
Beyond squared log(T) Regret for Decentralized Bandits in Matching Bandits

A. Sub-Routines used in the Algorithms

Algorithm 3 INDEX-ESTIMATION()
1: Index N
2: Arm 1
3: for 1  t  N � 1 do
4: Play Arm labeled Arm
5: if Matched AND Arm == 1 then
6: Index t

7: Arm 2
8: end if
9: end for

10: Return Index

In Algorithm 3, we give a simple algorithm by which every agent in a decentralized fashion, can estimate an unique rank. As
the arms are labeled, the agents agree to the protocol, that at the beginning of the game, they will play arm labeled 1, until it
gets matched for the first time. The index of the agent is the time at which it matches with arm 1. Subsequently, the agent will
play arm 2 in the remaining time. Thus, the id estimated by an agent is its relative rank at arm 1, i.e. Index(j) = rank(j, 1)
which is unique among the agents as for any arm there is no tie in its preference.

Algorithm 4 COMMUNICATION(i, Oj [i]) for Agent j

1: Input: Phase number i 2 {1, 2, . . . , }, and max played arm Oj [i]
2: for t = 1 to NK � 1 do
3: if K(Index(j)� 1)  t  KIndex(j)� 1 then
4: Play arm Pj(t) = (t mod K) + 1
5: if Collision Occurs then
6: C  C [ {Pj(t)}
7: end if
8: else
9: Play arm Pj(t) = Oj [i]

10: end if
11: end for
12: Return C

Algorithm 4 allows each agent j to learn the dominated arms – the arms which are most played by at least one agent
j
0 6= j such that j0 >Oj0 [i] j. We argue that if there exists such an agent j0 then C 3 Oj0 [i]. Assume an arbitrary such

agent j0. At the time t = (K(Index(j) � 1) + Oj0 [i] � 1) the agent j0 and j plays arm Oj0 [i], but agent j collides as
j
0
>Oj0 [i] j. This ensures C ✓ {Oj0 [i] : j0 >Oj0 [i] j}. Also, if there is no j

0 such that j0 >Oj0 [i] j, then there is no collision
during K(Index(j) � 1)  t  KIndex(j) � 1 when C is updated (there can be collision in other times). So we have
C = {Oj0 [i] : j0 >Oj0 [i] j} which proves the correctness for the Algorithm 4.

Algorithm 5 GALE-SHAPELY at the Agents

1: Input: The preference over arms for all agents, the preference over agents for all arms
2: Pj  �1, for all j. {All agents are unmatched to begin with}
3: while 91  j  N , such that Pj = �1, i.e., there exists an un-matched agent do
4: for 1  N in parallel do
5: Agent j proposes to its highest ranked arm that has not yet rejected it.
6: end for
7: An agent is matched to its arm if and only if it is the highest ranked agent proposing to the arm at time t.
8: end while
9: Return C
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In Algorithm 5, first introduced in (Gale & Shapley, 1962), is used as a sub-routine in Algorithm 1.

B. Additional Related Work on Multi-Agent Bandits
A popular line of work in competitive multi-agent bandits (as in this paper) is the colliding bandits model, where if two
or more agents play the same arm in the same round, then all of them get blocked. Such models study spectrum sharing
in wireless networks (Kalathil et al., 2014; Rosenski et al., 2016; Bistritz & Leshem, 2020), and recently sophisticated
centralized and de-centralized algorithms were developed to obtain the right O(log(T )) regret (Boursier & Perchet, 2019;
Mehrabian et al., 2020). Our model fundamentally differs from the colliding bandits, because if multiple agents play the
same arm simultaneously, one of them receives a reward while the others do not. Thus, the developments therin (Boursier &
Perchet, 2019; Mehrabian et al., 2020) are inapplicable to our problem. From an application side, bandits have been used for
resource allocation in networks (Darak & Hanawal, 2019; Larrnaaga et al., 2016; Avner & Mannor, 2016). This line of
work does not fall under our matching bandit model and are mostly centralized systems. Another related line of work is that
of collaborative multi-agent bandits, where agents are not competing for resources, but aim to maximize group reward by
minimal communications (Kolla et al., 2018; Chawla et al., 2020; Sankararaman et al., 2019; Buccapatnam et al., 2015;
Landgren et al., 2021; Dubey & Pentland, 2020). In a recent work, (Dai & Jordan, 2020) consider the problem of preference
learning in decentralized matching markets. In their setup, arms have a noisy preference over the agents and the goal is to
learn this preference via repeated interaction. The authors provide an algorithm that asymptotically converges to a matching
that is stable and fair. Although related, the model and the goal of the problem is significantly different from that considered
in this paper.

C. Proof of Theorem 1
Proof of Theorem 1. We use the Hoeffding’s bound and linearity of expectation to establish this result. We collect some
useful observations from the description of the algorithm.

• The total number of phases until time T is at-most dlog2(T )e+ 1.
• The total number of explore samples by any agent after the explore part of phase i is at-least (i�1)1+"

1+" � i.
• Each agent experiences no more than N

2 collisions in a phase.

The first point follows from the fact that phase i lasts for 2i rounds. The second point follows from the fact that in any phase
i. the first i" rounds are used for exploration. The last point follows from classical results on Gale-Shapley matching, which
takes at-most N2 rounds.

In any phase i, denote by the event Ei to be the one in which, every agent correctly estimated the ordering of its arms, at the
end of the explore portion of phase i. The following two propositions help us prove the regret bound
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Now, from Propositions 1 and 2, we get the following
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Substituting Equation (4) into Equation (5), and bounding i� with Equation (2), yields the result.

Proof of Proposition 1.
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In step (a), we use the Gale Shapley property, that if all agents correctly estimate their arm-ranking, then all agents will play
the agent-optimal stable match arm in the exploit part of the phase (after accounting for the at-most N2 rounds needed for
the Gale-Shapley matching to converge).

Proof of Proposition 2. A sufficient condition for the event Ei to hold, is if all agents, learn of all their respective arm-means,
to a resolution of within �/2. This will automatically imply that the empirical rankings of all agents will be identical to the
truth. For notational simplicity, denote by eµjk

(i) to be the empirical mean of arm k, computed by agent j, using all the
explore samples upto and including phase i. We have from definition of Ei,
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Thus, we have from the union bound that
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Since eµ(i)
jk is the empirical mean estimated using at-least (i�1)1+"

1+" � i i.i.d. samples, we have from Hoeffding’s bound
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The result follows by substituting Equation (6) into Equation (5).
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D. Proof of Regret Upper Bound Under SPC Condition
D.1. Notation and Definition:

We next set up the notations required for the proof of the main results. We denote by N the set of natural numbers and by R+

the set of non-negative real numbers.

Ranks: We define by >k the preference order (a.k.a. rank) of arm k, for any arm k 2 [K], where if j >k j
0 then arm k

prefers agent j over agent j
0
. Recall, under the SPC condition we assume the common order (among agents and arms) is

identity without loss of generality, for the ease of exposition.

Phases: Our algorithm works in phases. By Si we denote the starting round for phase i. We have S1 = R+1 and for i > 1,
Si = R+

Pi�1
i0=1(C + 2i

0�1) = R+ C(i� 1) + 2i, where R is the time required for the Ranking period which runs once
in the beginning, and C for the communication phase which is used each phase once.

Arm Classification: For each agent j, let the set of dominated arms be Dj := {k⇤j0 : j0 = 1 . . . , j � 1} the stable matching
arm of the agents ranked higher than j in the SPC order. Further, for each arm k /2 Dj , we also define the blocking agents

for arm k and agent j as Bjk = {j0 : j0 >k j}, the set of agents preferred by arm k over agent j. We define the arms as
hidden arms Hj := {k : k /2 Dj ,Bjk 6= ;}.

Gaps: Let the stable matching pair of agent j be arm k
⇤
j for any j 2 [N ]. Let �jk = µjk�µjk⇤

j
be the gap for arm k 2 [K].

Let �min = minjk{�jk : k /2 Dj [ k
⇤
j }. Recall our assumption that, for every agent, no two arm means are the same

implies that �min > 0, is strictly greater than 0.

Number of Plays and Attempts: For each agent j 2 [N ] and arm k 2 [K], denote by Njk(t) as the number of times
agent j has successfully matched with arm k (i.e., without colliding) up to time t for any t. For all i � 1, we denote by
Njk[i] = Njk(Si+1 � 1) to be the same quantity as above at the end of phase i. We denote by Ij(t) 2 [K] [ ; as the arm
sampled by agent j on round t (here Ij(t) = ; denotes the agent j collides in time t). Let Gj [i] denote the set of globally
deleted arms for agent j at the beginning of phase i, and Lj [i] denote the set of locally deleted arms for agent j at the end of
phase i. We note that Njk, Ij(t� 1), Gj [i], and Lj [i] all are random variables adapted to the filtration constructed by the
history of agent j at different points in time.

Critical Phases:

• The phase i for agent j, for some j 2 [N ], is a Good Phase if the following are true:

1. The dominated arms are globally deleted, i.e. Gj [i] = Dj .
2. For each arm k /2 Dj [ k⇤j (not globally deleted), in phase i arm k is successfully played (a.k.a. sampled) by agent

j at most 10�i
�2

jk
times.

3. The stable match pair arm k
⇤
j is sampled the most number of times in phase i.

The good phase definition is identical to the definition in Sankararaman et al. (Sankararaman et al., 2021).

• We further define a phase i for agent j, for some j 2 [N ] to be a Low Collision Phase if the following are true:

1. Phase i is a good phase for agent 1 to j.
2. Phase i is a good phase for all agent j0 2 [k2HjBjk.

For notational ease, let IG[i, j] be the indicator that phase i is a good phase for agent j. Similarly, let ILC [i, j] be the
indicator that phase i is a low collision phase for agent j.

Let i1 =
⇣
(N � 1) 10�

�2
min

⌘ 1
��1

+ 1. We define the Freezing phase for each agent j as the phase on and after which all
phases are good phases for agents 1 to (j � 1).
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Further, the Vanishing phase for each agent j as the phase on and after which all phases are low collision phases for agent j

Vj = max

0
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0
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1

A

1

A .

It is easy to see, that Fj = max (Fj0 : 1  j
0  (j � 1)) and Vj = max

�
Fj+1,[k2Hj [j02Bjk Fj0

�
from the definition of

low collision phase.

D.2. Proof of main result

We begin the proof with the simple result that arm j and agent j form a stable match pair for any j  N

Proposition 3. If a system satisfies SPC then k
⇤
j = j for all j 2 [N ]. Furthermore, if a system satisfies ↵-condition then we

have k
⇤
j = j for all 1  j  N , and j

⇤
ak

= Ak and k
⇤
Aj

= aj for all 1  k, j  N .

Proof. We note for the SPC condition, for j = 1 we have µ1k⇤
1
> µ1k for all k > 1 implying k

⇤
1 = 1. For j = 2 we see

µ2k⇤
2
> µ2k for all k > 2. So k

⇤
2 2 {1, 2}. But k⇤1 = 1, thus k

⇤
2 = 2. This logic can be extended to prove that for all

1  j  N k
⇤
j = j.

We now prove that under low collision phase there is no local deletion for agent j in the following lemma.

Lemma 1. If a phase i � i1 = min{i : (N � 1) 10�i
�2

min
< �2(i�1)}, is a Low Collision phase for agent j, for any j 2 [N ],

then Lj [i] = ;.

Proof. As phase i is Low Collision we know phase i is good for the agent j. Therefore, the arms k 2 Dj are deleted in the
beginning of the phase and no collision is encountered. So 8k 2 Dj , k /2 Lj [i].

Further, as phase i is a good phase for all agent j0 2 [k2HjBjk (by definition), for each k 2 Hj the maximum number of
collision (N � 1) 10�i

�2
min

. This is true as in a good phase any agent j0 2 Bjk plays k at most 10�i
�2

min
times as k /2 Dj0 [ k

⇤
j0 .

Therefore, for i � i1 we have local deletion threshold �2(i�1)
> (N � 1) 10�i

�2
min

. Thus, 8k 2 Hj , k /2 Lj [i].

Finally, for each arm k /2 Hj [Dj , we have for all agent j0 6= j, j
0
>k j. Therefore, 8k /2 Hj [Dj , there is no collision

experienced by agent j. Therefore, k /2 Lj [i] and we conclude that Lj [i] = ;.

Lemma 2. If a phase i � i1 (i1 as defined in Lemma 1), is a good phase for all agents 1 to (j � 1), for any j 2 [N ], then

k
⇤
j /2 Lj [i].

Proof. Due to SPC we have j >k⇤
j
j
0 for all j0 > j. Therefore, the arm k

⇤
j can be locally deleted (k⇤j 2 Lj [i]) in phase i

only if the total collisions from agents 1 to (j � 1) is greater than i
� . But the total collisions from agents 1 to (j � 1) is at

most 10(j�1)�i
�2

min
as phase i is a good phase for all agents 1 to (j � 1). Also, i� > (N � 1) 10�i

�2
min

for all i � i1. Therefore, k⇤j
can not be locally deleted in the phase i as mentioned in the lemma.

We now decompose the regret and provide a regret upper bound.

Lemma 3. The expected regret for agent j can be upper bounded as
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Proof. We now decompose the expected regret as follows

E[Rj(T )]
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In the first inequality, follows due to the following reasons.

• We upper bound the regret till the end of phase Fj by SFj as regret per round is at most µk⇤
j
 1.

• Local deletion: Next from phase (Fj + 1) upto phase Vj (both inclusive), we upper bound the regret due to collision
by
PVj

i=(Fj+1)

P
k2Hj

�2(i�1) as in each round i at most �2(i�1) collisions are possible when pulling an arm from the
set |Hj | in phase (Fj + 1) to Vj . This is true as all the arms in Dj are globally deleted from phase (Fj + 1) onwards.

• Communication phase: The best arm for agent j is not played in all but (K�1) number of steps for each communica-
tion phase after phase Fj+1, and other agents j0 2 Bjk⇤

j
collide at most once after phase Vj (as each of them enter good

phase). Thus, beyond phase Vj we have at most (K � 1 + |Bjk⇤
j
|) regret due to collision, and there are at most log2(T )

communication phases. This limits the regret due to communicationat
⇣
(K � 1 + |Bjk⇤

j
|) log2(T ) +NKVj

⌘
.

• Collision: From phase (Vj + 1) (inclusive) onwards only an agent j0 2 Bjk collides with k only if k /2 Dj0 , because
(1) agent j0 deletes all arms in Dj0 from (Vj + 1) (inclusive) onwards, and (2) all j0 /2 Bjk and j

0 6= j, j >k j
0 (agent

j is preferred by k over agent j0). This amounts to
P

k/2Dj

P
j02Bjk:k/2Dj0

µk⇤
j
(Nj0k(T )�Nj0k(SVj )) regret.

• Suboptimal play: Finally, from phase (Fj + 1) (inclusive) onwards till the last phase agent j incurs regret �jk each
time the agent j successfully plays arm k /2 Dj [ k

⇤
j . Thus she incurs total �jk(Njk(T )�Njk(SFj )) regret for each

such k.

The validity of the second inequality is easy to see. We now come to the last inequality. We know that (Nj0k(T ) �
Nj0k(SVj ))  (Nj0k(T )�Nj0k(SFj0 )) (almost surely) as Vj � Fj0 almost surely from the definition of Vj , for all j0 2 Bjk.
Thus, the final inequality follows by substituting the bounds from Lemma 4.

We now prove the upper bound on the expected number of times a sub-optimal arm is played by an agent j after the Global
deletion freezes.
Lemma 4. For any j 2 [N ], k /2 Dj [ k

⇤
j , for � > 1,

E
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⇤
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� log(T ) +
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Proof. We have for any k /2 Dj [ k
⇤
j and ✏ > 0
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The inequality is true because phase (Fj + 1) onwards (inclusive) the arm k
⇤
j is neither globally deleted (by definition of

Fj) or locally deleted as shown in Lemma 2. Therefore, we have
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Note, before the phase (Fj +1) it is not true that any arm k
0 better than k, in particular arm k

⇤
j , survives the global and local

deletion. The rest of the proof of this lemma is fairly standard. However, we present it for completeness.

We next bound the expectation of the second term in a standard way as follows (c.f. (Lattimore & Szepesvári, 2020) Theorem
8.1 proof)
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Here,  () is the Riemann zeta function. Note, the first inequality is valid as
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Finally, we bound the expectation of the first term also in a standard way ((c.f. (Lattimore & Szepesvári, 2020) Lemma 8.2))
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 1 +
2

(�jk � ✏)2
⇣
� log(T ) +

p
⇡� log(T ) + 1

⌘

We combine the two above bounds and pick ✏ = �jk/2 (for simplicity, this can be tightened with some effort) we obtain the
following bound for � > 1,

E
⇥
(Njk(T )�Njk(SFj ))

⇤
  (�) 8

�2
jk

+ 1 + 8
�2

jk

⇣
� log(T ) +

p
⇡� log(T ) + 1

⌘
.

We now have to provide an upper bound on the moments of Vj and mean of SFj to complete the proof of the regret bound.
As Vj is a function of Fj0 for j0 2 [N ] we need to derive bounds for moments and exponent of Fj0 for all j0. The key idea is
to show that once the Global deletion has settled for agents 1 to (j � 1) (recall the agents are ordered according to the SPC
order) the agent j enters Good phase with high probability.

Lemma 5. For any agent j and any phase i � i
⇤ = max{8, i1, i2} and � > 1,

P[IG[i, j] = 0 ^ i � Fj + 1]  (K � 1� |Dj |)
⇣
1 + 64

�2
min

⌘
2�i(��1)

,

where i1 = min{i : (N � 1) 10�i
�2

min
< �2(i�1)} and i2 = min{i : (R� 1 + C(i� 1))  2i+1}.

Proof. Let us recall that the phase i is a Good phase for agent j if and only if (1) the dominated arms Dj are deleted in
global deletion, and (2) each arm k /2 Dj [ k⇤j is sampled by agent j at most 10�i

�2
jk

times, and (3) arm k
⇤
j is matched the most

number of times.

Given {i � (Fj + 1)} in phase i condition (1) is satisfied for any i � 1. For i � i1, as in Lemma 1, we can show that
condition (1) and (2) implies condition (3) holds true. So we need to bound the probability that given {i � Fj + 1} the
condition (2) holds. This follows from the properties of UCB as we show below. We have for any j and ✏ > 0,

P[IG[i, j] = 0 ^ i � (Fj + 1)]

 P
h
[k/2Dj[k⇤

j
{(Njk[i]�Njk[i� 1]) > 10�i

�2
jk
} ^ i � (Fj + 1)

i


X

k/2Dj[k⇤
j

P
h
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t2Si
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j
(t� 1)

i

(ii)


X

k/2Dj[k⇤
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q
2� log(t)
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(v)
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(Si+1 � Si)2
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(vi)
 (K � j)2�i(��1)

⇣
1 + 64

�2
min

⌘

Inequality (i) relates the event of playing arm k to the UCB bounds along with the fact that k⇤j is present after phase
i � (Fj + 1). The inequalities (ii) and (iii) follow similar logic as in Lemma 4. Here for inequality (iv) we use large enough

i such that (1�
q

log(Si+1�1)
5i ) � 1/2, and for (v) we use small enough ✏ such that 5

log(2) (
1
2 �

✏
�jk

)2 � 1. We also use the
fact Si � 2i for (v). The above are satisfied when ✏ = �jk/8 and for all i � max{8, i2}. The latter is true because for

i2 = min{i : (R� 1 + C(i� 1))  2i+1} we have log(Si+1 � 1)  i+ 2, and for i � 8, 1�
q

i+2
5i � 1/2. Finally, (vi)

simply uses minimum gap over all arms and agents (for simplicity) and |Dj | = (j � 1).

To complete the proof we need to upper bound of the moments, and exponents of Fj in an inductive manner similar to
Sankararaman et al. (Sankararaman et al., 2021).
Lemma 6. For any j 2 [N ] and m � 1, the following hold with i

⇤
as defined in Lemma 5

E[Fm
j ]  i1 + (j � 1)(i⇤)m + (j � 1)(K � j/2)

⇣
1 + 64

�2
min

⌘
2�(��1)(i⇤�2)

(2(��1)�1)2

E[2Fj ]  i1 + (j � 1)2i
⇤
+ (j � 1)(K � j/2)

⇣
1 + 64

�2
min

⌘
2�(��1)(i⇤�2)

(2(��1)�1)2
.

Proof. Let g : R! R+ be any monotonically increasing and continuous (hence invertible) function. We have that F0 = i1

almost surely by definition (this accounts for the max with i1 in the definitino of Fj). The inductive hypothesis is

E[g(Fj)]  i1 + (j � 1)g(i⇤) + (j � 1)(K � j/2)
⇣
1 + 64

�2
min

⌘
2�(��1)(i⇤�2)

(2(��1)�1)2
.

We calculate the expectation for agent j as

E[g(Fj)] =
X

x�0

P[g(Fj) � x]

=
X

x�0

P[Fj � g
�1(x)]

=
X

x�0

�
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�
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X
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P[Fj � g
�1(x), Fj�1 < g

�1(x)]

 E[g(Fj�1)] +

g(i⇤)�1X
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X
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X
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X

i�i⇤
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⌘ X
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 i1 + (j � 1)g(i⇤) + (j � 1)(K � j/2)
⇣
1 + 64

�2
min

⌘
2�(��1)(i⇤�2)

(2(��1)�1)2
.

The inequality (i) follows due to Lemma 5, while the rest are standard.

To finalize the regret upper bound proof we note that the following holds. For the expected rounds upto the end of phase Fj

is upper bounded as

E[SFj ] = E[R+ C(Fj � 1) + 2Fj ]

 R+ C(i1 + (j � 1)i⇤ + (j � 1)(K � j/2)
⇣
1 + 64

�2
min

⌘
2�(��1)(i⇤�2)

(2(��1)�1)2
� 1)

+ (j � 1)2i
⇤
+ (j � 1)(K � j/2)

⇣
1 + 64

�2
min

⌘
2�(��1)(i⇤�2)

(2(��1)�1)2

= R+ C(i1 � 1) + C(j � 1)i⇤ + (j � 1)2i
⇤
+ (C + 1)(j � 1)(K � j/2)

⇣
1 + 64

�2
min

⌘
2�(��1)(i⇤�2)

(2(��1)�1)2

Let us define Jmax(j) = max (j + 1, {j0 : 9k 2 Hj , j
0 2 Bjk}). Then as Fj � Fj0 almost surely for all j � j

0 by
definition, we have

Vj = max
�
Fj+1,[k2Hj [j02Bjk Fj0

�
= FJmax(j).

Thus, for to upper bound the regret upto the end of the phase when the local deletion vanishes is given as E[SVj ] 
E[SFJmax(j)

]. Combining the above two inequalities with the result in Lemma 4 we obtain the final regret bound as

E[Rj(T )]

 R+ C(i1 � 1) + C(j � 1)i⇤ + (j � 1)2i
⇤
+ (C + 1)(j � 1)K

⇣
1 + 64

�2
min

⌘
2�(��1)(i⇤�2)

(2(��1)�1)2
+min(1,�|Hj |)⇥ . . .

· · ·⇥
⇣
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⌘
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i1 + (j � 1)i⇤ + (Jmax(j)� 1)K

⇣
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⇤
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This gives us the following rerget bound under the SPC setting

Theorem 4. For a stable matching instance satisfying ↵-condition (Definition 3), suppose each agent follows UCB-D4
(Algorithm 2) with � > 1 and � 2 (0, 1/K), then the regret for an agent j 2 [N ] is upper bounded by

E[Rj(T )] 
X

k/2Dj[k⇤
j

8�
�jk

⇣
log(T ) +

q
⇡
� log(T )

⌘

| {z }
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j02Bjk:k/2Dj0

8�µk⇤
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j0k

⇣
log(T ) +

q
⇡
� log(T )

⌘

| {z }
collision

+ (K � 1 + |Bjk⇤
j
|) log2(T )| {z }

communication

++O

⇣
N2K2

�2
min

+ (�|Hj |Jmax(j) + j � 1)2i
⇤
⌘

| {z }
transient phase, independent of T

,

where

i
⇤ = max{8, i1, i2}, i1 = min{i : (N � 1) 10�i

�2
min

< �2(i�1)}, and i2 = min{i : (N � 1 +NK(i� 1))  2i+1}.
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E. Proof of Regret Upper Bound under ↵-Condition
In this section we prove our main result for the instances satisfying ↵-condition. We will present a short note on the main
proof idea, while pointing out why the proof in the previous section does not go through. Next we present the necessary
notations before going into the proof of the results. The proof structure, and some parts of the proof remain closely related
to that of the previous section. Therefore, we mainly focus the new parts of the proof, while referring to the parts related to
SPC we present proof sketch.

E.1. Main Proof Idea

The key idea of the proof is similar to SPC condition but now before the global deletion starts to freeze, we need to talk
about vanishing of local deletion for the stable matched arms (note the sub-optimal arms for each agent can still get locally
deleted at this point). So the three important stages are: (1) local deletion vanishes for stable matched arms (from agent
A1 to AN ), (2) freezing of global deletion (from agent 1 to N ), (3) vanishing of local deletion of all arms (depending on
when the blocking agents freeze global deletion). We next elaborate more on why (1) should precede (2) under ↵-condition
whereas under SPC condition we can directly go to (2).

Under SPC for agent 1 there was no risk of local deletion for it’s stable match pair, which is also its best arm, as for this arm
agent 1 is also the best agent. This sets up the inductive freezing of the global deletion as agent 1 quickly identifies arm 1 as
it’s best arm. The vanishing of local deletion is the consequence of the freezing of global deletion of the blocking agents.
But under ↵-condition it is no longer the case as agent 1 is not the most preferred agent for arm 1. Instead we have that the
agent A1 has no risk of local deletion of its stable match pair, a1, which is (possibly) not the best arm for agent A1 but for
arm a1 we have A1 as its best agent. Therefore, agent A1 will not delete it’s stable match pair arm a1, but unless global
deletion eliminates better arms it will not converge to this arm. However, A1 will stop causing local deletion (which we will
prove) for the stable matched arm for agents in the set {j : A1 >k⇤

j
j, j 2 [N ]}. This will continue inductively. In particular,

A1 stops local deletion of stable matched arm of agent A2 which in turn stops local deletion caused by agent A2, so on and
so forth.

Where proof of SPC fails for ↵-condition? Before going into the proof of ↵-condition we identify why the proof in
previous section fails. The key step that breaks when we move from SPC to ↵-condition is that in Lemma 4 the ineuality (7)
does not hold anymore. The issue is we do not have k

⇤
j to be dominated only by the agents 1 to (j � 1), i.e. there may exist

agent j0 > j such that j0 >k⇤
j
j. Similar idea is also exploited in Lemma 5 which also fails to hold for the same reason.

E.2. Notations and Definitions:

We setup the notations required for the regret upper bound proof when the system satisfies ↵-condition. The right-order
in the definition of the ↵-condition be given as [N ]r = {A1, A2, . . . , AN} (a permutation of [N ]) for the agents, and
{a1, a1, . . . , aK} (a permutation of [K]) for the arms. Whereas, the left-order in the definition is [N ] and [K]. Also, we
recall that k⇤j as the stable matched arm for any agent j 2 [N ], and j

⇤
k as the stable matched agent for the arm k, for all

k 2 [K], k  N .

We now recall that due to ↵-condition the following statements hold

(i) 8j 2 [N ], 8k > j 2 [K], µjj > µjk,

(ii) 8ak 2 [K]r, k  N, 8j > k,Aj 2 [N ]r, Aj⇤ak
>ak Aj ,

(iii) 8Aj 2 [N ]r, k
⇤
Aj

= aj 2 [K]r,

(iv) 8j 2 [N ], k⇤j = j 2 [K],

Here, (i) and (ii) follows from the definition of ↵-stability and (iii) and (iv) follows from the Proposition 3. Let us denote by
lr the mapping of agents in left order to agents in right order under ↵-condition, i.e. agent j = Alr(j) for all j 2 [N ].

Arm Classification: For each agent j, the dominated arms (Dj), the blocking agents for arm k and agent j (Bjk), the set
of hidden arms (Hj) are defined identically to the SPC scenario. Let KW (j) be the set of arms each of which is a stable
matched arm for some other agent j0, is a sub-optimal arm for j, and j is preferred by that arm than its stable pair j0, i.e.

KW (j) = {k : k 2 [K], µjk < µjk⇤
j
, 9j0 6= j : (k = k

⇤
j0 , j >k j

0)}.

We note that KW (Aj)  (K � j) as due to ↵-condition agent k⇤j0 /2 KW (j) for any j  N .
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Ciritcal Phases: We now define the critical phases when the system satisfies the ↵-condition

• The phase i for agent j, for some j 2 [N ], is a Warmup Phase if the following are true for each arm k 2 KW (j),:

1. in phase i arm k is matched with agent j at most 10↵i
�2

jk
times,

2. in phase i arm k is not agent j’s most matched arm

• The phase i for agent j, for some j 2 [N ], is an ↵-Good Phase if the following are true:

1. The dominated arms are globally deleted, i.e. Gj [i] = Dj .
2. The phase i is a warmup phase for all agents in Lj = {j0 : k⇤j 2 KW (j0)}.
3. For each arm k /2 Dj [ k

⇤
j , in phase i arm k is matched with agent j at most 10↵i

�2
jk

times.

4. The stable match pair arm k
⇤
j is matched the most number of times in phase i.

The ↵-good phase is not identical to good phase as condition (2) is additional in this case.

• A phase i for agent j, for some j 2 [N ] is called ↵-Low Collision Phase if the following are true:

1. Phase i is a ↵-good phase for agents 1 to j.
2. Phase i is a ↵-good phase for all agent j0 2 [k2HjBjk.

The ↵-low collision phase is identical to low collision phase (in SPC) except the good phase is replaced with ↵-good
phase.

We define for agent j, similar to SPC, IG↵ [i, j] to be the indicator that phase i is a ↵-good phase, ILC↵ [i, j] to be the
indicator that phase i is a ↵-low collision phase, and IW [i, j] to be the indicator that phase i is a warmup phase.

Let i1 = min{i : (N � 1) 10�i
�2

min
< �2(i�1)}. For each agent j, the ↵-Freezing (F↵j) phase is the phase on or after which

the agents 1 to (j � 1) are in ↵-good phase, and all the j
00 2 Lj (henceforth deadlock agents) are in warmup phase.

F↵j = max

0

@i1,min

0

@{i :
Y

i0�i

0

@
(j�1)Y

j0=1

IG↵ [i
0
, j

0]

1

A

0

@
Y

j002Lj

IW [i0, j00]

1

A = 1} [ {1}

1

A

1

A .

Also, we define ↵-Vanishing phase (V↵j) similar to SPC

V↵j = max

0

@i1,min

0

@{i :
Y

i0�i

ILC↵ [i
0
, j] = 1} [ {1}

1

A

1

A .

Similar to SPC, V↵j = max
�
F↵(j+1),[k2Hj [j02Bjk F↵j0

�
from the definition of low collision phase.

Finally, for each j  N , the phase i is the Unlocked phase (Uj) if all phases on and after i are warmup phases for all the
agents A1 to Aj .

Uj = max

0

@i1,min

0

@{i :
lr(j)�1Y

j0=1

Y

i0�i

IW [i0, A0
j ] = 1} [ {1}

1

A

1

A .

This will be useful in quantifying the ↵-freezing phase F↵j later on.

E.3. Structural results for ↵-condition

In this section, we collect the important results that hold due to the combinatorial properties of the stable matching system
that satisfies the ↵-condition.
Proposition 4. If a system satisfies ↵-condition then we have k

⇤
j = j, j

⇤
ak

= Ak and k
⇤
Aj

= aj for all 1  k, j  N .

Proof. That under ↵-condition k
⇤
j = j for all 1  j  N follows identically to Proposition 4. For the final relation we note

that under ↵-condition we have for k = 1 we have Aj⇤1 >a1 Aj for all j > 1. Thus j⇤1 = A1. We can extend the same logic
to obtain j

⇤
ak

= Ak for all 1  k  N .
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We now prove that the arm k
⇤
j can be blocked only by agents in Lj .

Claim 1. For a stable matching k⇤
and any agent j, we have {j0 : j0 >k⇤

j
j} ✓ Lj = {j0 : k⇤j 2 KW (j0)}.

Proof. We have the stable matching k⇤. Let j >k⇤
j0
j
0 and µjk⇤

j
< µjk⇤

j0
, then (j, k⇤j0) forms a blocking pair as arm k

⇤
j0 and

agent j will be both happier switching from their respective partners under k⇤. Therefore, k⇤ is not a stable matching. Thus,
for a stable matching k⇤ and any two agents 1  j, j

0  N , agent j satisfies µjk⇤
j
> µjk⇤

j0
if j >k⇤

j0
j
0. Thus, if {j0 >k⇤

j
j}

then µjk⇤
j
< µjk⇤

j0
so k

⇤
j 2 KW (j0) so j

0 2 Lj .

We now characterize the set of deadlock agents for each agent j.

Claim 2. For each agent j 2 [N ], Lj ✓ {Aj0 : j0 = 1, . . . , lr(j)� 1}.

Proof. From ↵-condition we know that 8ak 2 [K]r, k  N, 8j > k,Aj 2 [N ]r, Aj⇤ak
>ak Aj . Further, from Proposition 4

we know that j⇤ak
= Ak for all 1  k  N . Therefore, we can observe for any j, j

0  N and j < j
0, Aj >k⇤

Aj
Aj0 . In

particular, for any j
0
> lr(j) we have j = Alr(j) >k⇤

j
Aj0 . Which means for any j

0 � lr(j), we do not have j
0
>k⇤

j
j and

hence k
⇤
j /2 KW (j0). This proves that for any j

0 � lr(j) j0 /2 Lj , i.e. Lj ✓ {Aj0 : j0 = 1, . . . , lr(j)� 1}.

We recall that lr(j) is the index of the agent j in the right-order of ↵-condition. The above characterization connects the
unlock phase with the freezing phase as follows

Claim 3. For each agent j 2 [N ], F↵j  max
�
U(lr(j)�1),max(F↵j0 : 1  j

0  (j � 1))
�

w.p. 1.

Proof. Consider an arbitrary sample path. We know by definition on or after phase U(lr(j)�1), all agents {Aj0 : j0 =
1, . . . , lr(j)� 1} are in warmup phase. We have the set of deadlock agents as Lj ✓ {Aj0 : j0 = 1, . . . , lr(j)� 1}. Hence,
all agents in Lj are also in warmup phase on or after phase U(lr(j)�1). Further, the agents 1 to (j � 1) are in ↵-good phase
from phase max(F↵j0 : 1  j

0  (j � 1)) onwards. Hence, F↵j  max
�
U(lr(j)�1),max(F↵j0 : 1  j

0  (j � 1))
�

with
probability 1.

Next the following lemma captures a few key properties related to the critical phases.

Lemma 7. For i � i1 = min{i : (N � 1) 10�i
�2

min
< �2(i�1)}, any j 2 [N ],

• if phase i and (i� 1) are warmup phases for all j
0 2 Lj then k

⇤
j /2 Lj [i] [Gj [i] almost surely,

• if phase i � min(U(lr(j)�1), F↵j) + 1 then k
⇤
j /2 Lj [i] [Gj [i] almost surely,

• if phase i � V↵j + 1 collision phase for agent j then Lj [i] = ; almost surely.

Proof. The following results hold for an arbitrary sample path giving us almost sure inequalities.

Due to Claim 1 all agents j
0 which can block arm k

⇤
j are in Lj . Also k

⇤
j 2 KW (j0) for any agent j0 2 Lj due to the

definition of Lj . Therefore, if all agents in Lj are in warmup phase in phase (i� 1) then k
⇤
j /2 Gj [i] because no agent in

Lj communicates arm k
⇤
j to agent j, and the other arms can not communicate the arm k

⇤
j (due to this arm’s preference).

Furthermore, the total number of times the arm k
⇤
j can be deleted is at most (lr(j)� 1) 10↵i

�2
jk

< �2(i�1) (the local deletion
threshold) for any i � i1. Thus k⇤j is not locally deleted, i.e. k⇤j /2 Lj [i]. This proves the first part.

We know that the phase i � Ulr(j)�1 + 1 and (i � 1) � Ulr(j)�1 is a warmup phase for all agents in Lj = {j0 : k⇤j 2
KW (j0)}. This is because we know that Lj ✓ {Aj0 : j0 = 1, . . . , lr(j)� 1} due to Claim 2. By definition of F↵j all agents
are in warmup phase for phases i � F↵j + 1 and (i� 1) � F↵j . Thus the second result follows due to the first result.

The proof of the third part follows almost identically to the Lemma 1, i.e. by virtue of i � V↵j + 1 being an ↵-low collision
phase.
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E.4. Proof of main results

In this section, we proceed with the regret bound where we leverage the structural properties proven in the previous part. We
first state the regret decomposition lemma, which has an identical form to the regret decomposition as in SPC with F↵j and
V↵j in place of Fj and Vj , respectively.
Lemma 8. The expected regret for agent j can be upper bounded as

E[Rj(T )]  E[SF↵j ] + min(�|Hj |, 1)E[SV↵j ] +
⇣
(K � 1 + |Bjk⇤

j
|) log2(T ) +NKE[V↵j ]

⌘

+
X

k/2Dj

X

j02Bjk:k/2Dj0

8�µk⇤
j

�2
j0k

⇣
log(T ) +

q
⇡
� log(T )

⌘
+

X

k/2Dj[k⇤
j

8�

�jk

⇣
log(T ) +

q
⇡
� log(T )

⌘

+NK

✓
1 + ( (�) + 1)

8�

�2
min

◆

Proof Sketch. The proof of the lemma is closely related to the proof of Lemma 3, except for the use of the ↵-freezing phase
F↵j instead of the freezing phase Fj , and ↵-vanishing phase V↵j instead of vanishing phaes Vj . The rest of the proof is
identical to the proof of Lemma 3 where Lemma 9 is invoked instead of it’s identical counterpart (for SPC) Lemma4.

Lemma 9. For any j 2 [N ], k /2 Dj [ k
⇤
j , for � > 1,

E
⇥
(Njk(T )�Njk(SFj ))

⇤
  (�) 8

�2
jk

+ 1 + 8
�2

jk

⇣
� log(T ) +

p
⇡� log(T ) + 1

⌘
.

Proof Sketch. The proof of the lemma follows the proof of Lemma 4, again with ↵-freezing phase F↵j in place of the
freezing phase Fj . Due to Lemma 7 we know that for each phase i � (F↵j + 1) the arm k

⇤
j is available as it is neither

globally deleted, nor locally deleted. Thus once a sub-optimal arm k is played enough times the UCB of arm k
⇤
j w.h.p. will

be higher than the UCB of k at any round after F↵j . Using the same standard framework as in Lemma 4 this intuition can be
formalized as a proof of this lemma.

We first show that for phases i � Uj�1 + 1, the probability that phase i is not a warmup phase for agent Aj is low.
Lemma 10. For any j  N and any phase i � i

⇤ = max(8, i1, i2) and � > 1,

P[IW [i, Aj ] = 0 ^ i � Uj�1 + 1]  (K � j)2�i(��1)
⇣
1 + 64

�2
min

⌘
,

where i1 = min{i : (N � 1) 10�i
�2

min
< �2(i�1)} and i2 = min{i : (R� 1 + C(i� 1))  2i+1}.

Proof. For any arbitrary sample path and any i � Uj�1 + 1, phase i is a warm up phase for all agent A1 to Aj�1. The
phase i is not a warmup phase for agent Aj , if there exists an arm k 2 KW (Aj) which is played more than 10�i

�2
Ajk

times in

phase i. Here, by definition for any k 2 KW (Aj) we have µAjk  µAjaj (recall, k⇤Aj
= aj due to Proposition 4) which

makes sure �Ajk > 0.

The set of agents that can block Aj from matching with arm aj when Aj plays aj is given by LAj ✓ {Aj0 : 1  j
0  j�1}

due to Claim 2 and lr(Aj) = j. But then due to the second point in Lemma 7 we know that k⇤Aj
/2 GAj [i] [ LAj [i] for

any i � Uj�1 + 1. Therefore, the inequality (i) below holds as to play arm k the UCB of arm k
⇤
j = aj can not be less than

arm k. The final bound can be obtained identically to the proof of Lemma 5 for i � max(8, i1, i2), with the observation
KW (j)  (K � j).

Therefore, we obtain the next set of equations

P[IW [i, Aj ] = 0 ^ i � (Uj�1 + 1)]

 P

[k2KW (Aj){(NAjk[i]�NAjk[i� 1]) > 10�i

�2
Ajk

} ^ i � (Uj�1 + 1)

�


X

k2KW (Aj)

P

[(Si+1�1)
t2Si

NAjk(t) =
10�i
�2

Ajk
^ IAj (t) = k ^ i � (Uj�1 + 1)

�
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(i)


X

k2KW (Aj)

(Si+1�1)X

t2Si

P

NAjk(t) =

10�i
�2

Ajk
^ uAjk(t� 1) > uAjaj (t� 1)

�

 |KW (Aj)|2�i(��1)
⇣
1 + 64

�2
min

⌘

 (K � j)2�i(��1)
⇣
1 + 64

�2
min

⌘

This completes the proof.

The proof of this lemma resembles closely that of Lemma 5 while some arguments are common to Lemma 10.
Lemma 11. For any agent j and any phase i � i

⇤ = max{8, i1, i2} and � > 1,

P[IG↵ [i, j] = 0 ^ i � F↵j + 1]  (K � j)2�i(��1)
⇣
1 + 64

�2
min

⌘
,

where i1 and i2 is as defined in Lemma 10.

Proof. The phase i is a ↵-good phase for agent j if (1) the dominated arms are deleted Gj [i] = Dj , (2) phase i is a warmup

phase for all agents in Lj = {j0 : k⇤j 2 KW (j0)}, (3) for each arm k /2 Dj [ k
⇤
j , in phase i arm k is matched with agent j

at most 10↵i
�2

jk
times, and (4) the stable match pair arm k

⇤
j is matched the most number of times in phase i. We see that (1) and

(2) holds when i � F↵j + 1. Also, (4) holds when (1), (2) and (3) holds for any i � i1.

Therefore, we will now show (3) holds. In particular, we have the following series of inequalities

P[IG↵ [i, j] = 0 ^ i � (F↵j + 1)]

 P
h
[k/2Dj[k⇤

j
{(Njk[i]�Njk[i� 1]) > 10�i

�2
jk
} ^ i � (F↵j + 1)

i


X

k/2Dj[k⇤
j

P
h
[(Si+1�1)
t2Si

Njk(t) =
10�i
�2

jk
^ Ij(t) = k ^ i � (F↵j + 1)

i

(i)


X

k/2Dj[k⇤
j

(Si+1�1)X

t2Si

P
h
Njk(t) =

10�i
�2

jk
^ ujk(t� 1) > ujk⇤

j
(t� 1)

i

 (K � j)2�i(��1)
⇣
1 + 64

�2
min

⌘
.

We know that for all arms k /2 Dj [ k
⇤
j we have �jk > 0 by definition of Dj . Also, inequality (i) holds as due to Lemma 7,

we know that after i � (F↵j + 1) the arm k
⇤
j is not globally or locally deleted. The rest again follows similar to Lemma 5

for i � max{8, i1, i2}.

Let us define lrmax(j) = max(lr(j0) : 1  j
0  j), and F̃j = max

⇣
U(lrmax(j)�1),max(F̃j0 : 1  j

0  (j � 1))
⌘

for

each j. It is easy to see that F̃j > F↵j due to Claim 3 for any j and the fact that U(lrmax(j)�1) � U(lr(j)�1) due to the
definition of Uj (all agents from A1 to Aj all are in warmup phase till the end). We now present the the following lemma that
bounds the probability that a phase i is not an ↵-good phase when i � Fj + 1. We now bound the moments and exponents
of F̃j .
Lemma 12. For any j 2 [N ] and m � 1, the following hold with i

⇤
as defined in Lemma 11

E[F̃m
j ]  2i1 + (lrmax(j) + j � 2)

⇣
(i⇤)m +K

⇣
1 + 64

�2
min

⌘
2�(��1)(i⇤�2)

(2(��1)�1)2

⌘

E[2F̃j ]  2i1 + (lrmax(j) + j � 2)
⇣
2i

⇤
+K

⇣
1 + 64

�2
min

⌘
2�(��1)(i⇤�2)

(2(��1)�1)2

⌘

Proof. We again inductively bound the expectation of an arbitrary monotonically increasing and continuous (hence invertible)
function g : R! R+. We have that F0 = i1 almost surely by definition (this accounts for the max with i1 in the definition
of Fj).
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We calculate the expectation for agent j as

E[g(F̃j)] =
X

x�0

P[g(F̃j) � x] 
X

x�0

P[F̃j � g
�1(x)]


X

x�0

P[F̃j � g
�1(x), U(lrmax(j)�1) � g

�1(x)] +
X

x�0

P[F̃j � g
�1(x), U(lrmax(j)�1) < g

�1(x)]


X

x�0

P[U(lrmax(j)�1) � g
�1(x)] +

X

x�0

P[F̃j � g
�1(x), U(lrmax(j)�1) < g

�1(x)]

 E[g(U(lrmax(j)�1))] +
X

x�0

P[F̃j � g
�1(x), U(lrmax(j)�1) < g

�1(x)]

 i1 + (lrmax(j)� 1)g(i⇤) + (lrmax(j)� 1)(K � lrmax(j)/2)
⇣
1 + 64

�2
min

⌘
2�(��1)(i⇤�2)

(2(��1)�1)2

+ i1 + (j � 1)g(i⇤) + (j � 1)(K � j/2)
⇣
1 + 64

�2
min

⌘
2�(��1)(i⇤�2)

(2(��1)�1)2

 2i1 + (lrmax(j) + j � 2)g(i⇤)

+ ((lrmax(j) + j � 2)K � (lrmax(j)(lrmax(j)� 1) + j(j � 1))/2)
⇣
1 + 64

�2
min

⌘
2�(��1)(i⇤�2)

(2(��1)�1)2

 2i1 + (lrmax(j) + j � 2)
⇣
g(i⇤) +K

⇣
1 + 64

�2
min

⌘
2�(��1)(i⇤�2)

(2(��1)�1)2

⌘
.

The last inequality is loose, and we use it for simplicity. For the second last inequality we use the following bounds on
E[g(U(lrmax(j)�1))] and P[F̃j � g

�1(x), U(lrmax(j)�1) < g
�1(x)] which we will prove momentarily.

E[g(Uj)]  i1 + (j � 1)g(i⇤) + (j � 1)(K � j/2)
⇣
1 + 64

�2
min

⌘
2�(��1)(i⇤�2)

(2(��1)�1)2
,

X

x�0

P[F̃j � g
�1(x), U(lrmax(j)�1) < g

�1(x)]  i1 + (j � 1)g(i⇤) + (j � 1)(K � j/2)
⇣
1 + 64

�2
min

⌘
2�(��1)(i⇤�2)

(2(��1)�1)2
.

Case 1: The base case U0 = i1 holds almost surely by definition. We have

E[g(Uj)] =
X

x�0

P[g(Uj) � x]  E[g(Uj�1)] + g(i⇤) +
X

i�i⇤

P[Uj � i, Uj�1 < i]

 E[g(Fj�1)] + g(i⇤) +
X

i�i⇤

P[{9i0 � i, IW [i0, j] = 0}, Uj�1 + 1  i]

(i)
 i1 + (j � 1)g(i⇤) + (j � 1)(K � j/2)

⇣
1 + 64

�2
min

⌘
2�(��1)(i⇤�2)

(2(��1)�1)2
.

Here, for (i) we use the inequality in Lemma 10, and take summations over i (similar to Lemma 6).

Case 2: We again proceed inductively. For any j 2 [N ], we introduce the notation

Fj :=
X

x�0

P[F̃j � g
�1(x), U(lrmax(j)�1) < g

�1(x)].

In the base case, as F̃0 = i1, we have F0  i1. Proceeding with the inductive approach
X

x�0

P[F̃j � g
�1(x), U(lrmax(j)�1) < g

�1(x)]


X

x�0

P[F̃j � g
�1(x), F̃j�1 � g

�1(x), U(lrmax(j�1)�1) < g
�1(x)]

+
X

x�0

P[F̃j � g
�1(x), F̃j�1 < g

�1(x), U(lrmax(j�1)�1) < g
�1(x)]

(i)

X

x�0

P[F̃j�1 � g
�1(x), U(lrmax(j�1)�1) < g

�1(x)]
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+
X

x�0

P[{9i0 � g
�1(x), IG↵ [i

0
, j] = 0}, F↵(j�1) < g

�1(x)]

 Fj�1 +
X

x�0

P[{9i0 � g
�1(x), IG↵ [i

0
, j] = 0}, F↵(j�1) < g

�1(x)]

 Fj�1 + g(i⇤) +
X

i�i⇤

P[{9i0 � i, IG↵ [i
0
, j] = 0}, F↵(j�1) < i]

 Fj�1 + g(i⇤) +
X

i�i⇤

X

i0�i

P[{9i0 � i, IG↵ [i
0
, j] = 0}, i � F↵(j�1) + 1]

 Fj�1 + g(i⇤) +
X

i0�i⇤

(i0 � i
⇤ + 1)P[{9i0 � i

⇤
, IG↵ [i

0
, j] = 0}, i0 � F↵(j�1) + 1]

 Fj�1 + g(i⇤) +
X

i0�i⇤

(i0 � i
⇤ + 1)P[{9i0 � i

⇤
, IG↵ [i

0
, j] = 0}, i0 � F↵(j�1) + 1]

(ii)
 Fj�1 + g(i⇤) + (K � j)

⇣
1 + 64

�2
min

⌘ X

i0�i⇤

(i0 � i
⇤ + 1)2�i0(��1)

 i1 + (j � 1)g(i⇤) + (j � 1)(K � j/2)
⇣
1 + 64

�2
min

⌘
2�(��1)(i⇤�2)

(2(��1)�1)2
.

For the inequality (i) we use the fact that given U(lrmax(j�1)�1), F̃j�1 < g
�1(x) the only way we can have F̃j�1 � g

�1(x)
if for some phase i

0
> g

�1(x) agent j is not in an ↵-good phase. Then we use Lemma 11 to obtain inequality (ii).

For the expected rounds upto the end of phase Fj is upper bounded as

E[SF↵j ] = E[R+ C(F↵j � 1) + 2F↵j ]  E[R+ C(F̃j � 1) + 2F̃j ]

 R+ C(2i1 � 1) + C(lrmax(j) + j � 2)i⇤ + (lrmax(j) + j � 2)2i
⇤

+ (C + 1)(lrmax(j) + j � 2)K
⇣
1 + 64

�2
min

⌘
2�(��1)(i⇤�2)

(2(��1)�1)2

Similar to SPC condition, we define Jmax(j) = max (j + 1, {j0 : 9k 2 Hj , j
0 2 Bjk}). Then as F̃j � F̃↵j0 almost surely

for all j � j
0 by definition and F̃j � F↵j , we have

V↵j = max
�
F↵(j+1),[k2Hj [j02Bjk F↵j0

�
 max

⇣
F̃(j+1),[k2Hj [j02Bjk F̃j0

⌘
= F̃Jmax(j).

The regret upto the end of the phase when the local deletion vanishes is bounded as

E[SV↵j ]  E[V (�+1)
↵j ]  E[SF̃Jmax(j)

]

The regret bound for the ↵-condition in Theorem 3 (identically derived as in the SPC case) is obtained by combining the
above results as,

E[Rj(T )]


X

k/2Dj

X

j02Bjk:k/2Dj0

8�µk⇤
j

�2
j0k

⇣
log(T ) +

q
⇡
� log(T )

⌘
+

X

k/2Dj[k⇤
j

8�
�jk

⇣
log(T ) +

q
⇡
� log(T )

⌘

+ cj log2(T ) +O

⇣
N2K2

�2
min

+ (min(1,�|H|j)f↵(Jmax(j)) + f↵(j)� 1)2i
⇤
+N

2
Ki

⇤
⌘

with the definition that f↵(j) = j + lrmax(j).

This completes the proof of Theorem 3, as the regret bound for the SPC mentioned in the theorem holds due to Theorem 4.

F. Additional Experimental Results
In this section, we present missing details of the dataset generation procedure and additional empirical results.
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Figure 4. Regret in a general instance (not satisfying ↵-condition) with 5 agents and 6 arms.

F.1. Synthetic Dataset generation

We use random instances to generate the results in this paper. For each instance the various algorithms are run for 50 times
and the average and confidence intervals are constructed using these 50 trials.

For the preference of the agents, we first create a random matrix µ 2 [0, 1]N⇥K where each entry in the matrix is a i.i.d. [0, 1]
random variable. The minimum reward gap �min ⇡ 0.05 is enforced through rejection sampling. The agents preferences
over the arms is given by the realization of this random matrix. We use different random matrices for different instances.

The preferences of the arms, varies across the three setting – SPC, ↵-condition, and general instances.

• For a general instance, we simply assign each arm with a random permutation over the agents as its preference list.

• We start with a separate random preference list for each arm. To make this satisfy the SPC condition, we go in the order
1, 2, . . . ,K of the arms. For an arm i, we find the first position in its preference assigned by the random permutation
where an agent j � i is present, then swap agent i with agent j to the end (if j = i nothing is done). It is easy to see
that this will satisfy the SPC condition.

• We generate the ↵-condition instance by generating an arbitrary preference list (sample without replacement from
possible permutations) for the arms, and then checking whether the instance (along with the agent preference fixed by
the arm means) satisfies alpha condition following (Karpov, 2019).

For the UCB-D4 algorithm we use � = 1/2K, for the CA-UCB we use � = 0.2 and for Phased ETC we use ✏ = 0.2 for the
N = 5 and K = 6 case.

F.2. Performance of UCB-C, CA-UCB and UCB-D4 on general instances

In this sub-section, we describe the results of the three algorithms with N = 5 agents and K = 6 arms on instances that
go beyond the uniqueness consistency assumption. Note that in theory, UCB-C provides the optimal log(T ) guarantee,
CA-UCB provides a (possibly sub-optimal) guarantee of log2(T ) while we have no theoretical upper-bound on the regret of
UCB-D4. Nonetheless, the results in Figure 4 seem to indicate that CA-UCB has a potentially stronger theoretical upper-
bound since its performance is very close to that of UCB-C which has log(T ) upper-bound in the worst-case. Surprisingly,
we also see that UCB-D4 converges with all the agents eventually obtaining a sub-linear regret indicating that this algorithm
may indeed have theoretical upper-bounds even in the more general setup.

F.3. Collision Regret for UCB-C, CA-UCB and UCB-D4

In this sub-section, we show the collision regret incurred by each of the three algorithms in the three settings under which we
study their overall regret. As expected, UCB-C has no collision regret because of centralized communication. Surprisingly,
CA-UCB has high regret due to collision despite having additional feedback in the SPC setting. This seems to indicate that
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(a) Instance satisfying SPC. (b) Instance satisfying ↵-condition.

(c) General instances.

Figure 5. Collision regret comparison with 5 agents and 6 arms.

most of the regret contribution for CA-UCB comes from collisions and once they are resolved the dynamics of should settle
to a state which incurs no further regret.

F.4. Performance of the algorithms on larger instances

In this sub-section we run the algorithms for larger instances. In particular, we have N = 11 agents and K = 15 agents.2

Tuned Phase Length: We tune the phase length for larger instances. The tuning mainly balances some boundary conditions
arising due to large communication blocks (which is only there in the fully decentralized setting) for large instances.
Specifically, with large instances in the initial phases communication creates large regret if the phase lengths are small
where not many samples can be explored. For tuning Phased ETC (Algorithm 1) we use exponent c0, and multiplier
c1, where the i-th phase now has length c1 ⇥ c

i
0. We have c1 = 1 and c0 = 2 for Algorithm 1. For tuning UCB-D4

(Algorithm 2) we introduce exponent c0, and multiplier c1, where the i-th phase now has length
�
(N � 1)K + c1 ⇥ c

i
0

�
.

The UCB-D4(Algorithm 2) presented in the main paper we have c0 = 2, and c1 = 1.

The hyper-parameters for these plots are as follows. We use
1. phase exponent c0 = 1.5, phase multiplier c1 = 1, and exploration degree ✏ = 0.2 for Phased-UCB,
2. phase exponent c0 = 1.2, phase multiplier c1 = 3, and the local collision threshold � = 1/2K for UCB-D4, and
3. � = 0.2 for CA-UCB.

The results that were previously observed also hold similarly for this larger instance. We note that the negative regret in the
centralized UCB is natural, as during the initial phases an agent can match with an arm which has higher mean than its
stable matched arm.

2The number 11 was chosen to obtain a rectangular 3⇥ 4 grid plot



Beyond squared log(T) Regret for Decentralized Bandits in Matching Bandits

Figure 6. Instance satisfying SPC with 11 agents, and 15 arms.

Figure 7. Instance satisfying ↵-condition with 11 agents, and 15 arms.

Regret Guarantees: The regret bounds remain mostly unchanged due to the above tuning. The regret of the modi-
fied Phased ETC is given by replacing the log2(T ) by logc0(T/c1), and changing the constant to ⇥

⇣
c
1/�2/"

0

⌘
. For
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Figure 8. General instances with 11 agents, and 15 arms.

the modified UCB-D4 algorithm the log(T ) regret due to collision and sub-optimal play does not change. The com-
munication regret changes to (K � 1 + |Bjk⇤

j
|) logc0(T/c1). Finally, the constant part of the regret still remains

O

⇣
max

n
N

�2
min

log( N
�2

min
), NK log(NK)

o⌘
.


