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A. Proof for Lemma 3 and Theorem 2
We consider the case when the data is generated from a
mixture of two Gaussians with identical covariances and
means that differ in their sign. Formally, we have PY (1) =
p1, PY (−1) = p−1, and PX|Y=y = N (yµ,Σ). X is then
Rd. We set the neighborhood function N(x) = x + ε∆,
where ε is the adversarial budget and ∆ ∈ Rd is a closed,
convex, absorbing and origin-symmetric set.

Proof. Let c = log p1
p−1

so yc = log
py
p−y

. Let w ∈ Rd and
consider the classifier

h(x)y =
1

1 + exp(−y(w>x+ c))

=
py exp(y2w

>x)

py exp(y2w
>x) + p−y exp(−y2 w

>x)
.

The output probability h(x)y is an increasing function
of yw>x, so we can find q(x,y) = inf x̃∈N(x) h(x̃)y by
computing inf x̃∈N(x) yw

>x̃ = yw>x − supz∈ε∆ w>z =

yw>x− ε‖w‖∗∆. Thus adversarial log loss of this classifier
is∑
y

pyEX∼N (yµ,Σ) log(1+exp(−y(w>X+c)+ε‖w‖∗∆))

where X ∼ N (yµ,Σ) and this is an upper bound on the
optimal adversarial log loss. Observe that

yw>X − ε‖w‖∗∆ ∼ N (w>µ− ε‖w‖∗∆, w>Σw).

For any z ∈ ∆, the distributions PX̃|Y=y = N (y(µ−z),Σ)
are clearly feasible for the adversary. The Bayes classifier
for these is

h(x)y =
1

1 + exp(−y(2(µ− z)>Σ−1x+ c))
.
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The log loss of this classifier is∑
y

pyE log(1 + exp(−y(2(µ− z)Σ−1X + c)))

where X ∼ N (y(µ− z),Σ) and this is an lower bound on
the optimal adversarial log loss. Observe that

2y(µ− z)>Σ−1X ∼
N (2(µ− z)>Σ−1(µ− z), 4(µ− z)>Σ−1(µ− z)).

If we can find w and z such that

w>µ− ε‖w‖∗∆ = 2(µ− z)>Σ−1(µ− z)
w>Σw = 4(µ− z)>Σ−1(µ− z),

then these upper and lower bounds match.

Using Lemma 1 from (Bhagoji et al., 2019), if we take z to
be the solution to optimization problem

min(µ− z)>Σ−1(µ− z) s.t. z ∈ ε∆

and w = 2Σ−1(µ− z), then ε‖w‖∗∆ = w>z, which imme-
diately implies the desired equalities.

B. Proofs for Algorithm 1
B.1. Proof of Lemma 4

Proof. Because each edge contains exactly one vertex in
each of A and B, M1A = 1E∪A and M1B = 1E∪B. This
gives two feasible choices for y: y = 1A and y = 1B. By
construction of r, at least one of these achieves a value of
P (A ∪ B). If P (A) > 0 then

r>1A =
∑
v∈A

P (A ∪ B)

P (A)
pv = P (A ∪ B)

and if P (B) > 0 then r>1B = P (A ∪ B). Complementary
slackness implies (M>z − r)>y = 0 for all optimal y, and
thus (M>z − r)v = 0 for all v that are nonzero in some
optimal y. If the feasible points y = 1A and y = 1B are
optimal, then (M>z)v = rv for all v ∈ A if P (A) > 0 and
for all v ∈ B if P (B) > 0. Then Property 2 follows from
the definition of r.
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By strong linear programming duality, we always find z
and y such that 1>z = r>y. If the candidate choices of y
described above are optimal, we satisfy the first alternative
of the claim. Otherwise, we have y such that r>y > 1>p.
We have

r>(1A+
+ 1B+

) > 1>p

P (A ∪ B)P (A+)

P (A)
+
P (A ∪ B)P (B+)

P (B)
> P (A ∪ B)

P (A+)P (B) + P (B+)P (A) > P (A)P (B)

P (A+)P (B+) > P (A−)P (B−)

which establishes Property 1.

B.2. Proof of Lemma 5

Proof. In the base case of the induction, the output of
OptProb comes from the second branch, the computation
terminates, and P (A+)P (B+) ≤ P (A−)P (B−). We take
k = 1, soA = A0 and B = B0. From Property 1 of Lemma
4, P (A+)P (B+) = P (A−)P (B−) and thus from Property
2a we have 1>z = P (A ∪ B) Then q is specified by Line
?? and satisfies Property 3 by construction. Properties 2b
and 2c of Lemma 4 implies qv(M>z)v = P ({v}), so Prop-
erty 2 is established. Properties 1 and 4 hold trivially when
k = 1.

In the inductive case, the output of OptProb comes from
the first branch. Because P (A+)P (B+) > 0, both A+

and B+ are nonempty. Thus |A+ ∪ B−| < |A ∪ B| and
|A− ∪ B+| < |A ∪ B|, so the recursive calls both involve
strictly smaller vertex sets. By induction, both recursive
calls terminate. Suppose that (q′, z′) and (q′′, z′′) satisfy
the four properties with functions a′ : A+ → [k′] and
b′ : B− → [k′] and a′′ : A− → [k′′] and b′′ : B+ → [k′′]
respectively. Then we take k = k′ + k′′ and define a and b
in the following piecewise fashion:

a(u) =

{
a′(u) + k′′ u ∈ A+

a′′(u) u ∈ A−

b(u) =

{
b′(u) + k′′ u ∈ B−

b′′(u) u ∈ B+

Because A+ ∪ B+ is an independent set, there are no edges
(u, v) with a(u) ≥ k′′ > b(v). Along with the induction
hypotheses, this established Property 1. The piecewise defi-
nitions of q in line 7 and z in line 8 satisfy Properties 2 and
3 because (q′, z′) and (q′′, z′′) do.

Property 4 requires a bit of calculation. The set A+ ∪
Ak′′−1 ∪ (B+ \ Bk′′−1) is an independent set and from the
properties of LinOpt

P (B)P (A+) + P (A)P (B+) ≥
P (B)(P (A+)+P (Ak′′−1))+P (A)(P (B+)−P (Bk′′−1))

so P (A)P (Bk′′−1) ≥ P (B)P (Ak′′−1). Similarly, (A+ \
Ak′′) ∪ B+ ∪ Bk′′ is an independent set and

P (B)P (A+) + P (A)P (B+) ≥
P (B)(P (A+)− P (Ak′′)) + P (A)(P (B+) + P (Bk′′))

so P (A)P (Bk′′) ≤ P (B)P (Ak′′). Combining these in-
equalities, we have

P (Ak′′−1)

P (Ak′′−1 ∪ Bk′′−1)
≤ P (A)

P (A ∪ B)
≤ P (Ak′′)
P (Ak′′ ∪ Bk′′)

.

Along with the induction hypotheses, this establishes Prop-
erty 4.

C. Additional Results
In this section we present additional results that were omit-
ted from the main body of the paper for space considera-
tions.

C.1. Other class pairs

In Figures 1 and 2, we present the results for the lower
bound on cross-entropy loss for two other choices of class
pairs, ‘1 vs. 9’ and ’2 vs. 8’. We can see that while the exact
values of the lower bound differ, the trend with respect to
both the adversarial budget and the number of samples is
the same as in the ‘3 vs. 7’ case.

C.2. Graph properties

We show the variation in collision probability with the bud-
get for different numbers of samples per class in Figure
3. This quantity can be estimated accurately even with a
small number of samples, unlike the lower bound on cross-
entropy.

C.3. Runtime analysis for other datasets

In Figures 4 and 5, we show the variation in runtime for the
algorithms to compute the lower bound on cross-entropy
loss for the MNIST and Fashion MNIST datasets. Our
custom Algorithm (Algorithm 1 in the main body) clearly
outperforms the generic convex solver from CVXOPT.

C.4. Further Gaussian results

In Table 8, we show the variation in the population- and
sample-level lower bounds on the cross-entropy loss for data
generated from a 2-class Gaussian mixture with d = 2. All
other parameters are the same as in Section 4.2 of the main
paper. We can see that for lower dimensional data, the gap
between the bounds is small.
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(a) MNIST
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(b) Fashion MNIST
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(c) CIFAR-10

Figure 1. Two class problem is ‘1 vs. 9’. Variation in minimum log-loss for an `2 adversary with adversarial budget ε and the number of
samples from each class. The maximum possible log-loss is ln 2, which is around 0.693. The total number of samples is 5000.
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(b) Fashion MNIST
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Figure 2. Two class problem is ‘2 vs. 8’. Variation in minimum log-loss for an `2 adversary with adversarial budget ε and the number of
samples from each class. The maximum possible log-loss is ln 2, which is around 0.693. The total number of samples is 5000.
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Figure 3. Variation in collision probability with attacker budget ε
for the CIFAR-10 dataset
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(a) Scaling with sample size at ε = 3.8
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Figure 4. Algorithm runtime comparisons for MNIST

C.5. Minimum 0− 1 loss

We note that the optimal classifier probabilities that are
obtained in the course of determining the minimum log-loss
can be thresholded to obtain the classification outcomes of
the optimal classifier. Care must be taken, however, for data
points where the optimal probability is 1

2 in the two class
case. For all points of this type, we just classify them as
being in class 1, which avoids any conflicts and recovers the
numerical values from previous work (Bhagoji et al., 2019).
These bounds are plotted in Figure 6 as the line ‘Minimum
loss’.
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(a) Scaling with sample size at ε = 4.0
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Figure 5. Algorithm runtime comparisons for Fashion MNIST

Activation function Robust train loss Robust test loss

ReLU 0.106 0.236
ELU 1.056 1.060
Tanh 13.012 13.099
Leaky ReLU 0.103 0.348
SELU 0.704 0.706

Table 1. Variation in train and test loss for a ResNet-18 trained on
MNIST with an `2 norm adversary with ε = 3.0

D. More robust training results
D.1. Robust 0− 1 loss

We also compare the minimum possible 0−1 loss to that ob-
tained by various robust training methods using AutoAttack
(Croce & Hein, 2020) for both training (Figure 6) and test
(Figure 7) data. We find that robust training using optimal
clipped soft labels can outperform standard hard label train-
ing, and that TRADES performs poorly at higher adversarial
budgets.

D.2. Ablation

Activation functions: In Table 1, we study the variation
in training and test cross-entropy loss with the activation
functions used in a ResNet-18. We find at a budget of 3.0
for MNIST, the standard ReLU activation function performs
the best, justifying our choice of this activation function
throughout. For the ELU and Tanh activation functions,
the network is unable to converge, implying that not all
activation functions perform well at higher budgets.

Architecture: We also experimented with different ResNet
architectures to test if increasing the size of the network
would lead to lower values of the robust cross-entropy loss.
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Figure 6. Comparison on training data between the 0− 1 loss ob-
tained by different training methods (computed using AutoAttack)
versus the optimal loss.

Architecture Robust train loss Robust test loss

ResNet-18 0.451 0.451
ResNet-50 0.387 0.387
ResNet-101 0.422 0.425

Table 2. Variation in train and test loss for models trained on Fash-
ion MNIST with an `2 norm adversary with ε = 5.0

However, in Table 2, we find that while the loss varies across
architectures, an increase in size is not guaranteed to even
lower the training loss.

D.3. CIFAR-10 robust training

We robustly train a ResNet-18 on the CIFAR-10 dataset
using `2 budgets of ε = 1.0 and 2.0. We find that at ε = 1.0,
the training loss with both adversarial training and TRADES
goes to 0, but the test loss is around 1, with a robust clas-
sification accuracy of just above 50%, implying that some
robust learning is just about possible.

When the budget increases to ε = 2.0, the network has
below 50% robust classification accuracy on the test set for
both training methods. Thus, the performance of current
robust classifiers is very far from the optimal cross-entropy
lower bound of 0.0 at both these budgets.
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Figure 7. Comparison on test data between the 0− 1 loss obtained
by different training methods (computed using AutoAttack) versus
the optimal loss.
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Figure 8. Comparing the population-level and sample-level lower
bounds on cross-entropy loss for synthetic 2-class Gaussian data
of dimension 2.


