
Approximating a Distribution Using Weight Queries

Approximating a Distribution Using Weight Queries
ICML2021 Supplementary Material

A. Limitations of greedy algorithms
In this section we prove two lemmas which point to limitations of certain types of greedy algorithms for finding a pruning
with a low discrepancy. The first lemma shows that without a restriction on the split quality of the input tree, the greedy
algorithm which splits the node with the maximal discrepancy, as well as a general class of greedy algorithms, could obtain
poor approximation factors.

Lemma A.1. Consider a greedy algorithm which creates a pruning by starting with the singleton pruning that includes the
root node, and iteratively splitting the node with the largest discrepancy in the current pruning. Then, for any even pruning
size K ≥ 2, there exists an input tree such that the approximation factor of the greedy algorithm is at least K/4.

Moreover, the same holds for any greedy algorithm which selects the next node to split based only on the discrepancy of
each node in the current pruning and breaks ties arbitrarily.

In both cases, the input tree that obtains this approximation factor does not have a split quality q < 1, but does satisfy the
following property (equivalent to having a split quality of q = 1): For any two nodes v, u in T such that u is a child of v,
Du ≤ Dv .

T1 (D = w)

w0

T2 (D = 2w)

T1T1

T3 (D = 3w)

T2

T1T1

T1

Gj(4) (D = jw)

Gj(3) (D = jw)

Gj(2) (D = jw)

Gj(1) = Tj (D = jw) (root: u1)w/2 (root: u2)

w/2 (root: u3)

w/2 (root: u4)

T a = H(3) (D = 4w)

H(2) (D = 3w)

H(1) ≡ G2(4) (D = 2w)T1 (root: v2)

T1 (root: v3)

Figure 2. Illustrating the trees defined in the proof of Lemma A.1 for k = 3.

Proof. We define several trees; see illustrations in Figure 2. Let w > 0. Its value will be defined below. All the trees defined
below have an average leaf weight of w/2. Therefore, when recursively combining them to a larger tree, the average weight
remains the same, and so the discrepancy of any internal node (except for nodes with leaf children) is the total discrepancy
of its two child nodes.

Approximating a Distribution Using Weight Queries

Let T1 be a tree of depth 1, which has a root node with two child leaves with weights 0 and w. The root of T1 has a
discrepancy of w. For i ≥ 2, let Ti be a tree of depth i such that one child node of the root is T1 and the other is Ti−1. Note
that Ti has a discrepancy of iw.

For positive integers i and j, define the treeGj(i) recursively, such thatGj(1) := Tj (denote its root node u1), andGj(i) has
a root node with two children: a leaf with weight w/2 (denote it ui) and Gj(i− 1). It is easy to verify that the discrepancy
of Gj(i) for all i ≥ 1 is jw.

Let k = K/2. For the first part of the lemma, define H(i) recursively. H(1) = G2(k + 1), and H(i) has a root with the
children T1 (denote its root vi) and H(i− 1). The discrepancy of H(i) is thus (i+ 1)w. Now, consider the greedy algorithm
that iteratively splits the node with the largest discrepancy in the pruning, and suppose that it is run with the input tree
T a := H(k) and a pruning sizeK = 2k. Setw so that the total weight of T a is equal to 1. Due to the discrepancy values, the
greedy algorithm splits the root nodes ofH(k), H(k−1), . . . ,H(1) = G2(k+1) and then ofG2(k+1), G2(k), . . . , G2(2).
The resulting pruning is v2, . . . , vk, u1, . . . , uk+1, with a total discrepancy of (k − 1)w + 2w = (k + 1)w. In contrast,
consider the pruning of size K which includes the two leaf children of each of v2, . . . , vk and the children of the root of
G2(k + 1) (the sibling of v2). This pruning has a discrepancy of 2w. Thus, the approximation factor obtained by the greedy
algorithm in this example is (k + 1)/2 ≥ K/4.

For the second part of the lemma, consider the tree T b which has a root with the child nodesG1(2k) (which has a discrepancy
of w) and Tk−1 (which has a discrepancy of (k − 1)w). Define w so that the total weight of T b is equal to 1. Suppose
that T b and pruning size K are provided as input to some greedy algorithm that splits according to discrepancy values
of nodes in the current pruning, and breaks ties arbitrarily. In the first round, the root node must be split. Thereafter, the
current pruning always includes some pruning of G1(2k) (possibly the singlton pruning which includes just the root of this
sub-tree). There is only one pruning of G1(2k) of size i ≤ 2k, and it is composed of i− 1 leaves of weight w/2 and the root
of G1(2k − i+ 1). Therefore, at all times in the algorithm, the pruning includes some node with a discrepancy w which is
the root of G1(i) for some i ≤ 2k. It follows that the said greedy algorithm might never split any of the nodes which are
the root of some T1 under Tk−1, since these nodes also have a discrepancy of w. It also can never split G1(1) = T1, since
this would require a pruning of size larger than K = 2k. As a result, such an algorithm might obtain a final pruning with a
discrepancy of kw. In contrast, the pruning which includes all the child leaves of the sub-trees T1 in Tk−1 and two child
nodes of G1(2k) has a discrepancy of w. This gives an approximation factor of k = K/2 ≥ K/4.

The next lemma shows that a different greedy approach, which selects the node to split by the maximal improvement in
discrepancy, also fails. In fact, it obtains an unbounded approximation factor, even for a split quality as low as 1/2.

Lemma A.2. Consider a greedy algorithm that in each iteration splits the node v in the current pruning that maximizes
Dv − (DvR + DvL), where vR and vL are the child nodes of v. For any pruning size K ≥ 5 and any value N ≥ 2, there
exists an input tree such that the approximation factor of this algorithm is larger than N . For any ε > 0, there exists such a
tree with a split quality q ≤ 1

2 + ε.

Proof. We define a hierarchical tree; see illustration in Figure 3. Let w > 0. Its value will be defined below. Let k ≥ K − 2.
The input tree T has two child nodes. The left child node, denoted v1, has two children, v2 and v3. Each of these child nodes
has two leaf children, one with weight 0 and one with weight Nw/2. Thus, Dv2 = Dv3 = Nw/2, and Dv1 = Nw.

The left child node is defined recursively as follows. For an integer m, let F (m) be some complete binary tree with m
leaves, each of weight w′ := w/3k. By definition, the discrepancy of the root of F (m), for any integer m, is zero. We define
J(i) for i ≥ 0 recursively, as follows. Let J(0) be a tree such that its left child node is F (1) and its right child node is the
root of some complete binary tree with 3k leaves of weight zero. Let J(i) be a tree such that its left child is F (2 · 3i−1) and
its right child is J(i− 1). Note that J(0) has 1 = 30 leaf of weight w′, and by induction, J(i) has 2 · 3i−1 + 3i−1 = 3i such

leaves. In addition, J(i) has 3k leaves of weight 0. Thus, the root of J(i) has an average weight of
3iw′

3i + 3k
=

w

3k + 32k−i
,

and a discrepancy of

αi := 3k · w

3k + 32k−i
+ 3i(w′ − w

3k + 32k−i
) =

w

1 + 3k−i
+

w

3k−i
− w

3k−i + 32k−2i
=

2w

1 + 3k−i
.

The last equality follows by setting a = 3k−i and b = 32k−2i so that
w

3k−i
− w

3k−i + 32k−2i
= w(1

a −
1
a+b), and noting

Approximating a Distribution Using Weight Queries

that
1

a
− 1

a+ b
=

b

a(a+ b)
=

1

a2/b+ a
=

1

1 + 3k−i
.

Now, consider running the given algorithm on the input tree T with pruning size K. Splitting v1 into v2 and v3 does not
reduce the total discrepancy. On the other hand, for any i, splitting the root of J(i) reduces the total discrepancy, since it
replaces a discrepancy of αi with a discrepancy of zero (for F (2 · 3i−1)) plus a discrepancy of αi−1 < αi (for J(i− 1)).
Therefore, the defined greedy algorithm will never split v1, and will obtain a final pruning with a discrepancy of at least
Dv1 = Nw. On the other hand, any pruning which includes the leaves under v2, v3 will have a discrepancy of at most that
of J(k), which is equal to w. Therefore, the approximation factor of the greedy algorithm is at least N .

To complete the proof, we show that for a large k, the split quality of the tree is close to 1/2. First, it is easy to see that the
split quality of the tree rooted at v1 is 1/2. For the tree J(k), observe that the discrepancy of J(i) is αi and the discrepancy
of its child nodes is 0 and αi−1. Since αi−1/αi ≤ 1/2, J(i) also has a split quality ≤ 1/2, for all i. We have left to bound
the ratio between the discrepancy of the root node and each of its child nodes. The left child node of the root has 4 leaves of
total weight Nw, and the right child node has 2 · 3k leaves of total weight 3k ·w′ = w. Therefore, the average weight of the

root node is w̄ :=
(N + 1)w

4 + 2 · 3k
. The discrepancy of the root node is thus

2|Nw/2− w̄|+ 2|w̄|+ 3k|w̄ − w′|+ 3k|w̄| = (N − 1)w + 2 · 3kw̄ = (N − 1)w +
(N + 1)w

2 · 3−k + 1
.

For k →∞, this approaches 2Nw from below. Thus, for any ε, there is a sufficiently large k such that the discrepancy of
the root is at least Nw/(1

2 + ε). Since the discrepancy of each child node is ≤ Nw, this gives a split quality of at most
1
2 + ε.

T (D ≥ 2Nw)

J(3) (D = w)v1 (D = Nw)

v3 (D = Nw/2)

Nw/20

v2 (D = Nw/2)

Nw/20

J(3) (D =
2w

1 + 30
= w)

J(2) (D =
2w

1 + 31
= w/2)

J(1) (D =
2w

1 + 32
= w/5)

J(0) (D =
2w

1 + 33
= w/14)

A tree with 3k examples of weight 0F (1)

F (2 · 30)

F (2 · 31)

F (2 · 32)

Figure 3. Illustrating the trees defined in the proof of Lemma A.2 for k = 3.

Approximating a Distribution Using Weight Queries

B. Limitations of other discrepancy estimators
First, we show that the discrepancy cannot be reliably estimated from weight queries of examples alone, unless almost all of
the weights are sampled. To see this, consider a node v with n+ 1 descendant leaves (examples), all with the same weight
w = 1/(n+ n2), except for one special example with true weight either n2w (first case) or w (second case). In the first
case, the average weight of the examples is nw, and Dv = n · |nw − w|+ |nw − n2w| = 2(n2 − n)w = 2− 4/(n+ 1).
In the second case, Dv = 0. However, in a random sample of size ≤ n/2, the probability that the special example is not
observed is (1− 1/(n+ 1))n/2 ≥ 1

2 . When this example is not sampled, it is impossible to distinguish between the two
cases unless additional information is available. This induces a large estimation error in this scenario.

Second, we show that even when w∗v is known, a naive empirical estimator of the discrepancy can have a large estimation
error. Recall that the discrepancy of a node v is defined as Dv :=

∑
x∈Lv

|w∗v/Nv − w∗(x)|. Denote n := |Lv|. Given a
sample Sv of randomly selected examples in Lv whose weight has been observed, the naive empirical estimator for the
discrepancy is n

|Sv|
∑
x∈Sv

|w∗v/Nv − w∗(x)|. Now, consider a case where n− 1 examples from Lv have weight 0, and a
single example has weight 1. We have Dv = (n− 1) · |1/n− 0|+ |1/n− 1| = 2− 2/n. However, if the heavy example is
not sampled, the naive empirical estimate is equal to 1. Similarly to the example above, if the sample size is of size ≤ n/2,
there is a probability of more than half that the heavy example is not observed, leading to an estimation error which is close
to 1.

C. Proof of Lemma 5.1
Proof of Lemma 5.1. Fix a node v in T , and consider the value of D̂v after drawing Mv random samples from Lv . To apply
Lemma 3.1, set w to be the sequence of weights of the examples inLv . Then Dv = D(w) and D̂(w) = D̂v . For an integerM ,
let δ(M) := 3δ

Kπ2M2 . By Lemma 3.1, with a probability at least 1− δ(Mv), |Dv − D̂v| ≤ w∗v
√

2 ln(2/δ(Mv))/Mv ≡ ∆v .
We have

∑∞
n=1 δ(n) = 3δ

Kπ2

∑∞
n=1

1
n2 = δ/(2K). Thus, for any fixed node v, with a probability at least 1− δ/(2K), after

any number of samples Mv , |Dv − D̂v| ≤ ∆v . Denote this event Dv .

Now, the pruning P starts as a singleton containing the root node. Subsequently, in each update of P , one node is removed
and its two children are added. Thus, in total 2K − 1 nodes are ever added to P (including the root node). Let vi be the i’th
node added to P , and let V = {v1, . . . , v2K−1}. We have,

P[E0] ≥ P[∀v ∈ V,Dv] = 1− P[∃v ∈ V,¬Dv].

Now, letting N be the nodes in T ,

P[∃v ∈ V,¬Dv] ≤
2K−1∑
i=1

∑
v∈N

P[vi = v]P[¬Dv | vi = v].

Now, P[¬Dv | vi = v] = P[¬Dv], since the estimate D̂v uses samples that are drawn after setting vi = v. Therefore,
P[¬Dv | vi = v] ≤ δ/(2K). Since

∑
v∈N P[vi = v] = 1, it follows that P[∃v ∈ V,¬Dv] ≤ δ. Therefore, We have

P[E0] ≥ 1− δ, as claimed.

D. Proof of Lemma 5.2
Proof of Lemma 5.2. To prove the first part, denote the nodes in P by v1, . . . , vn and let v0 := r be the root node. For

i ∈ {0, . . . , n}, let wi be a sequence of length Nvi of the weights w∗(x) of all the leaves x ∈ Lvi . Let w̄∗i :=
w∗vi
Nvi

. Then

Dvi = ‖wi − w̄∗i · 1‖1 = ‖wi − w̄∗0 · 1 + w̄∗0 · 1− w̄∗i · 1‖1
≤ ‖wi − w̄∗0 · 1‖1 + ‖w̄∗0 · 1− w̄∗i · 1‖1 = ‖wi − w̄∗0 · 1‖1 +Nvi |w̄∗i − w̄∗0 |.

Now, observe that

Nvi |w̄∗i − w̄∗0 | = |w∗i −Nviw̄∗0 | = |
∑
x∈Lvi

(w∗(x)− w̄∗0)| ≤
∑
x∈Lvi

|w∗(x)− w̄∗0 | = ‖wi − 1 · w̄∗0‖1.

Approximating a Distribution Using Weight Queries

v0

v2

.

.

ww

.

ww

2w

v1

.

.

ww

.

ww

0

Figure 4. Illustrating the tree constructed in the proof of the second part of Lemma 5.2, for n = 8.

Therefore, Dvi ≤ 2‖wi − 1 · w̄∗0‖1. Summing over all the nodes, and noting that w0 = w1 ◦ . . . ◦wn, we get:∑
i∈[n]

Dvi ≤
∑
i∈[n]

2‖wi − w̄∗0 · 1‖1 = 2‖w0 − w̄∗0 · 1‖1 = 2Dv0 ,

which proves the first part of the lemma.

For the second part of the lemma, let n be an integer sufficiently large such that 2
1+2/n ≥ 2 − ε. We consider a tree

(see illustration in Figure 4) with n + 2 leaves. Denote the leaves by x1, . . . , xn+2. Denote w := 1/(n + 2), and define
w∗(x1) = 0, w∗(x2) = 2w, and w∗(xi) = w for i ≥ 2. Denote by v0 the root node of the tree, and let its two child nodes
be v1 and v2. The tree is organized so that x1 and n/2 of the examples with weight w are descendants of v1, and the other
examples are descendants of v2. v1 has two child nodes, one is the leaf x1 and the other is some binary tree whose leaves
are all the other n/2 examples. Similarly, v2 has a child node which is the leaf x2, and the other examples are organized in
some binary tree rooted at the other child node.

It is easy to see that Dv0 = 2w. To calculate Dv1 , note that the average weight of node v1 is nw/2
n/2+1 = nw2. Thus,

Dv1 ≡
∑
x∈Lv1

|nw2 − w∗(x)| = n

2
(w − nw2) + nw2 =

nw

2
(1− n

n+ 2
) + nw2 = 2nw2.

A similar calculation shows that Dv2 = 2nw2. Define the pruning P = {v1, v2} of the tree rooted at v0. Then

DP = 4nw2 = 2nw · Dv0 =
2

1 + 2/n
Dv0 ≥ (2− ε)Dv0 ,

as required.

To show that this tree has a split quality of less than 1, note that Dv1 = Dv2 = 1
1+2/nDv0 , and that the discrepancy of each

of the child nodes of v1 and v2 is zero, since all their leaves have the same weight. Therefore, this tree has a split quality
1

1+2/n < 1.

E. Proof of Lemma 5.3
Proof of Lemma 5.3. Let Q be some pruning such that |Q| = K. Partition Po into R,Pa and Pd, where R := Po ∩ Q,
Pa ⊆ Po is the set of strict ancestors of nodes in Q, and Pd ⊆ Po is the set of strict descendants of nodes in Q. Let Qa ⊆ Q
be the ancestors of the nodes in Pd and let Qd ⊆ Q be the descendants of the nodes in Pa, so that R,Qd and Qa form a
partition of Q. First, we prove that we may assume without loss of generality that Pa, Pd, Qa, Qd sets are non-empty.

Claim 1: If any of the sets Pa, Pd, Qa, Qd is empty then the statement of the lemma holds.

Proof of Claim 1: Observe that if any of Pa, Pd, Qa, Qd is empty then all of these sets are empty: By definition,
Pa = ∅ ⇔ Qd = ∅ and Pd = ∅ ⇔ Qa = ∅. Now, suppose that Pa = Qd = ∅. Since |R| + |Pd| + |Pa| = |Po| = |Q| =

Approximating a Distribution Using Weight Queries

|R| + |Qd| + |Qa|, we deduce that |Pd| = |Qa|. But for each node in Qa, there are at least two descendants in Pd, thus
|Pd| ≥ 2|Qa|. Combined with the equality, it follows that Pd = Qa = ∅. The other direction is proved in an analogous way.
Now, if Pa = Pd = Qa = Qd = ∅ then Po = Q, thus in this case DP = DQ, which means that the statement of the lemma
holds. This concludes the proof of Claim 1.

Assume henceforth that Pa, Pd, Qa, Qd are non-empty. Let r be the node with the smallest discrepancy out of the nodes that
were split by AWP during the entire run. Define θ := |Pa| · Dr/DQa if DQa > 0 and θ := 0 otherwise.

Claim 2: DPo ≤ max(2, βθ)DQ.

Proof of Claim 2: We bound the discrepancies of Pd and of Pa separately. For each node u ∈ Qa, denote by P (u) the
descendants of u in Pd. These form a pruning of the sub-tree rooted at u. In addition, the sets {P (u)}u∈Qa

form a partition
of Pd. Thus, by the definition of discrepancy and Lemma 5.2,

DPd
=
∑
u∈Qa

DP (u) ≤
∑
u∈Qa

2Du = 2DQa . (7)

Let P be the pruning when AWP decided to split node r. By the definition of the splitting criterion SC (Eq. (3)), for all
v ∈ P \ {r}, at that time it held that β(D̂r −∆r) ≥ D̂v + ∆v . Since E0 holds, we have Dr ≥ D̂r −∆r and D̂v + ∆v ≥ Dv .
Therefore, ∀v ∈ P \ {r}, βDr ≥ Dv .

Now, any node v′ ∈ Po \ P is a descendant of some node v ∈ P . Since T has split quality q for q < 1, we have Dv′ ≤ Dv .
Therefore, for all v′ ∈ Po, Dv′ ≤ βDr. In particular, DPa ≡

∑
v∈Pa

Dv ≤ β|Pa|Dr. Since all nodes in Qa were split by
AWP DQa

= 0 implies Dr = 0, therefore in all cases DPa
≤ βθDQa

. Combining this with Eq. (7), we get that

DPo
= DR + DPd

+ DPa
≤ DR + 2DQa

+ βθDQa

≤ max(2, βθ)DQ,

which completes the proof of Claim 2.

It follows from Claim 2 that to bound the approximation factor, it suffices to bound θ. Let P ′d be the set of nodes both of
whose child nodes are in Pd and denote n := |P ′d|. In addition, define

α :=
log(1/q)

log(|Pa|) + log(1/q)
≤ 1.

We now prove that θ ≤ 2/α by considering two complementary cases, n ≥ α|Pa| and n < α|Pa|. The following claim
handles the first case.

Claim 3: if n ≥ α|Pa|, then θ ≤ 2/α.

Proof of Claim 3: Each node in P ′d has an ancestor in Qa, and no ancestor in P ′d. Therefore, P ′d can be partitioned to subsets
according to their ancestor in Qa, and each such subset is a part of some pruning of that ancestor. Thus, by Lemma 5.2,
DP ′d ≤ 2DQa

. Hence, for some node v ∈ P ′d, Dv ≤ 2DQa
/n. It follows from the definition of r that Dr ≤ 2DQa

/n. Hence,
θ ≤ 2|Pa|/n. Since n ≥ α|Pa|, we have θ ≤ 2/α as claimed.

We now prove this bound hold for the case n < α|Pa|. For a node v with an ancestor in Qa, let lv be the path length from
this ancestor to v, and define L :=

∑
v∈P ′d

lv . We start with an auxiliary Claim 4, and then prove the required upper bound
on θ in Claim 5.

Claim 4: L ≥ |Pa| − n.

Proof of Claim 4: Fix some u ∈ Qa, and let Pu(t) be the set of nodes in the pruning P in iteration t which have u as an
ancestor. Let P ′u(t) be the set of nodes both of whose child nodes are in Pu(t), and denote Lu(t) :=

∑
v∈P ′u(t)

lv. We
prove that for all iterations t, Lu(t) ≥ |Pu(t)| − 2. First, immediately after u is split, we have P ′u(t) = {u}, |Pu(t)| = 2,
Lu(t) = 0. Hence, Lu(t) ≥ |Pu(t)|−2. Next, let t such that Pu(t) grows by 1, that is some node ut in Pu(t) is split. If ut is
the child of a node vt ∈ P ′u(t), then P ′u(t+1) = P ′u(t)\{vt}∪{ut}. In this case, Lu(t+1) = Lu(t)+1, since lut

= lvt +1.
Otherwise, ut is not a child of a node in P ′u(t), so P ′u(t+ 1) = P ′u(t)∪ {ut}, and so Lu(t+ 1) = Lu(t) + lut

≥ Lu(t) + 1.
Thus, Lu(t) grows by at least 1 when the size of Pu(t) grows by 1. It follows that in all iterations, Lu(t) ≥ |Pu(t)| − 2.
Summing over u ∈ Qa and considering the final pruning, we get L ≥ |Pd| − 2|Qa|. Now, since |P | = |Q|, we have

Approximating a Distribution Using Weight Queries

|Pd| − |Qa| = |Qd| − |Pa|. From the definition of Qd, |Qd| ≥ 2|Pa|. Therefore, |Pd| − |Qa| ≥ |Pa|. It follows that
L ≥ |Pa| − |Qa|. Lastly, every node u ∈ Qa was split by AWP, and has at least one descendant in P ′d. Therefore,
|Qa| ≤ |P ′d| ≡ n. Hence, L ≥ |Pa| − n, which concludes the proof of Claim 4.

Claim 5: if n < α|Pa|, then θ ≤ 2/α.

Proof of Claim 5: It follows from Claim 4 that for some node v ∈ P ′d, lv ≥ (|Pa| − n)/n = |Pa|/n− 1 > 0, where the
last inequality follows since n < α|Pa| < |Pa|. Letting u ∈ Qa be the ancestor of v in Qa, we have by the split quality q
of T that Dv ≤ Du · q

|Pa|
n −1. Since u ∈ Qa, we have Du ≤ DQa . In addition, Dr ≤ Dv by the definition of r. Therefore,

Dr ≤ DQa
· q
|Pa|
n −1. Since n < |Pa|α and q < 1, from the definition of α, θ we have

θ ≤ |Pa|q
|Pa|
n −1 ≤ 1 ≤ 2/α.

This proves Claim 5.

Claims 3 and 5 imply that in all cases, θ ≤ 2/α. By Substituting α, we have that

θ ≤ 2(
log(|Pa|)
log(1/q)

+ 1) ≤ 2(
log(K)

log(1/q)
+ 1).

Placing this upper bound in the statement of Claim 2 concludes of the lemma.

F. An auxiliary lemma
Lemma F.1. Let µ > 0, φ ≥ 0, p ≥ 0. If p < φ ln(µp) then p < eφ ln(eµφ).

Proof. We assume that p ≥ eφ ln(eµφ) and prove that p ≥ φ ln(µp). First, consider the case µφ < 1. In this case,
p/φ > µp ≥ ln(µp). Therefore, p ≥ φ ln(µp). Next, suppose µφ ≥ 1. Define the function f(x) := x/ log(µx), and note
that it is monotone increasing for x ≥ e/µ. By the assumption, we have p ≥ eφ ln(eµφ). In addition, φ ≥ 1/µ, hence
eφ ln(eµφ) ≥ eφ ≥ e/µ. Therefore, f(p) ≥ f(eφ ln(eµφ)), and we can conclude that

p

ln(µp)
≡ f(p) ≥ f(eφ ln(eµφ)) ≡ eφ ln(eµφ)

ln(eµφ ln(eµφ))
≥ eφ ln(eµφ)

2 ln(eµφ)
≥ eφ/2 ≥ φ.

Note that we used the fact ln(x ln(x)) ≤ 2 ln(x), which follows since for any x, ln(x) ≤ x. This proves the claim.

G. Tightening ∆v using empirical Bernstein bounds
We give a tighter definition of ∆v , using the empirical Bernstein bound of Maurer and Pontil (2009). This tighter definition
does not change the analysis, but can improve the empirical behavior of the algorithm, by allowing it to require weight
queries of fewer examples in some cases. The empirical Bernstein bound states that for i.i.d. random variables Z1, . . . , Zm
such that P[Zi ∈ [0, 1]] = 1, with a probability 1− δ,

|E[Z1]− 1

m

∑
i∈[m]

Zi| ≤
√

8Vm ln(2/δ)/m+ 14 ln(2/δ)/(3(m− 1)), (8)

where Vm := 1
m(m−1)

∑
1≤i<j≤m(Zi − Zj)2. The following lemma derives the resulting bound. The proof is similar to

the proof of Lemma 3.1, except that it uses the bound above instead of Hoeffding’s inequality.

Lemma G.1. Consider the same definitions and notations as in Lemma 3.1. Let

V :=
1

m(m− 1)

∑
1≤i<j≤m

(|Zi −W | − Zi − |Zj −W |+ Zj)
2.

Then, with a probability at least 1− δ,

|D(w)− D̂(w)| ≤ n
√

8V ln(2/δ)/m+ 28‖w‖1 ln(2/δ)/(3(m− 1)).

Approximating a Distribution Using Weight Queries

Proof. Let Z ′i = |Zi −W | −Zi. If Zi ≥W , then Z ′i = W . Otherwise, we have Zi ≤W , in which case Z ′i = W − 2Zi ≥
−W . Therefore, P[Z ′i ∈ [−W,W]] = 1. Thus, applying Eq. (8) and normalizing by 2W , we get that with a probability
1− δ,

|E[Z ′1]− 1

m

∑
i∈[m]

Z ′i| ≤
√

8V ln(2/δ)/m+ 28W ln(2/δ)/(3(m− 1)).

Now, E[Z ′1] = 1
n (‖w −W · 1‖1 − ‖w‖1) = 1

n (D(w)− ‖w‖1). In addition,

1

m

∑
i∈[m]

Z ′i =
1

m
(‖Z−W · 1‖1 − ‖Z‖1) =

1

n
(D̂(w)− ‖w‖1).

Therefore, with a probability at least 1− δ,∣∣D(w)− ‖w‖1 − (D̂(w)− ‖w‖1)
∣∣ ≤ n√8V ln(2/δ)/m+ 28nW ln(2/δ)/(3(m− 1)).

By noting that nW = ‖w‖1, this completes the proof.

The tighter definition of ∆v is obtained by taking the minimum between this bound and the one in Lemma 3.1. Thus, we set

∆v := min(w∗v ·
√

2 ln(2Kπ2M2
v /(3δ))/Mv, Nv

√
8V ln(2/δ)/Mv + 28w∗v ln(2/δ)/(3(Mv − 1))).

The entire analysis is satisfied also by this new definition of ∆v . Its main advantage is obtaining a smaller value when V is
small. This may reduce the number of weight queries required by the algorithm in some cases.

Approximating a Distribution Using Weight Queries

H. Full experiment results
In this section, we provide the full results and details of all the experiments described in Section 6. Implementation in python
of AWP and of all the experiments, as well as the data files containing the raw results, are provided in the supplementary
material. For each experiment, we report the average normalized output distance over 10 runs, as a function of the pruning
size. Error bars, represented by shaded regions, represent the maximal and minimal normalized disrepancies obtained in these
runs. Note that the error bars are sometimes too small to observe, in cases where the algorithms behave deterministically or
very similarly in different runs of the same experiment.

Figure 5 provides the full results for the experiments on the Adult data set. We give here more details on the procedure
which we used to create the hierarchical tree: we started with a tree that includes only the root node, and then iteratively
selected a random node to split and a random attribute to use for the split. For numerical attributes, the split was based on a
threshold corresponding to the median value of the attribute. For discrete attributes, the attribute values were divided so that
the split is fairly balanced. We generated several target distributions by partitioning the data set into ordered bins, where in
each experiment the partition was based on the value of a different attribute. The tested attributes were all discrete attributes
with a small number of possible values: “occupation”, “relationship”, “marital status” and “education-num”. For the last
attribute, all values up to 8 were mapped to a single bin and similarly for all values from 14 and above, to avoid very small
bins. We then allocated the target weight to each bin so that each example in a given bin is N times more heavier than each
example in the next bin. We tested N = 2, 4, which appear in the left and right columns of Figure 5, respectively. It can be
seen in Figure 5, that except for a single configuration (N = 2 and the “relationship” attribute), AWP always performs better
than the baselines.

We now turn to the visual data sets. In all these data sets except for MNIST, images were resized to a standard 224× 224
size and transformed to grayscale. Figure 6 provides the full results for first experiment on the MNIST and Caltech256 data
sets. In this experiment, the examples were divided into 10 bins by image brightness, and weights were allocated such that
the weight of an example is N times heavier than an example in the next bin. The plots show results for N = 2 (left) and for
N = 4 (right). The top row gives the results for MNIST and the bottom row gives the results for Caltech256. Here too, it
can be seen that AWP obtains significantly better approximations of the target.

Figure 7 provides the results for the MNIST data set for bins allocated by class, using the same scheme of weight allocation
for each bin as in the previous experiment. Results for N = 2 (left column) and N = 4 (right column) are reported for three
random bin orders. Figure 8 provides the results of an analogous this experiment for the Caltech256 data set. For this data
set, the 10 bins were generated by randomly partitioning the 256 classes into 10 bins with (almost) the same number of
classes in each. The allocation of classes to bins and their ordering, for both data sets, are provided as part of the submitted
code. It can be seen that AWP obtains an improvement over the baselines in the MNIST experiments, while the Caltech256
experiment obtains about the same results for all algorithms, with a slight advantage for AWP.

Figure 9 and Figure 10 provides the results of the experiments with the data set pairs. In all experiments, the input data set
was Caltech256. In each experiment, a different target data set was fixed. The weight of each Caltech256 example was set to
the fraction of images from the target data set which have this image as their nearest neighbor. The target data sets were
the Office dataset (Saenko et al., 2010), out of which the 10 classes that also exist in Caltech256 (1410 images) were used,
and The Bing dataset (Alessandro Bergamo, 2010a;b), which includes 300 images in each Caltech256 class. For Bing, we
also ran three experiments where images from a single super-class from the taxonomy in Griffin et al. (2007) were used
as the target data set. The super-classes that were tested were “plants” “insects” and “animals”. The classes in each such
super-class, as well as those in the Office data set, are given in Table 1. In these experiments as well, the advantage of AWP
is easily observed.

Approximating a Distribution Using Weight Queries

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 100 200 300 400 500

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 100 200 300 400 500

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 20 40 60 80 100

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 50 100 150 200 250 300

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

.

Figure 5. The Adult dataset experiments. Each row report the results for experiments on a different parameter in the following order:
“occupation”, “relationship”, “marital-status”, “education-num”. Left: N = 2. Right: N = 4.

Approximating a Distribution Using Weight Queries

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 50 100 150 200 250 300 350 400

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 50 100 150 200 250 300 350 400

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 10 20 30 40 50

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

Figure 6. Experiments with bins allocated by brightness. The weight of an example is N times heavier than an example in the next bin.
Left: N = 2, right: N = 4. Top: MNIST, Bottom: Caltech.

Table 1. The classes in each of the super-classes used in the reported experiments. The numbers in parentheses refer to the number of
classes in the super-class.

Office (10) Plants (10) Insects (8) Animals (44)

backpack palm tree butterfly bat hummingbird horse horseshoe-crab
touring-bike bonsai centipede bear owl iguana crab
calculator cactus cockroach camel hawksbill kangaroo conch

headphones fern grasshopper chimp ibis llama dolphin
computer keyboard hibiscus house fly dog cormorant leopards goldfish

laptop sun flower praying-mantis elephant duck porcupine killer-whale
computer monitor grapes scorpion elk goose raccoon mussels
computer mouse mushroom spider frog iris skunk octopus

coffee mug tomato giraffe ostrich snail starfish
video projector water melon gorilla penguin toad snake

greyhound swan zebra goat

Approximating a Distribution Using Weight Queries

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0 10 20 30 40 50

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0 10 20 30 40 50

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 10 20 30 40 50

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 10 20 30 40 50

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

Figure 7. Experiments on the MNIST data set, with bins allocated by class. The weight of an example is N times heavier than an example
in the next bin. The three plots in each column show results for three random orders of classes. The left column shows N = 2, and the
right column shows N = 4, for the same class orders.

Approximating a Distribution Using Weight Queries

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300 350 400

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 50 100 150 200 250 300 350 400

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300 350 400

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 50 100 150 200 250 300 350 400

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300 350 400

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 50 100 150 200 250 300 350 400

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

Figure 8. Experiments on the Caltech256 data set, with bins allocated by class. The weight of an example is N times heavier than an
example in the next bin. The three plots in each column show results for three random orders of classes. The left column shows N = 2,
and the right column shows N = 4.

Approximating a Distribution Using Weight Queries

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 400 800 1200 1600 2000

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 400 800 1200 1600 2000

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

Figure 9. Experiments in which the input data set was Caltech256 and the target weights were calculated using other data sets. Left: the
Office data set. Right: the Bing dataset.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 400 800 1200 1600 2000

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 400 800 1200 1600 2000

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 400 800 1200 1600 2000

D
is

ta
nc

e

Pruning size

AWP
EMPIRICAL

UNIFORM
WEIGHT

Figure 10. Experiments in which the input data set was Caltech256 and the target weights were calculated using super classes from the
Bing dataset. Top Left: The “plants” super class. Top Right: The “insects” super class. Bottom: The “animals” super classes. See Table 1
for details on each super class.

Approximating a Distribution Using Weight Queries

I. Average split quality in experiments
As mentioned in Section 6, in our experiments, the split quality q was usually 1 or very close to one. This shows that AWP
can be successful even in cases not strictly covered by Theorem 4.2. To gain additional insight on the empirical properties of
the trees used in our experiments, we calculated also the average split quality of each tree, defined as the average over the set
of values {max(DvR ,DvL)/Dv | v ∈ T, Dv > 0}. The resulting values for all our experiments are reported in Table 2.

Table 2. The average split quality in each of the experiments. Left: experiments with target weight set by bins. In the “classes” experiments,
the reported value is an average of the three tested random configurations. Right: domain adaptation experiments with Caltech as the input
data set and another data set as the target distribution.

Data set Binning criterion Average split quality
N = 2 N = 4

Adult “occupation” 0.574 0.544
Adult “relationship” 0.618 0.541
Adult “marital-status” 0.608 0.569
Adult “education-num” 0.587 0.547

MNIST classes 0.699 0.589
MNIST brightness 0.677 0.592
Caltech classes 0.645 0.652
Caltech brightness 0.677 0.641

Target Data set Average split quality

Office 0.763
Bing 0.756

Bing (plants) 0.751
Bing (insects) 0.755
Bing (animals) 0.762

	Introduction
	Setting and Notations
	Estimating the Discrepancy
	Main result: the AWP algorithm
	Analysis
	Experiments
	Conclusions
	Limitations of greedy algorithms
	Limitations of other discrepancy estimators
	Proof of Lemma 5.1
	Proof of Lemma 5.2
	Proof of Lemma 5.3
	An auxiliary lemma
	Tightening v using empirical Bernstein bounds
	Full experiment results
	Average split quality in experiments

