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Abstract

With a better understanding of the loss surfaces
for multilayer networks, we can build more robust
and accurate training procedures. Recently it was
discovered that independently trained SGD so-
lutions can be connected along one-dimensional
paths of near-constant training loss. In this paper,
we show that there are in fact mode-connecting
simplicial complexes that form multi-dimensional
manifolds of low loss, connecting many indepen-
dently trained models. Inspired by this discov-
ery, we show how to efficiently build simplicial
complexes for fast ensembling, outperforming
independently trained deep ensembles in accu-
racy, calibration, and robustness to dataset shift.
Notably, our approach only requires a few train-
ing epochs to discover a low-loss simplex, start-
ing from a pre-trained solution. Code is avail-
ableat https://github.com/g-benton/
loss—-surface-simplexes.

1. Introduction

Despite significant progress in the last few years, little is
known about neural network loss landscapes. Recent works
have shown that the modes found through SGD training
of randomly initialized models are connected along narrow
pathways connecting pairs of modes, or through tunnels
connecting multiple modes at once (Garipov et al., 2018;
Draxler et al., 2018; Fort & Jastrzebski, 2019). In this
paper we show that there are in fact large multi-dimensional
simplicial complexes of low loss in the parameter space of
neural networks that contain arbitrarily many independently
trained modes.

The ability to find these large volumes of low loss that
can connect any number of independent training solutions
represents a natural progression in how we understand the
loss landscapes of neural networks, as shown in Figure 1.
In the left of Figure 1, we see the classical view of loss
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Figure 1. A progressive understanding of the loss surfaces of neu-
ral networks. Left: The traditional view of loss in parameter space,
in which regions of low loss are disconnected (Goodfellow et al.,
2015; Choromanska et al., 2015). Center: The revised view of
loss surfaces provided by work on mode connectivity; multiple
SGD training solutions are connected by narrow tunnels of low
loss (Garipov et al., 2018; Draxler et al., 2018; Fort & Jastrzeb-
ski, 2019). Right: The viewpoint introduced in this work; SGD
training converges to different points on a connected volume of
low loss. Paths between different training solutions exist within a
large multi-dimensional manifold of low loss. We provide a two
dimensional representation of these loss surfaces in Figure A.1.

surface structure in neural networks, where there are many
isolated low loss modes that can be found through training
randomly initialized networks. In the center we have a
more contemporary view, showing that there are paths that
connect these modes. On the right we present a new view —
that all modes found through standard training converge to
points within a single connected multi-dimensional volume
of low loss.

We introduce Simplicial Pointwise Random Optimization
(SPRO) as a method of finding simplexes and simplicial
complexes that bound volumes of low loss in parame-
ter space. With SPRO we are able to find mode con-
necting spaces that simultaneously connect many indepen-
dently trained models through a a single well-defined multi-
dimensional manifold. Furthermore, SPRO is able to explic-
itly define a space of low loss solutions through determining
the bounding vertices of the simplicial complex, meaning
that computing the dimensionality and volume of the space
become straightforward, as does sampling models within
the complex.

This enhanced understanding of loss surface structure en-
ables practical methodological advances. Through the abil-
ity to rapidly sample models from within the simplex we can
form Ensembled SPRO (ESPRO) models. ESPRO works
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by generating a simplicial complex around independentlyFort & Jastrzebski (2019) propose viewing the loss land-
trained models and ensembling from within the simplexesscape as a series of potentially connected low-dimensional
outperforming the gold standard deep ensemble combinaredges in the much higher dimensional parameter space.
tion of independently trained models (LakshminarayanarThey then demonstrate that sets of optima can be connected
et al., 2017). We can view this ensemble as an approximaia low-loss connectors that are generalizations of Garipov
tion to a Bayesian model average, where the posterior ist al. (2018)'s procedure. Our work generalizes these nd-
uniformly distributed over a simplicial complex. ings by discovering higher dimensional mode connecting
Our paper is structured as follows: In Section 3, we introyolumes, which we then leverage for a highly ef cient and
) s X practical ensembling procedure.
duce a method to discover multi-dimensional mode con*
necting simplexes in the neural network loss surface. IrAlso appearing at the same conference as this work, Worts-
Section 4, we show the existence of mode connectingnan et al. (2021) concurrently proposed a closely related
volumes and provide a lower bound on the dimensionaltechnique to learn low dimensional neural network sub-
ity of these volumes. Building on these insights, in Secspaces by extending the methods of Fort et al. (2019) and
tion 5 we introduce ESPRO, a state-of-the-art approaciGaripov et al. (2018). More speci cally, they propose train-
to ensembling with neural networks, which ef ciently av- ing parametric curves (and subspaces) while additionally
erages over simplexes. In Section 6, we show that ESsing a weight space regularizer to encourage weight space
PRO also provides well-calibrated representations of uncefunctional diversity.
tainty. We emphasize that ESPRO can be used as a sim-
ple drop-in replacement for deep ensembles, with improve3_

. : ; Mode Connecting Volumes
ments In accuracy and uncertainty representations. Code

is available athttps://github.com/g-benton/ We now show how to generalize the procedure of Garipov

loss-surface-simplexes . et al. (2018) to discover simplices of mode connectiol
umes containing in nitely many mode connecting curves.

2 Related Work In Section 3, we then show how to use our procedure to

demonstrate the existence of these volumes in modern neu-
The study of neural network loss surfaces has long beeral networks, revising our understanding about the structure
intertwined with an understanding of neural network gen+of their loss landscapes. In Sections 5 and 6 we show how to
eralization. Hochreiter & Schmidhuber (1997) argued thatve can use these discoveries to build practical new methods
at minima provide better generalization, and proposed amvhich provide state of the art performance for both accuracy
optimization algorithm to nd such solutions. Keskar et al. and uncertainty representation. We refer to our approach as
(2017) and Li et al. (2018) reinvigorated this argument bySPRO (Simplicial Pointwise Random Optimization).
visualizing loss surfaces and studying the geometric proper-
ties of deep neural networks at their minima. I1zmailov et al3.1. Simplicial Complexes of Low Loss
(2018) found that averaging SGD iterates with a modi ed i
learning rate nds atter solutions that generalize better.T0 ngl mode connecting volumes we _seeimplexeand
Maddox et al. (2019) leveraged these insights in the contex¢MPplicial complexesf low loss. Two primary reasons we
of Bayesian deep learning to form posteriors in at regionsS€€K Simplexes of low loss are that (i) simplexes are de ned
of the loss landscape. Moreover, Maddox et al. (2020) foundY ONly & few points, and (i) simplexes are easily sam-

many directions in parameter space that can be perturbdl§€d- The rst point means that to de ne a mode connecting
without changing the training or test loss. simplicial complex of low loss we need only nd a small

number of vertices to fully determine the simplexes in the
Freeman & Bruna (2017) demonstrated that single layegomplex. The second point means that we have easy access
ReLU neural networks can be connected along a low losg the models contained within the simplex, leading to the
curves. Garipov et al. (2018) and Draxler et al. (2018) simulpractical simplex-based ensembling methods presented later
taneously demonstrated that it is possible to nd low 0ssin the paper.
curves for ResNets and other deep networks. Skorokhodov ) . o
& Burtsev (2019) used multi-point optimization to parame-/V& consider dateD, and training objectiveL. — We
terize wider varieties of shapes in loss surfaces, when vist€[€" 10 Sasay;za i) as thek-simplex formed by ver-
alizing the value of the loss, including exotic shapes suctiCeS @;a1;::1; 8, and V(S(a,;::a,)) as the volume
as cows. Czarnecki et al. (2019) then showed that low df the simplex.  Simplicial complexes are denoted

mensional spaces of nearly constant loss theoretically exidt (Sao Arnan,) S(b()?bl ----- biy)i s Smomzm vy ))s
in the loss surfaces of deep ReLU networks, but did nofnd their volume is computed as the sum of the volume of

provide an algorithm to nd these loss surfaces. We use Cayley-Menger determinants to compute the volume

of simplexes; for more information see Appendix A.1.
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their components. We usg to denotemodes or SGD  minimizing the regularized loss,
training solutions, and; to denote mode connecting points. 1 X
For example, we could train two independent models to nd Lreg (K) = H
parameter settingsy andw;, and then nd mode connect- n K

ing point o such that the pattvo ! o ! wy traversed  tpe regularization penalty; balances the objective be-

low loss parameter settings as in Fort & Jastrzebski (2019 een seeking a smaller simplicial complex that contains

and Garipov et al. (2018). strictly low loss parameter settings (smaf), and a larger
complex that that may contain less accurate solutions but

3.2. Simplicial Complexes With SPRO encompasses more volume in parameter space (Igige

To nd a simplicial complex of low loss solutions, we rst In general only a small a'njount of regul'arization is n.eeded,

nd a collection of modeswo:;: ::;wi through standard and results are not sensitive to the choiceafln Section

training. This procedure gives the trivial simplicial com- > W€ explain how to adapt Eq. 1 to train simplexes of low

plex K (S :: 13 Sawey) (OF K), a complex containing loss using single mdependetly.tramed quels.... We provide

disjoint O-simplexes. With these modes we can then iterad€tails about how we choosg in Appendix A.2.

tively add connecting points; , to join any number of the

O-simplexes in the complex, and train the parameters in 4. Volume Finding Experiments

such that the loss within the simplicial complék, remains

low. The procedure to train these connectingorms the In this section, we nd volumes of low loss in a variety of
core of the SPRO algorithm, given here. settings. First, we show that the mode nding procedure of

Garipov et al. (2018) can be extended to nd distributions
To gain intuition, we rst consider some examples be-of modes. Then, we explore mode connecting simplicial
fore presenting the full SPRO training procedure. As wecomplexes of low loss in a variety of settings, and nally
have discussed, we can take modgsandw; and train  provide an empirical upper bound on the dimensionality of

o to nd a complexK(Sqw,; o); Sqw,; )), Which recov-  the mode connecting spaces.

ers a mode connecting path as in Garipov et al. (2018).
Alternatively, we could connecty with more than two | oss Surface Plots. Throughout this section and the re-
modes and build the comple&(Sw,: 4);::1;Sw.; 0));  mainder of the paper we display two-dimensional visual-
connecting5 modes through a single point, similar to jzations of loss surfaces of neural networks. These plots
the m-tunnels presented in Fort & Jastrzebski (2019)represent the loss within the plane de ned by the three
SPRO can be taken further, however, and we could traijyoints (representing parameter vectors) in each plot. More
(one at a time) a sequence gfs to nd the complex  speci cally, if the three points in question are, e\, Wi,
K(Sqwo; o: 17 2)5 Stwas 07 13 2)3 Swai o; 1: ) describinga  andw, thenwe de nec= 1~ 2 w; as the center of the
multi-dimensional volume that simultaneously connéxts points and use Gram-Schmidt to construetndv, an or-
modes througl shared points. thonormal basis for the plane de ned by the points. With
We aim to train the, 's in K such that the expected loss for the center and the basis chosen, we can sample the loss at
models in the simplicial complex is low and the volume of parameter vectors of the foom= c+ ryu+ ryv wherer,
the simplicial complex is as large as possible. That is, a&ndr'v range from R toR, arange parameter chosen such
we train thg " connecting point, ; , we wish to minimize that all the points are within the surface with a reasonable
E « L(D; ) while maximizingV/(K), using K to  boundary.

indicate follows a uniform distribution over the simplicial .
complexK. 4.1. Volumes of Connecting Modes

L(D: n)  jlog(V(K): (1)

Following Garipov et al. (2018), we usd parameter In Bayesian deep learning, we wish to form a predictive
vectors randomly sampled from the simplex’_; distribution through a posterior weighted Bayesian model

K, to compute |, L(D; ,) as an estimate of 2average: ~

E « L(D; ).2 In practice we only need a small num- _ ) )

ber of samplest , and for all experiments ud¢ = 5 to plyi; D)= p(yjw; x)p(wjD)dw ; @

balance between avoiding signi cant slowdowns in the loss : . .

function and ensuring we have reasonable estimates of tﬁ/&hgrey IS an qutput (e.g., aclass label)is an input (.9,

loss over the simplex. Using this estimate we trgirby anilmage),[') IS the dgta, anav are the neural network
weights. This integral is challenging to compute due to the

2\We discuss the exact method for sampling, and the implicacomplex structure of the posteripfwjD).

tions on bias in the loss estimate in Appendix A.1. . . .
PP To help address this challenge, we can instead approximate

the Bayesian model average in a subspace that contains
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many good solutions, as in Izmailov et al. (2019). Here, wetwo xed points,wy andws ; which are pre-trained models.
generalize the mode connecting procedure of Garipov et a'l_.

(2018) to perform inference over subspaces that Containigure 3 shows loss surface visualizations of this simpli-
volumesof mode connecting curves cial complex in the parameter space of a VG@&&network

trained on CIFAR10. We see that this complex contains not

In Garipov et al. (2018), a mode connecting curve is deenly standard mode connecting paths, but also volumes of
ned by its parameters. Treating the objective used to low loss that connect modes. Figure 3 is a straightforward
nd in Garipov et al. (2018)l( ), as a likelihood, we representation of how the loss landscape of large neural
infer an approximate Gaussian posteq6rjD) using the  networks should be understood as suggested in Figure 1; not
SWAG procedure of Maddox et al. (2019), which inducesonly are all training solutions connected by paths of low loss,
a distribution over mode connecting curves. Each sampléhey are points on the samaulti-dimensional manifoldf
fromq( jD) provides a mode connecting curve, which itself low loss. In the bottom right panel of Figure 3, every point
contains a space of complementary solutions. in the simplex corresponds to a different mode connecting

In Figure 2, we see that it is possible to move between - &

different values of without leaving a region of low loss. In Figure 4, we show there exist manifolds of low loss
We show samples from the SWAG posterior, projected intahat are vastly more intricate and high dimensional than a
the plane formed by the endpoints of the curwegg,and  simple composition 08-simplexes connecting two modes.
wy, and a mode connecting poirg. We show the induced In Figure 4a, we connedtmodes usingg connecting points
connecting paths from SWAG samples with orange linesso that we have four different simplexes formed between
All samples from the SWAG posterior lie in the region of the modes of low loss for VG@6 networks (Simonyan &
low loss, as do the sampled connecting paths, indicating thaisserman, 2015) on CIFARO0. The structure becomes
there is indeed an entire volume of connected low loss solwzonsiderably more intricate as we expand the amount of
tions induced by the SWAG posterior overWe provide modes used; Figure 4b usésnodes with9 connecting
training details in the Appendix A.4. points, formingl2 inter-connected simplexes. Note that
in this case not all modes are in shared simplexes with all
connecting points. These results clearly demonstrate that
SPRO is capable of nding intricate and multi-dimensional
structure within the loss surface. As a broader takeaway,
any mode we nd through standard training is a single
point within a large and high dimensional structure of loss,
as shown in the rightmost representation in Figure 1. We
consider the accuracy of ensembles found via these mode
connecting simplexes in Appendix B.4. In Section 5.4 we
consider a particularly practical approach to ensembling
Figure 2.A loss surface in the basis spanned by the de ning pointswith SPRO.
of a connecting curvewo; w1; o. Using SWAG, we form a pos-
terior distribution over mode connecting curves, representing & 3. Dimensionality of Loss Valleys

volume of low loss explanations for the data.
We can estimate the highest dimensionality of the connect-

ing space that SPRO can nd, which provides a lower bound
on the true dimensionality of these mode connecting sub-

The results of Section 4.1 suggest that modes might be cofiPaces for a given architecture and dataset. To measure
nected bymulti-dimensionapaths. SPRO represents a natu-dimensionality, we take two pre-trained modes, and

ral generalization of the idea of learning a distribution overW1; and construct a connecting simplex with as many con-

connecting paths. By construction, if we use SPRO to ndnecting points as possible, by nding the largéssuch

the simplicial compleX (Siwo: o )51 Stwn: ois o)) NAK(Swor 01 )3 Stwas o)) cONtains both low loss

we have found a wholspaceof suitable vertices to connect Parameter settings and has non-zero volume. We could
the modesvo;  ;Wm. Any sampled from thé&-simplex continue adding more degenerate points to the simplex;

S( o .) will induce a low-loss connecting path between however, the resulting simplicial complex has no volume.

03
any two vertices in the complex. Figure 5 shows the volume of a simplicial complex connect-
To demonstrate that SPRO nds volumes of low iNg two modes as a function of the number of connecting
loss, we trained a S|mp||c|a| Comp|ex using SPRO,pOintS,k; for a VGG-16 network on CIFAR10. To ensure
K(Stwo: o: 1: 2): Sws: o: 1: »)); forming two simplexes these are indeed Iow—Ios; cqmplexes, we sar@pleod-
containing three connecting verticas 1; » betweenthe €ls from each of these simplicial complexes and nd that

4.2. Simplicial Complex Mode Connectivity
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Figure 5.Volume of the simplicial complex as a function of the
number of connectors for a VGG net on CIFARor two settings

of SPRO regularization. Aftet0 connectors, the volume col-
lapses, indicating that new points added to the simplicial complex
are within the span of previously found vertices. The low-loss
manifold must be at leagi0 dimensions in this instance.

Figure 3.Loss surfaces for planes intersecting a mode connecting
simplicial complexK(Swy: o: 1: 2): S(wi; o: 1; »)) trained on
CIFAR-10using a VGG16 network. Top: along anywo ! j !

w; path we recover a standard mode connecting pBtttom

Left: a face of one of the simplexes that contains one of the
independently trained modes. We see that as we travel away from
w; along any path within the simplex we retain low train loss.
Bottom Right: the simplex de ned by the three mode connecting
points. Any point sampled from within this simplex de nes a
low-loss mode connecting path betweeg andw; .

Figure 6.Loss surface visualizations of the faces of a sample ES-
PRO3-simplex for a VGG network trained on CIFAR30. The
ability to nd a low-loss simplex starting from only singleSGD
solution,wo, leads to an ef cient ensembling procedure.

(2)4 modes 3 connectors. (b) 7 modes connectors. ot ciantly create ensembles of models either within a single

Figure 4.(a,b) Three dimensional projections of mode connecting simplex or by Co_n_neCt'ng an entire simplicial ComP'eX- We
simplicial complexes with training modes shown in blue and con-Start by generalizing the methodology presented in Section
nectors in orange. Blue shaded regions represent regions of lo-2, leading to a simplex based ensembling procedure, we
loss found via SPRQa) 4 modes an@® connecting points found call ESPRO (Ensembling SPRO). Crucially, our approach
with a VGG-16 network on CIFAR100. (b) 7 modes and atotal of  nds a low-loss simplex starting from only single SGD
9 connecting points found with a VG®® network on CIFAR10.  solution. We show that the different parameters in these
simplexes gives rise to a diverse set of functions, which is
) crucial for ensembling performance. Finally, we demon-
all sampled models achieve greater tS@#accuracy On  gyae that ESPRO outperforms state-of-thedagp ensem-
the train set. We can continue adding new modes until Weyeq (| akshminarayanan et al., 2017), both as a function of
reachk = 11; when the volume collapses to approximately ¢ ,semple components and total computational budget. In

2. . . : L
10 *; from a maximum ofl0°: Thus the dimensionality of gection 6, we show ESPRO also provides state-of-the-art
the manifold of low loss solutions for this architecture and .o g jts for uncertainty representation.

dataset is at lead), as adding an eleventh point collapses

the volume. 5.1. Finding Simplexes from a Single Mode

5. ESPRO: Ensembling with SPRO In Section 3.2 we were concerned with nding a simplicial
' ' complex that connects multiple modes. We now describe

The ability to nd large regions of low loss solutions has sig- how to adapt SPRO into a practical approach to ensembling
ni cant practical implications: we show how to use SPRO to by instead nding multiple simplexes of low loss, each —
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crucially — starting from ainglepre-trained SGD solution. composed of disjoint simplexes in parameter space. Pre-

Simplexes contain a single mode, and take the formdICtIonS with ESPRO are generated as,

Stw; : joii ) Where the i is thek™ vertex found with o1 X fixe z foe d

SPRO in a simplex where one of the vertices is magle $=73 ) < x j)d (5)

We nd SPRO simplexes one at a time, rather than as a K

complex. The associated loss function to nd #{& vertex  \hereK is shorthand fOK (Sqwo s o )5 153 Sqwy ot g ))-

in association with mode; is ESPRO can be considered a mixture of simplexes (e.g. a

1 X simplicial complex) to approximate a multimodal posterior,
Lreg (D5Sqw;; ; oin ) = ) L(D; ) towards a more accurate Bayesian model average. This
hoS (3) observation is similar to how Wilson & Izmailov (2020)
109V (S, + ;1 or 1)) show that deep ensembles provide a compelling approxima-

tion to a Bayesian model average (BMA), and improve on
For compactness we writg, S to indicate 1, is sampled ~ deep ensembles through the MultiSWAG procedure, which
uniform|y at random from Simp|e$(wj o ) U-SQS a m|>$ture of G.aUSSIanS approximation FO the poste-
) ) o ) rior for a higher delity BMA. ESPRO further improves
We can think of this training procedure as extending OUte approximation to the BMA, by covering a larger region
from the pre-trained mode;. First, in nding o We ot the posterior corresponding to low loss solutions with
nd a line segment of low loss solutions, where one endsnctional variability. This perspective helps explain why

of the line isw; . Next, with ;¢ x.ed, we seek j1 such  egpRro improves both accuracy and calibration, through a
that the triangle formed by, j 0; ;1 contains Iow 10Ss  jcher representation of epistemic uncertainty.

solutions. We can continue adding vertices, constructing

many dimensional simplexes. We verify the ability of ESPRO to nd a simplex of low

i i i loss starting from a single mode in Figure 6, which shows
With the resulting simple®w, ; , ;. , ), We cansample  hq |oss surface in the planes de ned by the faces f a
as many models from within the simplex as we need, andjmpjex found in the parameter space of a VG&aetwork
use them to form an ensemble. Functionally, ensemblegained on CIFARL00. The ability to nd these simplexes

sampled from SPRO form an approximation to Bayesiang core to forming ESPRO ensembles, as they only take a
marginalization over the model parameters where we a$mall number of epochs to nd, typically less thaf%

sume a posterior that is uniform over the simplex. We cane cost of training a model from scratch, and they con-
de ne our prediction for a given input as, tain diverse solutions that can be ensembled to improve

z model performance. Notably, we can sweep out a volume
¢ = v f(X; m) f(x; n)d n; (4)  oflow loss in parameter spaeéthoutneeding to rst nd
m S m2S multiple modes, in contrast to prior work on mode connec-
) ) tivity (Draxler et al., 2018; Garipov et al., 2018; Fort &
where we writeS as shorthand fo8y, ; ;. ,:::; . ): Specif-

' ¢ : g . Jastrzebski, 2019). We show additional results with image
ically, the Bayesian model average and its approximationyanstormers (Dosovitskiy et al., 2021) on CIFAROn
using approximate posteriors is Appendix B.3, emphasizing that these simplexes are not

z VA speci ¢ to a particular architecture.
p(y jy;M )= p(y j )p( jy)d p(y j )a( jy)d
N 5.3. SPRO and Functional Diversity
Mi ply j i) oAt jy) In practice we want to incorporate as many diverse high
i=1 accuracy classi ers as possible when making predictions to
gain the bene ts of ensembling, such as improved accuracy
5.2. ESPRO: Ensembling over Multiple Independent and calibration. SPRO gives us a way to sample diverse
Simplexes models inparameter spaceand in this section we show,

_— . . using asimpl@D dataset, that the parameter diversity found
We can signi cantly improve performance by ensembllngwith SPRO is a reasonable proxy for thectional diversity

from a simplicial complex containing multiple disjoint sim- we actually seek
plexes, which we refer to as ESPRO (Ensembling over '
SPRO simplexes). To form such an ensemble, we take a cdlo better understand how the simplexes interact with the
lection ofj parameter vectors from independently trainedfunctional form of the model, we consider an illustrative

models,wg; :::;w;, and train ak + 1-order simplex at example on the two-spirals classi cation dataset presented
each one using ESPRO. This procedure de nes the simin Huang et al. (2019), in which predictions can be easily
plicial complexK (Swq:::: o4 )s D5 Sew; i w ))y Whichiis  visualized. We nd a3-simplex (a tetrahedron) in the param-






