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Abstract
Online allocation problems with resource con-
straints have a rich history in computer science
and operations research. In this paper, we intro-
duce the regularized online allocation problem, a
variant that includes a non-linear regularizer act-
ing on the total resource consumption. In this
problem, requests repeatedly arrive over time and,
for each request, a decision maker needs to take
an action that generates a reward and consumes re-
sources. The objective is to simultaneously maxi-
mize total rewards and the value of the regularizer
subject to the resource constraints. Our primary
motivation is the online allocation of internet ad-
vertisements wherein firms seek to maximize ad-
ditive objectives such as the revenue or efficiency
of the allocation. By introducing a regularizer,
firms can account for the fairness of the alloca-
tion or, alternatively, punish under-delivery of
advertisements—two common desiderata in inter-
net advertising markets. We design an algorithm
when arrivals are drawn independently from a dis-
tribution that is unknown to the decision maker.
Our algorithm is simple, fast, and attains the op-
timal order of sub-linear regret compared to the
optimal allocation with the benefit of hindsight.
Numerical experiments confirm the effectiveness
of the proposed algorithm and of the regularizers
in an internet advertising application.

1. Introduction
Online allocation problems with resource constraints have
abundant real-world applications and, as such, have been
extensively studied in computer science and operations re-
search. Prominent applications can be found in internet
advertising and cloud computing, both of which are multi-
billion dollar markets. In display advertising, for example,
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a publisher typically signs contracts with many advertisers
agreeing to deliver a fixed number of impressions within a
limited time horizon. Impressions arrive sequentially over
time and the publisher needs to assign, in real time, each
impression to one advertiser so as to maximize metrics
such as the cumulative click-through rate or the number
of conversions while satisfying contractual agreements on
the number of impressions to be delivered (Feldman et al.,
2010). In cloud computing, jobs arriving online need to
be scheduled to one of many servers. Each job consumes
resources from the server, which need to be shared with
other jobs. The scheduler needs to assign jobs to servers
to maximize metrics such as the cumulative revenue or effi-
ciency of the allocation. When jobs’ processing times are
long compared to their arrival rates, this scheduling problem
can be cast as an online allocation problem (Badanidiyuru
et al., 2018).

The literature on online allocation problems focuses mostly
on optimizing additively separable objectives such as the
total click-throughout rate, revenue, or efficiency of the allo-
cation. In many settings, however, decision makers are also
concerned about ancillary objectives such as fairness across
advertisers, avoiding under-delivery of impressions, balanc-
ing the load across servers, or avoiding saturating resources.
These metrics are, unfortunately, non-separable and cannot
be readily accommodated by existing algorithms that are
tailored for additively separable objectives. Thus motivated,
in this paper, we introduce the regularized online allocation
problem, a variant that includes a non-linear regularized
acting on the total resource consumption. The introduction
of a regularizer allows the decision maker to simultaneously
maximize an additively separable objective together with
other metrics such as fairness and load balancing that are
non-linear in nature.

More formally, we consider a finite horizon model in which
requests arrive repeatedly over time. The decision maker
is endowed with a fixed amount of resources that cannot
be replenished. Each arriving requests is presented with a
concave reward function and a consumption matrix. After
observing the request, the decision makers needs to take an
action that generates a reward and consumes resources. The
objective of the decision maker is to maximize the sum of
the cumulative reward and a regularizer that acts on the total
resource consumption. (Our model can easily accommodate
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a regularizer that acts on other metrics such as, say, the
cumulative rewards by adding dummy resources.)

Motivated by practical applications, we consider an incom-
plete information model in which requests are drawn inde-
pendently from a distribution that is unknown to the decision
maker. That is, when a request arrives, the decision maker
observes the reward function and consumption matrix of the
request before taking an action, but does not get to observe
the reward functions and consumption matrices of future re-
quests until their arrival. For example, in display advertising,
publishers can estimate, based on the attributes of the vis-
iting user, the click-through rates of each advertiser before
assigning an impression. However, the click-through rates
of future impressions are not known in advance as these
depend on the attributes of the unknown, future visitors.
The objective of this paper is to design simple algorithms
that attain low regret relative to the best allocation when all
requests are known in advance.

1.1. Our Results
Duality theory has been successfully used to tackle online
allocation problems with additively separable objectives be-
cause it allows to decouple a master, resource-constrained
problem into simpler subproblems—one for each request.
We show that similar techniques can be used to design algo-
rithms for online allocation problems with a non-additively
separable regularizer.

In particular, we propose a dual-descent algorithm that main-
tains a dual variable for each resource constraint. When a
request arrives, the reward function is adjusted with the
dual variables to capture the opportunity of consuming re-
sources, and then actions are taken greedily with respect
to the dual-variable-adjusted reward function. The dual
variables are also used to determine an “ideal” resource
consumption that optimizes the regularizer. A simple, yet
key observation is that by comparing the actual resource
expenditure of the current action to the ideal resource con-
sumption from the regularizer, we can construct a noisy,
unbiased subgradient of the dual objective function. Us-
ing these subgradients as inputs, our algorithm employs
weighted online subgradient descent to update the dual vari-
ables after each request. We prove that the regret of our
algorithm is of the order O(T 1/2), where T is number of
time periods, when resources are scaled proportionally to
the length of the horizon. This rate is unimprovable under
our minimal assumptions on the input.

When updating the dual variables, it is required to project
dual variables to the feasible set. In standard online allo-
cation problems the dual feasible set is the non-negative
orthant and the projection step is trivial. The introduction of
a regularizer, however, alters the geometry dual feasible set.
In many cases, the dual feasible set becomes more complex,

which, in turn, results in a more difficult projection problem.
By suitably picking the weights for subgradient descent, it
is possible to adjust the update rule to better capture the
geometry of the dual feasible set and obtain more tractable
projection problems.

An advantage of our algorithm is that it is efficient and
simple to implement. In many cases, the update rule can
be implemented in linear time and there is no need to solve
auxiliary convex optimization problems on historical data
as in other methods in the literature.

To illustrate of our approach we discuss several regularizers
that are useful in practice and numerically evaluate our algo-
rithm on an internet advertising application using a max-min
fairness regularizer. Our experiments confirm that our pro-
posed algorithm attains O(T 1/2) regret as suggested by our
theory, and showcase the trade-off between click-through
rates and fairness: fairness can be significantly improved by
reducing click-through rates by a small amount.

1.2. Related Work
Online allocation problems have been extensively studied
in computer science and operations research literature. Ta-
ble 1 summarizes the differences between our work and the
existing literature on online allocation problems.

There is a stream of literature that studies online allocation
problems under adversarial input models, i.e., when the
incoming requests are adversarially chosen (Mehta et al.,
2007; Feldman et al., 2009). We focus, instead, on stochastic
models when the incoming requests are drawn i.i.d. from an
unknown distribution.

Early work on online allocation with stochastic input mod-
els focus on linear reward functions, i.e., the case when the
reward function is linear in the decision variable. Devanur
and Hayes (2009) presented a two-phase dual training algo-
rithm for linear reward function that is proportional to the
resource consumption, which attains O(T 2/3) regret. Feld-
man et al. (2010) introduced a similar algorithm for more
general linear reward functions which obtains the same or-
der of regret. Later on, Agrawal et al. (2014) proposed a
new dual-based algorithm that periodically solves a linear
program using all data collected so far in order to update the
dual variable, which improves the regret bound to O(T 1/2).
Devanur et al. (2019) studied more complicated algorithms
that not only obtain O(T 1/2) regret, but also yield near-
optimal dependence on other parameters of the problems
such as the number of resources. On the other hand, by a
result of Arlotto and Gurvich (2019), Ω(T 1/2) regret turns
out to be lowest possible attainable regret under such set-
tings. With additional assumptions on the input, the regret
bound can be further improved. When the expected instance
is non-degenerate, Jasin (2015) presented a new algorithm
that attains O(log T ) regret by periodically re-estimating
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Resource
Papers Objective constraints Input model Results

Mehta et al. (2007); Feldman et al.
(2009)

Linear Hard Adversarial Fixed comp. ratio

Devanur and Hayes (2009); Feld-
man et al. (2010); Agrawal et al.
(2014); Devanur et al. (2019); Jasin
(2015); Li and Ye (2019); Li et al.
(2020)

Linear Hard Stochastic Sublinear regret

Balseiro et al. (2020) Nonlinear,
separable

Hard Stochastic Sublinear regret

Jenatton et al. (2016); Agrawal and
Devanur (2015)

Non-separable Soft Stochastic Sublinear regret

Eghbali and Fazel (2016) Non-separable Soft Adversarial Fixed comp. ratio
Tan et al. (2020) Non-separable Hard Adversarial Fixed comp. ratio
This paper Non-separable Hard Stochastic Sublinear regret

Table 1: Comparison of our work with the existing literature on online allocation problems.

the distribution of requests. When the distribution of re-
quests is absolutely continuous with uniformly bounded
densities, Li and Ye (2019) presented a different algorithm
that attains O(log T ) regret. Their algorithm updates the
dual variables by periodically solving a linear program using
all data collected so far.

While the algorithms described above usually require solv-
ing large linear problem periodically, there is a recent line
of work seeking simple algorithms that have no need of
solving large linear program. Balseiro et al. (2020) studied
a simple dual mirror descent algorithm for online alloca-
tion problems with concave reward functions, which attains
O(T 1/2) regret. Our algorithm is similar to theirs in spirit,
but our analysis is simpler as we do not need to explicitly
bound the stopping time corresponding to the first time a re-
source is depleted. Their updates can be computed in linear
time, and avoids the need of solving large linear program.
Soon afterward, Li et al. (2020) presented a similar fast
algorithm that attains O(T 1/2) regret for linear reward. Our
proposed algorithm falls into this category: the update per
iteration can be efficiently computed in linear time and there
is no need to solve large convex optimization problems. A
major difference is that we allow for a regularizer in the
objective, which provides us with greater modeling power
while increasing the analysis difficulty.

While most of the literature on online allocation focuses
on maximizing an additively separable objective, other fea-
tures of the allocation, such as fairness and load balancing,
sometimes are crucial to the decision maker. For example,
fairness is a central concept in welfare economics. Differ-

ent reasonable metrics of equity have been proposed and
studied: max-min fairness, which maximizes the reward of
the worst-off agents (Nash Jr, 1950; Bansal and Sviridenko,
2006); proportional fairness, which makes sure that there
is no alternative allocation that can lead to a positive aggre-
gate proportional change for each agent (Azar et al., 2010;
Bateni et al., 2018); or α-fairness, which generalizes the
previous notions (Mo and Walrand, 2000; Bertsimas et al.,
2011; 2012), and allows to recovers max-min fairness and
proportional fairness as special cases when α = ∞ and
α = 1, respectively. The above line of work focuses on opti-
mizing the fairness of an allocation problem in either static
settings, adversarial settings, or stochastic settings that are
different to ours. In contrast, our framework is concerned
with maximizing an additively separable objective but with
an additional regularizer corresponding to fairness (or other
desired ancillary objective).

The regularizer can be viewed as a reward that is not separa-
ble over time. The existence of such non-separable regular-
izer makes the theoretical analysis much harder than the one
without the regularizer. For example, compared to Balseiro
et al. (2020), one fundamental difficulty in the analysis is
that the dual variables, which correspond to the opportunity
cost that a unit of resource is consumed, can be negative due
to the existence of the regularizer. This precludes the stop-
ping time analysis introduced in Balseiro et al. (2020) from
applying in our result. We come up with a new analysis that
overcomes that difficulty by utilizing the complementary
slackness condition to control the performance up to the
stopping time.
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Indeed, there have been previous works studying online
allocation problems with non-separable rewards, but most
of them are under very restrictive assumptions, precluding
most of the interesting examples we present in Section 2.1.
Jenatton et al. (2016) studies a problem with soft resource
constraints in which violations of the constraints are penal-
ized using a non-separable regularizer. Thus, different to
our paper, they allow the resource constraints to be violated.
They provide a similar algorithm to ours, but their regret
bounds depend on the optimal solution in hindsight, which,
in general, it is hard to control. Eghbali and Fazel (2016)
consider maximizing a non-separable concave reward and
requires the reward to be monotonic. They do not consider
hard resource constraints and, moreover, they consider an
adversarial input model. They provide similar primal-dual
algorithms that are shown to attain fixed competitive ra-
tios. Tan et al. (2020) studies a similar problem as our
regularized online allocation setting, but restrict attention to
one resource. Compared to the above works, we consider
stochastic inputs, which allow us to attain sublinear regret,
while they consider adversarial inputs under which sublinear
regret is not attainable.

Another related work to ours is Agrawal and Devanur (2015),
where the focus is to solve general online stochastic con-
vex program that allows general concave objectives and
convex constraints. When the value of the benchmark is
known, they present fast algorithms; otherwise, their algo-
rithms require periodically solving large convex optimiza-
tion problems with the data collected so far to obtain a good
estimate of the benchmark. In principle, our regularized
online allocation problem (see Section 2 for details) can be
reformulated as an instance of the online stochastic convex
program presented in Agrawal and Devanur (2015). Such
reformulation makes the algorithms proposed in Agrawal
and Devanur (2015) more complex than ours as they re-
quire keeping track of additional dual variables and solving
convex optimization program on historical data (unless the
optimal value of the objective is known). Moreover, their
algorithm treat resources constraints as soft, i.e., they allow
constraints to be violated and then prove that constrains
are violated, in expectation, by an amount sublinear in the
number of time periods T . Instead, in our setting, resource
constraints are hard and cannot be violated, which is a fun-
damental requirement in many applications. Additionally,
our proposed algorithm is simple, fast, and does not require
estimates of the value of the benchmark nor solving large
convex optimization problems.

2. Problem Formulation
We consider the following generic convex problem with a
finite horizon of T time periods, resource constraints, and a

regularizer r on the resource consumption:

(O) : max
x:xt∈X

T∑
t=1

ft(xt) + Tr

(
1

T

T∑
t=1

btxt

)

s.t.
T∑
t=1

btxt ≤ Tρ ,

(1)

where xt ∈ X ⊆ Rd is the action at time t, ft ∈ Rd → R+

is the non-negative concave reward function received at time
t, bt ∈ Rm×d+ is the entry-wise non-negative cost matrix
received at time t, ρ ∈ Rm++ is the positive resource con-
straint vector, r is a concave regularizer on the consumption.
The assumption bt ≥ 0 implies that we cannot replenish
resources once they are consumed. We assume that the ac-
tion set X is a convex and compact set in Rd+, and 0 ∈ X.
The above assumption implies that we can only take non-
negative actions. Moreover, we can always take a void
action by choosing xt = 0 in order to make sure we do
not exceed the resource constraints. This guarantees the
existence of a feasible solution.

We assume the request (ft, bt) at time t is generated
i.i.d. from an unknown distribution P ∈ ∆(S) with finite
support S = {(f1, b1), . . . , (fn, bn)} and where ∆(S) is
the space of all probability distributions over S.

In the online setting, at each time period 1 ≤ t ≤ T , we
receive a request (ft, bt), and we use an algorithm A to
make a real-time decision xt based on the current request
(ft, bt) and the previous history Ht−1 := {fs, bs, xs}t−1

s=1,
i.e.,

xt = A(ft, bt|Ht−1) . (2)

Moreover, algorithm A must satisfy constraints∑t
s=1 bsxs ≤ ρT and xt ∈ X for every t ≤ T . In

particular, we define the expected reward of an algorithm A
over distribution P ∈ ∆(S) as

R(A|P) = EP

[
T∑
t=1

ft(xt) + Tr

(
1

T

T∑
t=1

btxt

)]
,

where xt is computed by (2). The baseline we compare
with is the expected reward of the optimal solution when
all requests are known in advance, which is also referred
as the offline problem in the computer science literature.
This amounts to solving for the optimal allocation under
full information of all requests and then taking expectations
over all possible realizations:

OPT(P) = EP


max
xt∈X

T∑
t=1

ft(xt) + Tr

(
1

T

T∑
t=1

btxt

)

s.t.
T∑
t=1

btxt ≤ Tρ


(3)
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Our goal is to a design an algorithm A that attains low
regret while satisfying above constraints. We measure the
regret of an algorithm as the worst-case difference, over
distributions in ∆(S), between the expected performance of
the benchmark and the algorithm:

Regret(A) = sup
P∈∆(S)

{OPT(P)−R(A|P)} .

2.1. Examples of the Regularizer
We now describe some examples of the regularizer. First, by
setting the regularizer to zero, we recover a standard online
allocation problem.

Example 1. (No regularizer) When the regularizer is
r(a) = 0, we recover the non-regularized problem.

Our next example allows for max-min fairness guaran-
tees, which have been studied extensively in the litera-
ture (Nash Jr, 1950; Bansal and Sviridenko, 2006; Mo and
Walrand, 2000; Bertsimas et al., 2011; 2012). Here we state
the regularizer in terms of consumption. In many settings,
however, it is reasonable to state the fairness regularizer in
terms of other quantities such as the cumulative utility of ad-
vertisers. As discussed in Example 6, such regularizers can
be easily accommodated by introducing dummy resource
constraints.

Example 2. (Max-min Fairness) The regularizer is defined
as r(a) = λminj(aj/ρj), i.e., the minimum relative con-
sumption. This regularizer imposes fairness on the con-
sumption between different advertisers, making sure that
no advertiser gets allocated a too-small number of ad slots.
Here λ > 0 is parameter that captures that importance of
the regularizer relative to the rewards.

In applications like cloud computing, load should be bal-
anced across resources to avoid congestion. The following
regularizer is reminiscent of the makespan objective in ma-
chine scheduling.

Example 3. (Load Balancing) The regularizer is defined
as r(a) = −λmaxj(aj/ρj), i.e., the negative maximum
relative consumption. This regularizer guarantees that con-
sumption is evenly distributed across resources by making
sure that no resource is too demanded.

In some settings, the cost of utilizing resources is non-linear
and convex because of decreasing returns to scale. The
next regularizer allows to capture situations in which the
cost of utilizing resources increases as they become satu-
rated.

Example 4. (Hinge Loss of Consumption) The regularizer
is defined as r(a) = −

∑m
j=1 cj max(aj − tj , 0), a hinge

loss function with thresholds tj ∈ [0, ρj ] and penalties cj .
This regularizer can be used when there is an extra variable

cost cj for each unit of resource consumed above a threshold
tj .

To maximize reach, internet advertisers, in some cases, pre-
fer that their budgets are spent as much as possible or their
reservation contracts are delivered as many impressions
as possible. We can incorporate these features by having
the firm pay a goodwill penalty whenever targets are not
met.

Example 5. (Mirrored Hinge Loss of Consumption) The
regularizer is defined as r(a) = −

∑m
j=1 cj max(tj−aj , 0),

a mirrored hinge loss function with thresholds tj ∈ [0, ρj ]
and penalties cj . This regularizer can be used when the
advertiser j would like to spend at least tj and the firm pays
a penalty cj for under-delivering.

The regularizers in the previous examples act exclusively
on resource consumption. The next example shows that by
adding dummy resource constraints that never bind, it is
possible to incorporate regularizers that act on other quanti-
ties.

Example 6. (Santa Claus Regularizer from Bansal and
Sviridenko 2006) The Santa Claus regularizer intends to
make sure the minimal reward of each advertiser is not
too small. Here we consider reward function ft(xt) =∑m
j=1(qtxt)j , where qt ∈ Rm×d, and qtxt ∈ Rm is the

reward vector for the m advertiser with decision xt. While
the reward function ft measures the total reward for all
advertisers, the regularizer intends to make sure the mini-
mal reward of the advertisers is not too small. To reduce
such problem to our setting, we first add auxiliary bud-
get constraints

∑T
t=1 qtxt ≤ T f̄e, and then regularizer is

r
(

1
T

∑T
t=1 qtxt,

1
T

∑T
t=1 btxt

)
= 1

T minj
∑T
t=1(qtxt)j ,

where f̄ is an upper bound of the possible reward.

2.2. The Dual Problem
Our algorithm is of dual-descent nature and, thus, the La-
grangian dual problem of (3) and its constraint set play a
key role. We construct a Lagragian dual of (3) in which
we move the constraints to the objective using a vector of
Lagrange multipliers µ ∈ Rm. For c ∈ Rd and µ ∈ Rm we
define

f∗(c) := sup
x∈X
{f(x)− c>x} , and

r∗(−µ) := sup
a≤ρ
{r(a) + µ>a} ,

(4)

as the conjugate function of f(x) restricted to X1 and the
conjugate function of r(a) restricted to {a|a ≤ ρ}, respec-
tively. Define D = {µ ∈ Rm | r∗(−µ) < +∞} as the

1More precisely, f∗(−c) is the conjugate function of −f(x) +
1{x ∈ X} with the standard definition of conjugate functions,
where 1{x ∈ X} is the indicator function of the constraint. We
redefine the conjugate function for simplicity.
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set of dual variables for which the conjugate of the regu-
larized is bounded. For a given distribution P, define the
Lagrangian dual function D(µ|P) : D→ R as

D(µ|P) := E(f,b)∼P
[
f∗(b>µ)

]
+ r∗(−µ) ,

then the following result shows thatD(µ|P) provides a valid
upper bound to OPT(P). All missing proofs are available
in the appendix.

Proposition 1. It holds for any µ ∈ D that OPT(P) ≤
TD(µ|P).

Furthermore, we call

(D) : inf
µ∈D

TD(µ|P) , (5)

the dual problem to (1). As mentioned before, the feasible
region of the dual problem, as given by D, together with the
conjugate of the regularizer plays a key role in our algorithm
and in our regret analysis. The following result provides
some useful properties of the set D.

Lemma 1. The set D is convex and positive orthant is inside
the recession cone of D, i.e., Rd+ ⊆ recc(D).

Proof. Convexity follows from Proposition 1.1.6 of Bert-
sekas (2009). We prove the second part. Suppose µ ∈ D,
namely maxa≤ρ{r(a) + µ>a} < +∞. Then it holds for
any e ∈ Rd+ and λ > 0 that

max
a≤ρ
{r(a) + (µ+ λe)>a} ≤ max

a≤ρ
{r(a) + µ>a}+ λe>ρ

< +∞ ,

thus µ+ λe ∈ D, which finishes the proof by definition of
recession cone.

We next give explicit characterizations of the constraint set
D and the conjugate r∗ for the sample regularizers stated in
Section 2.1.

2.3. The Constraint Set D for the Examples
The next proposition presents the conjugate functions r∗, the
corresponding domain D, and optimal actions a∗(−µ) ∈
arg maxa≤ρ{r(a) + µ>a} for the first five examples stated
in Section 2.1.

Proposition 2. The following hold:

• Example 1: If r(a) = 0, then D = Rm+ and, for
µ ∈ D, r∗(−µ) = µ>ρ and a∗(−µ) = ρ.

• Example 2: If r(a) = λminj(aj/ρj), then D ={
µ ∈ Rm |

∑
j∈S ρjµj ≥ −λ ∀S ⊆ [m]

}
, and,

for µ ∈ D, r∗(−µ) = ρ>µ+ λ and a∗(−µ) = ρ.

Algorithm 1: Dual Subgradient Descent Algorithm
Input: Initial dual solution µ0, total number of time
periods T , initial resources B0 = Tρ, weight vector
w ∈ Rm++, and step-size η.
for t = 0, . . . , T − 1 do

Receive (ft, bt) ∼ P.
Make the primal decision and update the remaining

resources:

x̃t = arg maxx∈X{ft(x)− µ>t btx} ,

xt =

{
x̃t if btx̃t ≤ Bt
0 otherwise ,

at = arg maxa≤ρ{r(a) + µ>t a}

Bt+1 = Bt − btxt.

Obtain a stochastic subgradient of D(µt|P):

g̃t = −btx̃t + at .

Update the dual variable by weighted, projected
subgradient descent:

µt+1 = arg min
µ∈D
〈g̃t, µ〉+

1

2η
‖µ− µt‖2w . (6)

end

• Example 3: If r(a) = −λmaxj(aj/ρj), then D ={
µ ≥ 0 |

∑m
j=1 ρjµj ≥ λ

}
, and, for µ ∈ D,

r∗(−µ) = ρ>µ+ λ and a∗(−µ) = ρ.

• Example 4: If r(a) = −
∑m
j=1 cj max(aj − tj , 0),

then D = Rm+ and, for µ ∈ D, r∗(−µ) = µ>t +∑m
j=1(ρj − tj) max(µj − cj , 0) and a∗j (−µ) = tj if

µj ∈ [−cj , 0) and a∗j (−µ) = ρj if µj ≥ 0.

• Example 5: If r(a) = −
∑m
j=1 cj max(tj − aj , 0),

then D =
{
µ ∈ RM | µ ≥ −c

}
and, for µ ∈ D,

r∗(−µ) = µ>t +
∑m
j=1(ρj − tj) max(µj , 0) and

a∗j (−µ) = tj if µj ∈ [−cj , 0) and a∗j (−µ) = ρj if
µj ≥ 0.

3. Algorithm
Algorithm 1 presents the main algorithm we study in this
paper. Our algorithm keeps a dual variable µt ∈ Rm for
each resource that is updated using subgradient descent,
which is the workhorse algorithm of online convex opti-
mization (Hazan et al., 2016).

At time t, the algorithm receives a request (ft, bt), and com-
putes the optimal response x̃t that maximizes an opportunity
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cost-adjusted reward of this request based on the current
dual solution µt. It then takes this action (i.e., xt = x̃t) if
the action does not exceed the resource constraint, other-
wise it takes a void action (i.e., xt = 0). Additionally, it
chooses a target resource consumption at by maximizing the
opportunity-cost adjusted regularized (in Proposition 2 we
give closed-form solutions for at for the regularizers we con-
sider). Notice that it follows from the definition of conjugate
function (4) that −btx̃t ∈ ∂f∗t (b>t µt) and at ∈ ∂r∗(−µt).
Thus g̃t := −btx̃t + at is an unbiased stochastic estimator
of a subgradient of the dual problem D(µ|P) at µt:

EP [g̃t] = EP [−btx̃t + at]

∈ E(f,b)∼P
[
∂f∗(b>µt)

]
+ r∗(−µt) ∈ ∂D(µt|P) .

Finally, the algorithm utilizes g̃t to update the dual variable
by performing an online subgradient descent step (6) with
step-size η and weight w. The descent step (6) can be inter-
preted as minimizing over D a first-order Taylor expansion
of the dual objective plus a term that penalizes movement
from the incumbent solution µt using the weighted `2-norm
‖ · ‖w, which is given by ‖x‖2w =

∑m
j=1 wjx

2
j for some

weight vector w ∈ Rm++.

Algorithm 1 only takes an initial dual variable and a step-
size as inputs, and is thus simple to implement. In some
cases, though the constraint D can be complicated, a proper
choice of the weight w may make the descent step (6) easily
computable (in linear time or with a closed-form solution).
We discuss some good choices for the weight w for Exam-
ples 2-5 in Appendix D. In particular, in Example 2, the dual
feasible set D has an exponential number of constraints, but
using weights wj = ρ2

j we can cast (6) as quadratic pro-
gram with a linear number of constraints. In Example 3, the
constraint D is a simple polytope, and we can again cast (6)
as quadratic program with a linear number of constraints.
Finally, in examples 4 and 5, the set D is a simple box con-
straint, and we can recover projected gradient descent by
using the un-weighted Euclidean norm.

4. Regret Bound
In this section, we present the worst-case regret bound of
Algorithm 1 for solving (1). First we state the assumptions
required in our analysis.

Assumption 1. (Assumptions on the support of the distri-
bution). There exists f̄ ∈ R+ and b̄ ∈ R+ such that for all
requests (f, b) ∈ S in the support, it holds f(x) ≤ f̄ for all
x ∈ X and ‖bx‖w,∗ ≤ b̄ for all x ∈ X.

The upper bounds f̄ and b̄ impose regularity on the space
of requests, and will appear in the regret bound. In the
assumption above, we denote by ‖ · ‖w,∗ the dual norm of
‖ · ‖w, which is given by ‖x‖2w,∗ =

∑m
j=1 x

2
j/wj .

Assumption 2. (Assumptions on the regularizer r). We
assume the regularizer r and the set D = {µ ∈ Rm |
r∗(−µ) < +∞} satisfy:

1. The function r(a) is concave.

2. The function r(a) is L-Lipschitz continuous in the
‖ · ‖w,∗-norm on its effective domain, i.e., |r(a1) −
r(a2| ≤ L‖a1 − a2‖w,∗ for any a1, a2 ≤ ρ.

3. There exists a constant ā such that for any µ ∈ D,
there exists a ∈ arg maxa≤ρ{r(a) + µ>a} such that
‖a‖w,∗ ≤ ā.

4. There exist r̄ and r such that for any x ∈ X and
(b, f) ∈ S(P) that r ≤ r(bx) ≤ r̄.

The first part of assumption is required to guarantee that
the optimization problem is convex. The third part guar-
antees that the conjugate of the regularizer has bounded
subgradient, while the last part imposes that the regularizer
is bounded. Proposition 2 in Appendix 2.3 immediately
implies that the assumption is satisfied by all examples we
consider in this paper.

The previous assumptions imply, among other things, that
the projection step (6) of the algorithm always admits a
solution. First, continuity of the regularizer implies that
D is closed by Proposition 1.1.6 of Bertsekas (2009). The
objective is continuous and coercive. Therefore, the pro-
jection problem admits an optimal solution by Weierstrass
theorem.

The next theorem presents the worst-case regret bound of
Algorithm 1.

Theorem 1. Consider Algorithm 1 with step-size η ≥ 0
and initial solution µ0 ∈ D. Suppose Assumptions 1-2 are
satisfied. Then, it holds for any T ≥ 1 that

Regret(A) ≤ C1 + C2ηT +
C3

η
. (7)

where C1 = (f̄ + r̄ + L(b̄+ ā)− r)/ρ, C2 = (b̄+ ā)2/2,

C3 = (L+ C1‖w‖1/2∞ )2 + ‖µ0‖2w, and ρ = minj∈[m] ρj .

While the result has a similar flavor to Balseiro et al. (2020),
we would like to highlight that their stopping-time analysis
does not work for our setting with the regularizer because
the dual variables can be strictly negative with the existence
of a regularizer.

Some observations are in order. First, the previous result
implies that, by choosing a step-size of order η ∼ T−1/2,
Algorithm 1 attains regret of order O(T−1/2) when the
length of the horizon and the initial amount of resources are
simultaneously scaled. Second, Lemma 1 from Arlotto and
Gurvich (2019) implies that one cannot hope to attain regret
lower than Ω(T−1/2) under our assumptions. (Their result
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Figure 1: Plot of the regret versus the horizon T for the
regularized online allocation problem (8) with different reg-
ularization levels.

holds for the case of no regularizer, which is a special case
of our setting.) Therefore, Algorithm 1 attains the optimal
order of regret.

We prove Theorem 1 in three steps. Let τA be the stop-
ping time corresponding to the first time that a resource is
depleted. The first step involves lower bounding the cu-
mulative reward of the algorithm up to τA in terms of the
dual objective (evaluated at the average dual variable used
by the algorithm) minus a complementary slackness term.
Until the stopping time τA, the algorithm performs standard
subgradient descent steps on the dual function and, as a
consequence, seeks to minimize complementary slackness.
In the second step, we upper bound the complementary
slackness term using standard results for online subgradient
descent. By picking a suitable point in the dual space and
using the theory of convex conjugates, we can relate the
bound on the complementary slackness term to the value
of regularizer. In the last step, we put everything together
by using Proposition 1 to upper bound the optimal perfor-
mance in terms of the dual function and then controlling the
stopping time τA.

5. Numerical Experiments
In this section, we present numerical experiments on a dis-
play advertisement allocation application regularized by
max-min fairness on consumption (Example 2).

Dataset. We utilize the display advertisement dataset intro-
duced in Balseiro et al. (2014). They consider a publisher
who has agreed to deliver ad slots (the requests) to different
advertisers (the resources) so as to maximize the cumulative
click-through rates (the reward) of the assignment. In their
paper, they estimate click-through rates using mixtures of

log-normal distributions. We adopt their parametric model
as a generative model and sample requests from their es-
timated distributions. We consider publisher 2 from their
dataset, which has m = 12 advertisers. Furthermore, in our
experiments, we rescale the budget ρ so that

∑m
j=1 ρj = 1.5

in order to make sure that the max-min fairness is strictly
less than 1.

Regularized Online Problem. The goal here is to design
an online allocation algorithm that maximizes the total ex-
pected click-through rate with a max-min fairness regu-
larizer on resource consumption as in Example 2. Adver-
tiser j ∈ [m] can be assigned at most Tρj ad slots and
the decision variables lie in the simplex X = {x ∈ Rm+ :∑m
j=1 xj ≤ 1}. Denoting by qt ∈ Rm the click-through

rate of the t-th ad slot T , we have that the benchmark is
given by:

max
x:xt∈X

T∑
t=1

q>t xt + λ min
j=1,...,m

(
T∑
t=1

(xt)j/ρj

)

s.t.
T∑
t=1

xt ≤ Tρ ,

(8)

where λ is the weight of the regularizer. In the ex-
periments, we consider the regularization levels λ ∈
{0, 0.1, 0.01, 0.001, 0.0001} and lengths of horizon T ∈
{102, 103, 2 · 103, . . . , 104}.

Implementation Details. In the numerical experiments,
we implemented Algorithm 1 with weights wj = ρ2

j and
step-size 0.01 · T−1/2. The dual update (6) is computed by
solving a convex quadratic program as stated in Appendix D
using cvxpy (Diamond and Boyd, 2016). For each regular-
ization level λ and time horizon T , we randomly choose
T samples from their dataset that are fed to Algorithm 1
sequentially. In order to compute the regret, we utilize the
dual objective evaluated at the average dual D( 1

T

∑T
t=1 µt)

as an upper bound to the benchmark. We report the aver-
age cumulative reward, the average max-min consumption
fairness, and the average regret of 100 independent trials in
Figure 1 and Figure 2. Ellipsoids in Figure 2 (b) give 95%
confidence regions for the point estimates.

Observations. Consistent with Theorem 1, Figure 1 sug-
gests that regret grows at rate O(

√
T ) for all regularization

levels. Figure 2 presents the trade-off between reward and
fairness with the 95% confidence ellipsoid. In particular,
we can double the max-min fairness while sacrificing only
about 4% of the reward by choosing λ = 0.01. This show-
cases that fairness can be significantly improved by solving
the regularized problem with a small amount of reward
reduction.
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Figure 2: Plot of the reward
∑T
t=1 qtxt versus the max-

min fairness minj=1,...,m

(∑T
t=1(xt)j/Tρj

)
. Dots from

left to right corresponds to regularization levels λ =
0.0, 0.0001, 0.001, 0.01, 0.1, respectively.

6. Conclusion and Future Directions
In this paper, we introduce the regularized online allocation
problem, a novel variant of the online allocation problem
that allows for regularization on resource consumption. We
present multiple examples to showcase how the regularizer
can help attain desirable properties, such as fairness and load
balancing, and present a dual online subgradient descent
algorithm for solving this problem with low regret. Future
directions include extending the results in this work to more
general input models (e.g., non-stationary stochastic inputs
and adversarial inputs).
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A. Proof of Proposition 2
We prove Proposition 2 for each example at a time.

A.1. Example 2
Performing the change of variables zj = λ(aj/ρj − 1) or aj = (zj/λ+ 1)ρj we obtain that

r∗(−µ) = sup
a≤ρ

{
λmin

(
aj
ρj

)
+ µ>a

}
= µ>ρ+ λ+ sup

z≤0

min (zj) +

m∑
j=1

µjρj
λ

zj


and the result follows from invoking the following lemma.

Lemma 2. Let s(z) = minj zj and s∗(µ) = supz≤0{s(z) + z>µ} for µ ∈ Rm. If
∑
j∈S µj ≥ −1 for all subsets S ⊆ [m],

then s∗(µ) = 0 and z = 0 is an optimal solution. Otherwise, s∗(µ) =∞.

Proof. Let D =
{
µ ∈ Rm |

∑
j∈S µj ≥ −1 ∀S ⊆ [m]

}
. We first show that s∗(µ) = ∞ for µ 6∈ D. Suppose that there

exists a subset S ⊆ [m] such that
∑
j∈S µj < −1. For t ≥ 0, consider a feasible solution with zj = −t for j ∈ S and

zj = 0 otherwise. Then, because such solution is feasible and s(z) = −t we obtain that s∗(µ) ≥ s(z) − t
∑
j∈S µj =

−t(
∑
j∈S µj + 1). Letting t→∞, we obtain that s∗(µ) =∞.

We next show that s∗(µ) = 0 for µ ∈ D. Note that s∗(µ) ≥ 0 because z = 0 is feasible and s(0) = 0. We next show that
s∗(µ) ≤ 0. Let z ≤ 0 be any feasible solution and assume, without loss of generality, that the vector z is sorted in increasing
order, i.e., z1 ≤ z2 ≤ . . . ≤ zm. Let zm+1 := 0. The objective value is

s(z) + z>µ = z1 +

m∑
j=1

zjµj =

m∑
j=1

(zj − zj+1)

(
1 +

j∑
i=1

µi

)
≤ 0

where the second equation follows from rearranging the sum and the inequality follows because z is increasing and∑
j∈S µj + 1 ≥ 0 for all S ⊆ [m]. The result follows.

A.2. Example 3
Performing the change of variables zj = λ(1− aj/ρj) or aj = (1− zj/λ)ρj we obtain that

r∗(−µ) = sup
a≤ρ

{
−λmax

(
aj
ρj

)
+ µ>a

}
= µ>ρ+ λ+ sup

z≥0

min (zj)−
m∑
j=1

µjρj
λ

zj


and the result follows from invoking the following lemma.

Lemma 3. Let s(z) = minj zj and s∗(µ) = supz≥0{s(z) − z>µ} for µ ∈ Rm. If
∑m
j=1 µj ≥ 1 and µj ≥ 0 for all

j ∈ [m], then s∗(µ) = 0 and z = 0 is an optimal solution. Otherwise, s∗(µ) =∞.

Proof. Let D =
{
µ ∈ Rm | µj ≥ 0 and

∑m
j=1 µj ≥ 1

}
. We first show that s∗(µ) =∞ for µ 6∈ D. First, suppose µj < 0

for some j. Consider the feasible solution z = tej for t ≥ 0, where ej is the unit vector with a one in component j and
zero otherwise. Then, because such solution is feasible and s(tej) = 0 we obtain that s∗(µ) ≥ s(tej) − tµj = −tµj .
Letting t → ∞, we obtain that s∗(µ) = ∞. Second, suppose that

∑m
j=1 µj < 1. For t ≥ 0, consider a feasible

solution with z = te where e is the all-one vector. Then, because such solution is feasible and s(z) = t we obtain that
s∗(µ) ≥ s(z)− t

∑m
j=1 µj = t(1−

∑m
j=1 µj). Letting t→∞, we obtain that s∗(µ) =∞.

We next show that s∗(µ) = 0 for µ ∈ D. Note that s∗(µ) ≥ 0 because z = 0 is feasible and s(0) = 0. We next show that
s∗(µ) ≤ 0. Let z ≤ 0 be any feasible solution and assume, without loss of generality, that the vector z is sorted in increasing
order, i.e., z1 ≤ z2 ≤ . . . ≤ zm. The objective value is

s(z)− z>µ = z1 −
m∑
j=1

zjµj ≤ z1

1−
m∑
j=1

µj

 ≤ 0

where the first inequality follows because zj ≥ z1 for all j ∈ [m] since z is increasing and µj ≥ 0, and the last inequality
follows because z1 ≥ 0 and

∑m
j=1 µj ≥ 1. The result follows.
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A.3. Example 4
We have r(a) = −

∑m
j=1 cj max(aj − tj , 0) be a hinge loss function with thresholds tj ∈ [0, ρj ] and penalties cj .

Because the conjugate of the sum of independent functions is the sum of the conjugates, we have by Lemma 4 that
r∗(−µ) = µ>t+

∑m
j=1(ρj − tj) max(µj − cj , 0) for µ ≥ 0 and r∗(−µ) =∞ otherwise.

Lemma 4. Let r(a) = −cmax(a − t, 0) for a ∈ R, c ≥ 0 and t ∈ [0, ρ]. Let r∗(−µ) = supa≤ρ{r(a) + aµ}. Then,
r∗(−µ) = µt+ (ρ− t) max(µ− c, 0) for µ ≥ 0, and r∗(−µ) =∞ for µ < 0. Moreover, for µ ∈ [0, c], a = t is an optimal
solution; while, for µ ≥ c, a = ρ is an optimal solution.

Proof. We can rewrite the conjugate as

r∗(−µ) = sup
a≤ρ
{−cmax(a− t, 0) + aµ} = µt− inf

z≤ρ−t
{cmax(z, 0)− µz} = µt− s(µ)

where the second equation follows by performing the change of variables z = a − t and the last from setting s(µ) :=
infz≤ρ−t {cmax(z, 0)− µz}.

First, suppose that µ < 0. For any z ≤ 0, we have that s(µ) ≤ −µz. Letting z → ∞ yields that s(µ) = −∞. Second,
consider µ ∈ [0, c]. Write s(µ) = infz≤ρ−t max((c− µ), z,−µz). The objective is increasing for z ≥ 0 and decreasing
for z ≤ 0. Therefore, the optimal solution is z = 0 and s(µ) = 0. Thirdly, for µ > c a similar argument shows that the
objective is decreasing in z. Therefore, it is optimal to set z = ρ − t, which yields s(µ) = −(ρ − t)(µ − c). The result
follows from combining the last two cases.

A.4. Example 5
We have r(a) = −

∑m
j=1 cj max(tj − aj , 0) be a mirrored hinge loss function with thresholds tj ∈ [0, ρj ] and penalties

cj . Because the conjugate of the sum of independent functions is the sum of the conjugates, we have by Lemma 5 that
r∗(−µ) = µ>t+

∑m
j=1(ρj − tj) max(µj , 0) for µ ≥ −c and r∗(−µ) =∞ otherwise.

Lemma 5. Let r(a) = −cmax(t − a, 0) for a ∈ R, c ≥ 0 and t ∈ [0, ρ]. Let r∗(−µ) = supa≤ρ{r(a) + aµ}. Then,
r∗(−µ) = µt+ (ρ− t) max(µ, 0) for µ ≥ −c, and r∗(−µ) =∞ otherwise. Moreover, for µ ∈ [−c, 0], a = t is an optimal
solution; while, for µ ≥ 0, a = ρ is an optimal solution.

Proof. We can rewrite the conjugate as

r∗(−µ) = sup
a≤ρ
{−cmax(t− a, 0) + aµ} = µt+ sup

z≤ρ−t
{cmin(z, 0) + µz} = µt+ s(µ)

where the second equation follows by performing the change of variables z = a − t and the last from setting s(µ) :=
supz≤ρ−t {cmin(z, 0) + µz}.

First, suppose that µ < −c. For any z ≤ 0, we have that s(µ) ≥ (µ+ c)z. Letting z → −∞ yields that s(µ) =∞. Second,
consider µ ∈ [−c, 0]. Write s(µ) = supz≤ρ−t min((c + µ)z, µz). The objective is decreasing for z ≥ 0 and increasing
for z ≤ 0. Therefore, the optimal solution is z = 0 and s(µ) = 0. Thirdly, for µ > 0 a similar argument shows that the
objective is increasing in z. Therefore, it is optimal to set z = ρ− t, which yields s(µ) = (ρ− t)µ. The result follows from
combining the last two cases.
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B. Proof of Proposition 1
Proof. It holds for any µ ∈ D that

OPT(P)

=E(f,b)∼P

[
maxxt∈X,a≤ρ

∑T
t=1 ft(xt) + T · r(a)

s.t.
∑T
t=1 btxt = Ta

]

≤E(f,b)∼P

[
max

xt∈X,a≤ρ

T∑
t=1

ft(xt) + T · r(a) + Tµ>a− µ>
T∑
t=1

btxt

]

=TE(f,b)∼P

[
max

x∈X,a≤ρ
f(x)− µ>bx+ r(a)− (−µ)>a

]
=T

(
E(f,b)∼P

[
max
x∈X
{f(x)− µ>bx}

]
+ max

a≤ρ
{r(a)− (−µ)>a}

)
=T

(
E(f,b)∼P

[
f∗(b>µ)

]
+ r∗(−µ)

)
,

(9)

where the first equality introduces an auxiliary variable a so that
∑T
t=1 btxt = Ta, the first inequality is because we relax

the constraint
∑T
t=1 btxt = Ta, the second equality uses the fact that each request comes from an i.i.d. distribution, the

third equality substitutes the distribution of the request, and the last equality utilizes the definition of r∗ and f∗.

C. Proof of Theorem 1
Proof. We prove the result in the three steps. First, we lower bound the cumulative reward of the algorithm up to the
first time that a resource is depleted in terms of the dual objective and complementary slackness. Second, we bound the
complementary slackness term by picking a suitable “pivot” for online subgradient descent. We conclude by putting it all
together in step three.

Step 1 (Primal performance.) First, we define the stopping time τA of Algorithm 1 as the first time less than T that there
exists resource j such that

τA∑
t=1

(bt)
>
j xt + b̄ ≥ ρjT .

Notice that τA is a random variable, and moreover, we will not violate the resource constraints before the stopping time
τA. We here study the primal-dual gap until the stopping-time τA. Notice that before the stopping time τA, Algorithm 1
performs the standard subgradient descent steps on the dual function because x̃t = xt.

Let us denote the random variable γt to be the type of request in time period t, i.e., γt is the random variable that determines
the (stochastic) sample (ft, bt) in the t-th iteration of Algorithm 1. We denote ξt = {γ0, . . . , γt}.

Consider a time t ≤ τA so that actions are not constrained by resources. Because xt = arg maxx∈X{ft(x)− µ>t btx}, we
have that

ft(xt) = f∗t (b>t µt) + µ>t btxt .

Similarly, because at = arg maxa≤ρ{r(a) + µ>t a}, we have that

r(at) = r∗(−µt)− µ>t at .

Adding these two equations and taking expectations conditional on σ(ξt−1) we obtain, because µt ∈ σ(ξt−1) and (ft, bt) ∼
P, that

E [ft(xt) + r(at)|σ(ξt−1)]

=E(f,b)∼P
[
f∗(b>µt)

]
+ r∗(−µt) + µ>t (E [btxt|σ(ξt−1)]− at)

=D(µt|P)− E
[
µ>t (at − btxt) |σ(ξt−1)

]
(10)

where the second equality follows the definition of the dual function.
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Consider the process Zt =
∑t
s=1 µ

>
s (as − bsxs)− E

[
µ>s (as − bsxs) |σ(ξs−1)

]
, which is martingale with respect to ξt

(i.e., Zt ∈ σ(ξt) and E[Zt+1|σ(ξt)] = Zt). Since τA is a stopping time with respect to ξt and τA is bounded, the Optional
Stopping Theorem implies that E [ZτA ] = 0. Therefore,

E

[
τA∑
t=1

µ>t (at − btxt)

]
= E

[
τA∑
t=1

E
[
µ>t (at − btxt) |σ(ξt−1)

]]
.

Using a similar martingale argument for ft(xt) + r(at) and summing (10) from t = 1, . . . , τA we obtain that

E

[
τA∑
t=1

ft(xt) + r(at)

]
= E

[
τA∑
t=1

D(µt|P)

]
− E

[
τA∑
t=1

µ>t (at − btxt)

]

≥ E [τAD(µ̄τA |P)]− E

[
τA∑
t=1

µ>t (at − btxt)

]
. (11)

where the inequality follows from denoting µ̄τA = 1
τA

∑τA
t=1 µt to be the average dual variable and using that the dual

function is convex.

Step 2 (Complementary slackness). Consider the sequence of functions

wt(µ) = µ>(at − btxt) ,

which capture the complementary slackness at time t. The gradients are given∇µwt(µ) = at − btxt, which are bounded
as follows ‖∇µwt(µ)‖w,∗ ≤ ‖btxt‖w,∗ + ‖at‖w,∗ ≤ b̄+ ā. Therefore, Algorithm 1 applies online subgradient descent to
these sequence of functions wt(µ), and we obtain from Proposition 3 that for every µ ∈ D

τA∑
t=1

wt(µt)− wt(µ) ≤ E(τA, µ) ≤ E(T, µ) , (12)

where E(t, µ) = 1
2 (b̄+ ā)2η · t+ 1

2η‖µ− µ0‖2w is the regret of the online subgradient descent algorithm after t iterations,
and the second inequality follows because τA ≤ T and the error term E(t, µ) is increasing in t.

We now discuss the choice of µ. For µ̂ = arg maxµ∈D

{
r∗(−µ)− µ>

(
1
T

∑T
t=1 btxt

)}
, we have that

1

T

T∑
t=1

(
r(at) + µ̂>at

)
≤ r∗(−µ̂) = r

(
1

T

T∑
t=1

btxt

)
+ µ̂>

(
1

T

T∑
t=1

btxt

)
, (13)

where the inequality follows because r∗(−µ̂) = maxa≤ρ
{
r(a) + µ̂>a

}
≥ r(at) + µ̂>at because at ≤ ρ, and the equality

is because r∗(−µ̂) − µ̂>a = r(a) for a = 1
T

∑T
t=1 btxt since a ≤ ρ and (r∗)∗(a) = r(a) since r(a) is closed, concave,

and proper by Assumption 2.

We let µ = µ̂+ δ, where δ ∈ Rm+ non-negative is to be determined later. Note that µ ∈ D because the positive orthant is
inside the recession cone of D (see Lemma 1). Putting these together, we bound the complementary slackness as follows

τA∑
t=1

wt(µt) ≤
τA∑
t=1

wt(µ) + E(T, µ)

=

T∑
t=1

wt(µ̂)−
T∑

t=τA+1

wt(µ̂) +

τA∑
t=1

wt(δ) + E(T, µ)

≤ T · r

(
1

T

T∑
t=1

btxt

)
−

T∑
t=1

r(at)−
T∑

t=τA+1

wt(µ̂) +

τA∑
t=1

wt(δ) + E(T, µ) ,

(14)

where the first inequality follows from (12), the equality follows from linearity of wt(µ), and the second inequality from
(13).
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Step 3 (Putting it all together). For any P ∈ ∆(S) and τA ∈ [0, T ] we have that

OPT(P) =
τA
T

OPT(P) +
T − τA
T

OPT(P) ≤ τAD(µ̄τA |P) + (T − τA) (f̄ + r̄) , (15)

where the inequality uses Proposition 1 and the fact that OPT(P) ≤ f̄ + r̄. Let Regret(A|P) = OPT(P)−R(A|P) be the
regret under distribution P. Therefore,

Regret(A|P) = OPT(P)−R(A|P)

≤ EP

[
OPT(P)−

τA∑
t=1

ft(xt)− Tr

(
1

T

T∑
t=1

btxt

)]

≤ EP

[
OPT(P)− τAD(µ̄τA |P) +

τA∑
t=1

(wt(µt) + r(at))− Tr

(
1

T

T∑
t=1

btxt

)]

≤ EP

[
OPT(P)− τAD(µ̄τA |P) +

τA∑
t=1

wt(δ)−
T∑

t=τA+1

(wt(µ̂) + r(at))

]
+ E(T, µ)

≤ EP

[
(T − τA) ·

(
f̄ + r̄ + ‖µ̂‖w(b̄+ ā)− r

)
+

τA∑
t=1

wt(δ)

]
+ E(T, µ) ,

where the first inequality follows from using that τA ≤ T together with ft(·) ≥ 0 to drop all requests after τA; the second
is from (11); the third follows from because (14); and the last because from (15), and using Cauchy-Schwartz together
with the triangle inequality to obtain that wt(µ̂) = µ̂>(at − btxt) ≥ −‖µ̂‖w(‖btxt‖w,∗ + ‖at‖w,∗) ≥ −‖µ̂‖w(b̄+ ā) and
r(at) ≥ r.

We now discuss the choice of δ ∈ Rm+ . Let C = f̄ + r̄+ ‖µ̂‖w(b̄+ ā)− r. If τA = T , then set δ = 0, and the result follows
because Regret(A|P) ≤ E(T, µ). If τA < T , then there exists a resource j ∈ [m] such that

∑τA
t=1(bt)

>
j xt + b̄ ≥ Tρj . Set

δ = (C/ρj)ej with ej being the j-th unit vector. This yields

τA∑
t=1

wt(δ) =

τA∑
t=1

δ>(at − btxt) =
C

ρj

τA∑
t=1

((at)j − (bt)jxt)

≤ C

ρj

(
τAρj − Tρj + b̄

)
=
C

ρj
b̄− C(T − τA) ,

where the inequality follows because at ≤ ρ and the definition of the stopping time τA. Therefore,

Regret(A|P) ≤ Cb̄

ρj
+ E(T, µ) ≤ f̄ + r̄ + ‖µ̂‖w(b̄+ ā)− r

ρ
+

1

2
(b̄+ ā)2η · T +

1

2η
‖µ− µ0‖2w ,

where the second inequality follows from ρj ≥ ρ, and our formulas for C and E(T, µ).

We conclude by noting that −µ̂ is a supergradient of r(a) at a = 1
T

∑T
t=1 btxt. This follows because, for every a′ ≤ ρ,

r∗(−µ̂) ≥ r(a′)+µ̂>a′, by definition of the conjugate function, and r∗(−µ̂)−µ̂>a = r(a) yield r(a′) ≤ r(a)−µ̂>(a′−a).
Therefore, ‖µ̂‖w ≤ L because r(a) is L-Lipschitz continuous with respect to the norm ‖ ·‖w,∗ (see, for example, Lemma 2.6
in Shalev-Shwartz et al. 2012) and, additionally, the triangle inequality implies that ‖µ‖w ≤ ‖µ̂‖w+‖δ‖w ≤ L+C/ρ‖w‖1/2∞
by our choice of δ, whereby

1

2η
‖µ− µ0‖2w ≤

1

η

(
‖µ‖2w + ‖µ0‖2w

)
≤ 1

η

(
(L+ C/ρ‖w‖1/2∞ )2 + ‖µ0‖2w

)
,

because for every a, b ∈ Rm we have that that ‖a − b‖2w = ‖a‖2w + ‖b‖2w − 2〈a, b〉w ≤ ‖a‖2w + ‖b‖2w + 2‖a‖w‖b‖w ≤
2(‖a‖2w + ‖b‖2w) from Cauchy-Schwartz.
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D. The Choice of the Weight w and Dual Update for Each Example
Here we discuss the options of the weight w for Example 2-5 so that the dual update (6) can be efficiently computable.

The dual update (6) for Example 2. There are exponential number of linear constraints in the domain D for Example 3, as
shown in Proposition 2. Fortunately, we can get around that when the weight w is chosen to have the form wj = ρ2

j , by
utilizing the fact that D is coordinate-wisely symmetric in ρ ∗ µ, where ∗ is the coordinately-wise product.

To obtain µt+1, we first compute µ̃t = µ− η(1/ρ2) ∗ g̃t, where / is coordinate-wise division. Then, it holds that

µt+1 = arg min
µ∈D

1

2
‖µ− µ̃t‖2w . (16)

Since the domain D is also coordinate-wisely symmetric in ρ ∗ µ, the solution to the projection problem (16) keeps the order
of ρ ∗ µ. This can be easily seen by contradiction as following: Suppose there exists j1, j2 such that ρj1(µ̃t)j1 < ρj2(µ̃t)j2
and ρj1(µt+1)j1 > ρj2(µt+1)j2 . Consider the solution µ̂t+1 which is equal to µt+1 except on the coordinates j1 and j2,
in which we set (µ̂t+1)j1 =

ρj2
ρj1

(µt+1)j2 and (µ̂t+1)j2 =
ρj1
ρj2

(µt+1)j1 , then it holds by the symmetry of D in ρ ∗ µ that
µ̂t+1 ∈ D, and moreover, it holds that

1

2
‖µt+1 − µ̃t‖2w −

1

2
‖µ̂t+1 − µ̃t‖2w = 〈ρ2 ∗ µ̃t, µt+1 − µ̂t+1〉

= ((ρj1(µ̃t)j1)− (ρj2(µ̃t)j2))
2

> 0

where the last inequality is due to ρj1(µt+1)j1 > ρj2(µt+1)j2 . This contradicts with the optimality of µt+1 as given in
equation (16). Therefore, we can reformulate (16) with the constraint set D =

{
µ ∈ Rm |

∑
j∈S ρjµj ≥ −λ ∀S ⊆ [m]

}
as:

min 1
2

∑
j ρ

2
(j)

(
µ(j) − (µ̃t)(j)

)
s.t.

∑s
j=1 ρ(j)µ(j) ≥ −λ for s = 1, ...,m ,

(17)

where (j) is the ordered by the value of ρ ∗ µ̃t, i.e., ρ(1)µ̃(1) ≤ ρ(2)µ̃(2) ≤ · · · ≤ ρ(m)µ̃(m). This is an m-dimensional
convex quadratic programming with m constraints, which can be efficiently solved by convex optimization solvers.

The dual update (6) for Example 3, for Example 4 and Example 5. The constraints D is a simple polyhedron constraint
in Example 3, thus (6) can be computed by solving a simple quadratic program. The constraints D are simple box constraints
for Example 4 and Example 5, thus weighted subgradient descent gives a closed-form solution to (6).

E. Online Subgradient Descent
We reproduce a standard result on online subgradient descent for completeness (see, e.g., Zinkevich 2003, Theorem
1).

Proposition 3. Consider the sequence of convex functions wt(µ). Let gt ∈ ∂µwt(µt) be a subgradient and

µt+1 = arg min
µ∈D
〈gt, µ〉+

1

2η
‖µ− µt‖2w , (18)

where ‖x‖w =
∑m
j=1 wjx

2
j is the w-weighted Euclidean norm. Suppose subgradients are bounded by ‖gt‖w,∗ ≤ G. Then,

for every µ ∈ D we have

T∑
t=1

wt(µt)− wt(µ) ≤ 1

2
G2ηT +

1

2η
‖µ− µ0‖2w .

Proof. By the first-order optimality condition of (18), we have(
gt +

1

η
w ∗ (µt+1 − µt)

)>
(µ− µt+1) ≥ 0 , ∀µ ∈ D . (19)
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Therefore, it holds for any µ ∈ D that

〈gt, µt − µ〉 = 〈gt, µt − µt+1〉 + 〈gt, µt+1 − µ〉

≤ 〈gt, µt − µt+1〉 +
1

η
(w ∗ (µt+1 − µt))> (µ− µt+1)

= 〈gt, µt − µt+1〉+
1

2η
‖µ− µt‖2w −

1

2η
‖µ− µt+1‖2w −

1

2η
‖µt+1 − µt‖2w

≤ η

2
‖gt‖2w,∗ +

1

2η
‖µ− µt‖2w −

1

2η
‖µ− µt+1‖2w

≤ η

2
G2 +

1

2η
‖µ− µt‖2w −

1

2η
‖µ− µt+1‖2w ,

(20)

where the first inequality follows from (19); the second equality follows from Three-Point Property stated in Lemma 3.2
of Chen and Teboulle (1993); the second inequality uses that a2 + b2 ≥ 2ab for a, b ∈ R and Cauchy-Schwarz because
‖ · ‖w,∗ is the dual norm of ‖ · ‖w to obtain

1

2η
‖µt+1 − µt‖2w +

η

2
‖gt‖2w,∗ ≥ ‖µt+1 − µt‖w‖gt‖w,∗

≥ |〈gt, µt − µt+1〉| ,

and the last inequality follows from the bound on gradients. Therefore, by convexity of wt(·), we obtain that

T∑
t=1

wt(µt)− wt(µ) ≤
T∑
t=1

〈gt, µt − µ〉 ≤
1

2
G2ηT +

1

2η
‖µ− µt+1‖2w . (21)

where the inequality follows from summing up (20) from t = 1 to t = T and telescoping.


