
Breaking the Limits of Message Passing Graph Neural Networks

A. Weisfeiler-Lehman Test
The universality of a GNN is based on its ability to embed
two non-isomorphic graphs to distinct points in the target
feature space. A model which can distinguish all pairs of
non-isomorphic graphs is a universal approximator. Since
it is not known if the graph isomorphism problem can be
solved in polynomial time or not, this problem is neither
NP-complete nor P, but NP-intermediate (Takapoui & Boyd,
2016). One of the oldest but prominent polynomial approach
is the Weisfeiler-Lehman Test (abbreviated WL-test) which
gives sufficient but not enough evidence. WL test can be
extended by taking into account higher order of node tuple
within the iterative process. These extensions are denoted
as k-WL test, where k is equal to the order of the tuple. It
is important to mention that an higher order of tuple leads
to a better ability to distinguish two non-isomorphic graphs
(with the exception for k = 2) (Arvind et al., 2020).

The 1-WL test, known as vertex coloring, starts with the
given initial color of nodes if available. Otherwise all nodes
are colored with the same color (H(0)

v = 1). Then, colors
are updated by the following iteration:

H(t+1)
v = σ

(
H(t)
v |

{
H(t)
u : u ∈ N (v)

})
, (7)

where H(t)
v is the color of vertex v at iteration t,N (v) is the

set of neighbours of vertex v, | represents the concatenation
operator and {.} is the order invariant multiset3. In order to
avoid the new color of vertex become bigger after each itera-
tion due to the concatenation operation and to keep the color
description simple, the recoloring σ(·) function is applied
after each iteration. It assigns a new simple color identifier
to the any newly created color. The test is performed in
parallel for two graphs. The iterative process is stopped
when the color histograms are kept unchanged between two
consecutive iterations. The color histograms associated to
the compared graphs are examined. If in any iteration the
histograms are different, we can conclude that the graphs
are not isomorphic. However, the opposite conclusion can
not be drawn if color histograms are equal as two same his-
tograms may be computed even for non-isomorphic graphs.

Higher order WL tests use the same algorithm while their
color update schema is slightly different. The 2-WL test
uses second order tuple of nodes (all ordered pairs of nodes),
thus it needs H ∈ Rn×n matrix, where the initial color set
has two more colors than initial vertex colors as defined by:

H(0)
v,u =

 H
(0)
v if v = u

edge if u ∈ N (v)
nonedge if u 6∈ N (v)

(8)

Then, the iteration process is applied through the following

3It is generally implemented by stacking all colors in the set
and sorting them alphabetically

schema where [n] is the set of node identifiers.

H(t+1)
v,u = σ

(
H(t)
v,u |

{
H

(t)
v,k : k ∈ [n]

}
|
{
H

(t)
k,u : k ∈ [n]

})
,

(9)
Although for k ≥ 2, (k + 1)-WL is more powerful than
(k)-WL, it is not true for k = 1, thus 2-WL (Eq.(9)) is no
more powerful than 1-WL (Eq.(7)) (Maron et al., 2019a).
To clarify this point, Folkore WL (FWL) test is defined such
that 1-WL=1-FWL, but for k ≥ 2, we have (k + 1)-WL
≈ (k)-FWL (Maron et al., 2019a). The iteration process of
2-FWL is given by the following equation;

H(t+1)
v,u = σ

(
H(t)
v,u |

{(
H

(t)
v,k|H

(t)
k,u

)
: k ∈ [n]

})
, (10)

In the literature, there are different interpretations of the
order of the WL test. Some papers use WL test order to
denote the iteration given by Eq.(7) and Eq.(9) (Morris et al.,
2019; Maron et al., 2019a) but some others such as (Abboud
et al., 2020; Arvind et al., 2020; Takapoui & Boyd, 2016)
use FWL order under the name of WL. In this paper, we
explicitly mention both WL and FWL equivalent such as
3-WL (or 2-FWL) to alleviate ambiguities.

B. Proofs of Theorems
B.1. Theorem.1

Proof. All these methods can be written in Eq.(1) by dif-
ferent convolution matrices C. The main idea of the proof
is that as long as convolution matrices C can be explained
by operations from the enriched set L+

1 (Remark 4), Eq.(1)
also can be explained by operations from L+

1 as well. Thus
these methods cannot produce any sentence out of L+

1 . As a
consequence, their expressive power is not more than 1-WL
test. To provide a proof, the mentioned methods’ convolu-
tion matrices have to be expressed using operations from
L+

1 .

GCN uses C = (D + I)−0.5(A + I)(D + I)−0.5 where
D is the diagonal degree matrix (Kipf & Welling, 2017) in
Eq.(1). (D + I)−0.5 can be expressed as (D + I)−0.5 =
diag(f(A1 + 1)), where f(x) = x−0.5 is element-wise
operation on vector x. A + I can also be written A +
diag(1). When we merge these equations, we get C =
diag(f(A1 + 1))(A + diag(1))diag(f(A1 + 1)). The
convolution support C is then written using operations from
L+

1 .

In the literature, GraphSage method was proposed to sample
neighborhood and aggregate the neighborhood contribution
by the mean operator or LSTM in (Hamilton et al., 2017).
Since we restrict the method using full sampling and mean
aggregator, we can define GraphSage by the general frame-
work given by Eq.(1) with two convolution supports which
are the identity matrix C(1) = I and the row normalized ad-
jacency matrix C(2) = D−1A. These convolution supports

Breaking the Limits of Message Passing Graph Neural Networks

can also be expressed by operations from L+
1 , by observing

that C(1) = diag(1) and C(2) = diag(f(A1))A, where
f(x) = x−1 elementwise operation on vector x.

GIN (Xu et al., 2019) uses a convolution supportC = A+Iε
in Eq.(1) which is followed by a custom number of MLP
layers. Each of these layers correspond to a convolution sup-
port that can by expressed as Cmlp = I in Eq.(1). Finally,
these convolution supports can be written thanks to opera-
tions from L+

1 . C = A+ ε×diag(1) and Cmlp = diag(1).

GAT (Veličković et al., 2018) can be expressed in
Eq.(1) by the convolution support designed by Cv,u =

m(Hv, Hu)/
∑
k∈Ñ (v)m(Hv, Hk), where Ñ (v) is the

self-connection added neighborhood of v and m(.) is
any trainable model. If we write the trainable model
m(.) as a sum of each node such as m(Hv, Hu) =
f1(Hv) + f2(Hu), we can define an intermediate ma-
trix B = diag(f1(H))(A + I) + (A + I)diag(f2(H)).
Finally the GAT convolution support can be written by
C = diag((B1)−1)B using all operations included within
the operation set L+

1 .

B.2. Theorem.2

Proof. Chebnet (Defferrard et al., 2016) uses desired num-
ber k of convolution supports in Eq.(1). As long as these
convolutions can be written by operations in L+

1 , we can
conclude that Chebnet is no more powerful than 1-WL test.
But if at least one convolution cannot be explained in L+

1 ,
we can say it is more powerful than 1-WL test.

Chebnet’s convolution supports are C(1) = I, C(2) =
2L/λmax − I, C(k) = 2C(2)C(k−1) − C(k−2). The first
support can always be written thanks to an operation from
L1 since C(1) = diag(1). Both normalized and combinato-
rial graph Laplacian can also be written as L = diag(A1)−
A or L = diag(1) − diag(f(A1))Adiag(f(A1)) where
f(x) = x−1/2 elementwise operation on vector x. If
λmax for both graphs are the same, we can use a constant
α = 2/λmax. The second convolution support can then be
written as C(2) = α× L− diag(1). It is then expressed by
means of operations from L+

1 . Other convolution supports
C(k) = 2C(2)C(k−1) − C(k−2) are created by matrix mul-
tiplication and subtraction of previous supports which can
all be expressed by mean of operations from L+

1 . Thus, if
the maximum eigenvalues of tested graphs Laplacians are
the same, Chebnet is not more powerful than 1-WL.

However, if the maximum eigenvalues are not the same,
C(2) cannot be expressed with the help of the constant value
α. It means that different coefficients should be used for
each graph. For two tested graphs G and H , we can write
second kernel of Chebnet as C(2)

G = αG × LG − diag(1)

and C(2)
H = αH × LH − diag(1). If these two graphs are

1-WL equivalent, any sentence build on L+
1 applied on these

graph is equivalent as well. For instance, we can use the
sentences of e(X) = 1>X1 with operation in L+

1 . The out-
put of the sentence should be same such e(LG) = e(LH)
yields 1>LG1 = 1>LH1. If we assume that Chebnet can-
not separate these two graphs, we can calculate one layer
ChebNet’s output by second support with the same sentence
and they should be the same such e(C(2)

G) = e(C
(2)
H) yields

αG1
>LG1 = αH1>LH1. Last equation has contradiction

to the previous one as long as the maximum eigenvalues
are not same (i.e αG 6= αH) and graphs are not regular (i.e
1>LG1 > 0 and 1>LH1 > 0 for normalized laplacian).
This contradiction says that assumption is wrong, so one
layer Chebnet’s second support can distinguish 1-WL equiv-
alent graphs whose maximum eigenvalues are not same and
graphs are not regular with the same degree.

Since the graph laplacians are positive semi-definite, it al-
ways yields 1>LG1 ≥ 0 and 1>LH1 ≥ 0 and they are zero
as long as the graphs are regular with the same degree. Thus,
if we add smallest positive scalar value on the diagonal of
the laplacian such L← L+ εI , we get rid of the necessity
that graphs must be non-regular. So Chebnet become more
powerful and will be able to distinguish all 1-WL equivalent
regular graphs whose maximum eigenvalues are different.
Considering the graph8c task, we have seen that classic
ChebNet could not distinguish 44 pairs where there are 312
1-WL equivalent pairs. If we use L← L+ 0.01I , the num-
ber of undistinguished pairs of graph decreased from 44 to
19, where 19 undistinguished pairs are all 1-WL equivalent
and have exact the same maximum eigenvalues. On the
other hand, original Chebnet was not able to distinguish
44-19=25 graphs pairs whose maximum eigenvalues are
different but all of them are regular thus 1>L1 = 0.

B.3. Theorem.3

Proof. The number of 3-star patterns can be determined by∑
v

(
d(v)

3

)
where d(v) is the degree of vertex v for undi-

rected simple graphs (Pinar et al., 2017). Using f(x) =
x!

(x−3)!3! as a function that operates on each element of a
given vector x, we can calculate the number of 3-star pat-
terns in a given adjacency matrix A by 1>f(A1) using
operations in L+

1 . According to the universal approximation
theory of multi layer perceptron (Hornik et al., 1989), if we
have enough layers, we can implement f(.) as an MLP in
our model.

B.4. Theorem.4

Proof. The number of triangles can be determined by using
trace operator as 1/6 × tr(A3) (Harary & Manvel, 1971)
which can be written by means of operations from L+

2 .

Number of 4-cycles is determined by 1/8 × (tr(A4) +
tr(A2)− 21>A21) (Harary & Manvel, 1971) which can be

Breaking the Limits of Message Passing Graph Neural Networks

written by means of operations from L+
2 .

B.5. Theorem.5

Proof. If t(v) denotes the number triangles including vertex
v and d(v) denotes the degree of vertex v, the number of
tailed triangles can be found by

∑
v t(v).(d(v) − 2) for

simple undirected graphs (Pinar et al., 2017). Every node in
a triangle has two closed walks of length 3. Thus, t(v) =
(A3)v,v

2 . It yields the number of tailed triangles can be
found by 1

2 × 1>(A3 � diag(A1− 2))1. The computation
of t(v) which involves the element-wise multiplication can
be written with operations from L+

3 .

B.6. Theorem.6

Proof. Since the sentences in ML(L1) produce a scalar
value which can be reached in the graph readout layer as a
sum thanks to 1>H(lend), we need to show that the MPNN
can produce all possible vectors in L1 on the last node rep-
resentation layer. Since H(0) = 1, the output of the first
layer consists of linear combination of [1, A1] because, in
this case, the third term of the sum is just 1 ◦ 1 = 1. On the
second layer, the representation consists of a linear transfor-
mation of 4 different vectors [1, A1, A21, A1◦A1]. We can
notice that these 4 vectors are the all possible vectors that L1

can produce up to the second level. The diag operator can
produce other outputs if we apply diag(A1).diag(A1)1 =
A1 ◦ A1. Because diag(1) = I cannot change any-
thing if we use it any other expressions. Another selec-
tion would be A.diag(A1)1 = A21 and last option gives
diag(A1)A1 = A1 ◦ A1. So up to l = 2 the proof is
true. Then, we follow an inductive reasoning and assume
that in the k-th layer, Eq.(2) produces all possible vectors
(h1, . . . hn) in L1 and we show that it is true for k + 1-th
layer as well. In the k + 1-th layer, the first term of the sum
keeps h1, . . . hn. The second term produces Ah1, . . . Ahn.
Finally, the term of the sum produces all pairs of element-
wise multiplication such as h1 ◦ h1, h1 ◦ h2, . . . hn ◦ hn.
These are the all vectors that the language {.,1, diag} can
produce using one extra A and/or diag operator. The trans-
pose operator is neglected because the adjacency matrix is
symmetric. Furthermore, since at the readout layer these
vectors are to be summed up, their order or the fact that they
are transposed or not does not matter.

Beside, it was also shown that diag(.) operator can be imple-
mented by element-wise multiplication of vectors in (Geerts,
2020) in Proposition 8.1.

B.7. Theorem.7

Proof. If the given function is Φ(λ), it can be written by
power series using the Maclaurin expansion as follows:

Φ(λ) =
Φ(0)

0!
λ0 +

Φ′(0)

1!
λ1 +

Φ(2)(0)

2!
λ2 + (11)

Thus, the frequency response can be written by power series
with coefficients αi = Φ(i)(0)

i! . Using these coefficients, the
convolution support can be formulated as

C = α0UIU
>+α1Udiag(λ)U>+α2Udiag(λ)2U>+. . . .

(12)
Since UIU> = I = L0 and Udiag(λ)nU> = Ln, we can
reach the final expression:

C = α0L
0 + α1L

1 + α2L
2 + . . . (13)

The convolution support C is expressed as power series of
graph laplacianL as long as all order derivation of frequency
response is not zero (Φ(n)(0) 6= 0). Since the selection of
the function is based on exp(.) and its derivation is never
null, we can conclude that designed convolution support can
be written by power series of graph Laplacian.

C. L1 Equivalent Graphs

Figure 4. Decalin and Bicyclopentyl graphs are L1 equivalent and
so 1-WL.

Figure 4, shows Decalin and Bicyclopentyl graphs, with a
proposed node enumeration. According to these enumera-
tions, their adjacency matrices are AG and AH , respectively

AG=

0 1 1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0 1
1 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0
0 1 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 0

and AH=

0 1 1 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0
1 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 0

Their normalized Laplacian can be calculated by L = I −
D−1/2AD−1/2 and gives LG and LH as follows:

LG=

1 −0.33 −0.41 0 0 0 −0.41 0 0 0
−0.33 1 0 0 0 −0.41 0 0 0 −0.41
−0.41 0 1 −0.5 0 0 0 0 0 0

0 0 −0.5 1 −0.5 0 0 0 0 0
0 0 0 −0.5 1 −0.5 0 0 0 0
0 −0.41 0 0 −0.5 1 0 0 0 0

−0.41 0 0 0 0 0 1 −0.5 0 0
0 0 0 0 0 0 −0.5 1 −0.5 0
0 0 0 0 0 0 0 −0.5 1 −0.5
0 −0.41 0 0 0 0 0 0 −0.5 1

Breaking the Limits of Message Passing Graph Neural Networks

LH=

1 −0.33 −0.41 0 0 −0.41 0 0 0 0
−0.33 1 0 0 0 0 −0.41 0 0 −0.41
−0.41 0 1 −0.5 0 0 0 0 0 0

0 0 −0.5 1 −0.5 0 0 0 0 0
0 0 0 −0.5 1 −0.5 0 0 0 0

−0.41 0 0 0 −0.5 1 0 0 0 0
0 −0.41 0 0 0 0 1 −0.5 0 0
0 0 0 0 0 0 −0.50 1 −0.5 0
0 0 0 0 0 0 0 −0.50 1 −0.5
0 −0.41 0 0 0 0 0 0 −0.5 1

Their second Chebnet convolution supports are C(2)

G =

2/2LG − I and C(2)
H = 2/1.8418LH − I because their

maximum eigenvalues are 2.0 and 1.8418 respectively. Fi-
nally, when computing the output of the first layer by linear
activation function without any learning parameters, we ob-
tain yG = 1>C

(2)
G 1 = −9.9327 and yH = 1>C

(2)
H 1 =

−9.9269. We observe a slight difference between these two
values, which means that Chebnet can project both graphs
to the different points, thus it is able to distinguish them.

Since the maximum eigenvalues of graphs Laplacians are
different, they are not cospectral as well. It means that
they can also be distinguished on the basis of the number
closed walks for some lengths which can be determined
by trace operator. Indeed, even if up to 4th power of the
adjacency matrix, the trace operator gives the same values
for both graphs, we can observe that tr(A5

G) = 0 whereas
tr(A5

H) = 20. This observation is sufficient to claim that
both graphs are not L2 equivalent.

D. L2 Equivalent Graphs
Figure 5 shows two non-isomorphic but L2 equivalent
graphs, where vertices are enumerated.

Figure 5. Cospectral and 4-regular graphs from (Van Dam &
Haemers, 2003) are L2 equivalent.

According to these enumerations, their adjacency matrices
are the following:

AG=

0 1 0 1 0 1 0 1 0 0
1 0 1 1 1 0 0 0 0 0
0 1 0 0 1 0 1 0 0 1
1 1 0 0 0 1 0 1 0 0
0 1 1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0 1 1
0 0 1 0 1 0 0 1 1 0
1 0 0 1 0 0 1 0 1 0
0 0 0 0 0 1 1 1 0 1
0 0 1 0 1 1 0 0 1 0

and AH=

0 1 0 1 0 0 1 1 0 0
1 0 1 1 1 0 0 0 0 0
0 1 0 0 1 1 0 0 0 1
1 1 0 0 0 1 0 1 0 0
0 1 1 0 0 0 1 0 0 1
0 0 1 1 0 0 0 1 1 0
1 0 0 0 1 0 0 0 1 1
1 0 0 1 0 1 0 0 1 0
0 0 0 0 0 1 1 1 0 1
0 0 1 0 1 0 1 0 1 0

We have seen that their normalized Lapla-
cian eigenvalues are λG = λH =
[0, 0.44, 0.61, 0.75, 1.25, 1.25, 1.25, 1.25, 1.56, 1.64].
Thus, they are cospectral. Considering that for cospectral

graphs, the trace of any power of the adjacency matrix
which gives the number of closed walks, is the same, we
conclude that the trace operator does not help to distinguish
these two graphs.

For instance, it can be verified that the trace of the adjacency
matrix up to its 5th power is equal: tr(A2

G) = tr(A2
H) =

40, tr(A3
G) = tr(A3

H) = 48, tr(A4
G) = tr(A4

H) = 360,
and tr(A5

G) = tr(A5
H) = 920).

However, the sentence e(X) = 1>((X �X2)21)2 which
implements the element-wise multiplication from L3 allows
to distinguish both graphs. Indeed, the computation of this
sentences on AG and AH gives 1>((AG � A2

G)21)2 =
6032 and 1>((AH � A2

H)21)2 = 5872. Thus, these two
graphs are not L3 equivalent (it means not 3-WL or 2-FWL
equivalent as well) because the sample sentence can be
explained in L3.

E. L3 Equivalent Graphs
Strongly regular graphs are known to be 3-WL equivalent
and L3 equivalent as well. Figure 6 shows sample non-
isomorphic graphs that are L3 equivalent.

Figure 6. Strongly regular graph pair. 4 × 4-rook’s graph and the
Shrikhande graph from (Arvind et al., 2020) are L3 equivalent.

When we enumerate the nodes from the top-left to the
bottom-right according to their locations in the Figure 6,
their adjacency matrices are the following:

AG=

0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0
1 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0
1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0
0 1 0 0 1 0 1 1 0 1 0 0 0 1 0 0
0 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0
0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0
0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0
0 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0
0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1
0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 1
0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0

Breaking the Limits of Message Passing Graph Neural Networks

AH=

0 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1
1 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0
0 1 0 1 0 0 1 1 0 0 0 0 0 1 1 0
1 0 1 0 1 0 0 1 0 0 0 0 0 0 1 1
1 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0
1 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0
0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 0
0 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0
0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0
0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1
0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 1
1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1
0 1 1 0 0 0 0 0 1 1 0 0 1 0 1 0
0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 1
1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0

The eigenvalues of the normalized Laplacian are equal
(λG = λH). Both normalized Laplacians have 3 distinct
eigenvalues which are 0, 0.667 and 1.33 with the respective
multiplicity of 1, 6 and 9. Thus the graphs are cospectral.
Since they are 3-WL equivalent, none of the sentences in L3

can distinguish these graphs. For instance, we have seen that
1>((AG �A2

G)21)2 = 1>((AH �A2
H)21)2 = 331776.

In order to distinguish these two graphs, we need to mimic
the 3-FWL (or 4-WL) test which needs a 3-order relation-
ship between nodes. Thus, the adjacencies will be repre-
sented by AG, AH ∈ R16×16×16. For any 3 nodes there are
3 different pairs and thus 23 = 8 different states represent-
ing how these 3 nodes are connected or not. An additional
state is used for the tensor diagonal. Thus, there is a total of
9 states. The node tuple is denoted by Ai,j,k ∈ {0, . . . , 8}.
0 refers to the fact that none of three nodes are connected. 7
refers to the fact that all nodes are mutually connected (trian-
gle). 8 is used for the tensor diagonal elements. We can then
define an equivariant 3 dimensional tensor square operator
by (A2)i,j,k =

∑
s(As,j,k.Ai,s,k.Ai,j,s). By summing all

elements of the 3-dimensional squared adjacency where the
given adjacency is for instance 0, we can distinguish these
two graphs. Indeed,

∑
(A2

G�(AG= 0)) = 205632 whereas∑
(A2

H � (AH= 0)) = 208704. We can then conclude that
these two graphs are not 3-FWL (or 4-WL) equivalent.

F. Result of TU Datasets
Table 5 shows the results of 10-fold cross validation over
studied datasets named MUTAG, ENZYMES, PROTEINS
and PTC. All these datasets consist of chemical molecules
where nodes refer to atoms while edges refer to atomic
bonds. For these molecular datasets, node features is a one
hot coding of atom types and none of the model use any edge
feature even if it exists for MUTAG. In addition to these
results, we also provide results on the ENZYMES dataset
using extra 18-length continuous features on atoms. Us-
ing these continuous features, graph agnostic method MLP
performance increases drastically from 30.8% to 70.6%,
showing that these continuous features contain at least a
part of the structural information. Models were ran for a
fixed number of epochs on each fold and we select the epoch
where the general accuracy is maximum on the validation
set. The test procedure and train/validation split was taken
from (Xu et al., 2019).

G. Datasets and Application Details
Table 6 shows the summary of the dataset used in experimen-
tal evaluation. The evaluation has been performed on four
differents tasks depending on the dataset. These are graph
isomorphism (Iso), graph regression (Reg), node regression
(NReg) and n-class graph classification task (#-Class). We
did not use any edge features even if some were available.
All features were defined on nodes. These features were dis-
crete node labels coded by one-hot vectors (#Label) and/or
continuous features referred by numbers in Tab. 6. We can
notice that some graphs have no feature on nodes.

We get the Graph8c and Sr25 dataset from online sources4,
EXP dataset from (Abboud et al., 2020), Random graph
dataset from (Chen et al., 2020), 2D-Grid and Band-Pass
dataset from (Balcilar et al., 2021), Zinc12K from (Dwivedi
et al., 2020), Mnist-75 dataset from online source5 which
was used in (Balcilar et al., 2021) with exactly the same pro-
cedure, PROTEINS, ENZYMES, MUTAG and PTC from
TU dataset (Morris et al., 2020) downloaded from resources
of (Xu et al., 2019). All dataset except for EXP, Random and
2-D grid graph were used on a single task. We used EXP
for graph isomorphism test and binary classification task.
2D-Grid graph was used for three different node regression
tasks respectively on low-pass, band-pass and high-pass fil-
tering effect prediction. Finally, Random graph is used on
five different substructure counting tasks.

In all cases, we used roughly 30K trainable parameters
for all problems and all models. We tuned the number
of layers from 2 to 5 and the number of convolution ker-
nels in Chebnet from 3 to 5. We used Adam optimiza-
tion with learning rate in [10−2, 10−3] and a weight decay
in [10−3, 10−4, 10−5]. We also used dropout layer before
all graph convolution layers under selection of [0, 0.1, 0.2]
dropout rate. We used ReLU as non-linearity operation in
all layers if it is not mentioned explicitly for any specific
model. For classification problems, the loss function was im-
plemented through cross-entropy. For regression problems,
mean squared error was used as the loss function except on
Zinc12K dataset where the loss function was mean absolute
error. Unless otherwise specified, we used both sum and
max readout layer after last layer of graph convolution. It
is then followed by a fully connected layer which ended up
with output layer.

In GNNML3, we use the eigendecomposition of normal-
ized Laplacian to calculate the initial edge feature for all
problems, except for Zinc12K and substructure counting
problems where the eigen decomposition was performed on
the adjacency. Each initial convolution support is set such

4http://users.cecs.anu.edu.au/∼bdm/data/graphs.html
5https://graphics.cs.tu-dortmund.de/fileadmin/ls7-

www/misc/cvpr/mnist-superpixels.tar.gz

Breaking the Limits of Message Passing Graph Neural Networks

Table 5. Results on TU datasets. The values are the accuracy. Edge features are not used even if they are available in the datasets. The
models use a one-hot encoding of node labels as node features, while the models also use extra 18 length continuous node features for
ENZYMES-cont.

MODEL MUTAG ENZYMES ENZYMES-CONT PROTEINS PTC

MLP 86.6% ± 4.95 30.8% ± 4.26 70.6% ± 5.22 74.3% ± 4.88 62.9% ± 5.89
GCN 89.1% ± 5.81 49.0% ± 4.25 74.2% ± 3.26 75.2% ± 5.11 64.3% ± 8.35
GAT 90.1% ± 5.84 54.1% ± 5.15 73.7% ± 4.47 75.9% ± 4.26 65.7% ± 7.97
GIN 89.4% ± 5.60 55.8% ± 5.23 73.3% ± 4.48 76.1% ± 3.97 64.6% ± 7.00
CHEBNET 89.7% ± 6.41 63.8% ± 7.92 75.3% ± 4.63 76.4% ± 5.34 65.5% ± 4.94
PPGN 90.2% ± 6.62 55.2% ± 5.44 72.9% ± 4.18 77.2% ± 4.53 66.2% ± 6.54
GNNML1 90.0% ± 0.42 54.9% ± 5.97 76.9% ± 5.14 75.8% ± 4.93 63.9% ± 6.37
GNNML3 90.9% ± 5.46 63.6% ± 6.52 78.1% ± 5.05 76.4% ± 5.10 66.7% ± 6.49

Table 6. Summary of the datasets used in our experiments.

GRAPH8C SR25 EXP 2D-GRID RANDOM BAND-PASS PROTEINS ENZYMES MUTAG PTC MNIST-75 ZINC12K
TASK ISO ISO ISO&2CLASS NREG REG 2CLASS 2CLASS 6CLASS 2CLASS 2CLASS 10CLASS REG
GRAPHS 11117 15 1200 3 5K 5K 1113 600 188 344 70K 12K
NODES 8.0 25.0 44.44 900.0 18.8 200.0 39.06 32.63 17.93 25.55 75.0 23.15
EDGES 28.82 300.0 110.21 3480.0 62.67 1072.6 72.82 62.14 39.58 51.92 694.7 49.83
FEATURE MONO MONO MONO 1 MONO 1 3LABEL 3LABEL+18 7LABEL 19LABEL 1 21LABEL
TRAIN NA NA 800 1 1500 3K 9-FOLD 9-FOLD 9-FOLD 9-FOLD 55K 10K
VAL NA NA 200 1 1000 1K 1-FOLD 1-FOLD 1-FOLD 1-FOLD 5K 1K
TEST NA NA 200 1 2500 1K NA NA NA NA 10K 1K

that Φs(λ) = exp(−b(λ− fs)2), where the bandwidth pa-
rameter b is set to the value of 5. The spectrum has been uni-
formly sampled between minimum eigenvalue and the max-
imum eigenvalue with a selection of sn = [3, 5, 10] points
in order to select the band specific parameter. Thus, band
specific parameter of each frequency profile can be written
fs = λmin + s−1

sn−1 (λmax−λmin) for s ∈ {1, . . . , sn− 1}.
For the convolution support s = 0, we used all-pass fil-
tering named identity matrix whose frequency response is
Φ0(λ) = 1. Thus, we have a total of sn convolution sup-
ports. The 1-hop distance is always used for receptive field
which corresponds to M = A+ I . For the learning of con-
volution supports needed in Eq.(5), we used a single layered
MLP in each mlpk where mlp1,mlp2,mlp3 : RS → R2S

with a sigmoid activation, and mlp4 : R4S → RS with
ReLU activation as long as S is the number of initial con-
volutions extracted in the preprocessing step. In Eq.(6), the
size of the output of mlp5 and mlp6 is another hyperparam-
eter where we used the same length with the first part of the
Eq.(6) defined by dimension of W (l,s).

Mentioned hyperparamters are optimzed for concerned
model according to validation set performance if it is avail-
able. For TU dataset, since the validation and test set is not
available in public split, we first created a hyperparameter
tuning task by dividing the dataset one time into pre-training
(80%) and pre-validation (20%). The optimal value of the
parameters is searched on the basis of the performance on
the pre-validation set. Then, these hyperparameter values
for the general test procedure as defined in (Xu et al., 2019).

Our tests were conducted with implementations of Chebnet,
GCN, GIN and GAT layer provided by pytorch-geometric

(Fey & Lenssen, 2019). Besides, PPGN, GNNML1 and
GNNML3 layer were implemented as a class of pytorch-
geometric and our models were tested on the basis of these
implementation. By doing so, we integrate the PPGN into
the widely used graph library pytorch-geometric and make
it publicly available beside our own proposals.

H. Summary of the Baseline Models
H.1. MPNN Baselines

In this section of the appendix, we present the baseline
methods which are GCN, GIN, Chebnet and GAT thanks to
the general framework given by Eq.(1). Each model differs
from others by selection of their convolution support C.

GCN uses a single convolution support given by;

C = (D + I)−0.5(A+ I)(D + I)−0.5, (14)

where D is the diagonal degree matrix (Kipf & Welling,
2017) in Eq.(1).

Chebnet relies on the approximation of a spectral graph
analysis proposed in (Hammond et al., 2011), based on
the Chebyshev polynomial expansion of the scaled graph
Laplacian. The number of convolution supports C(k) can
be chosen. They are defined by (Defferrard et al., 2016) as
follows:

C(1) = I, C(2) = 2L/λmax − I,
C(k) = 2C(2)C(k−1) − C(k−2), ∀k ≥ 2.

(15)

Graph Isomorphism Network (GIN) defined in (Xu et al.,

Breaking the Limits of Message Passing Graph Neural Networks

2019) has a single convolution support defined as follows:

C = A+ (1 + ε)I, (16)

where ε is a parameter that makes the support trainable. An-
other version named GIN-0 is also defined in the same paper
where ε = 0, which makes C = A + I . GIN proposes to
use a desired number of MLP after each graph convolution.
In our implementation, we use one MLP (C = I) after each
GIN graph convolution as described in (Xu et al., 2019).

Graph attention networks (GATs) in (Veličković et al.,
2018) proposes to transpose the attention mechanism from
(Vaswani et al., 2017) into the graph world by the way of
sparse attention instead of full attention in transformers.
GAT convolution support can be seen as weighted, self loop
added adjacency. It can be represented in Eq.(1) by defining
its trainable convolution supports as follows:(

C(l,s)
)
v,u

=
ev,u∑

k∈Ñ (v) ev,k
, (17)

where ev,u = exp
(
σ(a(l,s)[H

(l)
:v W (l,s)||H(l)

:u W (l,s)])
)
,

and a(l,s) is another trainable weight. Convolution support
will be calculated from node v to each element of Ñ (v),
which shows the self-connection added neighborhood. In
application of GAT, we use concatenation instead of sum in
Eq.(1) where the paper proposed both and there is slightly
empirical advantage to use concatenation.

All MPNN baselines start with a given node features H(0)

and provide the node representation of the next layer by
Eq.(1). After the last layer, we apply a graph readout
function which summarizes the learned node representa-
tion. Graph readout layer is followed by a desired number
of fully connected layers ended with a number of neuron
defined by targeted number of classes.

H.2. PPGN Baseline

PPGN (Maron et al., 2019a) starts the process with a 3-
dimensional input tensor where the adjacency, edge features
(if it exists) and diagonalized node features are stacked on
the 3rd dimension as:

H(0) = [A|E1| · · · |Ee|diag(X1)| · · · |diag(Xd)]. (18)

Here, X ∈ Rn×d gathers node features and Xi is its i-th
column vector, E ∈ Rn×n×e is edge features and Ei ∈
Rn×n is its i-th edge feature matrix, thus initial feature
tensor is H(0) ∈ Rn×n×(1+e+d).

One layer forward calculation of PPNN would be:

H(l+1) = m3

([
m1(H(l)) ◦m2(H(l))|H(l)

])
(19)

where m1,m2 : Rn×n×dinp → Rn×n×dmid and m3 :
Rn×n×dmid+dinp → Rn×n×dout are trainable models that

can be implemented by a one layer MLP followed by non-
linearity. dinp is the feature length on the 3rd dimension.
dmid, dout are the feature lengths which can be seen as
hyperparameters of the layer. Multiplication (◦) operates
between matching features and means 2d matrix multiplica-
tion for each slice which has n× n dimensions. | operator
is just the concatenation of two tensor on the 3rd dimension.
The output of the model would be:

Y =
∑
l=1

mlpl

(∑
diag(H(l)) |

∑
offdiag(H(l))

)
.

(20)

We assign a function which selects the diagonal of each
2d slices of tensor as diag : Rn×n×d → Rn×1×d and
function for selection the element out of the diagonal as
offdiag : Rn×n×d → Rn×(n−1)×d. We use the sum op-
erator which performs sum over the first 2 dimensions as∑

: Rd1×d2×d → Rd and a trainable model that may be im-
plemented by an MLP mlpl : R2d → Rdy , transforms the
given vector into the targeted output representation length.

The one can see that in each layer, PPNN keeps H(l) ∈
Rn×n×dl , thus its memory usage is inO(n2). Since there is
a matrix multiplication in Eq.(19), its computation complex-
ity is in O(n3) when using the naive matrix multiplication
operations. The PPNN paper mentioned that the computa-
tional complexity can be decreased by using effective matrix
multiplication, but it is the same for all algorithms as well.
For this reason, we think that taking the naive implementa-
tion into account makes more sense to do a fair comparison.
In addition, again because of matrix multiplication, its up-
date mechanism is not local. Because of calculation of the
u, v node pairs representation in Eq.(19), it needs to perform∑
kH

(l)
u,k.H

(l)
k,v. That means that for each pair of nodes, k

should be all nodes in the graph regardless how far away the
node k from the concerned nodes u, v. In other words, very
far away nodes feature affect the concerned node.

Even though PPNN (Maron et al., 2019a) is a very straight
forward algorithm and has provable 3-WL power, the ex-
perimental results reported in the papers are not at the state
of the art (Maron et al., 2019a; Dwivedi et al., 2020). We
believe that this can be at least partly explained by some
implementation problems. Indeed, it was implemented by
gathering same size graphs into batches in order to han-
dle graphs of different size in a dataset. So the batches do
not consist of randomly selected graphs in each epoch dur-
ing the training phase. In our implementation, we first
find the maximum size of the graph denoted as nmax.
Then, we create an initial tensor in Eq.(18) in dimension
of Rnmax×nmax×1+e+d where left top n × n × 1 + e + d
part of the tensor is valid, and the rest is zero. We also
keep the valid part of the tensor diagonal and out of diag-
onal part mask in M0,M1 ∈ {0, 1}nmax×nmax that shows
which element is valid in the diagonal and which element

Breaking the Limits of Message Passing Graph Neural Networks

is valid out of the diagonal of the representation tensor.
Since some part of the tensor H(l) are not valid, we need
to prevent to assign value after application of trainable
model mk in Eq.(19), because it affects the matrix mul-
tiplication result. One solution may be to mask the MLP
result by M0 + M1. Finally, we implement Eq.(20) by
selection diagonal and off-diagonal element by previously
prepared mask matrices by

∑
diag(H(l)) =

∑
M0 �H(l)

and
∑

offdiag(H(l)) =
∑
M1 � H(l). By doing so, we

can put any graph into same batch. These principles have
been implemented as a class of the widely used open-source
pytorch geometric library.

