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Abstract
With a better understanding of the loss surfaces
for multilayer networks, we can build more robust
and accurate training procedures. Recently it was
discovered that independently trained SGD so-
lutions can be connected along one-dimensional
paths of near-constant training loss. In this paper,
we show that there are in fact mode-connecting
simplicial complexes that form multi-dimensional
manifolds of low loss, connecting many indepen-
dently trained models. Inspired by this discov-
ery, we show how to efficiently build simplicial
complexes for fast ensembling, outperforming
independently trained deep ensembles in accu-
racy, calibration, and robustness to dataset shift.
Notably, our approach only requires a few train-
ing epochs to discover a low-loss simplex, start-
ing from a pre-trained solution. Code is avail-
able at https://github.com/g-benton/
loss-surface-simplexes.

1. Introduction
Despite significant progress in the last few years, little is
known about neural network loss landscapes. Recent works
have shown that the modes found through SGD training
of randomly initialized models are connected along narrow
pathways connecting pairs of modes, or through tunnels
connecting multiple modes at once (Garipov et al., 2018;
Draxler et al., 2018; Fort & Jastrzebski, 2019). In this
paper we show that there are in fact large multi-dimensional
simplicial complexes of low loss in the parameter space of
neural networks that contain arbitrarily many independently
trained modes.

The ability to find these large volumes of low loss that
can connect any number of independent training solutions
represents a natural progression in how we understand the
loss landscapes of neural networks, as shown in Figure 1.
In the left of Figure 1, we see the classical view of loss
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Figure 1. A progressive understanding of the loss surfaces of neu-
ral networks. Left: The traditional view of loss in parameter space,
in which regions of low loss are disconnected (Goodfellow et al.,
2015; Choromanska et al., 2015). Center: The revised view of
loss surfaces provided by work on mode connectivity; multiple
SGD training solutions are connected by narrow tunnels of low
loss (Garipov et al., 2018; Draxler et al., 2018; Fort & Jastrzeb-
ski, 2019). Right: The viewpoint introduced in this work; SGD
training converges to different points on a connected volume of
low loss. Paths between different training solutions exist within a
large multi-dimensional manifold of low loss. We provide a two
dimensional representation of these loss surfaces in Figure A.1.

surface structure in neural networks, where there are many
isolated low loss modes that can be found through training
randomly initialized networks. In the center we have a
more contemporary view, showing that there are paths that
connect these modes. On the right we present a new view —
that all modes found through standard training converge to
points within a single connected multi-dimensional volume
of low loss.

We introduce Simplicial Pointwise Random Optimization
(SPRO) as a method of finding simplexes and simplicial
complexes that bound volumes of low loss in parame-
ter space. With SPRO we are able to find mode con-
necting spaces that simultaneously connect many indepen-
dently trained models through a a single well-defined multi-
dimensional manifold. Furthermore, SPRO is able to explic-
itly define a space of low loss solutions through determining
the bounding vertices of the simplicial complex, meaning
that computing the dimensionality and volume of the space
become straightforward, as does sampling models within
the complex.

This enhanced understanding of loss surface structure en-
ables practical methodological advances. Through the abil-
ity to rapidly sample models from within the simplex we can
form Ensembled SPRO (ESPRO) models. ESPRO works
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by generating a simplicial complex around independently
trained models and ensembling from within the simplexes,
outperforming the gold standard deep ensemble combina-
tion of independently trained models (Lakshminarayanan
et al., 2017). We can view this ensemble as an approxima-
tion to a Bayesian model average, where the posterior is
uniformly distributed over a simplicial complex.

Our paper is structured as follows: In Section 3, we intro-
duce a method to discover multi-dimensional mode con-
necting simplexes in the neural network loss surface. In
Section 4, we show the existence of mode connecting
volumes and provide a lower bound on the dimensional-
ity of these volumes. Building on these insights, in Sec-
tion 5 we introduce ESPRO, a state-of-the-art approach
to ensembling with neural networks, which efficiently av-
erages over simplexes. In Section 6, we show that ES-
PRO also provides well-calibrated representations of uncer-
tainty. We emphasize that ESPRO can be used as a sim-
ple drop-in replacement for deep ensembles, with improve-
ments in accuracy and uncertainty representations. Code
is available at https://github.com/g-benton/
loss-surface-simplexes.

2. Related Work
The study of neural network loss surfaces has long been
intertwined with an understanding of neural network gen-
eralization. Hochreiter & Schmidhuber (1997) argued that
flat minima provide better generalization, and proposed an
optimization algorithm to find such solutions. Keskar et al.
(2017) and Li et al. (2018) reinvigorated this argument by
visualizing loss surfaces and studying the geometric proper-
ties of deep neural networks at their minima. Izmailov et al.
(2018) found that averaging SGD iterates with a modified
learning rate finds flatter solutions that generalize better.
Maddox et al. (2019) leveraged these insights in the context
of Bayesian deep learning to form posteriors in flat regions
of the loss landscape. Moreover, Maddox et al. (2020) found
many directions in parameter space that can be perturbed
without changing the training or test loss.

Freeman & Bruna (2017) demonstrated that single layer
ReLU neural networks can be connected along a low loss
curves. Garipov et al. (2018) and Draxler et al. (2018) simul-
taneously demonstrated that it is possible to find low loss
curves for ResNets and other deep networks. Skorokhodov
& Burtsev (2019) used multi-point optimization to parame-
terize wider varieties of shapes in loss surfaces, when visu-
alizing the value of the loss, including exotic shapes such
as cows. Czarnecki et al. (2019) then showed that low di-
mensional spaces of nearly constant loss theoretically exist
in the loss surfaces of deep ReLU networks, but did not
provide an algorithm to find these loss surfaces.

Fort & Jastrzebski (2019) propose viewing the loss land-
scape as a series of potentially connected low-dimensional
wedges in the much higher dimensional parameter space.
They then demonstrate that sets of optima can be connected
via low-loss connectors that are generalizations of Garipov
et al. (2018)’s procedure. Our work generalizes these find-
ings by discovering higher dimensional mode connecting
volumes, which we then leverage for a highly efficient and
practical ensembling procedure.

Also appearing at the same conference as this work, Worts-
man et al. (2021) concurrently proposed a closely related
technique to learn low dimensional neural network sub-
spaces by extending the methods of Fort et al. (2019) and
Garipov et al. (2018). More specifically, they propose train-
ing parametric curves (and subspaces) while additionally
using a weight space regularizer to encourage weight space
functional diversity.

3. Mode Connecting Volumes
We now show how to generalize the procedure of Garipov
et al. (2018) to discover simplices of mode connecting vol-
umes, containing infinitely many mode connecting curves.
In Section 3, we then show how to use our procedure to
demonstrate the existence of these volumes in modern neu-
ral networks, revising our understanding about the structure
of their loss landscapes. In Sections 5 and 6 we show how to
we can use these discoveries to build practical new methods
which provide state of the art performance for both accuracy
and uncertainty representation. We refer to our approach as
SPRO (Simplicial Pointwise Random Optimization).

3.1. Simplicial Complexes of Low Loss

To find mode connecting volumes we seek simplexes and
simplicial complexes of low loss. Two primary reasons we
seek simplexes of low loss are that (i) simplexes are defined
by only a few points, and (ii) simplexes are easily sam-
pled. The first point means that to define a mode connecting
simplicial complex of low loss we need only find a small
number of vertices to fully determine the simplexes in the
complex. The second point means that we have easy access
to the models contained within the simplex, leading to the
practical simplex-based ensembling methods presented later
in the paper.

We consider data D, and training objective L. We
refer to S(a0,a1,...,ak) as the k-simplex formed by ver-
tices a0, a1, . . . , ak, and V(S(a0,...,ak)) as the volume
of the simplex.1 Simplicial complexes are denoted
K(S(a0,a1,...,aNa )

, S(b0,b1,...,bNb
), . . . , S(m0,m1,...,mNm )),

and their volume is computed as the sum of the volume of

1We use Cayley-Menger determinants to compute the volume
of simplexes; for more information see Appendix A.1.
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their components. We use wj to denote modes, or SGD
training solutions, and θj to denote mode connecting points.
For example, we could train two independent models to find
parameter settings w0 and w1, and then find mode connect-
ing point θ0 such that the path w0 → θ0 → w1 traversed
low loss parameter settings as in Fort & Jastrzebski (2019)
and Garipov et al. (2018).

3.2. Simplicial Complexes With SPRO

To find a simplicial complex of low loss solutions, we first
find a collection of modes w0, . . . , wk through standard
training. This procedure gives the trivial simplicial com-
plex K(S(w0), . . . , S(wk)) (or K), a complex containing k
disjoint 0-simplexes. With these modes we can then itera-
tively add connecting points, θj , to join any number of the
0-simplexes in the complex, and train the parameters in θj
such that the loss within the simplicial complex, K, remains
low. The procedure to train these connecting θj forms the
core of the SPRO algorithm, given here.

To gain intuition, we first consider some examples be-
fore presenting the full SPRO training procedure. As we
have discussed, we can take modes w0 and w1 and train
θ0 to find a complex K(S(w0,θ0), S(w1,θ0)), which recov-
ers a mode connecting path as in Garipov et al. (2018).
Alternatively, we could connect θ0 with more than two
modes and build the complex K(S(w0,θ0), . . . , S(w4,θ0)),
connecting 5 modes through a single point, similar to
the m-tunnels presented in Fort & Jastrzebski (2019).
SPRO can be taken further, however, and we could train
(one at a time) a sequence of θj’s to find the complex
K(S(w0,θ0,θ1,θ2), S(w1,θ0,θ1,θ2), S(w2,θ0,θ1,θ2)), describing a
multi-dimensional volume that simultaneously connects 3
modes through 3 shared points.

We aim to train the θj’s in K such that the expected loss for
models in the simplicial complex is low and the volume of
the simplicial complex is as large as possible. That is, as
we train the jth connecting point, θj , we wish to minimize
Eφ∼KL(D, φ) while maximizing V(K), using φ ∼ K to
indicate φ follows a uniform distribution over the simplicial
complex K.

Following Garipov et al. (2018), we use H parameter
vectors randomly sampled from the simplex, φHh=1 ∼
K, to compute 1

H

∑H
h=1 L(D, φh) as an estimate of

Eφ∼KL(D, φ).2 In practice we only need a small num-
ber of samples, H , and for all experiments use H = 5 to
balance between avoiding significant slowdowns in the loss
function and ensuring we have reasonable estimates of the
loss over the simplex. Using this estimate we train θj by

2We discuss the exact method for sampling, and the implica-
tions on bias in the loss estimate in Appendix A.1.

minimizing the regularized loss,

Lreg(K) =
1

H

∑
φh∼K

L(D, φh)− λj log(V(K)). (1)

The regularization penalty λj balances the objective be-
tween seeking a smaller simplicial complex that contains
strictly low loss parameter settings (small λj), and a larger
complex that that may contain less accurate solutions but
encompasses more volume in parameter space (large λj).
In general only a small amount of regularization is needed,
and results are not sensitive to the choice of λj . In Section
5 we explain how to adapt Eq. 1 to train simplexes of low
loss using single independetly trained models.... We provide
details about how we choose λj in Appendix A.2.

4. Volume Finding Experiments
In this section, we find volumes of low loss in a variety of
settings. First, we show that the mode finding procedure of
Garipov et al. (2018) can be extended to find distributions
of modes. Then, we explore mode connecting simplicial
complexes of low loss in a variety of settings, and finally
provide an empirical upper bound on the dimensionality of
the mode connecting spaces.

Loss Surface Plots. Throughout this section and the re-
mainder of the paper we display two-dimensional visual-
izations of loss surfaces of neural networks. These plots
represent the loss within the plane defined by the three
points (representing parameter vectors) in each plot. More
specifically, if the three points in question are, e.g., w0, w1,
and w2 then we define c = 1

3

∑2
i=0 wi as the center of the

points and use Gram-Schmidt to construct u and v, an or-
thonormal basis for the plane defined by the points. With
the center and the basis chosen, we can sample the loss at
parameter vectors of the form w = c+ ruu+ rvv where ru
and rv range from −R to R, a range parameter chosen such
that all the points are within the surface with a reasonable
boundary.

4.1. Volumes of Connecting Modes

In Bayesian deep learning, we wish to form a predictive
distribution through a posterior weighted Bayesian model
average:

p(y|x,D) =
∫
p(y|w, x)p(w|D)dw , (2)

where y is an output (e.g., a class label), x is an input (e.g.,
an image), D is the data, and w are the neural network
weights. This integral is challenging to compute due to the
complex structure of the posterior p(w|D).

To help address this challenge, we can instead approximate
the Bayesian model average in a subspace that contains
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many good solutions, as in Izmailov et al. (2019). Here, we
generalize the mode connecting procedure of Garipov et al.
(2018) to perform inference over subspaces that contain
volumes of mode connecting curves.

In Garipov et al. (2018), a mode connecting curve is de-
fined by its parameters θ. Treating the objective used to
find θ in Garipov et al. (2018), l(θ), as a likelihood, we
infer an approximate Gaussian posterior q(θ|D) using the
SWAG procedure of Maddox et al. (2019), which induces
a distribution over mode connecting curves. Each sample
from q(θ|D) provides a mode connecting curve, which itself
contains a space of complementary solutions.

In Figure 2, we see that it is possible to move between
different values of θ without leaving a region of low loss.
We show samples from the SWAG posterior, projected into
the plane formed by the endpoints of the curves, w0 and
w1, and a mode connecting point θ0. We show the induced
connecting paths from SWAG samples with orange lines.
All samples from the SWAG posterior lie in the region of
low loss, as do the sampled connecting paths, indicating that
there is indeed an entire volume of connected low loss solu-
tions induced by the SWAG posterior over θ. We provide
training details in the Appendix A.4.

Figure 2. A loss surface in the basis spanned by the defining points
of a connecting curve, w0, w1, θ0. Using SWAG, we form a pos-
terior distribution over mode connecting curves, representing a
volume of low loss explanations for the data.

4.2. Simplicial Complex Mode Connectivity

The results of Section 4.1 suggest that modes might be con-
nected by multi-dimensional paths. SPRO represents a natu-
ral generalization of the idea of learning a distribution over
connecting paths. By construction, if we use SPRO to find
the simplicial complexK(S(w0,θ0,...,θk), . . . , S(wm,θ0,...,θk))
we have found a whole space of suitable vertices to connect
the modes w0, · · · , wm. Any θ sampled from the k-simplex
S(θ0,...,θk) will induce a low-loss connecting path between
any two vertices in the complex.

To demonstrate that SPRO finds volumes of low
loss, we trained a simplicial complex using SPRO,
K(S(w0,θ0,θ1,θ2), S(w1,θ0,θ1,θ2)), forming two simplexes
containing three connecting vertices θ0, θ1, θ2 between the

two fixed points, w0 and w1, which are pre-trained models.

Figure 3 shows loss surface visualizations of this simpli-
cial complex in the parameter space of a VGG-16 network
trained on CIFAR-10. We see that this complex contains not
only standard mode connecting paths, but also volumes of
low loss that connect modes. Figure 3 is a straightforward
representation of how the loss landscape of large neural
networks should be understood as suggested in Figure 1; not
only are all training solutions connected by paths of low loss,
they are points on the same multi-dimensional manifold of
low loss. In the bottom right panel of Figure 3, every point
in the simplex corresponds to a different mode connecting
curve.

In Figure 4, we show there exist manifolds of low loss
that are vastly more intricate and high dimensional than a
simple composition of 3-simplexes connecting two modes.
In Figure 4a, we connect 4 modes using 3 connecting points
so that we have four different simplexes formed between
the modes of low loss for VGG-16 networks (Simonyan &
Zisserman, 2015) on CIFAR-100. The structure becomes
considerably more intricate as we expand the amount of
modes used; Figure 4b uses 7 modes with 9 connecting
points, forming 12 inter-connected simplexes. Note that
in this case not all modes are in shared simplexes with all
connecting points. These results clearly demonstrate that
SPRO is capable of finding intricate and multi-dimensional
structure within the loss surface. As a broader takeaway,
any mode we find through standard training is a single
point within a large and high dimensional structure of loss,
as shown in the rightmost representation in Figure 1. We
consider the accuracy of ensembles found via these mode
connecting simplexes in Appendix B.4. In Section 5.4 we
consider a particularly practical approach to ensembling
with SPRO.

4.3. Dimensionality of Loss Valleys

We can estimate the highest dimensionality of the connect-
ing space that SPRO can find, which provides a lower bound
on the true dimensionality of these mode connecting sub-
spaces for a given architecture and dataset. To measure
dimensionality, we take two pre-trained modes, w0 and
w1, and construct a connecting simplex with as many con-
necting points as possible, by finding the largest k such
that K(S(w0,θ0,...,θk), S(w1,θ0,...,θk)) contains both low loss
parameter settings and has non-zero volume. We could
continue adding more degenerate points to the simplex;
however, the resulting simplicial complex has no volume.

Figure 5 shows the volume of a simplicial complex connect-
ing two modes as a function of the number of connecting
points, k, for a VGG-16 network on CIFAR-10. To ensure
these are indeed low-loss complexes, we sample 25 mod-
els from each of these simplicial complexes and find that
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Figure 3. Loss surfaces for planes intersecting a mode connecting
simplicial complex K(S(w0,θ0,θ1,θ2), S(w1,θ0,θ1,θ2)) trained on
CIFAR-10 using a VGG-16 network. Top: along anyw0 → θj →
w1 path we recover a standard mode connecting path. Bottom
Left: a face of one of the simplexes that contains one of the
independently trained modes. We see that as we travel away from
w1 along any path within the simplex we retain low train loss.
Bottom Right: the simplex defined by the three mode connecting
points. Any point sampled from within this simplex defines a
low-loss mode connecting path between w0 and w1.

(a) 4 modes, 3 connectors. (b) 7 modes, 9 connectors.

Figure 4. (a,b) Three dimensional projections of mode connecting
simplicial complexes with training modes shown in blue and con-
nectors in orange. Blue shaded regions represent regions of low
loss found via SPRO. (a) 4 modes and 3 connecting points found
with a VGG-16 network on CIFAR-100. (b) 7 modes and a total of
9 connecting points found with a VGG-16 network on CIFAR-10.

all sampled models achieve greater than 98% accuracy on
the train set. We can continue adding new modes until we
reach k = 11, when the volume collapses to approximately
10−4, from a maximum of 105. Thus the dimensionality of
the manifold of low loss solutions for this architecture and
dataset is at least 10, as adding an eleventh point collapses
the volume.

5. ESPRO: Ensembling with SPRO
The ability to find large regions of low loss solutions has sig-
nificant practical implications: we show how to use SPRO to

Figure 5. Volume of the simplicial complex as a function of the
number of connectors for a VGG net on CIFAR-10 for two settings
λ of SPRO regularization. After 10 connectors, the volume col-
lapses, indicating that new points added to the simplicial complex
are within the span of previously found vertices. The low-loss
manifold must be at least 10 dimensions in this instance.

Figure 6. Loss surface visualizations of the faces of a sample ES-
PRO 3-simplex for a VGG network trained on CIFAR-100. The
ability to find a low-loss simplex starting from only a single SGD
solution, w0, leads to an efficient ensembling procedure.

efficiently create ensembles of models either within a single
simplex or by connecting an entire simplicial complex. We
start by generalizing the methodology presented in Section
3.2, leading to a simplex based ensembling procedure, we
call ESPRO (Ensembling SPRO). Crucially, our approach
finds a low-loss simplex starting from only a single SGD
solution. We show that the different parameters in these
simplexes gives rise to a diverse set of functions, which is
crucial for ensembling performance. Finally, we demon-
strate that ESPRO outperforms state-of-the-art deep ensem-
bles (Lakshminarayanan et al., 2017), both as a function of
ensemble components and total computational budget. In
Section 6, we show ESPRO also provides state-of-the-art
results for uncertainty representation.

5.1. Finding Simplexes from a Single Mode

In Section 3.2 we were concerned with finding a simplicial
complex that connects multiple modes. We now describe
how to adapt SPRO into a practical approach to ensembling
by instead finding multiple simplexes of low loss, each —
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crucially — starting from a single pre-trained SGD solution.

Simplexes contain a single mode, and take the form
S(wj ,θj,0,...,θj,k) where the θj,k is the kth vertex found with
SPRO in a simplex where one of the vertices is mode wj .
We find SPRO simplexes one at a time, rather than as a
complex. The associated loss function to find the kth vertex
in association with mode wj is

Lreg(D,S(wj ,θj,0,...,θj,k)) =
1

H

∑
φh∼S

L(D, φh)−

λi log(V(S(wj ,θj,0,...,θj,k))).

(3)

For compactness we write φh ∼ S to indicate φh is sampled
uniformly at random from simplex S(wj ,θj,0,...,θj,k).

We can think of this training procedure as extending out
from the pre-trained mode wj . First, in finding θj,0 we
find a line segment of low loss solutions, where one end
of the line is wj . Next, with θj,0 fixed, we seek θj,1 such
that the triangle formed by wj , θj,0, θj,1 contains low loss
solutions. We can continue adding vertices, constructing
many dimensional simplexes.

With the resulting simplex S(wj ,θj,0,...,θj,k), we can sample
as many models from within the simplex as we need, and
use them to form an ensemble. Functionally, ensembles
sampled from SPRO form an approximation to Bayesian
marginalization over the model parameters where we as-
sume a posterior that is uniform over the simplex. We can
define our prediction for a given input x as,

ŷ =
1

M

∑
φm∼S

f(x, φm) ≈
∫
φm∈S

f(x, φh)dφh, (4)

where we write S as shorthand for S(wj ,θj,0,...,θj,k). Specif-
ically, the Bayesian model average and its approximation
using approximate posteriors is

p(y∗|y,M) =

∫
p(y∗|φ)p(φ|y)dφ ≈

∫
p(y∗|φ)q(φ|y)dφ

≈ 1

M

M∑
i=1

p(y∗|φi); φi ∼ q(φ|y)

5.2. ESPRO: Ensembling over Multiple Independent
Simplexes

We can significantly improve performance by ensembling
from a simplicial complex containing multiple disjoint sim-
plexes, which we refer to as ESPRO (Ensembling over
SPRO simplexes). To form such an ensemble, we take a col-
lection of j parameter vectors from independently trained
models, w0, . . . , wj , and train a k + 1-order simplex at
each one using ESPRO. This procedure defines the sim-
plicial complex K(S(w0,...,θ0,k), . . . , S(wj ,...,θj,k)), which is

composed of j disjoint simplexes in parameter space. Pre-
dictions with ESPRO are generated as,

ŷ =
1

J

∑
φj∼K

f(x, φj) ≈
∫
K
f(x, φj)dφj (5)

where K is shorthand for K(S(w0,...,θ0,k), . . . , S(wj ,...,θj,k)).
ESPRO can be considered a mixture of simplexes (e.g. a
simplicial complex) to approximate a multimodal posterior,
towards a more accurate Bayesian model average. This
observation is similar to how Wilson & Izmailov (2020)
show that deep ensembles provide a compelling approxima-
tion to a Bayesian model average (BMA), and improve on
deep ensembles through the MultiSWAG procedure, which
uses a mixture of Gaussians approximation to the poste-
rior for a higher fidelity BMA. ESPRO further improves
the approximation to the BMA, by covering a larger region
of the posterior corresponding to low loss solutions with
functional variability. This perspective helps explain why
ESPRO improves both accuracy and calibration, through a
richer representation of epistemic uncertainty.

We verify the ability of ESPRO to find a simplex of low
loss starting from a single mode in Figure 6, which shows
the loss surface in the planes defined by the faces of a 3-
simplex found in the parameter space of a VGG-16 network
trained on CIFAR-100. The ability to find these simplexes
is core to forming ESPRO ensembles, as they only take a
small number of epochs to find, typically less than 10%
the cost of training a model from scratch, and they con-
tain diverse solutions that can be ensembled to improve
model performance. Notably, we can sweep out a volume
of low loss in parameter space without needing to first find
multiple modes, in contrast to prior work on mode connec-
tivity (Draxler et al., 2018; Garipov et al., 2018; Fort &
Jastrzebski, 2019). We show additional results with image
transformers (Dosovitskiy et al., 2021) on CIFAR-100 in
Appendix B.3, emphasizing that these simplexes are not
specific to a particular architecture.

5.3. SPRO and Functional Diversity

In practice we want to incorporate as many diverse high
accuracy classifiers as possible when making predictions to
gain the benefits of ensembling, such as improved accuracy
and calibration. SPRO gives us a way to sample diverse
models in parameter space, and in this section we show,
using a simple 2D dataset, that the parameter diversity found
with SPRO is a reasonable proxy for the functional diversity
we actually seek.

To better understand how the simplexes interact with the
functional form of the model, we consider an illustrative
example on the two-spirals classification dataset presented
in Huang et al. (2019), in which predictions can be easily
visualized. We find a 3-simplex (a tetrahedron) in the param-
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Figure 7. Functional diversity within a simplex. We show the
decision boundaries for two classes, in the two spirals problem,
with predictions in yellow and purple respectively. Both plots
are independent solution samples drawn from a 3-simplex of an
8-layer feed forward classifier and demonstrate that the simplexes
have considerable functional diversity, as illustrated by different
decision boundaries. Significant differences are visible inside the
data distribution (center of plots) and outside (around the edges).

eter space of a simple 8 layer deep feed forward classifier,
and visualize the functional form of the model for both sam-
ples taken from within the simplex in parameter space. By
examining the functional form of models sampled from sim-
plexes in parameter space we can quickly see why ESPRO
is beneficial. Figure 7 shows individual models sampled
from a single 3-simplex in parameter space, corresponding
to clear functional diversity. Models within the simplex all
fit the training data nearly perfectly but do so in distinct
ways, such that we can improve our final predictions by
averaging over these models.

5.4. Performance of Simplicial Complex Ensembles

Section 5.3 shows that we are able to discover simplexes
in parameter space containing models that lead to diverse
predictions, meaning that we can ensemble within a sim-
plex and gain some of the benefits seen by deep ensembles
(Lakshminarayanan et al., 2017). We use SPRO to train sim-
plicial complexes containing a number of disjoint simplexes,
and ensemble over these complexes to form predictions,
using Eq. 5. We fix the number of samples taken from the
ESPRO ensemble, J , to 25 which provides the best trade
off of accuracy vs test time compute cost.3 For example,
if we are training a deep ensemble of VGG-16 networks
with 3 ensemble components on CIFAR-10, we can form
a deep ensemble to achieve an error rate of approximately
6.2%; however, by extending each base model to just a sim-
ple 2-simplex (3 vertices) we can achieve an error rate of
approximately 5.7% — an improvement of nearly 10%!

After finding a mode through standard training, a low order
simplex can be found in just a small fraction of the time
it takes to train a model from scratch. For a fixed training
budget, we find that we can achieve a much lower error rate

3We show the relationship between samples from the simplex
and test error in Appendix B.2.

through training fewer overall ensemble components, but
training low order simplexes (order 0 to 2) at each mode
using ESPRO. Figure 8 shows a comparison of test error rate
for ensembles of VGG-16 models over different numbers
of ensemble components and simplex sizes on CIFAR-10
and CIFAR-100. For any fixed ensemble size, we can gain
performance by using a ESPRO ensemble rather than a stan-
dard deep ensemble. Furthermore, training these ESPRO
models is generally inexpensive; the models in Figure 8 are
trained on CIFAR-10 for 200 epochs and CIFAR-100 for
300 epochs. Adding a vertex takes only an additional 10
epochs of training on CIFAR-10, and 20 epochs of training
on CIFAR-100. We show the CIFAR-100 time-accuracy
tradeoff in Appendix B finding a similar trend to CIFAR-10.

Figure 9 shows a comparison of test error for ensembles
of ResNet-56 models over different ensemble and simplex
sizes in Figure 8, providing more evidence for the general
applicability of the ESPRO procedure. The main practical
difference between ResNet-56’s and the previous VGG net-
works is that the ResNet-56’s use BatchNorm. BatchNorm
statistics need to be adjusted when we sample a model from
within a simplex, leading to an additional cost at test time.
To generate predictions, we use 100 minibatches of train
data to update the batch norm statistics before freezing the
statistics and predicting on the test set.

6. Uncertainty and Robustness
We finish by investigating the uncertainty representation and
robustness to dataset shift provided by ESPRO. We show
qualitative results on a regression problem, before studying
corruptions of CIFAR-10, comparing to deep ensembles,
MultiSWA, and the state-of-the-art Bayesian approach Mul-
tiSWAG (Wilson & Izmailov, 2020).

6.1. Qualitative Regression Experiments

In general, a good representation of epistemic (model) un-
certainty has the property that the uncertainty grows as we
move away from the data. Visualizing the growth in uncer-
tainty is most straightforward in simple one-dimensional
regression problems.

Izmailov et al. (2019) visualize one dimensional regres-
sion uncertainty by randomly initializing a two layer neural
network, evaluating the neural network on three disjoint
random inputs in one dimension: (−7,−5), (−1, 1), and
(5, 7), and adding noise of σ2 = 0.1 to the net’s outputs.
The task is to recover the true noiseless function, f, given
another randomly initialized two layer network, as well as
to achieve reasonable confidence bands in the regions of
missing data — we used a Gaussian likelihood with fixed
σ2 = 0.1 to train the networks, modelling the noisy data
y. In Figure 10, we show ESPRO (top left) which recovers
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Figure 8. Performance of deep ensembles and ESPRO (with either a 1-simplex, e.g. a line or a 2-simplex, e.g. a triangle) using VGG-16
networks in terms of total train time and the number of simplexes (number of ensembles). Left: Test error as a function of total training
budget on CIFAR-10. The number of components in the ensembles increases as curves move left to right. For any given training budget,
ESPRO outperforms deep ensembles. Center: Test error as a function of the number of simplexes in the ensemble on CIFAR-10. A
comparison of performance of ESPRO models on CIFAR-10 (left) and CIFAR-100 (right) of VGG-16 networks with various numbers of
ensemble components along the x-axis, and various simplex orders indicated by color. For any fixed number of ensemble components we
can outperform a standard deep ensemble using simplexes from ESPRO. Notably, expanding the number of vertices in a simplex takes
only 10 epochs of training on CIFAR-10 compared to the 200 epochs of training required to train a model from scratch. On CIFAR-100
adding a vertex to an ESPRO simplex takes just 20 epochs of training compared to 300 to train from scratch.

Figure 9. Performance of deep ensembles and ESPRO (1, 2, or 3-
simplex) using ResNet-56 models on CIFAR-10. The ResNet-56s
follow the same trend as VGG networks: more ensemble compo-
nents increases accuracy, ESPRO significantly outperforms deep
ensembles, and adding further simplex vertices to each ESPRO
component provides additional improvements.

good qualitative uncertainty bands on this task. We compare
to deep ensembles (size 5) (top right) and the state of the art
subspace inference method of Izmailov et al. (2019) (bottom
left), finding that ESPRO does a better job of recovering
uncertainty about the latent function f than either compet-
ing method, as shown by the 2σ confidence region about
p(f |D). Indeed, after adding in the true noise, ESPRO com-
plexes also do a better job of modelling the noisy responses,
y, measured by p(y|D) than either approach.

6.2. Uncertainty and Accuracy under Dataset Shift

Modern neural networks are well known to be poorly cali-
brated and to result in overconfident predictions. Following
Ovadia et al. (2019), we consider classification accuracy,
the negative log likelihood (NLL), and expected calibra-

Figure 10. Qualitative uncertainty plots of p(f |D) on a regression
problem. We show both the 2σ confidence regions from p(f |D)
(the latent noise-free function) and p(y|D), which includes the ob-
served noise of the data (aleatoric uncertainty). Top Left: ESPRO,
colored lines are the vertices in the simplex. First two are fixed
points in the simplex. Top Right: Deep ensembles, colored lines
are individual models. Bottom Left: Curve subspaces. ESPRO
solutions produce functionally diverse solutions that have good
in-between (between the data distribution) and extrapolation (out-
side of the data distribution) uncertainties; the ESPRO predictive
distribution is broader and more realistic than deep ensembles
and mode-connecting subspace inference, by containing a greater
variety of high performing solutions.

tion error (ECE), to asses model performance under varying
amounts of dataset shift, comparing to deep ensembles (Lak-
shminarayanan et al., 2017), MultiSWA, and MultiSWAG
(Wilson & Izmailov, 2020), a state-of-the-art approach to
Bayesian deep learning which generalizes deep ensembles.
In Figure 11a, we show results across all levels for the Gaus-
sian noise corruption, where we see that ESPRO is most
accurate across all levels. For NLL we use temperature
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(a) Accuracy for Gaussian noise corruption

(b) NLL for Gaussian noise corruption

Figure 11. (a) Accuracy for Gaussian blur corruption for MultiSWA, MultiSWAG, deep ensembles and ESPRO. (b) NLL under the
same corruption. All models were originally significantly over-confident so we use temperature scaling (Guo et al., 2017) to improve
uncertainty; after temperature scaling ESPRO generally performs the best under varying levels of corruption.

scaling (Guo et al., 2017) on all methods to reduce the over-
confidence and report the results in Figure 11b. We see
that ESPRO with temperature scaling outperforms all other
methods for all corruption levels. We show ECE and results
across other types of dataset corruption in Appendix C.1.

7. Discussion
We have shown that the loss landscapes for deep neural net-
works contain large multi-dimensional simplexes of low loss
solutions. We proposed a simple approach, which we term
SPRO, to discover these simplexes. We show how this geo-
metric discovery can be leveraged to develop a highly practi-
cal approach to ensembling, which samples diverse and low
loss solutions from the simplexes. Our approach improves
upon state-of-the-art methods including deep ensembles and
MultiSWAG, in accuracy and robustness. Overall, this paper
provides a new understanding of how the loss landscapes
in deep learning are structured: rather than isolated modes,
or basins of attraction connected by thin tunnels, there are
large multidimensional manifolds of connected solutions.

This new understanding of neural network loss landscapes
has many exciting practical implications and future direc-
tions. We have shown we can build state-of-the-art ensem-
bling approaches from low less simplexes, which serve as
a simple drop-in replacement for deep ensembles. In the

future, one could build posterior approximations that cover
these simplexes, while extending coverage to lower den-
sity points for a more exhaustive Bayesian model average.
We could additionally build stochastic MCMC methods de-
signed to navigate specifically in these subspaces of low loss
but diverse solutions. These types of topological features
in the loss landscape, which are very distinctive to neural
networks, hold the keys to understanding generalization in
deep learning.
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