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Abstract
With a better understanding of the loss surfaces
for multilayer networks, we can build more robust
and accurate training procedures. Recently it was
discovered that independently trained SGD so-
lutions can be connected along one-dimensional
paths of near-constant training loss. In this paper,
we show that there are in fact mode-connecting
simplicial complexes that form multi-dimensional
manifolds of low loss, connecting many indepen-
dently trained models. Inspired by this discov-
ery, we show how to efficiently build simplicial
complexes for fast ensembling, outperforming
independently trained deep ensembles in accu-
racy, calibration, and robustness to dataset shift.
Notably, our approach only requires a few train-
ing epochs to discover a low-loss simplex, start-
ing from a pre-trained solution. Code is avail-
able at https://github.com/g-benton/
loss-surface-simplexes.

1. Introduction
Despite significant progress in the last few years, little is
known about neural network loss landscapes. Recent works
have shown that the modes found through SGD training
of randomly initialized models are connected along narrow
pathways connecting pairs of modes, or through tunnels
connecting multiple modes at once (Garipov et al., 2018;
Draxler et al., 2018; Fort & Jastrzebski, 2019). In this
paper we show that there are in fact large multi-dimensional
simplicial complexes of low loss in the parameter space of
neural networks that contain arbitrarily many independently
trained modes.

The ability to find these large volumes of low loss that
can connect any number of independent training solutions
represents a natural progression in how we understand the
loss landscapes of neural networks, as shown in Figure 1.
In the left of Figure 1, we see the classical view of loss

1New York University. Correspondence to: Gregory W. Benton
<gwb260@nyu.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

✓1
<latexit sha1_base64="b2Ff/oUFJw0eznxXS1RygRK2bZk=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTg9HHGnf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fja/d0rOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms+fJQGjOUE4soUwLeythI6opQxtRyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjCQ8Ayv8OY8Oi/Ou/OxaC04+cwx/IHz+QPOtY/Q</latexit>

✓2
<latexit sha1_base64="oe3DagNbCs6bjj10ybLfZH9d5SY=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTg9HHGm/1i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+75ScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZs+TgdCcoZxYQpkW9lbCRlRThjaikg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAg4Rle4c15dF6cd+dj0Vpw8plj+APn8wfQOY/R</latexit>

✓3
<latexit sha1_base64="R5K03HuliXINm8N616K2JXm4/8Q=">AAAB73icbVBNS8NAEN34WetX1aOXxSJ4Kkkr6LHoxWMF+wFtKJvtpF262cTdiVBC/4QXD4p49e9489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqDk0ey1h3AmZACgVNFCihk2hgUSChHYxvZ377CbQRsXrASQJ+xIZKhIIztFKnhyNA1q/1S2W34s5BV4mXkzLJ0eiXvnqDmKcRKOSSGdP13AT9jGkUXMK02EsNJIyP2RC6lioWgfGz+b1Tem6VAQ1jbUshnau/JzIWGTOJAtsZMRyZZW8m/ud1Uwyv/UyoJEVQfLEoTCXFmM6epwOhgaOcWMK4FvZWykdMM442oqINwVt+eZW0qhWvVqneX5brN3kcBXJKzsgF8cgVqZM70iBNwokkz+SVvDmPzovz7nwsWtecfOaE/IHz+QPRvY/S</latexit>

✓4
<latexit sha1_base64="4AJkBN4moR95a55jEtdFmKULvZU=">AAAB73icbVBNS8NAEN34WetX1aOXxSJ4Kkkt6LHoxWMF+wFtKJvtpF262cTdiVBC/4QXD4p49e9489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqDk0ey1h3AmZACgVNFCihk2hgUSChHYxvZ377CbQRsXrASQJ+xIZKhIIztFKnhyNA1q/1S2W34s5BV4mXkzLJ0eiXvnqDmKcRKOSSGdP13AT9jGkUXMK02EsNJIyP2RC6lioWgfGz+b1Tem6VAQ1jbUshnau/JzIWGTOJAtsZMRyZZW8m/ud1Uwyv/UyoJEVQfLEoTCXFmM6epwOhgaOcWMK4FvZWykdMM442oqINwVt+eZW0qhXvslK9r5XrN3kcBXJKzsgF8cgVqZM70iBNwokkz+SVvDmPzovz7nwsWtecfOaE/IHz+QPTQY/T</latexit>

✓1
<latexit sha1_base64="b2Ff/oUFJw0eznxXS1RygRK2bZk=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTg9HHGnf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fja/d0rOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms+fJQGjOUE4soUwLeythI6opQxtRyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjCQ8Ayv8OY8Oi/Ou/OxaC04+cwx/IHz+QPOtY/Q</latexit>

✓2
<latexit sha1_base64="oe3DagNbCs6bjj10ybLfZH9d5SY=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTg9HHGm/1i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+75ScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZs+TgdCcoZxYQpkW9lbCRlRThjaikg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAg4Rle4c15dF6cd+dj0Vpw8plj+APn8wfQOY/R</latexit>

✓3
<latexit sha1_base64="R5K03HuliXINm8N616K2JXm4/8Q=">AAAB73icbVBNS8NAEN34WetX1aOXxSJ4Kkkr6LHoxWMF+wFtKJvtpF262cTdiVBC/4QXD4p49e9489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqDk0ey1h3AmZACgVNFCihk2hgUSChHYxvZ377CbQRsXrASQJ+xIZKhIIztFKnhyNA1q/1S2W34s5BV4mXkzLJ0eiXvnqDmKcRKOSSGdP13AT9jGkUXMK02EsNJIyP2RC6lioWgfGz+b1Tem6VAQ1jbUshnau/JzIWGTOJAtsZMRyZZW8m/ud1Uwyv/UyoJEVQfLEoTCXFmM6epwOhgaOcWMK4FvZWykdMM442oqINwVt+eZW0qhWvVqneX5brN3kcBXJKzsgF8cgVqZM70iBNwokkz+SVvDmPzovz7nwsWtecfOaE/IHz+QPRvY/S</latexit>

✓4
<latexit sha1_base64="4AJkBN4moR95a55jEtdFmKULvZU=">AAAB73icbVBNS8NAEN34WetX1aOXxSJ4Kkkt6LHoxWMF+wFtKJvtpF262cTdiVBC/4QXD4p49e9489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqDk0ey1h3AmZACgVNFCihk2hgUSChHYxvZ377CbQRsXrASQJ+xIZKhIIztFKnhyNA1q/1S2W34s5BV4mXkzLJ0eiXvnqDmKcRKOSSGdP13AT9jGkUXMK02EsNJIyP2RC6lioWgfGz+b1Tem6VAQ1jbUshnau/JzIWGTOJAtsZMRyZZW8m/ud1Uwyv/UyoJEVQfLEoTCXFmM6epwOhgaOcWMK4FvZWykdMM442oqINwVt+eZW0qhXvslK9r5XrN3kcBXJKzsgF8cgVqZM70iBNwokkz+SVvDmPzovz7nwsWtecfOaE/IHz+QPTQY/T</latexit>

✓1
<latexit sha1_base64="b2Ff/oUFJw0eznxXS1RygRK2bZk=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTg9HHGnf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fja/d0rOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms+fJQGjOUE4soUwLeythI6opQxtRyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjCQ8Ayv8OY8Oi/Ou/OxaC04+cwx/IHz+QPOtY/Q</latexit>

✓2
<latexit sha1_base64="oe3DagNbCs6bjj10ybLfZH9d5SY=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTg9HHGm/1i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+75ScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZs+TgdCcoZxYQpkW9lbCRlRThjaikg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAg4Rle4c15dF6cd+dj0Vpw8plj+APn8wfQOY/R</latexit>

✓3
<latexit sha1_base64="R5K03HuliXINm8N616K2JXm4/8Q=">AAAB73icbVBNS8NAEN34WetX1aOXxSJ4Kkkr6LHoxWMF+wFtKJvtpF262cTdiVBC/4QXD4p49e9489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqDk0ey1h3AmZACgVNFCihk2hgUSChHYxvZ377CbQRsXrASQJ+xIZKhIIztFKnhyNA1q/1S2W34s5BV4mXkzLJ0eiXvnqDmKcRKOSSGdP13AT9jGkUXMK02EsNJIyP2RC6lioWgfGz+b1Tem6VAQ1jbUshnau/JzIWGTOJAtsZMRyZZW8m/ud1Uwyv/UyoJEVQfLEoTCXFmM6epwOhgaOcWMK4FvZWykdMM442oqINwVt+eZW0qhWvVqneX5brN3kcBXJKzsgF8cgVqZM70iBNwokkz+SVvDmPzovz7nwsWtecfOaE/IHz+QPRvY/S</latexit>

✓4
<latexit sha1_base64="4AJkBN4moR95a55jEtdFmKULvZU=">AAAB73icbVBNS8NAEN34WetX1aOXxSJ4Kkkt6LHoxWMF+wFtKJvtpF262cTdiVBC/4QXD4p49e9489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqDk0ey1h3AmZACgVNFCihk2hgUSChHYxvZ377CbQRsXrASQJ+xIZKhIIztFKnhyNA1q/1S2W34s5BV4mXkzLJ0eiXvnqDmKcRKOSSGdP13AT9jGkUXMK02EsNJIyP2RC6lioWgfGz+b1Tem6VAQ1jbUshnau/JzIWGTOJAtsZMRyZZW8m/ud1Uwyv/UyoJEVQfLEoTCXFmM6epwOhgaOcWMK4FvZWykdMM442oqINwVt+eZW0qhXvslK9r5XrN3kcBXJKzsgF8cgVqZM70iBNwokkz+SVvDmPzovz7nwsWtecfOaE/IHz+QPTQY/T</latexit>

Figure 1. A progressive understanding of the loss surfaces of neu-
ral networks. Left: The traditional view of loss in parameter space,
in which regions of low loss are disconnected (Goodfellow et al.,
2015; Choromanska et al., 2015). Center: The revised view of
loss surfaces provided by work on mode connectivity; multiple
SGD training solutions are connected by narrow tunnels of low
loss (Garipov et al., 2018; Draxler et al., 2018; Fort & Jastrzeb-
ski, 2019). Right: The viewpoint introduced in this work; SGD
training converges to different points on a connected volume of
low loss. Paths between different training solutions exist within a
large multi-dimensional manifold of low loss. We provide a two
dimensional representation of these loss surfaces in Figure A.1.

surface structure in neural networks, where there are many
isolated low loss modes that can be found through training
randomly initialized networks. In the center we have a
more contemporary view, showing that there are paths that
connect these modes. On the right we present a new view —
that all modes found through standard training converge to
points within a single connected multi-dimensional volume
of low loss.

We introduce Simplicial Pointwise Random Optimization
(SPRO) as a method of finding simplexes and simplicial
complexes that bound volumes of low loss in parame-
ter space. With SPRO we are able to find mode con-
necting spaces that simultaneously connect many indepen-
dently trained models through a a single well-defined multi-
dimensional manifold. Furthermore, SPRO is able to explic-
itly define a space of low loss solutions through determining
the bounding vertices of the simplicial complex, meaning
that computing the dimensionality and volume of the space
become straightforward, as does sampling models within
the complex.

This enhanced understanding of loss surface structure en-
ables practical methodological advances. Through the abil-
ity to rapidly sample models from within the simplex we can
form Ensembled SPRO (ESPRO) models. ESPRO works

https://github.com/g-benton/loss-surface-simplexes
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by generating a simplicial complex around independently
trained models and ensembling from within the simplexes,
outperforming the gold standard deep ensemble combina-
tion of independently trained models (Lakshminarayanan
et al., 2017). We can view this ensemble as an approxima-
tion to a Bayesian model average, where the posterior is
uniformly distributed over a simplicial complex.

Our paper is structured as follows: In Section 3, we intro-
duce a method to discover multi-dimensional mode con-
necting simplexes in the neural network loss surface. In
Section 4, we show the existence of mode connecting
volumes and provide a lower bound on the dimensional-
ity of these volumes. Building on these insights, in Sec-
tion 5 we introduce ESPRO, a state-of-the-art approach
to ensembling with neural networks, which ef�ciently av-
erages over simplexes. In Section 6, we show that ES-
PRO also provides well-calibrated representations of uncer-
tainty. We emphasize that ESPRO can be used as a sim-
ple drop-in replacement for deep ensembles, with improve-
ments in accuracy and uncertainty representations. Code
is available athttps://github.com/g-benton/
loss-surface-simplexes .

2. Related Work

The study of neural network loss surfaces has long been
intertwined with an understanding of neural network gen-
eralization. Hochreiter & Schmidhuber (1997) argued that
�at minima provide better generalization, and proposed an
optimization algorithm to �nd such solutions. Keskar et al.
(2017) and Li et al. (2018) reinvigorated this argument by
visualizing loss surfaces and studying the geometric proper-
ties of deep neural networks at their minima. Izmailov et al.
(2018) found that averaging SGD iterates with a modi�ed
learning rate �nds �atter solutions that generalize better.
Maddox et al. (2019) leveraged these insights in the context
of Bayesian deep learning to form posteriors in �at regions
of the loss landscape. Moreover, Maddox et al. (2020) found
many directions in parameter space that can be perturbed
without changing the training or test loss.

Freeman & Bruna (2017) demonstrated that single layer
ReLU neural networks can be connected along a low loss
curves. Garipov et al. (2018) and Draxler et al. (2018) simul-
taneously demonstrated that it is possible to �nd low loss
curves for ResNets and other deep networks. Skorokhodov
& Burtsev (2019) used multi-point optimization to parame-
terize wider varieties of shapes in loss surfaces, when visu-
alizing the value of the loss, including exotic shapes such
as cows. Czarnecki et al. (2019) then showed that low di-
mensional spaces of nearly constant loss theoretically exist
in the loss surfaces of deep ReLU networks, but did not
provide an algorithm to �nd these loss surfaces.

Fort & Jastrzebski (2019) propose viewing the loss land-
scape as a series of potentially connected low-dimensional
wedges in the much higher dimensional parameter space.
They then demonstrate that sets of optima can be connected
via low-loss connectors that are generalizations of Garipov
et al. (2018)'s procedure. Our work generalizes these �nd-
ings by discovering higher dimensional mode connecting
volumes, which we then leverage for a highly ef�cient and
practical ensembling procedure.

Also appearing at the same conference as this work, Worts-
man et al. (2021) concurrently proposed a closely related
technique to learn low dimensional neural network sub-
spaces by extending the methods of Fort et al. (2019) and
Garipov et al. (2018). More speci�cally, they propose train-
ing parametric curves (and subspaces) while additionally
using a weight space regularizer to encourage weight space
functional diversity.

3. Mode Connecting Volumes

We now show how to generalize the procedure of Garipov
et al. (2018) to discover simplices of mode connectingvol-
umes, containing in�nitely many mode connecting curves.
In Section 3, we then show how to use our procedure to
demonstrate the existence of these volumes in modern neu-
ral networks, revising our understanding about the structure
of their loss landscapes. In Sections 5 and 6 we show how to
we can use these discoveries to build practical new methods
which provide state of the art performance for both accuracy
and uncertainty representation. We refer to our approach as
SPRO (Simplicial Pointwise Random Optimization).

3.1. Simplicial Complexes of Low Loss

To �nd mode connecting volumes we seeksimplexesand
simplicial complexesof low loss. Two primary reasons we
seek simplexes of low loss are that (i) simplexes are de�ned
by only a few points, and (ii) simplexes are easily sam-
pled. The �rst point means that to de�ne a mode connecting
simplicial complex of low loss we need only �nd a small
number of vertices to fully determine the simplexes in the
complex. The second point means that we have easy access
to the models contained within the simplex, leading to the
practical simplex-based ensembling methods presented later
in the paper.

We consider dataD, and training objectiveL . We
refer to S(a0 ;a 1 ;:::;a k ) as thek-simplex formed by ver-
tices a0; a1; : : : ; ak , and V(S(a0 ;:::;a k ) ) as the volume
of the simplex.1 Simplicial complexes are denoted
K(S(a0 ;a 1 ;:::;a N a ) ; S(b0 ;b1 ;:::;b N b ) ; : : : ; S(m 0 ;m 1 ;:::;m N m ) ),
and their volume is computed as the sum of the volume of

1We use Cayley-Menger determinants to compute the volume
of simplexes; for more information see Appendix A.1.
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their components. We usewj to denotemodes, or SGD
training solutions, and� j to denote mode connecting points.
For example, we could train two independent models to �nd
parameter settingsw0 andw1, and then �nd mode connect-
ing point � 0 such that the pathw0 ! � 0 ! w1 traversed
low loss parameter settings as in Fort & Jastrzebski (2019)
and Garipov et al. (2018).

3.2. Simplicial Complexes With SPRO

To �nd a simplicial complex of low loss solutions, we �rst
�nd a collection of modesw0; : : : ; wk through standard
training. This procedure gives the trivial simplicial com-
plex K(S(w0 ) ; : : : ; S(wk ) ) (or K), a complex containingk
disjoint 0-simplexes. With these modes we can then itera-
tively add connecting points,� j , to join any number of the
0-simplexes in the complex, and train the parameters in� j

such that the loss within the simplicial complex,K, remains
low. The procedure to train these connecting� j forms the
core of the SPRO algorithm, given here.

To gain intuition, we �rst consider some examples be-
fore presenting the full SPRO training procedure. As we
have discussed, we can take modesw0 andw1 and train
� 0 to �nd a complexK(S(w0 ;� 0 ) ; S(w1 ;� 0 ) ), which recov-
ers a mode connecting path as in Garipov et al. (2018).
Alternatively, we could connect� 0 with more than two
modes and build the complexK(S(w0 ;� 0 ) ; : : : ; S(w4 ;� 0 ) ),
connecting5 modes through a single point, similar to
the m-tunnels presented in Fort & Jastrzebski (2019).
SPRO can be taken further, however, and we could train
(one at a time) a sequence of� j 's to �nd the complex
K(S(w0 ;� 0 ;� 1 ;� 2 ) ; S(w1 ;� 0 ;� 1 ;� 2 ) ; S(w2 ;� 0 ;� 1 ;� 2 ) ), describing a
multi-dimensional volume that simultaneously connects3
modes through3 shared points.

We aim to train the� j 's in K such that the expected loss for
models in the simplicial complex is low and the volume of
the simplicial complex is as large as possible. That is, as
we train thej th connecting point,� j , we wish to minimize
E� �K L (D; � ) while maximizingV(K), using� � K to
indicate� follows a uniform distribution over the simplicial
complexK.

Following Garipov et al. (2018), we useH parameter
vectors randomly sampled from the simplex,� H

h=1 �
K, to compute 1

H

P H
h=1 L (D; � h ) as an estimate of

E� �K L (D; � ).2 In practice we only need a small num-
ber of samples,H , and for all experiments useH = 5 to
balance between avoiding signi�cant slowdowns in the loss
function and ensuring we have reasonable estimates of the
loss over the simplex. Using this estimate we train� j by

2We discuss the exact method for sampling, and the implica-
tions on bias in the loss estimate in Appendix A.1.

minimizing the regularized loss,

L reg (K) =
1
H

X

� h �K

L (D; � h ) � � j log(V(K)) : (1)

The regularization penalty� j balances the objective be-
tween seeking a smaller simplicial complex that contains
strictly low loss parameter settings (small� j ), and a larger
complex that that may contain less accurate solutions but
encompasses more volume in parameter space (large� j ).
In general only a small amount of regularization is needed,
and results are not sensitive to the choice of� j . In Section
5 we explain how to adapt Eq. 1 to train simplexes of low
loss using single independetly trained models.... We provide
details about how we choose� j in Appendix A.2.

4. Volume Finding Experiments

In this section, we �nd volumes of low loss in a variety of
settings. First, we show that the mode �nding procedure of
Garipov et al. (2018) can be extended to �nd distributions
of modes. Then, we explore mode connecting simplicial
complexes of low loss in a variety of settings, and �nally
provide an empirical upper bound on the dimensionality of
the mode connecting spaces.

Loss Surface Plots. Throughout this section and the re-
mainder of the paper we display two-dimensional visual-
izations of loss surfaces of neural networks. These plots
represent the loss within the plane de�ned by the three
points (representing parameter vectors) in each plot. More
speci�cally, if the three points in question are, e.g.,w0, w1,
andw2 then we de�nec = 1

3

P 2
i =0 wi as the center of the

points and use Gram-Schmidt to constructu andv, an or-
thonormal basis for the plane de�ned by the points. With
the center and the basis chosen, we can sample the loss at
parameter vectors of the formw = c+ r u u + r v v wherer u

andr v range from� R to R, a range parameter chosen such
that all the points are within the surface with a reasonable
boundary.

4.1. Volumes of Connecting Modes

In Bayesian deep learning, we wish to form a predictive
distribution through a posterior weighted Bayesian model
average:

p(yjx; D) =
Z

p(yjw; x)p(wjD)dw ; (2)

wherey is an output (e.g., a class label),x is an input (e.g.,
an image),D is the data, andw are the neural network
weights. This integral is challenging to compute due to the
complex structure of the posteriorp(wjD).

To help address this challenge, we can instead approximate
the Bayesian model average in a subspace that contains
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many good solutions, as in Izmailov et al. (2019). Here, we
generalize the mode connecting procedure of Garipov et al.
(2018) to perform inference over subspaces that contain
volumesof mode connecting curves.

In Garipov et al. (2018), a mode connecting curve is de-
�ned by its parameters� . Treating the objective used to
�nd � in Garipov et al. (2018),l (� ), as a likelihood, we
infer an approximate Gaussian posteriorq(� jD ) using the
SWAG procedure of Maddox et al. (2019), which induces
a distribution over mode connecting curves. Each sample
from q(� jD ) provides a mode connecting curve, which itself
contains a space of complementary solutions.

In Figure 2, we see that it is possible to move between
different values of� without leaving a region of low loss.
We show samples from the SWAG posterior, projected into
the plane formed by the endpoints of the curves,w0 and
w1, and a mode connecting point� 0. We show the induced
connecting paths from SWAG samples with orange lines.
All samples from the SWAG posterior lie in the region of
low loss, as do the sampled connecting paths, indicating that
there is indeed an entire volume of connected low loss solu-
tions induced by the SWAG posterior over� . We provide
training details in the Appendix A.4.

Figure 2.A loss surface in the basis spanned by the de�ning points
of a connecting curve,w0 ; w1 ; � 0 . Using SWAG, we form a pos-
terior distribution over mode connecting curves, representing a
volume of low loss explanations for the data.

4.2. Simplicial Complex Mode Connectivity

The results of Section 4.1 suggest that modes might be con-
nected bymulti-dimensionalpaths. SPRO represents a natu-
ral generalization of the idea of learning a distribution over
connecting paths. By construction, if we use SPRO to �nd
the simplicial complexK(S(w0 ;� 0 ;:::;� k ) ; : : : ; S(wm ;� 0 ;:::;� k ) )
we have found a wholespaceof suitable vertices to connect
the modesw0; � � � ; wm . Any � sampled from thek-simplex
S( � 0 ;:::;� k ) will induce a low-loss connecting path between
any two vertices in the complex.

To demonstrate that SPRO �nds volumes of low
loss, we trained a simplicial complex using SPRO,
K(S(w0 ;� 0 ;� 1 ;� 2 ) ; S(w1 ;� 0 ;� 1 ;� 2 ) ); forming two simplexes
containing three connecting vertices� 0; � 1; � 2 between the

two �xed points,w0 andw1; which are pre-trained models.

Figure 3 shows loss surface visualizations of this simpli-
cial complex in the parameter space of a VGG-16network
trained on CIFAR-10. We see that this complex contains not
only standard mode connecting paths, but also volumes of
low loss that connect modes. Figure 3 is a straightforward
representation of how the loss landscape of large neural
networks should be understood as suggested in Figure 1; not
only are all training solutions connected by paths of low loss,
they are points on the samemulti-dimensional manifoldof
low loss. In the bottom right panel of Figure 3, every point
in the simplex corresponds to a different mode connecting
curve.

In Figure 4, we show there exist manifolds of low loss
that are vastly more intricate and high dimensional than a
simple composition of3-simplexes connecting two modes.
In Figure 4a, we connect4 modes using3 connecting points
so that we have four different simplexes formed between
the modes of low loss for VGG-16networks (Simonyan &
Zisserman, 2015) on CIFAR-100. The structure becomes
considerably more intricate as we expand the amount of
modes used; Figure 4b uses7 modes with9 connecting
points, forming12 inter-connected simplexes. Note that
in this case not all modes are in shared simplexes with all
connecting points. These results clearly demonstrate that
SPRO is capable of �nding intricate and multi-dimensional
structure within the loss surface. As a broader takeaway,
any mode we �nd through standard training is a single
point within a large and high dimensional structure of loss,
as shown in the rightmost representation in Figure 1. We
consider the accuracy of ensembles found via these mode
connecting simplexes in Appendix B.4. In Section 5.4 we
consider a particularly practical approach to ensembling
with SPRO.

4.3. Dimensionality of Loss Valleys

We can estimate the highest dimensionality of the connect-
ing space that SPRO can �nd, which provides a lower bound
on the true dimensionality of these mode connecting sub-
spaces for a given architecture and dataset. To measure
dimensionality, we take two pre-trained modes,w0 and
w1; and construct a connecting simplex with as many con-
necting points as possible, by �nding the largestk such
thatK(S(w0 ;� 0 ;:::;� k ) ; S(w1 ;� 0 ;:::;� k ) ) contains both low loss
parameter settings and has non-zero volume. We could
continue adding more degenerate points to the simplex;
however, the resulting simplicial complex has no volume.

Figure 5 shows the volume of a simplicial complex connect-
ing two modes as a function of the number of connecting
points,k; for a VGG-16network on CIFAR-10. To ensure
these are indeed low-loss complexes, we sample25 mod-
els from each of these simplicial complexes and �nd that
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Figure 3.Loss surfaces for planes intersecting a mode connecting
simplicial complexK(S( w 0 ;� 0 ;� 1 ;� 2 ) ; S( w 1 ;� 0 ;� 1 ;� 2 ) ) trained on
CIFAR-10using a VGG-16network.Top: along anyw0 ! � j !
w1 path we recover a standard mode connecting path.Bottom
Left: a face of one of the simplexes that contains one of the
independently trained modes. We see that as we travel away from
w1 along any path within the simplex we retain low train loss.
Bottom Right: the simplex de�ned by the three mode connecting
points. Any point sampled from within this simplex de�nes a
low-loss mode connecting path betweenw0 andw1 .

(a)4 modes,3 connectors. (b) 7 modes,9 connectors.

Figure 4.(a,b) Three dimensional projections of mode connecting
simplicial complexes with training modes shown in blue and con-
nectors in orange. Blue shaded regions represent regions of low
loss found via SPRO.(a) 4 modes and3 connecting points found
with a VGG-16network on CIFAR-100. (b) 7 modes and a total of
9 connecting points found with a VGG-16 network on CIFAR-10.

all sampled models achieve greater than98%accuracy on
the train set. We can continue adding new modes until we
reachk = 11; when the volume collapses to approximately
10� 4; from a maximum of105: Thus the dimensionality of
the manifold of low loss solutions for this architecture and
dataset is at least10, as adding an eleventh point collapses
the volume.

5. ESPRO: Ensembling with SPRO

The ability to �nd large regions of low loss solutions has sig-
ni�cant practical implications: we show how to use SPRO to

Figure 5.Volume of the simplicial complex as a function of the
number of connectors for a VGG net on CIFAR-10 for two settings
� of SPRO regularization. After10 connectors, the volume col-
lapses, indicating that new points added to the simplicial complex
are within the span of previously found vertices. The low-loss
manifold must be at least10 dimensions in this instance.

Figure 6.Loss surface visualizations of the faces of a sample ES-
PRO3-simplex for a VGG network trained on CIFAR-100. The
ability to �nd a low-loss simplex starting from only asingleSGD
solution,w0 , leads to an ef�cient ensembling procedure.

ef�ciently create ensembles of models either within a single
simplex or by connecting an entire simplicial complex. We
start by generalizing the methodology presented in Section
3.2, leading to a simplex based ensembling procedure, we
call ESPRO (Ensembling SPRO). Crucially, our approach
�nds a low-loss simplex starting from only asingleSGD
solution. We show that the different parameters in these
simplexes gives rise to a diverse set of functions, which is
crucial for ensembling performance. Finally, we demon-
strate that ESPRO outperforms state-of-the-artdeep ensem-
bles(Lakshminarayanan et al., 2017), both as a function of
ensemble components and total computational budget. In
Section 6, we show ESPRO also provides state-of-the-art
results for uncertainty representation.

5.1. Finding Simplexes from a Single Mode

In Section 3.2 we were concerned with �nding a simplicial
complex that connects multiple modes. We now describe
how to adapt SPRO into a practical approach to ensembling
by instead �nding multiple simplexes of low loss, each —
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crucially — starting from asinglepre-trained SGD solution.

Simplexes contain a single mode, and take the form
S(w j ;� j; 0 ;:::;� j;k ) where the� j;k is thekth vertex found with
SPRO in a simplex where one of the vertices is modewj .
We �nd SPRO simplexes one at a time, rather than as a
complex. The associated loss function to �nd thekth vertex
in association with modewj is

L reg (D;S(w j ;� j; 0 ;:::;� j;k ) ) =
1
H

X

� h � S

L (D; � h )�

� i log(V(S(w j ;� j; 0 ;:::;� j;k ) )) :

(3)

For compactness we write� h � S to indicate� h is sampled
uniformly at random from simplexS(w j ;� j; 0 ;:::;� j;k ) .

We can think of this training procedure as extending out
from the pre-trained modewj . First, in �nding � j; 0 we
�nd a line segment of low loss solutions, where one end
of the line iswj . Next, with � j; 0 �xed, we seek� j; 1 such
that the triangle formed bywj , � j; 0; � j; 1 contains low loss
solutions. We can continue adding vertices, constructing
many dimensional simplexes.

With the resulting simplexS(w j ;� j; 0 ;:::;� j;k ) , we can sample
as many models from within the simplex as we need, and
use them to form an ensemble. Functionally, ensembles
sampled from SPRO form an approximation to Bayesian
marginalization over the model parameters where we as-
sume a posterior that is uniform over the simplex. We can
de�ne our prediction for a given inputx as,

ŷ =
1

M

X

� m � S

f (x; � m ) �
Z

� m 2 S
f (x; � h )d� h ; (4)

where we writeS as shorthand forS(w j ;� j; 0 ;:::;� j;k ) : Specif-
ically, the Bayesian model average and its approximation
using approximate posteriors is

p(y� jy; M ) =
Z

p(y� j� )p(� jy)d� �
Z

p(y� j� )q(� jy)d�

�
1

M

MX

i =1

p(y� j� i ); � i � q(� jy)

5.2. ESPRO: Ensembling over Multiple Independent
Simplexes

We can signi�cantly improve performance by ensembling
from a simplicial complex containing multiple disjoint sim-
plexes, which we refer to as ESPRO (Ensembling over
SPRO simplexes). To form such an ensemble, we take a col-
lection ofj parameter vectors from independently trained
models,w0; : : : ; wj , and train ak + 1 -order simplex at
each one using ESPRO. This procedure de�nes the sim-
plicial complexK(S(w0 ;:::;� 0;k ) ; : : : ; S(w j ;:::;� j;k ) ), which is

composed ofj disjoint simplexes in parameter space. Pre-
dictions with ESPRO are generated as,

ŷ =
1
J

X

� j �K

f (x; � j ) �
Z

K
f (x; � j )d� j (5)

whereK is shorthand forK(S(w0 ;:::;� 0;k ) ; : : : ; S(w j ;:::;� j;k ) ).
ESPRO can be considered a mixture of simplexes (e.g. a
simplicial complex) to approximate a multimodal posterior,
towards a more accurate Bayesian model average. This
observation is similar to how Wilson & Izmailov (2020)
show that deep ensembles provide a compelling approxima-
tion to a Bayesian model average (BMA), and improve on
deep ensembles through the MultiSWAG procedure, which
uses a mixture of Gaussians approximation to the poste-
rior for a higher �delity BMA. ESPRO further improves
the approximation to the BMA, by covering a larger region
of the posterior corresponding to low loss solutions with
functional variability. This perspective helps explain why
ESPRO improves both accuracy and calibration, through a
richer representation of epistemic uncertainty.

We verify the ability of ESPRO to �nd a simplex of low
loss starting from a single mode in Figure 6, which shows
the loss surface in the planes de�ned by the faces of a3-
simplex found in the parameter space of a VGG-16network
trained on CIFAR-100. The ability to �nd these simplexes
is core to forming ESPRO ensembles, as they only take a
small number of epochs to �nd, typically less than10%
the cost of training a model from scratch, and they con-
tain diverse solutions that can be ensembled to improve
model performance. Notably, we can sweep out a volume
of low loss in parameter spacewithoutneeding to �rst �nd
multiple modes, in contrast to prior work on mode connec-
tivity (Draxler et al., 2018; Garipov et al., 2018; Fort &
Jastrzebski, 2019). We show additional results with image
transformers (Dosovitskiy et al., 2021) on CIFAR-100 in
Appendix B.3, emphasizing that these simplexes are not
speci�c to a particular architecture.

5.3. SPRO and Functional Diversity

In practice we want to incorporate as many diverse high
accuracy classi�ers as possible when making predictions to
gain the bene�ts of ensembling, such as improved accuracy
and calibration. SPRO gives us a way to sample diverse
models inparameter space, and in this section we show,
using a simple2D dataset, that the parameter diversity found
with SPRO is a reasonable proxy for thefunctional diversity
we actually seek.

To better understand how the simplexes interact with the
functional form of the model, we consider an illustrative
example on the two-spirals classi�cation dataset presented
in Huang et al. (2019), in which predictions can be easily
visualized. We �nd a3-simplex (a tetrahedron) in the param-




