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Our supplementary materials consist of:

1. Implementation Details.

2. Additional Ablations.

3. Additional Qualitative Results.

1. Implementation Details
Our TimeSformer implementation is built using PySlow-
Fast (Fan et al., 2020) and pytorch-image-models (Wight-
man, 2019) packages. Below, we describe specific imple-
mentation details regarding the training and inference pro-
cedures of our model.

Training. We train our model for 15 epochs with an initial
learning rate of 0.005, which is divided by 10 at epochs
11, and 14. During training, we first resize the shorter
side of the video to a random value in [256, 320]. We then
randomly sample a 224× 224 crop from the resized video.
For our high-resolution model, TimeSformer-HR, we resize
the shorter side of the video to a random value in [448, 512],
and then randomly sample a 448× 448 crop. We randomly
sample clips from the full-length videos with a frame rate
of 1/32. The batch size is set to 16. We train all our models
using synchronized SGD across 32 GPUs. The momentum
is set to 0.9, while the weight decay is set to 0.0001.

Unless otherwise noted, in our experiments we use the
“Base” ViT model (Dosovitskiy et al., 2020). Temporal and
spatial attention layers in each block are initialized with the
same weights, which are obtained from the corresponding
attention layer in ViT.

Inference. As discussed in the main draft, during inference
we sample a single temporal clip in the middle of the video.
We scale the shorter spatial side of a video to 224 pixels (or
448 for TimeSformer-HR) and take 3 crops of size 224×224
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(448× 448 for TimeSformer-HR) to cover a larger spatial
extent within the clip. The final prediction is obtained by
averaging the softmax scores of these 3 predictions.

Other models in our comparison. To train I3D (Carreira
& Zisserman, 2017), and SlowFast (Feichtenhofer et al.,
2019), we use the training protocols that were used in the
original papers. For I3D, we initialize it with a 2D ImageNet
CNN, and then train it for 118 epochs with a base learning
rate of 0.01, which is divided by 10 at epochs 44 and 88.
We use synchronized SGD across 32 GPUs following the
linear scaling recipe of Goyal et al. (2017a). We set the
momentum to 0.9, and weight decay to 0.0001. The batch
size is set to 64. For the SlowFast model, when initialized
from ImageNet weights, we use this same exact training
protocol. When training SlowFast from scratch, we use the
training protocol described by the authors (Feichtenhofer
et al., 2019). More specifically, in that case, the training is
done for 196 epochs with a cosine learning rate schedule,
and the initial learning rate is set to 0.1. We use a linear
warm-up for the first 34 epochs starting with a learning rate
of 0.01. A dropout of 0.5 is used before the final classifica-
tion layer. The momentum is set to 0.9, the weight decay is
0.0001, and the batch size is set to 64. Just as before, we
adopt the linear scaling recipe (Goyal et al., 2017a).

Datasets. Kinetics-400 (Carreira & Zisserman, 2017) con-
sists of 240K training videos and 20K validation videos
that span 400 human action categories. Kinetics-600 (Car-
reira et al., 2018) has 392K training videos and 30K vali-
dation videos spanning 600 action categories. Something-
Something-V2 (Goyal et al., 2017b) contains 170K training
videos and 25K validation videos that span 174 action cate-
gories. Lastly, Diving-48 (Li et al., 2018) has 16K training
videos and 3K testing videos spanning 48 fine-grained div-
ing categories. For all of these datasets, we use standard
classification accuracy as our main performance metric.

2. Additional Ablations
Smaller & Larger Transformers. In addition to the “Base”
ViT model (Dosovitskiy et al., 2020), we also experimented
with the “Large” ViT. We report that this yielded results 1%
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worse on both Kinetics-400, and Something-Something-V2.
Given that our “Base” model already has 121M parameters,
we suspect that the current datasets are not big enough to
justify a further increase in model capacity. We also tried
the “Small” ViT variant, which produced accuracies about
5% worse than our default “Base” ViT model.

Larger Patch Size. We also experimented with a different
patch size, i.e., P = 32. We report that this variant of our
model produced results about 3% worse than our default
variant using P = 16. We conjecture that the performance
decrease with P = 32 is due to the reduced spatial granular-
ity. We did not train any models with P values lower than
16 as those models have a much higher computational cost.

The Order of Space and Time Self-Attention. Our pro-
posed “Divided Space-Time Attention” scheme applies tem-
poral attention and spatial attention one after the other. Here,
we investigate whether reversing the order of time-space
attention (i.e., applying spatial attention first, then tempo-
ral) has an impact on our results. We report that apply-
ing spatial attention first, followed by temporal attention
leads to a 0.5% drop in accuracy on both Kinetics-400, and
Something-Something-V2. We also tried a parallel space-
time self-attention. We report that it produces 0.4% lower
accuracy compared to our adopted “Divided Space-Time
Attention” scheme.

3. Additional Qualitative Results
In Figure 1, we present space-time attention visualiza-
tions obtained by applying TimeSformer on Something-
Something-V2 videos. To visualize the learned attention,
we use the Attention Rollout scheme presented in (Abnar
& Zuidema, 2020). Our results suggest that TimeSformer
learns to attend to the relevant regions in the video in order
to perform complex spatiotemporal reasoning. For example,
we can observe that the model focuses on the configura-
tion of the hand when visible and the object-only when not
visible.
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Figure 1. Visualization of space-time attention from the output token to the input space on Something-Something-V2. Our model learns to
focus on the relevant parts in the video in order to perform spatiotemporal reasoning.


