
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Appendix for: Policy Analysis using Synthetic Controls in Continuous-Time

Anonymous Authors1

This appendix provides additional material accompanying the main body of the paper: "Policy Analysis using Synthetic
Controls in Continuous-time". It is outlined as follows:

• Section A presents proofs of the theoretical results presented in the main body of this paper.

– Section A.1 provides an argument for the unbiasedness of treatment effects in continuous-time for a linear model,
in analogy to (Abadie et al., 2010).

– Section A.2 proves Proposition 1.

• Section B discusses the reliability of inference and computational complexity.

– Section B.1 discusses the consistency of the recovered matrix W in different runs of the algorithm.
– Section B.2 discusses the consistency of NC-SC’s fit in different runs of the algorithm.
– Section B.3 discusses computational complexity.

• Section C gives details on software and algorithm implementation.

• Section D gives further details on the design of experiments and gives pointers to the publicly available data and
simulation environments.

A. Theoretical results
A.1. Unbiased treatment effects in linear dynamical systems

Synthetic controls and their use for treatment effect estimation is typically justified in the discrete-time setting by an
underlying linear data generating mechanism involving observed, unobserved variables, and independent noise terms
(Abadie et al., 2010). Extending this analysis to non-linear models is difficult and to our knowledge has not be done even in
the discrete-time case.

We may provide some theoretical justification for the validity of NC-SC however by considering the continuous-time analog
to the autoregressive linear model considered in (Abadie et al., 2010):

yi,ts+1
= αtyi,ts + zi,ts , for i = 1, . . . , n and s = 1, . . . ,m, (1)

where zi,t is not modelled and may be correlated across units and time to account due to unobserved confounding but is
assumed to have mean zero conditional on Ft = {yi,t}i=1,...,n,t=t1,...,tm .

A continuous-time analog is given by

dyi(t)

dt
= α(t)yi(t) + zi(t), yi(t0) = yi,0, (2)

for t ∈ (t0, tm). All parameters and variables now vary continuously in time and the assumption, in parallel to equation (1)
is that confounders zi(t) have mean zero conditional on Ft = {yi(s) : s < t}i=1,...,n.

1Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Appendix for: Policy Analysis using Synthetic Controls in Continuous Time

Following the steps taken in (Abadie et al., 2010) we may consider an infinitesimal change in time ∆t > 0 and write

dyi(t+ ∆t)

dt
= α(t+ ∆t)yi(t+ ∆t) + zi(t+ ∆t) (3)

= α(t+ ∆t)

(
yi(t) + ∆t

dyi(t)

dt

)
+ zi(t+ ∆t). (4)

Assume now that there exists weights w?
2 , . . . , w

?
n such that for all times t before the intervention time T i.e., those times

where we do have data and can compare the derivatives of the path of interest with control paths,

dy1(t)

dt
=

n∑
i=2

w?
i

dyi(t)

dt
, y1,0 =

n∑
i=2

w?
i yi,0, t < T. (5)

It hols then that for T = ∆t+ t, for ∆t > 0 and for t < T ,

dy1(T )

dt
−

n∑
i=2

w?
i

dyi(T )

dt
= α(t+ ∆t)

(
y1(t)−

n∑
i=2

w?
i yi(t) + ∆t

(
dy1(t)

dt
−

n∑
i=2

w?
i

dyi(t)

dt

))
+ z1(T )−

n∑
i=2

z?i yi(T ).

(6)

Then, using the relationship in (5), working recursively on the difference y1(t)−
∑n

i=2 w
?
i yi(t), and the fact that z1(T )−∑n

i=2 z
?
i yi(T ) has mean zero conditional on the filtration Ft, the above quantity has mean zero.

We may then extend this result to t > T by using equation (3).

(Abadie et al., 2010) also analyze factor models but since they do not incorporate time-varying confounders, observed or
unobserved, we do not replicate their analysis here.

A.2. Proof of Proposition 1

We restate Proposition 1 for completeness, and redefine the two CDE models of interest.

We consider models of the form,

zt = zt0 +

∫ t

t0

f(zs) dY
0
s , t ∈ (t0, tm], (7)

and models of the form,

zt = zt0 +

∫ t

t0

f(zs) WdY0
s , t ∈ (t0, tm], (8)

with the same notation as in the main body of this paper.

Proposition 1. Consider the class of CDEs C defined by (7) that are independent of Y 0
i and the class of CDEs C0 defined by

(8) such that the i-th diagonal entry of W is zero. Then C = C0.

Proof. It is clear that the class of Neural CDEs C0 is contained in C as control paths interact with the vector field of the
counterfactual path only if the corresponding entry in W is non-zero. C0 ⊂ C.

For the converse consider a CDE in C defined by (7) independent of the k-th control path and consider a set of control paths
Ỹ0

s and Y0
s such that Ỹ0

s = Y0
s except for the k-th control path of Ỹ0

s which is set to the zero function Ỹ 0
k : [t0, tm]→ 0,

for all s ∈ [t0, tm]. Because of independence, the CDEs with control paths Ỹ0
s and Y0

s are equal.

Define the diagonal matrix W̃ and W such that their diagonal entries agree except on their k-th diagonal entry of W̃ where
[W̃]kk = 0. Then we can see that W̃dY0

s = WdỸ0
s , so that the two CDEs given by (8) define the same functions. A CDE

(7) independent of one of its arguments may always be reconstructed with a corresponding CDE (8). This implies that the
class of Neural CDEs independent of the k-th control path is contained in C0. C ⊂ C0



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Appendix for: Policy Analysis using Synthetic Controls in Continuous Time

(a) NC-SC fit over 5 runs with different
initializations on the current account deficit
data for Spain.

(b) Run time of NC-SC as a function of the
number of control paths.

(c) Run time of NC-SC as a function of the
number of pre-treatment observations.

Figure 1. Analysis of fit consistency and computational complexity.

B. Additional experiments
B.1. Consistency of W

Different runs of the algorithm may converge to different local minima thus potentially changing the interpretation of the
matrix W of control path contributions. We did observe slight differences in the entries of the estimated matrix W although
its interpretation: which entries were estimated to zero and non-zero, remained consistent.

We tested this feature with the current account deficit data. We ran NC-SC 10 times with different initializations and report
the variance of estimated weights for each country in Table 1. For almost all entries the weight variance is consistently
low and no run gives a qualitatively different interpretation (for instance one run estimating wi to zero while another run
estimating it to a value different than zero).

While this is not an exhaustive test of this behaviour it provides some evidence that W may be used consistently to recover
the control paths most influential in counterfactual estimation.

CHL DNK HUN ISR JPN MEX NZL POL SWE USA Others
.127
(.02)

.063
(.01)

.076
(.01)

.068
(.02)

.123
(.04)

.105
(.03)

.051
(.02)

.096
(.02)

.089
(.01)

.088
(.02)

.000
(.00)

Table 1. Weight estimation over 10 runs of NC-SC. Others are: Canada, Turkey, Great Britain, Australia and Korea.

B.2. Consistency of NC-SC fit

Just as different runs of NC-SC may produce different estimated matrices W, may result in different counterfactual fits.
Using the same experiment as above we show that NC-SC’s fit is remarkably consistent across different initializations.

Figure 1 shows the fit of NC-SC in 5 runs with different initialization parameters. We used the current account deficit data
for this experiment.

B.3. Computational complexity

Run times of NC-SC as a function of the number of pre-treatment observations and as a function of the number of control
paths is given in Figure 1. We used the Lorenz model for this experiment.

C. Details on algorithm implementation
This section gives details on the implementation of our algorithm as well as implementation software of baseline methods.

C.1. Neural Continuous Synthetic Controls

For completeness, this section reviews our modelling choices for Neural CDEs and alternatives, following the analysis of
(Kidger et al., 2020).



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Appendix for: Policy Analysis using Synthetic Controls in Continuous Time

NC-SC is defined using the Neural CDE,

zt = zt0 +

∫ t

t0

f(zs) W dY0
s , t ∈ (t0, tm], (9)

with the notation used in the main body of this paper.

• Path interpolation. We followed (Kidger et al., 2020) in approximating the underlying paths Y0
s using cubic spline

interpolations with knots at the observation times. The minimum requirement for evaluating the CDE in equation (9) is
therefore that Y0

s be at least continuous and piece-wise differentiable.

However, training with the adjoint backpropagation method requires derivatives of a functional of the CDE with respect
to time, an thus second derivatives of the path approximations Y0

s . For this to be done consistently, the choice of cubic
splines essentially gives the minimum smoothness requirement to paths approximations.

• Other vector field choices. If one wanted to incorporate the influence of auxiliary paths to modulate the trajectory of
z, different choices for the vector field ”f(zs) dY

0
s” could have been made. For instance, (De Brouwer et al., 2019)

developed a time series method defining the vector field as g(zs, Y
0
s ) for some function g to be learned. This is perhaps

a more natural choice that considers a function of paths Y0
s explicitly and allows for non-linearities in the interaction

between z and Y0
s . (Kidger et al., 2020) showed, however, that the vector field ”f(zs) dY

0
s” is strictly more general,

subsuming models of the form g(zs, Y
0
s ).

• Architecture. The integrand f was taken to be a feed-forward neural network with a two hidden layers of size 10
and elu activation functions after each layer except from the output layer. The dimensionality l of z the hidden state
was taken to be 5 for all experiments. The activation function was chosen to be the elu function, although the relu
performed similarly but was less stable in optimization with a larger variance across different runs of the algorithm.

We did not explicitly tune hyperparameters (hidden layers, activation function, etc.) for performance. Further tuning
could be done by cross-validation on the observed pre-treatment trajectory of the unit of interest if enough observations
are given.

• Optimization. In each case we used the Adam optimiser as implemented by PyTorch. Starting learning rates varied
between experiments (with values between 0.001 and 0.01) before being reduced by half if metrics failed to improve
for a certain number of epochs.

The strength of W regularization λ is chosen in a range {0.001, 0.01, 0.1, 1} for best performance on a validation set.

The ODE solver used to extrapolate the hidden state was taken to be the fourth-order Runge-Kutta with 3/8 rule solver,
as implemented by passing method=’rk4’ to the odeint_adjoint function of the torchdiffeq (Kidger
et al., 2020; Chen et al., 2018) package, used also for adjoint back-propagation training. The step size was taken to
equal the minimum time difference between any two adjacent observations.

C.2. Original Synthetic Controls

We implement the original synthetic control method (Abadie et al., 2010) with the cvxpy python package for constrained
convex optimization. This allows us to enforce weights to be non-negative and sum to one in few straightforward lines of
code.

C.3. Robust Synthetic Controls

We implement a penalized version of the original synthetic control method with an elastic net penalty and hyperparameters
chosen by cross-validation with the sklearn python library and predefined optimization function ElasticNetCV.

C.4. Synthetic Controls with Kernel Mean Matching

We implement a modification of the original synthetic control method, instead matching weights in a reproducing kernel
Hilbert space with Gaussian kernel and bandwidth parameter taken to be the median distance between any pair of observations
as suggested by the authors (Gretton et al., 2009). Our implementation code follows exactly the procedure given in the
constrained optimization program defined in section 1.1.3 of (Gretton et al., 2009).



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Appendix for: Policy Analysis using Synthetic Controls in Continuous Time

The algorithm itself was implemented in python with a constrained quadratic program cvxpy, similarly to the original
synthetic control method.

C.5. Matrix Completion

We implement the matrix completion method with nuclear norm penalization of (Athey et al., 2018) with the matrix
completion package in python. Its implementation is straightforward with this package taking only a single line of code
to define and fit the model.

D. Experiment details
D.1. Smoking and Eurozone experiments

The data from both the smoking study in California and current account deficits in Spain is annualized. For a period of 30
years we thus have 30 observations on each trajectory (e.g. cigarette sales in California, Nevada, etc., and current account
deficits in Spain, Switzerland, etc.) and in particular in both studies we have 19 years / observations of pre-intervention data
that we may use for quantitative performance evaluations.

This is rarely sufficient for reliable comparisons between algorithms. Our approach to correct for this problem is to augment
the data by interpolating trajectories with cubic splines with knots at the observation times. The smoothness hyperparameter
is chosen such that the interpolation accurately reflects the original data trajectory. With this interpolation, we evaluate the
curve for each path at 300 regular points spanning the 19 years of pre-intervention data.

In our experiment we use the first 200 observations for training and we use the last 100 observations for testing, on which
we report performance.

References
Abadie, A., Diamond, A., and Hainmueller, J. Synthetic control methods for comparative case studies: Estimating the effect

of california’s tobacco control program. Journal of the American statistical Association, 105(490):493–505, 2010.

Athey, S., Bayati, M., Doudchenko, N., Imbens, G., and Khosravi, K. Matrix completion methods for causal panel data
models. Technical report, National Bureau of Economic Research, 2018.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. Neural ordinary differential equations. In Advances in
neural information processing systems, pp. 6571–6583, 2018.

De Brouwer, E., Simm, J., Arany, A., and Moreau, Y. Gru-ode-bayes: Continuous modeling of sporadically-observed time
series. In Advances in Neural Information Processing Systems, pp. 7379–7390, 2019.

Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., and Schölkopf, B. Covariate shift by kernel mean
matching. Dataset shift in machine learning, 3(4):5, 2009.

Kidger, P., Morrill, J., Foster, J., and Lyons, T. Neural controlled differential equations for irregular time series. arXiv
preprint arXiv:2005.08926, 2020.


