
Generalized Doubly-Reparameterized Gradient Estimators

Appendix to
Generalized Doubly-Reparameterized Gradient Estimators

Contents of the Appendix
A Derivation of the GDREGs identity . 1

B Derivation of the GDREGs estimator for the IWAE objective . 3

C Derivation of the DREGs and GDREGs estimator for IWAE objectives of hierarchical VAEs 5

D Worked example for a 2-layer hierarchical VAE . 8

E Surrogate losses to implement the DREGs and GDREGs estimators for IWAE objectives 9

F Implementation details . 11

G Experimental details and additional results . 13

H The cross-entropy for Gaussian distributions . 17

A. Derivation of the GDREGs identity
Here, we detail the derivation of our main result, the GDREGs identity (Eq. (16)), which we restate here.

Ez∼qφ(z)[gφ,θ(z)∇θ log pθ(z)] = Ez∼qφ(z)

[(
gφ,θ(z)∇TD

z log
qφ(z)
pθ(z)

+∇TD
z gφ,θ(z)

)
∇θTp(ε̃;θ)|ε̃=T −1

p (z,θ)

]
(16)

We can derive this identity in two ways: (1) through a reweighting correction as presented in the main paper, see App. A.1;
(2) through a flow-like transformation of z ∼ qφ(z|x), see App. A.2.

A.1. Derivation via reweighting

In the main paper (Sec. 4), we explained that we need to make the sampling path of z depend on the parameters θ to replace
the score function∇θ log pθ(z) with a pathwise derivative. At the same time, we evaluate the objective on samples z from
the variational posterior qφ(z|x) during training. The derivation consists of the following three steps:

1 Temporarily change the path such that it depends on θ. We change the path by first using importance sampling
reweighting to temporarily re-write the expectation, Eqφ(z) [∗] = Epθ(z)

[
qφ(z)
pθ(z)

∗
]

(step 1a), and then by employing

reparameterization on pθ(z): z = Tp(ε̃;θ) with ε̃ ∼ p(ε̃) = N (0, I) (step 1b).

2 Perform the gradient computation and collect all the terms.

3 Change the path back by un-doing the reparameterization and the reweighting so we can use samples z ∼ qφ(z|x) to
estimate the expectation.

∇TD
θ Eqφ(z) [gφ,θ(z)]

1a
= ∇TD

θ Epθ(z)
[
qφ(z)
pθ(z)

gφ,θ(z)
] 1b
= ∇TD

θ Ep(ε̃)
[
qφ(Tp(ε̃;θ))
pθ(Tp(ε̃;θ))gφ,θ(Tp(ε̃;θ))

]
(A.1)

2
= Ep(ε̃)

[
∇TD
z

(
qφ(z)
pθ(z)

gφ,θ(z)
)
∇θTp(ε̃;θ) + qφ(z)

pθ(z)

(
∇θgφ,θ(z)− gφ,θ(z)∇θ log pθ(z)

)]
z=Tp(ε̃;θ)

(A.2)

3
= Eqφ(z)

[(
gφ,θ(z)∇TD

z log
qφ(z)
pθ(z)

+∇TD
z gφ,θ(z)

)
∇θTp(ε̃;θ)|ε̃=T −1

p (z;θ) +∇θgφ,θ(z)− gφ,θ(z)∇θ log pθ(z)
]

(A.3)

Generalized Doubly-Reparameterized Gradient Estimators

In the derivation we have used the identity x∇∗ log x = ∇∗x repeatedly. By noting that ∇TD
θ Eqφ(z) [gφ,θ(z)] =

Eqφ(z) [∇θgφ,θ(z)], we can cancel these terms on the left hand side of Eq. (A.1) and right hand side of Eq. (A.3).
By moving −Eqφ(z) [gφ,θ(z)∇θ log pθ(z)] to the other side we obtain the desired result.

A.2. Derivation via flow-like transformation

Here we provide a second derivation of the GDREGs identity (Eq. (16)) that does not explicitly use a re-weighting of the
expectation as in App. A.1, but uses flow-like transformations instead (Rezende & Mohamed, 2015). We already noted in the
main text that we can interpret the change of paths as a flow z → ε̃→ z, where ε̃ follows a more complicated distribution
than the original ε that might have been used to reparameterize samples z from qφ(z|x). Here, we make this connection to
normalizing flows more explicit.

We make use of the usual change of probability density formula for flows (see, e.g., Rezende & Mohamed (2015)):

y = f(x);x ∼ px(x) ⇒ py(y) = px(x) |∇xf(x)|−1 . (A.4)

Our main insight is that we can reparameterize z ∼ qφ(z|x) in many different ways. Usually we sample an independent noise
variable from a simple base distribution, for example, ε ∼ q(ε) = N (0, I), and use it to reparameterize z as z = Tq (ε;φ).
However, we can equally use a different base distribution q̃(ε̃) and reparameterize z as z = Tp(ε̃;θ), ε̃ ∼ q̃(ε̃). Note that
we reparameterize using pθ(z) in this case. In order for z still to be distributed according to qφ(z|x), we have to choose
q̃(ε̃) to be itself given by the normalizing flow ε̃ = T −1p (z;θ), z ∼ qφ(z), such that q̃(ε̃) = q̃(ε̃;φ,θ). It may appear
counter-intuitive to transform z as z → ε̃ → z because we are doing and then un-doing a transformation; however, it
allows us to make the computation path depend on θ when computing the gradients. We then separate the forward flow
z = Tp(ε̃;θ) and the backward flow ε̃ = T −1p (z;θ) by moving the forward flow into the path through reparameterization
and the backward flow into the integration measure, see Eq. (A.7) below. To move the backward flow into the integration
measure, we express q̃(ε̃) as a change of density:

ε̃ = T −1p (z;θ); z ∼ qφ(z|x) ⇒ q̃(ε̃) = qφ(z)
∣∣∇zT −1p (z;θ)

∣∣−1 (A.5)

Note that q̃(ε̃) is different from q(ε) = N (0, I) typically used to reparameterize samples of the approximate posterior
z = Tq (ε;φ) ; ε ∼ q(ε)! Using the change of density in Eq. (A.5) together with reparameterization as described above, we
can re-write the following expectation over z as an integral over ε̃:

∫
qφ(z)gφ,θ(z)dz =

∫
q̃(ε̃)gφ,θ (Tp(ε̃;θ)) dε̃ reparameterization (A.6)

=

∫ [
qφ(z)

∣∣∇zT −1p (z;θ)
∣∣−1
]
z=Tp(ε̃;θ)

gφ,θ (Tp(ε̃;θ)) dε̃ change of density (A.7)

In the these integrals, ε̃ is an independent variable; its dependence on θ has been moved into the path (gφ,θ (Tp(ε̃;θ))) as
well as the change of density (Eq. (A.5)). This is one way to understand where the stop_gradient in Figs. 2 and 3
comes from.

To derive the GDREGs identity, we take the total derivative of Eq. (A.7) w.r.t. θ and apply the chain- and product rule

∇TD
θ

∫
qφ(z)gφ,θ(z)dz

A.7
= ∇TD

θ

∫ [
qφ(z)

∣∣∇zT −1p (z;θ)
∣∣−1
]
z=Tp(ε̃;θ)

gφ,θ (Tp(ε̃;θ)) dε̃ (A.8)

=

∫
∇TD
θ

[
qφ(z)

∣∣∇zT −1p (z;θ)
∣∣−1 gφ,θ(z)

∣∣∣
z=Tp(ε̃;θ)

]
dε̃ (A.9)

=

∫
∇TD
z

[
qφ(z)

∣∣∇zT −1p (z;θ)
∣∣−1 gφ,θ(z)

]
z=Tp(ε̃;θ)

∇θTp(ε̃;θ) +

+∇θ
[
qφ(z)

∣∣∇zT −1p (z;θ)
∣∣−1 gφ,θ(z)

]
z=Tp(ε̃;θ)

dε̃
(A.10)

=

∫ [
qφ(z)

∣∣∇zT −1p (z;θ)
∣∣−1
] (
gφ,θ(z)∇TD

z log
(
qφ(z)

∣∣∇zT −1p (z;θ)
∣∣−1
)
+∇TD

z gφ,θ(z)
)∣∣∣
z=Tp(ε̃;θ)

∇θTp(ε̃;θ) +

+
[
qφ(z)

∣∣∇zT −1p (z;θ)
∣∣−1
] (
gφ,θ(z)∇θ log

∣∣∇zT −1p (z;θ)
∣∣−1 +∇θgφ,θ(z)

)∣∣∣
z=Tp(ε̃;θ)

dε̃

(A.11)

Generalized Doubly-Reparameterized Gradient Estimators

where we have separated out the derivatives and used x∇∗ log x = ∇∗x. We can now further separate terms and undo the
change of density to replace qφ(z)

∣∣∇zT −1p (z;θ)
∣∣−1 = q̃(ε̃) (Eq. (A.5)) after taking the derivatives. We obtain

∇TD
θ

∫
qφ(z)gφ,θ(z)dz = (A.12)

=

∫
q̃(ε̃)

{
∇TD
z

(
log qφ(z) + log

∣∣∇zT −1p (z;θ)
∣∣−1
)
gφ,θ(z)

∣∣∣
z=Tp(ε̃;θ)

∇θTp(ε̃;θ) +

+ ∇TD
z gφ,θ(z)

∣∣
z=Tp(ε̃;θ)

∇θTp(ε̃;θ) + ∇θgφ,θ(z)|z=Tp(ε̃;θ) +

− gφ,θ(z)|z=Tp(ε̃;θ) ∇θ log
∣∣∇zT −1p (z;θ)

∣∣∣∣
z=Tp(ε̃;θ)

}
dε̃.

(A.13)

To evaluate the gradients of the log Jacobians,∇∗ log
∣∣∇zT −1p (z;θ)

∣∣, we can combine the log Jacobians with a simple base
distribution q(ε̃) to obtain pθ(z) because

z = Tp(ε̃;θ); ε̃ ∼ q(ε̃) = N (0, I) ⇒ pθ(z) = q(ε̃)
∣∣∇zT −1p (z;θ)

∣∣ (A.14)

through reparameterization of pθ(z) and by noting that

∇∗ log(f(x) · c) = ∇∗ log(f(x)) if c is constant w.r.t. ∗ (A.15)

and that the simple base distribution q(ε̃) is constant w.r.t. all gradients:

∇∗ log
∣∣∇zT −1p (z;θ)

∣∣(A.15)= ∇∗ log
(∣∣∇zT −1p (z;θ)

∣∣ q(ε̃)
)(A.14)
= ∇∗ log pθ(z). (A.16)

This allows us to simplify Eq. (A.13) as

∇TD
θ

∫
qφ(z)gφ,θ(z)dz =

∫
qφ(z)

{(
gφ,θ(z)∇TD

z log
qφ(z)
pθ(z)

+∇TD
z gφ,θ(z)

)
∇θTp(ε̃;θ)

∣∣∣
ε̃=T −1

p (z;θ)
+

+∇θgφ,θ(z)− gφ,θ(z)∇θ log pθ(z)
}
dz,

(A.17)

which is identical to Eq. (A.3) and yields the GDREGs identity as explained above.

B. Derivation of the GDREGs estimator for the IWAE objective
In this section we apply the GDREGs identity derived above to derive the GDREGs estimator for the IWAE objective,
Eq. (22) in the main paper.

B.1. Preliminaries on the IWAE objective

The importance weighted autoencoder (IWAE) objective is given by

LIWAE
φ,θ = Ez1:K∼qφ(zk|x)

[
log

(
1

K

K∑

k=1

wk

)]
wk =

pθ(z)p(x|zk)
qφ(zk|x)

(B.1)

where wk are the importance weights (Burda et al., 2016).

Due to the structure of the IWAE objective, any gradient w.r.t. any of its parameters can be written as

∇TD
∗ LIWAE

φ,θ = Eε1:K∼q(ε)

[
K∑

k=1

w̃k∇TD
∗ logwk

]
; w̃k =

wk∑
j wj

(B.2)

using the chain rule and∇∗wk = wk∇∗ logwk. w̃k are the normalized importance weights, and we have reparameterized
zk as Tq (εk;φ). Typically, the derivatives we are interested in are w.r.t. the parameters φ and θ.

Generalized Doubly-Reparameterized Gradient Estimators

We also note the following identity that we use in the derivation of the doubly reparameterized estimators,

∇TD
z w̃k =

(
w̃k − w̃2

k

)
∇TD
z logwk (B.3)

which follows from applying the chain-rule and using∇∗wk = wk∇∗ logwk.

Tucker et al. (2019) derive the DREGs identity (Eq. (9)) and use it to derive the following doubly-reparameterized gradient
estimator (DREGs) w.r.t. the approximate posterior parameters φ as:

∇̂DREGs
φ LIWAE =

K∑

k=1

w̃2
k∇TD

zk
logwk∇TD

φ Tq (εk;φ) . ε1:K ∼ q(ε) (B.4)

B.2. Derivation of the GDREGs estimator

Similarly, we can derive a generalized doubly-reparameterized gradient (GDREGs) estimator w.r.t. the prior parameters θ.
We use the GDREGs identity (Eq. (16)) derived above with gφ,θ(z) = w̃k and note that the reweighting term log

qφ(z)
pθ(z)

looks like a log importance weight except for the missing likelihood:

∇TD
θ LIWAE

φ,θ = Ez1:K∼qφ(zk|x)

[
K∑

k=1

w̃k∇TD
θ logwk

]
= Ez1:K∼qφ(zk|x)

[
K∑

k=1

w̃k∇TD
θ log pθ(z)

]
(B.5)

(16)
= Ez1:K∼qφ(zk|x)

[
K∑

k=1

(
w̃k∇TD

zk
log

qφ(zk|x)
pθ(zk)

+∇TD
zk
w̃k

)
∇θTp(ε̃k;θ)|ε̃k=T −1

p (zk;θ)

]
(B.6)

(B.3)
= Ez1:K∼qφ(zk|x)

[
K∑

k=1

(
w̃k∇TD

zk
log

qφ(zk|x)
pθ(zk)

+
(
w̃k − w̃2

k

)
∇TD
zk

logwk

)
∇θTp(ε̃k;θ)|ε̃k=T −1

p (zk;θ)

]
(B.7)

= Ez1:K∼qφ(zk|x)

[
K∑

k=1

(
w̃k∇TD

zk
log p(x|zk)− w̃2

k∇TD
z logwk

)
∇θTp(ε̃k;θ)|ε̃k=T −1

p (zk;θ)

]
. (B.8)

Thus, the GDREGs estimator is given by:

∇̂GDREGs
θ LIWAE

φ,θ =

K∑

k=1

(
w̃k∇TD

zk
log p(x|zk)− w̃2

k∇TD
z logwk

)
∇θTp(ε̃k;θ)|ε̃k=T −1

p (zk;θ)
z1:K ∼ qφ(zk|x). (22)

Note that the zk are sampled from qφ(zk|x) but re-rexpressed as if they came from pθ(z).

We can rewrite the importance weights as

wk =
pθ(zk)p(x|zk)
qφ(zk|x)

=
pθ(zk|x)pθ(x)
qφ(zk|x)

. (B.9)

Thus, if the variational posterior qφ(zk|x) is equal to the true posterior pθ(zk|x), all weights wk become equal to pθ(x) and
thus constant w.r.t. zk. In that case the second term in the GDREGs estimator Eq. (22) vanishes and the overall expression
simplifies to

∇̂GDREGs
θ LIWAE

φ,θ =

K∑

k=1

w̃k∇TD
zk

log p(x|zk) ∇θTp(ε̃k;θ)|ε̃k=T −1
p (zk;θ)

. z1:K ∼ qφ(zk|x) (B.10)

In contrast, the usual IWAE gradient involves the score function for pθ(zk):

∇̂naive
θ LIWAE

φ,θ =

K∑

i=1

w̃k∇θ log pθ(zk), z1:K ∼ qφ(zk|x). (B.11)

Generalized Doubly-Reparameterized Gradient Estimators

C. Derivation of the DREGs and GDREGs estimator for IWAE objectives of hierarchical VAEs
In this section we derivations of and further details on the extension of DREGs and GDREGs to hierarchical VAEs with the
IWAE objective.

C.1. Preliminaries and notation for the hierarchical IWAE objective

For a hierarchically structured model with L stochastic layers the IWAE objective is still given by Eq. (B.1) but with
importance weights wk given by

wk =
pλ(x|zk1, . . . ,zkL) pθ(zk1, . . . ,zkL)

qφ(zk1, . . . ,zkL|x)
. (C.1)

Here, zkl denotes the kth importance sample (k ∈ {1, . . . ,K}) for the lth layer (l ∈ {1, . . . , L}). Both the variational
posterior and the prior distribution factorize according to their respective hierarchical structure. While the prior factorizes
top-down in most cases, the variational posterior can have many different structures. In order for the distributions to be valid
in the context of a VAE, we require the individual dependency graphs for the prior (generative path) and the variational
posterior (inference path) to be directed acyclic graphs. Cycles would mean that a latent variable conditionally dependent on
itself. To keep the dependency structure general, we write the factorization of the variational posterior and prior as follows:

qφ(zk1, . . . ,zkL|x) =
L∏

l=1

qφl
(zkl|paα(l) ,x) =

L∏

l=1

qαl(paα(l);φl)(zkl) (C.2)

pθ(zk1, . . . ,zkL) =

L∏

l=1

pθl(zkl|paβ(l)) =
L∏

l=1

pβl(paβ(l);θl)
(zkl) (C.3)

Here, αl(·;φl) and βl(·;θl) are the distribution parameters of the variational posterior and prior distribution in the lth layer,
respectively, and we have made the dependencies of the conditional distributions explicit; paα(l) denotes the “parents” of
the latent variable zkl according to the dependency graph of the inference path (the factorization of the posterior); similarly,
paβ(l) denotes the latent variables that zkl directly depends on according to the factorization of the prior pθ . Typically, the
prior is assumed to factorize top-down, such that paβ(l) = zk(l+1) for all but the top-most layer.

The samples zkl are drawn from the variational posterior and can be expressed through reparameterization as zkl =
Tql(εkl;αl(paα(l) ,φl)), where εkl is an independent noise variable per importance sample and layer.

We note that it is these dependencies of the distribution parameters αl and βl on paα(l) and paβ(l), respectively, that give
rise to the indirect score functions as discussed in Sec. 3.

C.2. Derivation of the hierarchical DREGs estimator for IWAE

With notation fully set up we consider the reparameterized gradients of the IWAE objective w.r.t. the variational parameters
in a particular stochastic layer φl:

∇TD
φl
LIWAE
φ,θ = Eε1:K∼q(ε)

[
K∑

k=1

w̃k∇TD
φl

logwk

]
(C.4)

= Eε1:K∼q(ε)

[
K∑

k=1

w̃k
(
∇TD
zkl

logwk∇φl
Tql (εkl;αl(paα(l) ,φl)) +∇φl

logwk
)
]

(C.5)

where we have used the chain-rule to arrive at Eq. (C.5); the first term contains both the (true) pathwise gradients as well
as the indirect score functions; the second term only contains a direct score function as we only take the partial derivative
w.r.t. φl.

We can rewrite this direct score function gradient because only one term in the (log-)importance weight directly depends on
φl,

∇φl
logwk = −∇φl

log qαl(paα(l);φl)(zkl). (C.6)

Generalized Doubly-Reparameterized Gradient Estimators

Applying the DREGs identity to this term and using Eq. (B.3) yields:

Eε1:K∼q(ε)

[
K∑

k=1

w̃k∇φl
logwk

]
= −Eε1:K∼q(ε)

[
K∑

k=1

(w̃k − w̃2
k)∇TD

zkl
logwk∇φl

Tql (εkl;αl(paα(l) ,φl))
]

(C.7)

which agrees with the first term in Eq. (C.5) up to the prefactor. Thus, both the true pathwise gradients as well as the indirect
score functions appear twice and the prefactors partly cancel to give rise to the DREGs estimator for hierarchical IWAE
objectives:

DREGs estimator for hierarchical IWAE objectives

∇̂DREGs
φl

LIWAE
φ,θ =

K∑

k=1

w̃2
k∇TD

zkl
logwk∇φl

Tql (εkl;αl(paα(l) ,φl)) ε1:K ∼ q(ε) (C.8)

where zkl = Tql(εkl;αl(paα(l) ,φl)),∀l ∈ {1, . . . , L},∀k ∈ {1, . . . ,K} through reparameterization.

We emphasize that the total derivative w.r.t. zkl contains pathwise gradients as well as indirect score functions for both the
variational posterior as well as for the prior. The hierarhical DREGs estimator otherwise looks very similar to the DREGs
estimator in the single layer case (Tucker et al., 2019).

In App. E.1 we explain how to implement this estimator effectively and in a structure-agnostic way. That is, we do not have
to derive a new estimator for each new dependency graph of the variational posterior or the prior.

C.3. Derivation of the hierarchical GDREGs estimator for IWAE

Next, we derive the expression for the GDREGs estimator for hierarchical VAEs with IWAE objective.

Applying the GDREGs identity entails re-expressing the samples zkl from the variational posterior as if they were sampled
from the prior. Starting form a sample (zk1, . . . ,zkL) ∼ qφ(z1, . . . ,zL|x), we use the inverse flow of pθ to obtain new
noise variables for each layer, (ε̃k1, . . . , ε̃kL). We then use the forward flow of pθ to obtain back (zk1, . . . ,zkL) but with
the gradient path now depending on θ as discussed in App. A and Sec. 4.

More precisely, we find that

z
(q)
kl = Tql (εkl;αl(paα(l) ,φl)) original sampling of (zk1, . . . ,zkL) ∼ qφ(z1, . . . ,zL|x) (C.9)

ε̃kl = T −1pl

(
z
(q)
kl ;βl(paβ(l) ,θl)

)
inverse prior flow to obtain new “noise” variables (C.10)

zkl = Tpl
(
ε̃kl;βl(paβ(l) ,θl)

)
forward prior flow to re-express the zkl (C.11)

where εkl ∼ q(ε) follows a simple distribution that is different from the more complicated distribution of ε̃kl. Note how the
initial reparameterization of a sample zkl depends on the dependency structure of the variational posterior (through paα(·)),
while the other transformations depend on the dependency structure of the prior (paβ(·)).
As for DREGs, we note that only one term in the log importance weight directly depends on the variable θl,

∇θl logwk = ∇θl log pβl(paβ(l);θl)
(zkl). (C.12)

With these prerequesits, we can compute the GDREGs estimator for parameters θl of the lth stochastic layer.

∇TD
θl
LIWAE
φ,θ = Ez1:K∼qφ(z|x)

[
K∑

k=1

w̃k∇θl logwk
]

(C.13)

C.12
= Ez1:K∼qφ(z|x)

[
K∑

k=1

w̃k∇θl log pβl(paβ(l);θl)
(zkl)

]
(C.14)

16
= Ez1:K∼qφ(z|x)

[K∑

k=1

(
w̃k∇TD

zkl
log

qφ(zk1, . . . ,zkL|x)
pθ(zk1, . . . ,zkL)

+

+
(
w̃k − w̃2

k

)
∇TD
zkl

logwk

)
∇θlTpl (ε̃kl;θl)|ε̃kl=T −1

pl
(zkl;θl)

] (C.15)

Generalized Doubly-Reparameterized Gradient Estimators

GDREGs estimator for hierarchical IWAE objectives
∇̂GDREGs
θl

LIWAE
φ,θ = (C.16)

=

K∑

k=1

(
w̃k∇TD

zkl
log pλ(x|zk1, . . . ,zkL)− w̃2

k∇TD
zkl

logwk
)
∇θlTpl (ε̃kl;θl)|ε̃kl=T −1

pl
(zkl;θl)

; z1:K ∼ qφ(zk|x)

where we suppressed dependencies on pa∗(l) where they are not necessary to simplify notation.

The estimator looks very similar to the GDREGs estimator for a single layer IWAE model Eq. (22). Note that just like above
for hierarchical DREGs, the total gradients w.r.t. zkl give rise to both (true) pathwise gradients as well as indirect score
functions through the hierarchical dependencies of the variational posterior and prior.

In App. E.2 we show how to implement the hierarchical GDREGs estimator Eq. (C.16) effectively and in a way that is
agnostic to the structure of the model. That is, we do not have to derive a separate estimator for every dependency graph of
the variational posterior and prior.

C.4. Double reparameterization and indirect score functions

In principle, we could apply double-reparameterization to the indirect score functions as well. However, as we explain now,
we often cannot doubly-reparameterize all indirect score functions; moreover, even in cases where this is possible, it is still
impractical, as the corresponding estimator depends on the exact model structure and would require adaptation to each
dependency graph of the prior and variational posterior.

Double reparameterization of indirect score functions works in the same way as for the direct score functions except that
gφ,θ(z) is given by w̃2

k instead of w̃k in this case. The derivatives of w̃2
k have a similar reproducing property as we observed

in Eq. (B.3):

∇TD
z w̃2

k = 2(w̃2
k − w̃3

k)∇TD
z logwk. (C.17)

Thus, double reparameterization of the indirect score functions similarly gives rise to further indirect score functions. We
note that these indirect score functions only appear for the “children” of the current stochastic layer, that is, stochastic
variables in those layers that depend on the current layer. In this context, “children” refers to all children w.r.t. the dependency
structure of both, the variational posterior and the prior. For a particular layer l we obtain indirect score functions from
double reparameterization of all of its (direct or indirect) parent nodes. Following the dependency structure, we could collect
all of these terms and reparameterize them to obtain pathwise gradients only.

However, a problem arises, because we need to account for dependencies of both the variational posterior and the prior.
Reparameterization of a score function gives rise to indirect score functions in all its “children” layers for both the variational
posterior and the prior. For general hierarchical structures, this leads to cycles, in that some of the children of one dependency
tree (the variational posterior) are the parents in the other (the prior) and/or vice versa. In this case we are never able to
collect all the terms and fully reparameterize all the score functions.

Moreover, even if the joint dependency graph of the variational posterior and the prior were acyclic, this derivation would be
structure-specific and would need to be repeated for each hierarchical structure. We therefore do not doubly reparameterize
the indirect score functions.

Generalized Doubly-Reparameterized Gradient Estimators

D. Worked example for a 2-layer hierarchical VAE
In this section we show an example of using the IWAE objective with a 2-layer VAE model consisting of a prior
pθ2(z2)pθ1(z1|z2) and likelihood pλ(x|z1, z2). The inference network is bottom-up: qφ1(z1|x)qφ2(z2|x, z1). Therefore
paα(2) = z1 and paβ(1) = z2.

We hierarchically sample zk1 and zk2 from the approximate posterior and abbreviate:

zk1(φ1) ≡ Tq1(εk1;α1(φ1)) (D.1)
zk2(φ1,φ2) ≡ Tq2|1(ε1;α2|1(x, zk1(φ1),φ2)). (D.2)

We also explicitly distinguish between the distribution parameters αi and the network parameters φi for the posterior as
well as the distribution parameters βi and the network parameters θi for the prior. A single importance sample wk with all
of its functional dependencies is given by:

wk =
pλ (x|zk1(φ1), zk2(φ1,φ2)) pβ2(θ2) (zk2(φ1,φ2)) pβ1|2(zk2(φ1,φ2),θ1) (zk1(φ1))

qα1(x,φ1)(zk1(φ1)) qα2|1(x,zk1(φ1),φ2) (zk2(φ1,φ2))
. (D.3)

The DREGs estimator for the variational parameters of the lower latent layer, φ1, is then given by:

∇̂DREGs
φ1

LIWAE
φ,θ =

K∑

k=1

w̃2
k∇TD

zk1
logwk∇φ1Tq1 (εk1;α1(x,φ1)) ; ε1:K ∼ q(ε) (D.4)

∇TD
zk1

logwk = ∇zk1
logwk −∇α2|1 log qα2|1(x,z1(φ1),φ2) (zk2(φ1,φ2))∇zk1

α2|1(x, zk1(φ1),φ2)

+∇β1|2 log pβ1|2(zk2(φ1,φ2),θ1) (zk1(φ1))∇zk1
β1|2(zk2(φ1,φ2),θ1)

(D.5)

where we have expanded the total derivative w.r.t. zk1 into the (true) pathwise gradients and two indirect score functions.

Similarly, we can compute the DREGs estimator for the variational parameters of the upper level, φ2:

∇̂DREGs
φ2

LIWAE
φ,θ =

K∑

k=1

w̃2
k∇TD

zk2
logwk∇φ2Tq2|1 (εk2;α2(x, zk1(φ1),φ2)) ; ε1:K ∼ q(ε) (D.6)

∇TD
zk2

logwk = ∇zk2
logwk +∇β1|2 log pβ1|2(z2(φ1,φ2),θ1) [z1(φ1)]∇zk2

β1|2(z2(φ1,φ2),θ1) (D.7)

For this model structure of the prior and variational posterior, there is only one indirect score function for this gradient.
Note that the indirect score functions are computed automatically in our surrogate losses that we introduce in the following
section, such that we do not need to compute them manually; the hierarchical DREGs estimator can be implemented without
having to trace the dependency structure of the model manually.

To compute the GDREGs estimator, we first have to re-express the samples z1 and z2 as if they were sampled from
pθ1,θ2(z1, z2). We write this reparameterization as

zk2(θ2) ≡ Tp2 (ε̃k2;β2(θ2)) (D.8)

zk1(θ1,θ2) ≡ Tp2|1
(
ε̃k1;β1|2(zk2(θ2),θ1)

)
(D.9)

where ε̃1 and ε̃2 are noise variables drawn from q̃(ε̃), which is given by the inverse prior flow of the samples drawn from
qφ1,φ2(x1,x2|x). The full functional dependency of a single importance sample is given by:

wk =
pλ (x|zk1(θ1,θ2), zk2(θ2)) pβ2(θ2) (zk2(θ2)) pβ1|2(zk2(θ2),θ1) (zk1(θ1,θ2))

qα1(x,φ1)(zk1(θ1,θ2)) qα2|1(x,zk1(θ1,θ2),φ2) (zk2(θ2))
. (D.10)

The GDREGs estimator w.r.t. the prior parameters of the lower stochastic layer, θ1, is given by:

∇̂GDREGs
θ1 LIWAE

φ,θ =

K∑

k=1

(
w̃k∇TD

zk1
log pλ(x|zk1, zk2)− w̃2

k∇TD
zk1

logwk
)
∇θ1Tp1 (ε̃k1;θ1)|ε̃k1=T −1

p1
(zk1;θ1)

; z1:K ∼ qφ(zk|x)

Generalized Doubly-Reparameterized Gradient Estimators

∇TD
zk1

logwk = ∇zk1
logwk −∇α2|1 log qα2|1(x,zk1(θ1,θ2),φ2) (zk2(θ2))∇zk1

α2|1(x, zk1(θ1,θ2),φ2) (D.11)

The GDREGs estimator w.r.t. the prior parameters of the upper stochastic layer, θ2, is given by:

∇̂GDREGs
θ2 LIWAE

φ,θ =

K∑

k=1

(
w̃k∇TD

zk2
log pλ(x|zk1, zk2)− w̃2

k∇TD
zk2

logwk
)
∇θ2Tp2 (ε̃k2;θ2)|ε̃k2=T −1

p2
(zk2;θ2)

; z1:K ∼ qφ(zk|x)

∇TD
zk2

logwk = ∇zk2
logwk −∇α2|1 log qα2|1(x,zk1(θ1,θ2),φ2) (zk2(θ2))∇zk2

α2|1(x, z1(θ1,θ2),φ2)

+∇β1|2 log pβ1|2(z2(θ2),θ1) (zk1(θ1,θ2))∇zk2
β1|2(zk2(θ2),θ1)

(D.12)

Note how the GDREGs estimator for θ2 has two indirect score functions for the upper layer where the DREGs estimator for
φ2 only has one. This is due to the opposite factorization (opposite hierarchical dependency structure) of the variational
posterior and the prior. This cyclic dependence is also the reason why we cannot replace all indirect score functions with
DREGs and GDREGs gradients. Double reparameterization of one of the indirect score functions, leads to another indirect
score function, whose double-reparameterization in turn leads back to the first indirect score function but with a different
pre-factor.

Again, note that the indirect score functions are computed automatically in our surrogate losses, App. E, and we do not need
to manually trace the dependency structure or derive them.

E. Surrogate losses to implement the DREGs and GDREGs estimators for IWAE objectives
As we discussed in Sec. 4.1 and similar to Tucker et al. (2019), we use surrogate loss functions to compute the gradients
w.r.t. the likelihood, proposal, and prior parameters. That is, we use different losses, such that backpropagation results in
the respective gradient estimator. While Tucker et al. (2019) use a single surrogate loss to compute the gradient estimators
for all parts of the objective, we choose to use separate surrogate losses for each of the three parameter groups (likelihood,
variational posterior, prior). In principle, we could combine them into a single loss, but in order to keep presentation
simple we keep them separate. Computationally this does not make a difference as modern deep learning frameworks avoid
duplicate computation.

For the likelihood parameters, we use the regular (negative) IWAE objective Eq. (3) as a loss. That is, the gradient estimator
for the likelihood parameters is given by the gradient of the negative IWAE objective.

To construct the other surrogate losses we need to stop the gradients at various points in the computation graph. In the
following, we use the shorthand notation

88888888888888888
to indicate that we stop gradients into the underlined parts of an expression.

Where it might be ambiguous, or to highlight where we do not stop gradients, we use the shorthand
44444444444444444
to indicate that

gradients flow. For example, f(
44444444444444444
φφφφφφφφφφφφφφφφφ,

88888888888888888
θθθθθθθθθθθθθθθθθ) means that we backpropagate gradients into φ but not into θ.

E.1. DREGs for variational posterior parameters φ

E.1.1. SINGLE STOCHASTIC LAYER

Here we reproduce part of the surrogate loss for the variational parameters φ by Tucker et al. (2019) for the single stochastic
layer case:

LDREGs(φ) =

K∑

k=1
88888888888888888

w̃2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
k

(
log pλ(x|

44444444444444444
zkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzk) + log pβ(θ)(

44444444444444444
zkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzk)− log q

α(
88888888888888888
φφφφφφφφφφφφφφφφφ)

(
44444444444444444

zkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzk)
)

44444444444444444
zkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzk = Tq (εk;

44444444444444444
φφφφφφφφφφφφφφφφφ) εk ∼ q(εk)

(E.1)

That is, we sample zk ∼ qφ(zk|x) as usual (by reparameterizing independent noise variables εk) but stop the gradients of
the parameters that parameterize the distributions when evaluating their densities, log q

α(
88888888888888888
φφφφφφφφφφφφφφφφφ)

(
44444444444444444

zkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzk). In addition we stop the
gradients around the normalized importance weights w̃k. Differentiating LDREGs w.r.t. the proposal parameters φ yields the
DREGs estimator Eq. (11). Note that we do not explicitly stop gradients into λ or θ because we use separate surrogate
losses for those parameter groups. If we were to use a combined loss, we would potentially have to stop gradients into these
parameters as well, depending on the estimator used.

To practically implement this surrogate loss, we use two copies of the variational posterior distribution. An unaltered one

Generalized Doubly-Reparameterized Gradient Estimators

(no stopped gradients) to sample z and one with gradients into the proposal parameters stopped to evaluate the log densities.
The stopped gradient makes sure that we do not obtain a direct score function as we have doubly-reparameterized it.

Note that for single-stochastic-layer models we could also stop the gradients of the distribution parameters α instead as they
only depend on φ. We emphasize that this is not possible for hierarchical models as this would eliminate the indirect score
functions and thus produce potentially biased gradients.

E.1.2. MULTIPLE STOCHASTIC LAYERS

For multiple layers, the surrogate loss for the DREGs estimator Eq. (C.8) is given by:

LDREGs(φ) =

K∑

k=1
88888888888888888

w̃2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
k logwk

logwk = log pλ(x|
44444444444444444

zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1,
44444444444444444

. ,
44444444444444444

zkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkL) +

L∑

l=1

log pβl(
44444444444444444

paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l);θl)
(

44444444444444444
zklzklzklzklzklzklzklzklzklzklzklzklzklzklzklzklzkl)−

L∑

l=1

log qαl(
44444444444444444

paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l);
88888888888888888

φlφlφlφlφlφlφlφlφlφlφlφlφlφlφlφlφl)
(

44444444444444444
zklzklzklzklzklzklzklzklzklzklzklzklzklzklzklzklzkl)

44444444444444444
zklzklzklzklzklzklzklzklzklzklzklzklzklzklzklzklzkl = Tql

(
εkl;αl(

44444444444444444
paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l),

44444444444444444
φlφlφlφlφlφlφlφlφlφlφlφlφlφlφlφlφl)
)

εkl ∼ q(εkl)

(E.2)

Again, we do not explicitly stop gradients into λ or θl as we only take gradients w.r.t. φl.

The indirect score functions arise due to the indirect dependence of the distribution parameters αl(
44444444444444444

paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l);
88888888888888888

φlφlφlφlφlφlφlφlφlφlφlφlφlφlφlφlφl) and
βl(

44444444444444444
paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l);θl) on the parent latent variables

44444444444444444
paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l) and

44444444444444444
paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l), respectively. Note how the former depends on the hi-

erarchical structure of the variational posterior, whereas the latter depends on the hierarchical structure of the prior.

To implement this surrogate loss effectively, we again use two copies of the variational posterior distribution. One un-altered
one (without stopped gradiends) from which we sample the individual reparameterized zkl and through which gradients can
flow; we use these samples to evaluate densities at and to parameterize the distribution parameters at subsequent layers.
Derivatives w.r.t. φl will then give rise to pathwise gradients and indirect score functions. We use the second copy of the
variational posterior, where we have stopped the parameters φl, to evaluate the density at for the log importance weights in
the last summand of Eq. (E.2).

E.2. GDREGs for prior parameter θ

E.2.1. SINGLE STOCHASTIC LAYER

LGDREGs(θ) =

K∑

k=1
88888888888888888

w̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃k log pλ(x|
44444444444444444

zkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzk)−
88888888888888888

w̃2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
k

(
log pλ(x|

44444444444444444
zkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzk) + log pβ(

88888888888888888
θθθθθθθθθθθθθθθθθ)(44444444444444444
zkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzk)− log qα(φ)(

44444444444444444
zkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzk)
)

44444444444444444
zkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzk = Tp (

88888888888888888
ε̃k̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk;

44444444444444444
θθθθθθθθθθθθθθθθθ)

88888888888888888
ε̃k̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk =

88888888888888888
T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ) εk ∼ q(εk)

(E.3)

Taking the derivative of Eq. (E.3) w.r.t. θ gives rise to the GDREGs estimator for the single stochastic layer IWAE objective.
As explained in Sec. 4, we need to re-express zk such that its path depends on θ. In effect, we first sample zk = Tq (εk;φ),
then compute the new noise variable ε̃k = T −1p (z;θ), and re-compute zk = Tp(ε̃k;θ). Note that we have to stop gradients
into the noise variables ε̃k to obtain the correct gradient estimator. This explains the stop_grad in Fig. 2.

As above, we do not explicitly stop gradients into λ and φ as we use separate losses for these parameter groups and only
compute gradients of Eq. (E.3) w.r.t. θ.

To effectively implement this loss, we use two copies of the prior distribution. One that we implement as a normalizing flow
and a second one with stopped gradients into the parameters. We then proceed as follows:

• Compute the new noise variables ε̃k by using the inverse flow T −1p on the samples zk from the variational posterior.

• Stop the gradients into ε̃k.

• Use the forward flow Tp(ε̃k;θ) to re-compute zk but with path dependent on θ. These samples when derived w.r.t. θ
will give rise to the pathwise gradients.

Generalized Doubly-Reparameterized Gradient Estimators

• Use the second copy of the prior (with stopped gradients into its parameters) to evaluate the log density at the samples
zk. The stopped gradients make sure that we do not obtain the direct score function.

E.2.2. MULTIPLE STOCHASTIC LAYERS

For multiple stochastic layers the surrogate loss that gives rise to the GDREGs estimator Eq. (C.16) is given by:

LGDREGs(θ) =

K∑

k=1
88888888888888888

w̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃k log pλ(x|
44444444444444444

zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1,
44444444444444444

. ,
44444444444444444

zkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkL)−
88888888888888888

w̃2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
k logwk

logwk = log pλ(x|
44444444444444444

zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1,
44444444444444444

. ,
44444444444444444

zkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkL) +

L∑

l=1

log pβl(
44444444444444444

paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l);
88888888888888888
θlθlθlθlθlθlθlθlθlθlθlθlθlθlθlθlθl)

(
44444444444444444

zklzklzklzklzklzklzklzklzklzklzklzklzklzklzklzklzkl)−
L∑

l=1

log qαl(
44444444444444444

paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l)paα(l);φl)
(

44444444444444444
zklzklzklzklzklzklzklzklzklzklzklzklzklzklzklzklzkl)

44444444444444444
zklzklzklzklzklzklzklzklzklzklzklzklzklzklzklzklzkl = Tpl

(
88888888888888888

ε̃klε̃klε̃klε̃klε̃klε̃klε̃klε̃klε̃klε̃klε̃klε̃klε̃klε̃klε̃klε̃klε̃kl;βl(
44444444444444444

paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l)paβ(l),
44444444444444444
θlθlθlθlθlθlθlθlθlθlθlθlθlθlθlθlθl)
)

88888888888888888
ε̃klε̃klε̃klε̃klε̃klε̃klε̃klε̃klε̃klε̃klε̃klε̃klε̃klε̃klε̃klε̃klε̃kl =

88888888888888888
T −1pl

(
z
(q)
kl ;βl

(
paβ(l) ,θl

))
T −1pl

(
z
(q)
kl ;βl

(
paβ(l) ,θl

))
T −1pl

(
z
(q)
kl ;βl

(
paβ(l) ,θl

))
T −1pl

(
z
(q)
kl ;βl

(
paβ(l) ,θl

))
T −1pl

(
z
(q)
kl ;βl

(
paβ(l) ,θl

))
T −1pl

(
z
(q)
kl ;βl

(
paβ(l) ,θl

))
T −1pl

(
z
(q)
kl ;βl

(
paβ(l) ,θl

))
T −1pl

(
z
(q)
kl ;βl

(
paβ(l) ,θl

))
T −1pl

(
z
(q)
kl ;βl

(
paβ(l) ,θl

))
T −1pl

(
z
(q)
kl ;βl

(
paβ(l) ,θl

))
T −1pl

(
z
(q)
kl ;βl

(
paβ(l) ,θl

))
T −1pl

(
z
(q)
kl ;βl

(
paβ(l) ,θl

))
T −1pl

(
z
(q)
kl ;βl

(
paβ(l) ,θl

))
T −1pl

(
z
(q)
kl ;βl

(
paβ(l) ,θl

))
T −1pl

(
z
(q)
kl ;βl

(
paβ(l) ,θl

))
T −1pl

(
z
(q)
kl ;βl

(
paβ(l) ,θl

))
T −1pl

(
z
(q)
kl ;βl

(
paβ(l) ,θl

))

z
(q)
kl = Tql (εkl;αl (paα(l) ,φl)) εkl ∼ q(εkl)

(E.4)

As for the single layer case, we need to re-express variational posterior samples zkl as if they were sampled from the prior.
To obtain the correct gradients, we again have to stop gradients into the new noise variables ε̃kl, also see Fig. 3.

As for hierarchical DREGs, the indirect score functions stem from the second and third term of logwk and arise because the
distribution parameters αl and βl depend on the “parent” stochastic layers.

As before we use two copies of the prior distribution, one with regular gradients that is set up as a flow, and a second with
stopped gradients into the parameters. This allows us to implement the GDREGs estimator regardless of the model structure.

F. Implementation details
In our implementations we use NumPy (Harris et al., 2020), JAX (Bradbury et al., 2018), Haiku (Hennigan et al., 2020), as
well as tensorflow probability and tensorflow distributions (Dillon et al., 2017).

Stopping gradients. All major frameworks allow for gradients to be stopped or interupted. For example, in TensorFlow
(Abadi et al., 2016) we can use tf.stop_gradient and in JAX we can use jax.lax.stop_gradient. To
implement stopped gradients w.r.t. the parameters of a distribution we use haiku.experimental.custom_getter
contexts, which allow us to manipulate the parameters before they are used to construct the respective networks; in this case
we use the context to stop gradients.

Re-expressing samples. To re-express variational posterior samples as if they came from the prior, we directly implement
the computation flow as it is described in e.g. Figs. 2 and 3 and detailed in App. E.2.

In the code listings Listings 1 and 2 we provide (pseudo-)code for a simple implementation of the surrogate objectives.
Listing 1 contains the import statements as well as the function and class definitions to create parameterized distributions
that allow for

1. stopping the gradients into their parameters, and

2. re-expressing samples using the bijector interface in tensorflow probability.

In Listing 2 we implement surrogate objectives for the naive and the GDREGs estimators of the cross-entropy. More
specifically, we wish to estimate:

∇TD
θ Lce = ∇TD

θ Ez∼qφ(z|x) [log pθ(z)] . (F.1)

The naive estimator (using a single Monte Carlo sample) is given by

∇̂naive
θ Lce = ∇θ log pθ(z) z ∼ qφ(z). (F.2)

Generalized Doubly-Reparameterized Gradient Estimators

The corresponding GDREGs estimator (again using a single MC sample) is given by Eq. (21):

∇̂GDREGs
θ Lce = ∇z log qφ(z)

pθ(z)
∇θTp(ε̃;θ)

∣∣∣
ε̃=T −1

p (z,θ)
z ∼ qφ(z). (21)

Listing 1: Function and class definitions necessary to define the surrogate objectives for the DREGs and GDREGs estimators.
1 from typing import List
2 import haiku as hk
3 import jax
4 import jax.lax as lax
5 import jax.numpy as jnp
6 from tensorflow_probability.substrates import jax as jtfp
7 jtfd = jtfp.distributions
8
9

10 def stop_grad_getter(next_getter, value, _):
11 """A custom getter that stops gradients of parameters."""
12 return lax.stop_gradient(next_getter(value))
13
14
15 def reparameterize_as_if_from(p: jtfd.TransformedDistribution,
16 z_q: jnp.ndarray) -> jnp.ndarray:
17 """Reparameterize samples z_q as if they were sampled from p.
18
19 Transforms: z_q -> stop_gradient(noise) -> z_q_as_if_from_p
20 This transformation leaves the numerical value unchanged but alters the
21 gradients.
22
23 Args:
24 p: a TransformedDistribution object
25 z_q: Samples to be reparameterized.
26
27 Returns:
28 Reparameterized samples.
29 """
30
31 eps = p.bijector.inverse(z_q)
32 eps = jax.lax.stop_gradient(eps)
33 return p.bijector.forward(eps)
34
35
36 class ConditionalNormal(hk.Module):
37 """A Normal distribution that is conditioned through an MLP."""
38
39 def __init__(
40 self,
41 output_size: int,
42 hidden_layer_sizes: List[int],
43 name: str = "conditional_normal"):
44 """Creates a conditional Normal distribution.
45
46 Args:
47 output_size: The dimension of the random variable.
48 hidden_layer_sizes: The sizes of the hidden layers of the fully connected
49 network used to condition the distribution on the inputs.
50 name: The name of this distribution.
51 """
52 super(ConditionalNormal, self).__init__(name=name)
53 self.name = name
54 self.fcnet = hk.nets.MLP(
55 output_sizes=hidden_layer_sizes + [2 * output_size],
56 activation=jnp.tanh,

Generalized Doubly-Reparameterized Gradient Estimators

57 activate_final=False,
58 with_bias=True,
59 name=name + "_fcnet")
60
61 def condition(self, inputs):
62 """Computes the parameters of a normal distribution based on the inputs."""
63 outs = self.fcnet(inputs)
64 mu, sigma = jnp.split(outs, 2, axis=-1)
65 sigma = jax.nn.softplus(sigma)
66 return mu, sigma
67
68 def __call__(self, inputs, **kwargs):
69 """Creates a normal distribution conditioned on the inputs."""
70 # Optional ‘stop_gradient_params‘ argument stops the parameters
71 # of the distribution.
72 if kwargs.get("stop_gradient_params", False):
73 with hk.experimental.custom_getter(stop_grad_getter):
74 mu, sigma = self.condition(inputs)
75 else:
76 mu, sigma = self.condition(inputs)
77
78 # Optional ‘as_flow‘ argument parameterizes the distribution as a flow
79 # to have access to ‘Bijector.inverse‘ and ‘Bijector.forward‘
80 # to use with the function ‘reparameterize_as_if_from‘
81 if kwargs.get("as_flow", False):
82 bijector = jtfp.bijectors.Chain(
83 [jtfp.bijectors.Shift(shift=mu), jtfp.bijectors.Scale(scale=sigma)])
84 base = jtfd.Normal(loc=jnp.zeros_like(mu), scale=jnp.ones_like(sigma))
85 return jtfd.TransformedDistribution(
86 distribution=base, bijector=bijector, name=self.name + "_flow")
87
88 return jtfd.Normal(loc=mu, scale=sigma)

Listing 2: Code to implement the surrogate objective for the naive estimator of the cross-entropy as well as for the GDREGs
estimator Eq. (21). Computing derivatives w.r.t. the parameters of the prior p using automatic differentiation gives rise to
the correct expressions for the estimators.

1 # Create distributions
2 # Inputs ‘x‘ and context ‘c‘
3 q = ConditionalNormal(x)
4 p = ConditionalNormal(c)
5 q_stop = ConditionalNormal(x, stop_gradient_params=True)
6 p_stop = ConditionalNormal(c, stop_gradient_params=True)
7 p_flow = ConditionalNormal(c, as_flow=True)
8
9 # Sample from the variational posterior

10 z_q = q.sample(sample_shape=[num_samples], seed=hk.next_rng_key()) # [k, bs, z]
11
12 # Reparameterize the samples from q as if they were sampled from p
13 z_q_as_p = reparameterize_as_if_from(p_flow, z_q)
14
15 # Cross-entropy surrogate losses
16 cross_entropy_naive = p.log_prob(z_q)
17 cross_entropy_gdregs = q_stop.log_prob(z_q_as_p) - p_stop.log_prob(z_q_as_p)

G. Experimental details and additional results
In this section we provide additional experimental details as well as additional results.

Generalized Doubly-Reparameterized Gradient Estimators

G.1. Illustrative example

As discussed in the main text, we use a 2-layer linear VAE inspired by the single layer example of Rainforth et al. (2018);
Tucker et al. (2019). We use a top-down generative model z2 → z1 → x, with z1, z2,x ∈ RD and D = 5. The
hierarchical prior is given by z2 ∼ N (0, I), z1|z2 ∼ N (µθ(z2),σ

2
θ(z2)), and the likelihood is given by x|z1 ∼ N (z1, I).

We choose a bottom-up variational posterior that factorizes as: qφ1
(z1|x) = N (µφ1

(x),σ2
φ1
(x)) and qφ2

(z2|z1) =

N (µφ2(z1),σ
2
φ2
(z1)). All functions µ∗ and σ∗ are given by linear functions with weights and biases; the likelihood and

the upper layer of the prior do not have any learnable parameters.

To generate data, we sample 512 datapoints from the model where we have set µθ(z2) = z2 and σθ(z2) = 1.

We then train the parameters φ and θ in all linear layers using SGD on the IWAE objective til convergence. We then evaluate
the gradient variance and gradient signal-to-noise ratio for each estimator. For the proposal parameters φ we compare
DREGs to the naive score function (labelled as IWAE) and to STL; for the prior parameters θ we compare GDREGs to
IWAE.

In Fig. 4 in the main paper we show the average gradient variance and gradient signal-to-noise ratio (SNR). The average
is taken over all parameters of either the variational posterior or the prior. The gradient variance and gradient SNR for
individual parameters exhibit the same qualitative behaviour.

G.2. Conditional and unconditional image modelling

For conditional and unconditional image modelling, we use VAEs with one or multiple stochastic layers, where the generative
path is top-down and the inference path is bottom-up, as specified in Eq. (23), which we reproduce here for convenience:

qφ(z|x, c) = qφ1(z1|x, c)
L∏

l=2

qφl
(zl|zl−1,x, c)

pθ(z|c) = pθL(zL|c)
L−1∏

l=1

pθl(zl|zl+1, c)

pλ(x|z) = pλ(x|z1, . . . ,zL).

(23)

For conditional image modelling, we predict the bottom half of an image given its top half as in Tucker et al. (2019),
providing the top half as an additional context input c to the prior and variational posterior. Given the above model structure,
paα(l) = zk(l−1) and paβ(l) = zk(l+1).

Each conditional distribution in Eq. (23) is given by an MLP of 2 hidden layers of 300 tanh units each. If a distribution
has multiple inputs, we concatenate them along the feature dimension. The prior and variational posterior are all given
by diagonal Gaussian distributions, whereas the likelihood is given by a Bernoulli distribution. The unconditional prior
distribution in the uppermost layer pθL(zL) is given by a standard Normal distribution, pθL(zL) = N (0, I). All latents zl
are 50 dimensional.

To avoid overfitting, we use dynamically binarized versions of the datasets. We use the Adam optimizer with default learning
rate 3 · 10−4 and default parameters b1 = 0.9, b2 = 0.999, and ε = 10−8. We use a batch size of 64 and K = 64 importance
samples for training and evaluation. Note that for testing we report test objective values rather than an estimate of log p(x)
by using a large number of importance samples. We do this as we are interested in the relative behaviour of the estimators.

In Fig. G.1 we provide further plots that show the evolution of the test objective and the gradient variance of the prior, the
variational posterior, as well as the likelihood throughout training on conditional modelling of MNIST and FashionMNIST
(predict bottom half given top half). As in the main paper we find that using GDREGs for the prior instead of the naive
estimator (denoted as IWAE) always improves performance on the test objective regardless of the estimator for the variational
posterior. We also note that GDREGs always reduces gradient variance for the prior early in training and also typically
throughout training, especially for deeper models and when combined with the DREGs estimator for the variational posterior.

Interestingly, using the GDREGs estimator for the prior leads to an increase in the gradient variance for the variational
posterior when we use the naive estimator but similar or even lower posterior gradient variance when combined with the
DREGs estimator (third column in Fig. G.1). It always leads to a slight improvement in gradient variance for the likelihood
parameters (fourth column in Fig. G.1). We hypothesize that this is the case because lower gradient variance in for one set

Generalized Doubly-Reparameterized Gradient Estimators

0 1,000

−39

−38.5

−38

epochs

Test objective Lφ,θ

0 1,000
0

2

4

6

8
·10−4

epochs

Prior Var∇TD
θ Lφ,θ

0 1,000
0

2

4

6

·10−4

epochs

Posterior Var∇TD
φ Lφ,θ

0 1,000
0

0.5

1

1.5

2
·10−3

epochs

likelihood grad var

qφ: IWAE + pθ: IWAE qφ: DREGs + pθ: IWAE qφ: IWAE + pθ: GDREGs qφ: DREGs + pθ: GDREGs

M
N

IS
T,

1
la

ye
r

0 1,000

−39

−38.5

−38

epochs

Test objective Lφ,θ

0 1,000
0

2

4

·10−4

epochs

Prior Var∇TD
θ Lφ,θ

0 1,000
0

1

2

3

·10−4

epochs

Posterior Var∇TD
φ Lφ,θ

0 1,000
0

0.5

1

·10−3

epochs

likelihood grad var

qφ: IWAE + pθ: IWAE qφ: DREGs + pθ: IWAE qφ: IWAE + pθ: GDREGs qφ: DREGs + pθ: GDREGs

M
N

IS
T,

3
la

ye
r

0 1,000
−103.5

−103

−102.5

−102

epochs

Test objective Lφ,θ

0 1,000
0

2

4

·10−4

epochs

Prior Var∇TD
θ Lφ,θ

0 1,000
0

1

2

3

·10−4

epochs

Posterior Var∇TD
φ Lφ,θ

0 1,000
0

1

2

·10−3

epochs

likelihood grad var

qφ: IWAE + pθ: IWAE qφ: DREGs + pθ: IWAE qφ: IWAE + pθ: GDREGs qφ: DREGs + pθ: GDREGs

FM
N

IS
T,

1
la

ye
r

0 1,000
−103.5

−103

−102.5

−102

epochs

Test objective Lφ,θ

0 1,000
0

1

2

3
·10−4

epochs

Prior Var∇TD
θ Lφ,θ

0 1,000
0

0.5

1

1.5

2
·10−4

epochs

Posterior Var∇TD
φ Lφ,θ

0 1,000
0

0.5

1

1.5

2
·10−3

epochs

likelihood grad var

qφ: IWAE + pθ: IWAE qφ: DREGs + pθ: IWAE qφ: IWAE + pθ: GDREGs qφ: DREGs + pθ: GDREGs

FM
N

IS
T,

3
la

ye
r

Figure G.1: Additional results for conditional image modelling with VAEs on MNIST and FashionMNIST (FMNIST) with 1
stochastic layer and 3 stochastic layers. For each task we show the test objective, the prior gradient variance, the variational
posterior gradient variance, and the likelihood gradient variance. Means over 5 reruns; shaded areas denote ± 1.96 standard
deviations σ.

of parameters makes it easier to estimate the gradients for another set as a secondary effect.

In Fig. G.2 we show that the training objective behaves qualitatively similar to the test objective in that the applying the
DREGs or GDREGs estimator results in improved objective values in the same way, regardless of whether we consider the
training or test objective. That is, our hierarchical extension of DREGs results in a better training objective values for both
conditional and unconditional tasks. GDREGs is particularly helpful for conditional tasks.

Moreover, in the main text we had hypothesized that GDREGs performs better on conditional image modelling tasks than
unconditional tasks because access to the context makes the variational posterior and the prior more similar. In the case of
analytically computed cross-entropy in App. H, we derive that the GDREGs estimator outperforms a naive estimator of the
score function in terms of gradient variance when the posterior and prior are similar. We hypothesize that this also holds
more generally for the IWAE objective, where we cannot compute the gradient variance in closed form but only estimate it
empirically. To investigate this, we computed the total average KL (rightmost column in Fig. G.2) over all latent variables
and found that it is indeed lower for conditional than unconditional modelling, which indicates that the distributions are
closer together in this case.

Generalized Doubly-Reparameterized Gradient Estimators

0 1,000

−102

−101

epochs

Train objective Lφ,θ

0 1,000

−103

−102

epochs

Test objective Lφ,θ

0 1,000
0

1

2

3
·10−4

epochs

Prior Var∇TD
θ Lφ,θ

0 1,000
4

5

6

7

8

epochs

Total average KL

qφ: IWAE + pθ: IWAE qφ: DREGs + pθ: IWAE qφ: IWAE + pθ: GDREGs qφ: DREGs + pθ: GDREGs

co
nd

iti
on

al
FM

N
IS

T

0 1,000

−227

−228

−229
epochs

Train objective Lφ,θ

0 1,000

−231

−230

−229

epochs

Test objective Lφ,θ

0 1,000

0

0.5

1

1.5

·10−3

epochs

Prior Var∇TD
θ Lφ,θ

0 1,000

10

15

20

epochs

Total average KL

qφ: IWAE + pθ: IWAE qφ: DREGs + pθ: IWAE qφ: IWAE + pθ: GDREGs qφ: DREGs + pθ: GDREGsun
co

nd
iti

on
al

FM
N

IS
T

Figure G.2: Train objective (leftmost column) and total average KL (rightmost column) in addition to the test objective and
prior gradient variance for conditional and unconditional FashionMNIST on a model with 3 stochastic layers.

G.3. Offline evaluation of the DREGs and GDREGs estimator

In the image modelling experiments in Sec. 5.2 we discussed the gradient variance of the different estimators for the posterior
and prior parameters. However, we only analyzed estimators online on their respective runs; that is, in Fig. 6 the prior and
posterior gradient variance shown corresponds to the variance of the estimator also used during training.

Here, we provide an ablation study for conditional image modelling on MNIST with a 2-layer VAE where we evaluate the
different estimators offline; that is, for each combination of estimators used for training we also show the gradient variance
of the other estimators.

0 1,000
0

2

4

6

·10−4

epochs

qφ: naive (IWAE)
pθ: naive (IWAE)

0 1,000
0

2

4

6

·10−4

epochs

qφ: DREGs
pθ: naive (IWAE)

0 1,000
0

2

4

6

·10−4

epochs

qφ: naive (IWAE)
pθ: GDREGs

0 1,000
0

2

4

6

·10−4

epochs

qφ: DREGs
pθ: GDREGs

Po
st

er
io

r
V
ar
∇

T
D

φ
L φ

,θ

Figure G.3: Gradient variance of the posterior parameters φ as estimated with the naive (IWAE) estimator () and the
DREGs estimator () for different combinations of estimators used during training as indicated by the sub-figure title.
For example, in the leftmost plot we compare the posterior gradient variance as estimated by the naive (IWAE) estimator
to that of the DREGs estimator on an experiment where we trained both the posterior parameters φ as well as the prior
parameters θ with the naive (IWAE) estimator.

In Fig. G.3 we consider the gradient variance w.r.t. the variational posterior parameters φ and compare the naive (IWAE)
estimator to the DREGs estimator. We find that, regardless which combination of estimators has been used during training,
the DREGs estimator always results in a better (lower) gradient variance than the naive estimator.

Similarly, in Fig. G.4 we consider the gradient variance w.r.t. the prior parameters θ and compare the naive (IWAE)
estimator to the GDREGs estimator. We find that generally the GDREGs gradient estimates have lower variance than the
naive (IWAE) estimates. However, when we use the naive estimator for the prior parameters during training, this reduction
is smaller and may only be present in the beginning of training. However, consistently, the GDREGs gradient estimates

Generalized Doubly-Reparameterized Gradient Estimators

0 1,000
0

2

4

6

·10−4

epochs

qφ: naive (IWAE)
pθ: naive (IWAE)

0 1,000
0

2

4

6

·10−4

epochs

qφ: DREGs
pθ: naive (IWAE)

0 1,000
0

2

4

6

·10−4

epochs

qφ: naive (IWAE)
pθ: GDREGs

0 1,000
0

2

4

6

·10−4

epochs

qφ: DREGs
pθ: GDREGs

Pr
io

r
V
a
r∇

T
D

θ
L φ

,θ

Figure G.4: Gradient variance of the prior parameters θ as estimated with the naive (IWAE) estimator () and the
GDREGs estimator () for different combinations of estimators used during training as indicated by the sub-figure title.
For example, in the leftmost plot we compare the prior gradient variance as estimated by the naive (IWAE) estimator to
that of the GDREGs estimator on an experiment where we trained both the posterior parameters φ as well as the prior
parameters θ with the naive (IWAE) estimator.

have lower variance when we use the DREGs estimator during training to estimate the variational posterior parameters.

H. The cross-entropy for Gaussian distributions
Here, we investigate the properties of the GDREGs estimator compared to the naive estimator in a setting where all quantities
of interest can be computed in closed form, the cross-entropy of two Gaussian distributions, qφ(z) = N (z;µq,σq) and
pθ(z) = N (z;µp,σp).

The negative cross-entropy is given by

Lce
φ,θ = Ez∼qφ(z) [log pθ(z)] =

1
2 log(2π) + logσp +

σ2
q + (µp − µq)2

2σ2
p

(H.1)

Note that in this analytic case, we can compute the gradients without having to sample. However, in the following we want
to compare the naive (score function) estimator to the GDREGs estimator.

The naive estimator of this score function is given by:

∇̂naive
θ Lce

φ,θ = ∇θ log pθ(z); z ∼ qφ(z) (H.2)

while the GDREGs estimator is given by (see Eq. (21)):

∇̂GDREGs
θ Lce

φ,θ = ∇z log
qφ(z)

pθ(z)
∇θTp(ε̃;θ)|ε̃=T −1

p (z,θ) ; z ∼ qφ(z) (21)

H.1. Gradient variance of the estimators

In the case under consideration, the parameters θ are given by the mean and variance of the prior, θ = {µp,σp}, and we
can compute both the expectation as well as the variance of these gradient estimators in closed form.

Naive estimator

Eqφ(z)

[
∇̂naive
µp
Lce
φ,θ

]
=
µq − µp
σ2
p

(H.3)

Varqφ(z)

[
∇̂naive
µp
Lce
φ,θ

]
=
σ2
q

σ4
p

(H.4)

Eqφ(z)

[
∇̂naive
σp
Lce
φ,θ

]
=
σ2
q − σ2

p

σ3
p

+
(µq − µp)2

σ3
p

(H.5)

Varqφ(z)

[
∇̂naive
σp
Lce
φ,θ

]
= 2

σ4
q

σ6
p

+ 4σ2
q

(µq − µp)2
σ6
p

(H.6)

Note that all operations are element-wise.

Generalized Doubly-Reparameterized Gradient Estimators

The proposed GDREGs estimator

Eqφ(z)

[
∇̂GDREGs
µp

Lce
φ,θ

]
=
µq − µp
σ2
p

(H.7)

Varqφ(z)

[
∇̂GDREGs
µp

Lce
φ,θ

]
=
σ2
q

σ4
p

(
σ2
p − σ2

q

)2

σ4
q

(H.8)

Eqφ(z)

[
∇̂GDREGs
σp

Lce
φ,θ

]
=
σ2
q − σ2

p

σ3
p

+
(µq − µp)2

σ3
p

(H.9)

Varqφ(z)

[
∇̂GDREGs
σp

Lce
φ,θ

]
= 2

(
σ2
q − σ2

p

)2

σ6
p

+

(
σ2
p − 2σ2

q

)2

σ2
q

(µq − µp)2
σ6
p

(H.10)

Note that all operations are element-wise.

Both estimators have equal expectation; this is because GDREGs is an unbiased estimator.

Comparing the variances in Eq. (H.4) and Eq. (H.8) we note that the GDREGs estimator has a lower gradient variance than
the naive estimator for the mean parameters µp if

σ2
p ≤ 2σ2

q . (H.11)

Similarly, comparing Eq. (H.6) and Eq. (H.10), we find that the GDREGs estimator has lower variance than the naive
estimator for the variance parameters σp if

σ2
p ≤ 4σ2

q

(
1− σ2

q

(µp − µq)2 + 2σ2
q

)
(H.12)

In the case of µp = µq , this also reduces to σ2
p ≤ 2σ2

q .

Thus, we expect the GDREGs estimator to perform better than the naive estimator when pθ(z)and qφ(z)are close together.

H.2. Constructing the optimal control variate

Because the GDReGs estimators and the naive estimators have the same expectation, we can build a control variate out of
their difference:

[
∇̂naive
θ + α(∇̂GDReG

θ − ∇̂naive
θ)

]
Lce
φ,θ. (H.13)

We can then compute its optimal strength α∗, by minimizing its variance,

α∗ = argmin
α

Varqφ(z)

[[
∇̂naive
θ + α(∇̂GDReG

θ − ∇̂naive
θ)

]
Lce
φ,θ

]
. (H.14)

We find that:

α∗µ =
σ2
q

σ2
p

(H.15)

α∗σ =
2σ2

q

σ2
p

(µp − µq)2 + σ2
q

(µp − µq)2 + 2σ2
q

(H.16)

Varqφ(z)

[[
∇̂naive
µp

+ α∗µ(∇̂GDReG
µp

− ∇̂naive
µp

)
]
Lce
φ,θ

]
= 0 (H.17)

Varqφ(z)

[[
∇̂naive
σp

+ α∗σ(∇̂GDReG
σp

− ∇̂naive
σp

)
]
Lce
φ,θ

]
=

2σ4
q

σ6
p

(µq − µp)2
(µq − µp)2 + 2σ2

q

(H.18)

Note that the expression for the optimal strength has different form for the mean µp and variance σp parameters. Moreover,
note that the analytic estimator has zero gradient variance whereas our estimator with control variate still has non-zero
gradient variance for the variance parameters σp.

Generalized Doubly-Reparameterized Gradient Estimators

This optimal estimator holds for a single layer VAE, where both the variational posterior as well as the prior are Gaussian.
In a hierarchical model where both the prior and the posterior are factorized top-down, the same derivation holds for the
lowest stochastic layer (similar to how semi-analytic approximations for the conditional KL can be derived in this case).
Unfortunately, in this case the expectations cannot be computed in closed form anymore.

