
Training Quantized Neural Networks to Global Optimality via Semidefinite Programming

A. Proofs
A.1. Proof of Theorem 1

Proof. First we show that the multiplication of the input x ∈ Rd by a multi-level quantized weight vector q ∈ QdM can be
represented by the dot product of a function of the input, i.e., x̃ and a binary quantized weight vector u, that is, qTx = uT x̃.
Here, u is a binary vector of size dM with entries satisfying

qi :=

M∑
k=1

uk+(i−1)M , i = 1, . . . , d . (27)

For instance, for M = 4, we have q1 = u1 + u2 + u3 + u4. Note that because uj’s are from the set {−1,+1}, we have
that q1 ∈ {−4,−2, 0, 2, 4}, which is equal to the set for (4 + 1 = 5)-level quantization, i.e., Q4. The second entry of the q
vector similarly satisfies q2 = u5 + u6 + u7 + u8 ∈ Q4. The same holds for all the entries q1, . . . , qd.

Next, plugging in (27) in the dot product qTx yields

qTx =

d∑
i=1

qixi =

d∑
i=1

M∑
k=1

uk+(i−1)Mxi

=

d∑
i=1

M∑
k=1

uk+(i−1)M x̃k+(i−1)M

= uT x̃ (28)

where we defined x̃ :=
[
x1, x1, . . . , x1, x2, x2, . . . , x2, . . . , xd, xd, . . . , xd

]T ∈ RdM . This shows that the dot product qTx
is equal to the dot product uT x̃ where u is a dM -dimensional vector with binary entries.

The input-output relationship for the two-layer fully connected neural network with polynomial activation is f(x) =∑m
j=1 σ(xT qj)αj =

∑m
j=1

(
aqTj xx

T qj + bqTj x+ c
)
αj where qj ∈ QdM and αj ∈ R, j = 1, . . . ,m. Using the fact that

we can represent a dot product with multi-level quantized weights as a dot product with binary quantized weights, we
equivalently have

f(x) =

m∑
j=1

(
auTj x̃x̃

Tuj + buTj x̃+ c
)
αj . (29)

We can rewrite this as a neural network with quadratic activation:

f(x) =

m∑
j=1

[
uTj 1

] [ax̃x̃T b
2 x̃

b
2 x̃

T c

] [
uj
1

]
αj

=

m∑
j=1

ũTj X ũjαj (30)

where we have defined ũj ∈ {−1,+1}dM+1, j = 1, . . . ,m, and X ∈ R(dM+1)×(dM+1).

This representation can be seen as a bilinear activation network with u′j = uj and v′j = uj , j = 1, . . . ,m. The proof of the
converse follows from the symmetrization identity (7).

A.2. Proof of Theorem 3

Proof. We begin by applying the matrix Bernstein concentration bound on the matrices (ujv
T
j − E[ujv

T
j ]), j = 1, . . . ,m,

which we note are (d × d)-dimensional zero-mean i.i.d. matrices. We obtain the following upper bound on the spectral
norm of these matrices

‖ujvTj − E[ujv
T
j ]‖ ≤ ‖ujvTj ‖2 + ‖E[ujv

T
j ]‖2

≤ ‖ujvTj ‖2 + E[‖ujvTj ‖2]

= ‖uj‖2‖vj‖2 + E[‖uj‖2‖vj‖2]

≤ d+ d = 2d , (31)



Training Quantized Neural Networks to Global Optimality via Semidefinite Programming

for j = 1, . . . ,m where we use the triangle inequality in the first line and Jensen’s inequality in the second line. Next, we
define Sj := ujv

T
j − E[ujv

T
j ] and S :=

∑m
j=1 Sj , then the matrix variance of the sum (which we will plug in the matrix

concentration bound formula) is given by

σ2 = max{‖E[SST ]‖2, ‖E[STS]‖2} = max


∥∥∥∥∥∥
m∑
j=1

E[SjS
T
j ]

∥∥∥∥∥∥
2

,

∥∥∥∥∥∥
m∑
j=1

E[STj Sj ]

∥∥∥∥∥∥
2

 (32)

where the second equality follows because Sj’s are zero-mean.

E[SjS
T
j ] = E

[(
ujv

T
j − E[ujv

T
j ]
) (
ujv

T
j − E[ujv

T
j ]
)T ]

= dE[uju
T
j ]− E[ujv

T
j ]E[vju

T
j ]

= dE[uju
T
j ]− (2γ/π)2Z∗sZ

∗
s
T

= dE[uju
T
j ]− (2γ/πZ∗s )2 . (33)

Next, we bound the spectral norm of E[SST ] as

‖E[SST ]‖2 =

∥∥∥∥∥∥
m∑
j=1

E[SjS
T
j ]

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
m∑
j=1

(
dE[uju

T
j ]− (2γ/πZ∗s )2

)∥∥∥∥∥∥
2

=
∥∥mdE[u1u

T
1 ]−m(2γ/πZ∗s )2

∥∥
2

≤ md
∥∥E[u1u

T
1 ]
∥∥

2
+
∥∥m(2γ/πZ∗s )2

∥∥
2

= md
∥∥E[u1u

T
1 ]
∥∥

2
+m(2γ/π)2‖Z∗s ‖22

= md(2γ/π)‖ arcsin(Q(11))‖2 +m(2γ/π)2‖Z∗s ‖22 . (34)

The last line follows from the identity E[u1u
T
1 ] = 2γ/π arcsin(Q(11)). We note that the upper bound for ‖E[SST ]‖2 is also

an upper bound for ‖E[STS]‖2. Hence, the matrix variance is upper bounded by σ2 ≤ c′md+m(2γ/π)2‖Z∗s ‖22 where
c′ ≥ 0 is a constant. Applying the matrix Bernstein concentration bound yields

P

∥∥∥∥∥∥
m∑
j=1

(ujv
T
j − E[ujv

T
j ])

∥∥∥∥∥∥
2

≥ mε

 ≤ 2d exp

(
−m2ε2

σ2 + 2dmε/3

)
. (35)

Plugging in the expression for the variance, we obtain

P

∥∥∥∥∥∥ 1

m

m∑
j=1

ujv
T
j − E[u1v

T
1 ]

∥∥∥∥∥∥
2

≥ ε

 ≤ 2d exp

(
−m2ε2

c′md+m(2γ/π)2‖Z∗s ‖22 + 2dmε/3

)

= 2d exp

(
− mε2

(2γ/π)2‖Z∗s ‖22 + d(c′ + 2ε/3)

)
= exp

(
− mε2

(2γ/π)2‖Z∗s ‖22 + d(c′ + 2ε/3)
+ log(2d)

)
. (36)

Let us denote the optimal solution of the original non-convex problem as Z∗nc =
∑m
j=1 u

∗
j (v
∗
j )Tα∗j where the weights

u∗j , v
∗
j ∈ {−1,+1}d, α∗j ∈ R, j = 1, . . . ,m are optimal network parameters for the non-convex combinatorial problem

in (21) . Solving the SDP gives us an unquantized solution Z∗ and via the sampling algorithm, we obtain the quantized
solution given by Ẑ =

∑m
j=1 ûj v̂

T
j α̂j .

We now introduce some notation. We will denote the loss term in the objective by L(Z) and the regularization term by
R(Z), that is,

L(Z) := `


x

T
1 Zx1

...
xTnZxn

 , y
 , R(Z) := d

m∑
j=1

|αj | when Z =

m∑
j=1

ujv
T
j αj . (37)



Training Quantized Neural Networks to Global Optimality via Semidefinite Programming

We now bound the difference between the losses for the unquantized solution of the SDP, i.e., Z∗, and the quantized weights
Ẑ =

∑m
j=1 ûj v̂

T
j α̂j :

|L(Ẑ)− L(Z∗)| ≤ Lc

∥∥∥∥∥∥∥∥

xT1 (

∑m
j=1 ûj v̂

T
j
ρ∗π
γm − 2Z∗)x1

...
xTn (

∑m
j=1 ûj v̂

T
j
ρ∗π
γm − 2Z∗)xn


∥∥∥∥∥∥∥∥
∞

(38)

where we substituted α̂j = ρ∗ π
γm . The scaling factor of 2 in front of Z∗ is due to the scaling factor in the SDP, i.e.,

ŷi = 2xTi Zxi. Plugging in Z∗/ρ∗ = Z∗s = π
2γ E[u1v

T
1 ] yields

|L(Ẑ)− L(Z∗)| ≤ Lc

∥∥∥∥∥∥∥
ρ∗π

γ

x
T
1 ( 1

m

∑m
j=1 ûj v̂

T
j − E[u1v

T
1 ])x1

...
xTn ( 1

m

∑m
j=1 ûj v̂

T
j − E[u1v

T
1 ])xn


∥∥∥∥∥∥∥
∞

= Lc
ρ∗π

γ
max

i=1,...,n

∣∣xTi (
1

m

m∑
j=1

ûj v̂
T
j − E[u1v

T
1 ])xi

∣∣
≤ Lc

ρ∗π

γ
max

i=1,...,n
(ε‖xi‖22) = Lc

ρ∗π

γ
εR2

m (39)

which holds with probability at least 1 − exp
(
− mε2

(2γ/π)2‖Z∗s ‖22+d(c′+2ε/3)
+ log(2d)

)
as a result of the matrix Bernstein

concentration bound. Therefore, when the number of sampled neurons satisfies the inequality

mε2

(2γ/π)2‖Z∗‖22 + d(c′ + 2ε/3)
≥ 2 log(2d) ,

this probability is at least 1− exp(− log(2d)) = 1− exp(−Cε2m/d), where C > 0 is a constant independent of d, m and
ε.

Next, we obtain upper and lower bounds on the non-convex optimal value. Since the SDP solution provides a lower bound,
and the sampled quantized network provides an upper bound, we can bound the optimal value of the original non-convex
problem as follows

L(Ẑ) + βR(Ẑ) ≥ L(Z∗nc) + βR(Z∗nc) ≥ L(Z∗) + βR(Z∗) . (40)

We have already established that |L(Ẑ)− L(Z∗)| ≤ ρ∗π
γ LcR

2
mε with high probability. It follows

L(Ẑ)− L(Z∗nc) = L(Ẑ)− L(Z∗) + L(Z∗)− L(Z∗nc)

≤ ρ∗π

γ
LcR

2
mε+ L(Z∗)− L(Z∗nc)

≤ ρ∗π

γ
LcR

2
mε+ βR(Z∗nc) (41)

where we have used (40) and that R(Z∗) ≥ 0 to obtain the last inequality. Furthermore, (40) implies that L(Z∗nc)−L(Ẑ) ≤

βR(Ẑ). If we pick the regularization coefficient β such that it satisfies β ≤
ρ∗π
γ LcR

2
mε

R(Z∗nc)
and β ≤

ρ∗π
γ LcR

2
mε

R(Ẑ)
, we obtain the

following approximation error bound

|L(Z∗nc)− L(Ẑ)| ≤ 2
ρ∗π

γ
LcR

2
mε . (42)

Rescaling ε by 2ρ
∗π
γ LcR

2
m, i.e., replacing ε with 1

2 ρ
∗π
γ LcR2

m

ε, we obtain the claimed approximation result.



Training Quantized Neural Networks to Global Optimality via Semidefinite Programming

A.3. Duality Analysis for Bilinear Activation

This subsection has the details of the duality analysis that we have carried out to obtain the SDP in (22) for the bilinear
activation architecture. The derivations follow the same strategy as the duality analysis in Section 3. The non-convex
problem for training such a network is stated as follows:

p∗b = min
s.t.uj ,vj∈{−1,1}d,αj∈R ∀j∈[m]

`

 m∑
j=1

((Xuj) ◦ (Xvj))αj , y

+ βd

m∑
j=1

|αj | . (43)

Taking the convex dual with respect to the second layer weights {αj}mj=1, the optimal value of the primal is lower bounded
by

p∗ ≥ d∗ = max
max

u,v∈{−1,1}d |νT ((Xu)◦(Xv))|≤βd
−`∗(−ν) (44)

where ν ∈ Rn is the dual variable.

The constraint maxu,v∈{−1,1}d |νT ((Xu) ◦ (Xv))| ≤ βd can be equivalently stated as the following two inequalities

q∗1 = max
u2
i=v

2
i=1,∀i

uT

(
n∑
i=1

νixix
T
i

)
v ≤ βd ,

q∗2 = max
u2
i=v

2
i=1,∀i

uT

(
−

n∑
i=1

νixix
T
i

)
v ≤ βd. (45)

We note that the second constraint q∗2 ≤ βd is redundant since the change of variable u← −u in the first constraint leads to
the second constraint:

q∗1 = max
u2
i=v

2
i=1,∀i

uT

(
n∑
i=1

νixix
T
i

)
v = max

(−ui)2=v2i=1,∀i
(−u)T

(
n∑
i=1

νixix
T
i

)
v = max

u2
i=v

2
i=1,∀i

uT

(
−

n∑
i=1

νixix
T
i

)
v = q∗2 .

(46)

In the sequel, we remove the redundant constraint q∗2 ≤ βd. The SDP relaxation for the maximization
maxu2

i=v
2
i=1,∀i u

T
(∑n

i=1 νixix
T
i

)
v is given by (see, e.g., (Alon & Naor, 2004))

q̂1 = max

K=

 V Z
ZT W

�0, Kjj=1,∀j

tr

(
n∑
i=1

νixix
T
i Z

)
. (47)

The dual of the above SDP relaxation can be derived via standard convex duality theory, and can be stated as

min
z1,z2 s.t. 1̄T z1+1̄T z2=0

2d λmax

([
diag(z1)

∑n
i=1 νixix

T
i∑n

i=1 νixix
T
i diag(z2)

])
. (48)

Then, we arrive at

d∗ ≥ dSDP := max
ν,z1,z2

− `∗(−ν)

s.t.
[

diag(z1)
∑n
i=1 νixix

T
i∑n

i=1 νixix
T
i diag(z2)

]
− β

2
I � 0

1̄
T
z1 + 1̄

T
z2 = 0 . (49)



Training Quantized Neural Networks to Global Optimality via Semidefinite Programming

Next, we will find the dual of the above problem. The Lagrangian is given by

L(ν, z1, z2, Q, ρ) =

= −`∗(−ν)− tr

(
Q

[
diag(z1)

∑n
i=1 νixix

T
i∑n

i=1 νixix
T
i diag(z2)

])
+
β

2
tr(Q) + ρ

d∑
j=1

(z1,j + z2,j)

= −`∗(−ν)−
d∑
j=1

(Vjjz1,j +Wjjz2,j)− 2

n∑
i=1

νix
T
i Zxi +

β

2
tr(Q) + ρ

d∑
j=1

(z1,j + z2,j) (50)

Maximizing the Lagrangian with respect to ν, z1, z2 yields the problem

min
Q,ρ

`


2xT1 Zx1

...
2xTnZxn

 , y
+

β

2
tr(Q)

s.t. Vjj = ρ, Wjj = ρ, j = 1, . . . , d

Q =

[
V Z
ZT W

]
� 0 . (51)

Finally, we obtain the following more concise form for the convex program

min
Q,ρ

` (ŷ, y) + βdρ

s.t. ŷi = 2xTi Zxi, i = 1, . . . , n

Qjj = ρ, j = 1, . . . , 2d

Q =

[
V Z
ZT W

]
� 0 . (52)

B. Vector Output Networks
We will assume the following vector output neural network architecture with bilinear activation

f(x) =

m∑
j=1

(xTuj)(x
T vj)α

T
j (53)

where the second layer weights αj ∈ RC , j = 1, . . . ,m are C-dimensional vectors. We note that f(x) : Rd → R1×C . The
output of the neural network for all the samples in the dataset can be concisely represented as Ŷ = f(X) ∈ Rn×C . We use
Y ∈ Rn×C to denote the target matrix. The training problem can be formulated as

p∗ = min
uj ,vj∈{−1,1}d,αj∈RC j∈[m]

`

 m∑
j=1

((Xuj) ◦ (Xvj))α
T
j , Y

+ βd

m∑
j=1

‖αj‖1 . (54)

Or,

p∗ = min
uj ,vj∈{−1,1}d, j∈[m]

min
αj∈RC , j∈[m], Ŷ

`
(
Ŷ , Y

)
+ βd

m∑
j=1

‖αj‖1 s.t. Ŷ =

m∑
j=1

((Xuj) ◦ (Xvj))α
T
j . (55)

The dual problem for the inner minimization problem is

max
ν
−`∗(−ν) s.t. |νTk ((Xuj) ◦ (Xvj))| ≤ βd, ∀j, k . (56)

We have introduced the dual variable ν ∈ Rn×C and its columns are denoted by νk ∈ Rn, k = 1, . . . , C. The optimal value
of the primal is lower bounded by

p∗ ≥ d∗ = max
max

u,v∈{−1,1}d |ν
T
k ((Xu)◦(Xv))|≤βd ,∀k

−`∗(−ν) . (57)



Training Quantized Neural Networks to Global Optimality via Semidefinite Programming

The constraints of the above optimization problem can be equivalently stated as the following inequalities

q∗1,k = max
u2
i=v

2
i=1,∀i

uT

(
n∑
i=1

νk,ixix
T
i

)
v ≤ βd, k = 1, . . . , C,

q∗2,k = max
u2
i=v

2
i=1,∀i

uT

(
−

n∑
i=1

νk,ixix
T
i

)
v ≤ βd, k = 1, . . . , C . (58)

As we have shown in Section A.3, the second set of inequalities q∗2,k ≤ βd are implied by the first and hence we remove
them. The SDP relaxation for the maximization maxu2

i=v
2
i=1,∀i u

T
(∑n

i=1 νk,ixix
T
i

)
v is given by

q̂1,k = max

K=

 V Z
ZT W

�0, Kjj=1,∀j

tr

(
n∑
i=1

νk,ixix
T
i Z

)
. (59)

We have previously given the dual of this problem as

min
zk,1,zk,2 s.t. 1̄T zk,1+1̄T zk,2=0

2d λmax

([
diag(zk,1)

∑n
i=1 νk,ixix

T
i∑n

i=1 νk,ixix
T
i diag(zk,2)

])
, (60)

where we define the variables zk,1 ∈ Rd, zk,2 ∈ Rd, k = 1, . . . , C. This allows us to establish the following lower bound

d∗ ≥ dSDP := max
ν,{zk,1,zk,2}Ck=1

− `∗(−ν)

s.t.
[

diag(zk,1)
∑n
i=1 νk,ixix

T
i∑n

i=1 νk,ixix
T
i diag(zk,2)

]
− β

2
I � 0, k = 1, . . . , C

1̄
T
zk,1 + 1̄

T
zk,2 = 0, k = 1, . . . , C . (61)

Next, we find the dual of this problem. First, we write the Lagrangian:

L(ν, {zk,1, zk,2, Qk, ρk}Ck=1) =

= −`∗(−ν)−
C∑
k=1

tr

(
Qk

[
diag(zk,1)

∑n
i=1 νk,ixix

T
i∑n

i=1 νk,ixix
T
i diag(zk,2)

])
+
β

2

C∑
k=1

tr(Qk) +

C∑
k=1

ρk(1̄
T
zk,1 + 1̄

T
zk,2)

= −`∗(−ν)−
C∑
k=1

(
diag(Vk)T zk,1 + diag(Wk)T zk,2

)
− 2

C∑
k=1

n∑
i=1

νk,ix
T
i Zkxi +

β

2

C∑
k=1

tr(Qk)

+

C∑
k=1

ρk(1̄
T
zk,1 + 1̄

T
zk,2) , (62)

where we have introduced Qk =

[
Vk Zk
ZTk Wk

]
. Maximization of the Lagrangian with respect to ν, zk,1, zk,2, k = 1, . . . , C

leads to the dual problem given by

min
{Qk,ρk}Ck=1

`


2xT1 Z1x1 . . . 2xT1 ZCx1

...
. . .

...
2xTnZ1xn . . . 2xTnZCxn

 , Y
+

β

2

C∑
k=1

tr(Qk)

s.t. Vk,jj = ρk, Wk,jj = ρk, k ∈ [C], j ∈ [d]

Qk =

[
Vk Zk
ZTk Wk

]
� 0, k ∈ [C]. (63)



Training Quantized Neural Networks to Global Optimality via Semidefinite Programming

More concisely,

min
{Qk,ρk}Ck=1

`
(
Ŷ , Y

)
+ βd

C∑
k=1

ρk

s.t. Ŷik = 2xTi Zkxi, i ∈ [n], k ∈ [C]

Qk,jj = ρk, k ∈ [C], j ∈ [2d]

Qk =

[
Vk Zk
ZTk Wk

]
� 0, k ∈ [C]. (64)

where Vk, Zk,Wk are d× d-dimensional matrices.

B.1. Sampling Algorithm for Vector Output Networks

We now give the sampling algorithm:

1. Solve the SDP in (64) and define the matrices Z∗s,k ← Z∗k/ρ
∗
k, k = 1, . . . , C.

2. Find Q∗k, k = 1, . . . , C by solving the problem

Q∗k := arg min
Q�0,Qjj=1∀j

‖Q(12) − sin(γZ∗s,k)‖2F . (65)

3. Carry out the following steps for each k = 1, . . . , C:

a. Sample m/C pairs of the first layer weights uj , vj via
[
uj
vj

]
∼ sign(N (0, Q∗k)).

b. Set the second layer weights for these neurons to αj = ρ∗kC
π
γmek where ek ∈ RC is the k’th unit vector.

4. (optional) Transform the quantized bilinear activation network to a quantized polynomial activation network as
described in Section 2.

Figure 4 shows the classification accuracy on a UCI machine learning repository with C = 4 classes. We perform one-hot
encoding on the output and use the vector output SDP and sampling method developed in this section. We observe that the
accuracy of the sampling method approaches the accuracy of the lower bounding SDP as m is increased.

a) Training accuracy b) Test accuracy

Figure 4. Vector output network experiment showing multiclass classification accuracy against the number of sampled neurons m. The
dataset is statlog vehicle multiclass with C = 4 classes and dimensions n = 676, d = 18. The regularization coefficient is β = 1. The
blue solid line shows the accuracy when we predict the labels using the lower bounding SDP in (64) without quantization. The green
curve with circle markers shows the accuracy for the quantized network when we use the sampling method that we designed for the vector
output case.



Training Quantized Neural Networks to Global Optimality via Semidefinite Programming

C. Further Details on Step 4 of the Sampling Algorithm
As stated in Step 4 of the sampling algorithm given in subsection 4.1, it is possible to transform the bilinear activation
architecture to a quadratic activation neural network with 3m neurons. The first layer weights of the quadratic activation
network can be obtained, via the symmetrization identity, as 1/2(uj + vj) ∈ {−1, 0,+1}d, uj ∈ {−1,+1}d, vj ∈
{−1,+1}d, j = 1, . . . ,m. The second layer weights are picked as stated in Step 3 for the first m neurons and the remaining
2m neurons have the opposite sign.

D. Additional Numerical Results
Figure 5 shows the accuracy against time for the credit approval dataset. For this dataset, we similarly observe shorter
run times and better classification accuracies for the SDP based sampling method. Furthermore, increasing the number of
neurons (plots c,d) improves the accuracy for both methods, which is in consistency with the experiment result shown in
Figure 1.

a) Training accuracy, m = 500 b) Test accuracy, m = 500

c) Training accuracy, m = 2500 d) Test accuracy, m = 2500

Figure 5. Classification accuracy against wall-clock time. Credit approval dataset with n = 552, d = 15. The number of neurons m
is specified in the sub-caption for each plot. The regularization coefficient is β = 10 for the SDP based method and β = 0.001 for
backpropagation.

D.1. ReLU network comparison

Figure 6 compares the SDP based sampling method with a two-layer ReLU network. We train the ReLU network using
backpropagation and quantize the first layer weights post-training. The second layer weights are only scaled to account for
the quantization of the first layer weights and not restricted to be identical. Thus, unlike the previous figures, the comparison
in Figure 6 unfairly favors the ReLU network. We observe that the SDP approach can still outperform SGD in this case.



Training Quantized Neural Networks to Global Optimality via Semidefinite Programming

a) Training accuracy b) Test accuracy

Figure 6. Classification accuracy against wall-clock time showing comparison with a two-layer ReLU network. Ionosphere dataset with
n = 280, d = 33. For the SDP based sampling method, m = 2500 and the regularization coefficient is β = 10. For the ReLU network,
m = 5000 and β = 10−7.


