner 664.0 10,250.0 1,467.2 1,201.5 1,158.9 1,290.2
Tennis -23.8 -8.9 -1.0 -2.0 -1.0 -1.0
Time Pilot 3,568.0 5,925.0 2,622.1 3,321.2 1,950.6 3,404.5
Tutankham 11.4 167.6 167.0 151.0 80.5 297.0
Up and Down 533.4 9,082.0 5,954.8 4,530.2 4,619.7 5,100.8
Venture 0.0 1,188.0 42.9 3.4 150.0 16.1
Video Pinball 16,256.9 17,298.0 26,829.6 48,959.1 58,398.3 80,607.0
Wizard of Wor 563.5 4,757.0 810.8 1,316.7 578.2 480.7
Zaxxon 32.5 9,173.0 1,587.5 2,104.8 1,594.2 2,842.0
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G. Performance Comparison
We use the relative scores as

ScoreAgent − ScoreBaseline

max{Scorehuman,Scorebaseline} − Scorerandom

to compare OB2I with baselines. The results of OB2I comparing with BEBU, BEBU-UCB, and BEBU-IDS is shown in
Figure 9, Figure 10, and Figure 11, respectively.
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Figure 9. Relative score of OB2I compared to BEBU in percents (%).
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Figure 10. Relative score of OB2I compared to BEBU-UCB in percents (%).
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Figure 11. Relative score of OB2I compared to BEBU-IDS in percents (%).

H. Failure Analysis
Our method does not have a good performance on Montezuma’s Revenge (see Table 6) because the epistemic uncertainty-
based methods are not particularly tweaked for this domain. Meanwhile, IDS, NoisyNet and BEBU-based methods also fail
on Montezuma’s Revenge and score zero. Bootstrapped DQN achieves 100 points, which is also low and does not indicate
successful learning in Montezuma’s revenge. In contrast, the bonus-based methods achieve significantly higher scores
on Montezuma’s Revenge (e.g., RND achieves 8152 points). Nevertheless, according to Taiga et al. (2020) and Table 1,
NoisyNet and IDS significantly outperform several strong bonus-based methods evaluated by the mean and median scores
of 49 Atari games.

Table 6. Comparison of scores in Montezuma’s Revenge.
Frames 200M 20M

DQN BootDQN NoisyNet BootDQN-IDS BEBU BEBU-UCB BEBU-IDS OB2I
Scores 0 100 3 0 0 0 0 0

Moreover, we find that the length of episode (or horizon) matters since OB2I propagates uncertainty within an episode. We
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visualize the connection between horizon and performance in Fig. 12, where each point represents a game. We find that
the games where OB2I is suboptimal typically have short horizons. In such games, propagating uncertainty does not bring
much advantage, since it may be unnecessary.

Theoretically, BEBU (or BootDQN) instantiates Thompson sampling (with uninformative prior). As long as the prior is
correctly specified, Thompson sampling attains the optimal Bayesian (average-case) regret. In contrast, OB2I instantiates
optimism in the face of uncertainty (via UCB), which attains the optimal frequentist (worst-case) regret. In a few cases,
OB2I may be overly conservative (with overly large UCB), since it aims to minimize the worst-case regret.

I. Algorithmic Comparison

Table 7. Algorithmic comparison of the closely related works

Bonus or
Posterior Variance Update Method Uncertainty Characterization

EBU (Lee et al., 2019) - backward update -
Bootstrapped DQN (Osband et al., 2016) bootstrapped on-trajectory update bootstrapped distribution
UBE (O’Donoghue et al., 2018) closed form on-trajectory update posterior sampling
Bayesian-DQN (Azizzadenesheli et al., 2018) closed form on-trajectory update posterior sampling
LSVI-UCB (Jin et al., 2020) closed form backward update optimism
BEBU (base of our work) bootstrapped backward update bootstrapped distribution
OB2I (ours) bootstrapped backward update optimism


