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Abstract

Low-rank approximation is a classic tool in data analysis, where the goal is to approximate a
matrix A with a low-rank matrix L so as to minimize the error ‖A− L‖2F . However in many
applications, approximating some entries is more important than others, which leads to the
weighted low rank approximation problem. However, the addition of weights makes the low-rank
approximation problem intractable. Thus many works have obtained efficient algorithms under
additional structural assumptions on the weight matrix (such as low rank, and appropriate block
structure). We study a natural greedy algorithm for weighted low rank approximation and
develop a simple condition under which it yields bi-criteria approximation up to a small additive
factor in the error. The algorithm involves iteratively computing the top singular vector of an
appropriately varying matrix, and is thus easy to implement at scale. Our methods also allow us
to study the problem of low rank approximation under `p norm error.

1 Introduction

Matrix low rank approximation is one of the most classic dimension reduction methods in data
analysis. The standard least squared error version can also be solved efficiently using the singular
value decomposition, and we know how to do this in time comparable to the input sparsity [Clarkson
and Woodruff, 2017]. Despite its utility, natural variants of low-rank approximation turn out to be
intractable. Weighted low-rank approximation is one well studied example: in many applications,
some of the entries of a matrix may be less important to approximate than others (e.g., they might
be known to be noisy), and thus we may have a weight associated with each entry. While standard
least-squares regression for vectors can incorporate weights directly, the matrix version turns out to
be challenging. Formally, the weighted low-rank approximation problem is defined as follows: given
A ∈ Rd×n, a non-negative weight matrix W ∈ Rd×n and a parameter k, the goal is to find a rank k
matrix L that minimizes Cost(L),

Cost(L) :=
∑
i,j

Wij · (Aij − Lij)2. (1)

The problem and its difficulty were recognized as early as [Young, 1941], and it has been
well-studied in the ML literature starting with the work of [Srebro and Jaakkola, 2003]. Unlike
the unweighted version (which corresponds to W = 1d×n) low-rank approximation, the problem
above is NP-hard in general [Gillis and Glineur, 2011]. Much of the early work such as [Srebro and
Jaakkola, 2003, Manton et al., 2003, Eriksson and van den Hengel, 2010] thus developed heuristics
for the problem. The first provably efficient algorithms were obtained in the work of [Razenshteyn
et al., 2016] (see also references therein for work on matrix completion which is closely related).
[Razenshteyn et al., 2016] as well as more recent works [Musco et al., 2020, Ban et al., 2019b] assume
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that W has low rank, and develop algorithms that achieve a (1 + ε) (multiplicative) approximation
to the optimum cost, while having a running time exponential in the rank of W .

Very recently, [Musco et al., 2020] initiated a study of additive error bounds for weighted low
rank approximation. Here the goal is to obtain an L′ such that Cost(L′) ≤ Opt + ε ‖A‖2F , where
Opt is the optimal cost. Additive error guarantees have been a classic notion in the literature on
low rank approximation (starting with the seminal work of [Frieze et al., 2004] on sampling for low
rank approximation with additive error). Additive guarantees are realistic in applications where the
optimal error is a small yet constant fraction of the total mass (e.g., when a low rank approximation
may capture 90% of the Frobenius mass).

So far, our discussion has been restricted to error in the squared norm. However, low rank
approximation has also been studied in entrywise `p norms for p 6= 2. While any p > 0 ensures that
the matrix L approximates A, the choice of p determines how the non-uniformity in approximation
error is penalized. For example, an `1 penalty allows some errors |Aij − Lij | to be much larger than
others (as long as the total sum is small), while as p → ∞, higher errors are penalized severely.
Thus small values of p are used when some entries can be ignored as outliers (e.g., [Candes and
Recht, 2008]), while higher values of p ensure a more uniform approximation.

The works of [Song et al., 2017] and [Ban et al., 2019a] develop sketching based algorithms for
`p norm approximation, particularly for p ∈ [1, 2]. They aim to find low-rank approximations whose
objective value is ≤ (1 + ε) times the optimum. [Chierichetti et al., 2017] develop approximation
guarantees in much more generality, for all p ≥ 1 (including p =∞). Their result gives a simple
O(k log n) multiplicative approximation to the optimal error.

Goals. Our goal in this paper is to consider weighted low rank approximation with `2 and `p
error objectives and develop efficient and practical algorithms. We prove the efficacy of the greedy
procedure under a novel yet natural assumption and establish additive error guarantees.

1.1 Our results

In all our results, we assume that A is the input matrix, and that W is the non-negative weight
matrix which has been re-scaled to satisfy Wij ∈ [0, 1] for all i, j.

Our first result is to develop a simple greedy algorithm that gives an additive error approximation
to weighted low-rank approximation. Unlike prior work, our analysis does not require any explicit
assumptions on the weight matrix itself. It works as long as the target matrix (the intended low
rank approximation) has a Frobenius norm not too large compared to A. Formally, our theorem is
the following:

Theorem 1. Suppose there exists a rank k matrix L that satisfies the two conditions: (a) Cost(L) ≤ Γ
and (b) ‖L‖2F ≤ Λ ‖A‖2F for some parameters Λ,Γ. Then for any ε > 0, there exists an efficient
algorithm that outputs a matrix L′ of rank at most O(kΛ/ε2) that satisfies

Cost(L′) ≤ Γ + ε ‖A‖2F .

Remark. Note that the guarantee is not in terms of the optimal error but in terms of Γ. This is
because we could have the optimal matrix L∗ having a large value of ‖L∗‖F , but there may exist an
L with only a slightly larger cost, but a much smaller value of ‖L‖2F .

We also note that in the unweighted case (W = 1d×n), the bound on ‖L‖F / ‖A‖F is automatically
satisfied: indeed, the ratio is always ≤ 1. However in the weighted case, there can be pathological
cases where a low-rank approximation has a much higher Frobenius norm than A. As an example,

2



consider the case of A = W = In (n× n identity). The matrix L = 1n×n (all ones) is a rank-one
matrix that achieves zero weighted approximation error. However, we have ‖L‖2F / ‖A‖

2
F = n.

Informally, our assumption is equivalent to requiring that even the “unimportant” entries in A are
not too different in magnitude from the corresponding entries in L, on average. We believe that
this is a reasonable assumption when approximating A by L. Moreover, under this assumption, the
theorem requires no structural assumptions on W (as in prior work).

Remark. It is natural to ask if a dependence on Λ is necessary in general. Showing lower bounds
in terms of this parameter is an interesting open direction. However, we note that the known
hardness results for matrix completion give an evidence for hardness when A,W are sparse (in this
case, ‖L‖F / ‖A‖F is Θ(n)). Specifically, [Hardt et al., 2014] show that for matrix completion, given a
matrix A which is the restriction to indices Ω of a rank-k matrix L with entries of magnitude O(1), for
any constant c, it is hard to construct a matrix B of rank r = ck such that

∑
(i,j)∈Ω |Aij−Bij |2 ≤ εn.

(This is assuming the hardness of an appropriate variant of coloring.) Viewing W as the binary
mask matrix corresponding to Ω, this also shows the hardness of weighted low rank approximation.
The catch is that the amount of additive error allowed above is quite small; it is ε ‖A‖2F only when
the matrix is sparse.

The algorithm is a greedy procedure that iteratively adds a rank 1 matrix to a decomposition,
similar to Frank-Wolfe methods (see, e.g., [Clarkson, 2010]). The crux of the analysis is in showing
that in spite of potentially bad choices in the past, there exists an update that can significantly
improve the decomposition. A powerful feature of our techniques is that we can extend them to
weighted approximation with `p norm error. We study the entrywise `p version of the objective
in (1), defined as

Costp(L) =
∑
i,j

Wij · |Aij − Lij |p.

Here, additive error will correspond to an `p analog of the Frobenius norm, ‖X‖Fp
:=
(∑

i,j |Xij |p
)1/p

.

Theorem 2. Let p > 2, and suppose there exists a rank k matrix L that satisfies: (a) Costp(L) ≤ Γ
and (b) ‖L‖pFp

≤ Λ ‖A‖pFp
for some parameters Λ,Γ. Then for any ε > 0, there exists an efficient

algorithm that outputs a matrix L′ that satisfies Costp(L
′) ≤ Γ + ε ‖A‖pFp

. Moreover the rank of L′

is at most O

(
pk2Λ2/p

ε
1+ 2

p

)
.

We remark that this does not strictly dominate Theorem 1 because of the additional factor of k.
For p 6= 2, this extra factor appears because the choice of basis for the target low-rank subspace is
important to analyzing the greedy algorithm. As we discuss in Section 3, we need to use a carefully
chosen basis for our argument.

Another remark is that our ideas only apply to p > 2. When p < 2, the maximization problem
in each iteration of our current approach turns out to be that of computing the hypercontractive
norm of a matrix, which is known to be hard [Barak et al., 2012, Ban et al., 2019a].

Our algorithm follows a similar outline as the one for Theorem 1, but it turns out to be much
harder to analyze the improvement. We end up using tools from recent works on `p regression [Adil
et al., 2019, Bubeck et al., 2018]. Moreover, finding a rank-one update in each step requires
approximately computing the p 7→ 2 operator norm of an appropriate matrix, which can be done
efficiently for p > 2 using semidefinite programming, as shown by [Nesterov, 1998, Bhattiprolu et al.,
2019].
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Finally, as discussed in the introduction, even the unweighted version of low-rank approximation
with entrywise `p error has received a lot of interest, and is known to be challenging. Here, we
obtain the following additive approximation.

Theorem 3. Let p > 2, and let Optk denote the error of the best rank-k approximation of a given
matrix A in the entrywise `p norm. There exists an efficient (polynomial time) algorithm that

outputs an L′ of rank O

(
pk2

ε
1+ 2

p

)
that satisfies the error bound

∥∥A− L′∥∥p
Fp
≤ Optk + ε ‖A‖pFp

.

Unlike the previous theorems, this result is unconditional. Indeed, it is a simple consequence of
Theorem 2 (see Section 3.4). But to the best of our knowledge, such an additive error approximation
for `p low rank approximation was not known for p > 2. Given known hardness results for purely
multiplicative approximation, it is interesting to study additive error guarantees (see [Ban et al.,
2019a]).

Our algorithm for Theorem 3 can be viewed as extending the familiar iterative peeling algorithm
for `2 low-rank approximation to the `p setting, for p > 2. The iterative step is different (now
involving a p 7→ 2 norm computation), and we obtain an additive error guarantee. The theorem
also complements the sketching-based algorithms for obtaining bi-criteria algorithms for p ∈ [1, 2)
from [Ban et al., 2019a]. Finally, note that when the optimal error Optk is very small� ε

k logn ‖A‖
p
Fp

,

the algorithm of [Chierichetti et al., 2017] has a better guarantee than Theorem 3.

1.2 Notation and overview

All the matrix and vector notations used in the paper will be defined at first use. We begin in
Section 2 with the greedy algorithm for the weighted Frobenius error. The framework is then
extended to the case of weighted `p norm error in Section 3. The case of unweighted `p error
(Theorem 3) follows as a corollary and is presented in Section 3.4.

2 Algorithm for squared error

We now present the greedy framework that underlies all of our algorithms.
Outline. Our algorithm proceeds by maintaining a low-rank approximation for A and iteratively

adding a rank-1 component that ensures sufficient error reduction. This is done by finding a vector
z and subtracting an appropriate multiple of z from the residuals of each column. The analysis
proceeds in a column-by-column fashion, and thus we begin with a few useful lemmas about
approximating a single column, and present Algorithm 1 and its analysis in Section 2.1.

Our analysis is similar in spirit to the analysis of the greedy algorithm for column subset selection
and sparse coding, [Altschuler et al., 2016, Bhaskara and Tai, 2019], but we need a different view
in order to incorporate weights for entries. We begin with a few lemmas about approximating a
single column using a collection of vectors. Let a ∈ Rd be a vector, and w ∈ Rd be weights for the
coordinates. Define the function fw : Rd 7→ R as:

fw(v) =
∑
i∈[d]

wi(ai − vi)2, (2)
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where wi, ai, vi denote the ith entries of the corresponding vectors. Next, suppose that x is a vector
(which will be our current approximation for a). Assume that x is “locally optimal” in the sense
that increasing or decreasing the magnitude of x does not reduce the value of fw. Formally, x
satisfies 〈∇fw(x), x〉 = 0. The gradient has a simple form in our setting, ∇fw(v) = 2w ◦ (a − v)
(recall that ◦ denotes the Hadamard or element-wise product). The following lemma shows how
moving along a certain direction improves the value of fw. First, we define

gw(x, u) = min
η
fw(x− ηu), (3)

which is the least possible value of fw that can be obtained by moving from x along the direction u.
(As we can set η = 0, gw(x, u) is always ≤ fw(x).)

Lemma 4. Let a, x, w be defined as above, and let u ∈ Rd be a vector such that |〈∇fw(x), u〉| ≥ γ
and

∑
iwiu

2
i ≤ 1. Then we have

gw(x, u) ≤ fw(x)− γ2

4
.

Proof. By negating u if necessary, we may assume that 〈∇fw(x), u〉 ≥ γ. Now, the definition of fw
implies that for any η,

fw(x− ηu) =
∑
i

wi(ai − xi − ηui)2

=
∑
i

wi
[
(ai − xi)2 − 2η(ai − xi)ui + η2u2

i

]
≤ fw(x)− η〈w ◦ (a− x), u〉+ η2.

In the last step, we used the assumption that
∑

iwiu
2
i = 1. Since the middle term is precisely

〈∇fw(x), u〉, which is ≥ γ by assumption, we have that fw(x − ηu) ≤ fw(x) − ηγ + η2. Setting
η = γ/2, we obtain the conclusion of the lemma.

Next, we show a lemma that is central to our argument. It says that if there is some u such that
fw(u) < fw(x), and if u can be written as a linear combination of some basis vectors using “small”
coefficients, then one of the basis directions can lead to a sufficiently large reduction in the value of
fw. Formally,

Lemma 5. Let u1, u2, . . . , uk ∈ Rd be arbitrary vectors, and suppose u =
∑

j αjuj, where
∑

j α
2
j = B.

Let a, x, w be defined as above, and suppose that fw(u) < fw(x). Then

k∑
j=1

|〈∇fw(x), uj〉|2 ≥
(fw(x)− fw(u))2

B
.

Proof. We first observe that because of the convexity of fw (it is a non-negative sum of convex
functions), we have that

fw(u) ≥ fw(x) + 〈∇fw(x), u− x〉 = fw(x) + 〈∇fw(x), u〉.
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The last equality is because of our assumption that scaling x will not improve fw. Because
fw(u) < fw(x), this implies that |〈∇fw(x), u〉| ≥ fw(x)− fw(u). Now, plugging in u =

∑
j αjuj and

applying Cauchy-Schwartz, we obtain:∑
j

α2
j

∑
j

|〈∇fw(x), uj〉|2
 ≥ (fw(x)− fw(u))2.

The first term is B by definition, and this completes the proof of the lemma.

2.1 Algorithm for weighted approximation

The algorithm proceeds as follows: at time step t = 0, 1, . . . , an approximation x
(t)
j is maintained

for every column aj . Unlike in the single column case above, we now have (potentially) different
weight vectors wj for each column j. We thus define

fj(v) =
∑
r∈[d]

wj,r(aj,r − vr)2, (4)

where wj,r denotes the rth coordinate of wj (similarly for aj). Since our goal is an additive error
approximation, an ideal goal is to bring fj(v) within ε ‖aj‖22 of the optimal approximation for
column j, for all j. (Algorithm 1 gives a full description of the procedure.)

Algorithm 1 Weighted low rank approximation with L2 error

1: Input: Matrix A ∈ Rd×n, error parameter ε
2: Output: Low-rank approximation L′ ∈ Rd×n whose columns are spanned by a set of vectors Z, with
|Z| = k′ := 8kΛ/ε2.

3: Initialize Z = ∅, set x
(0)
j = 0 for all j

4: for t = 1, 2, . . . , k′ do

5: Using fj defined in (4), let z ∈ Rd, ‖z‖2 = 1 be the vector that maximizes
∑

j〈∇fj(x
(t−1)
j ), z〉2, and

add z to Z
6: for each j ∈ [n] do

7: Compute η that minimizes fj(x
(t−1)
j + ηz), and set x′ = x

(t−1)
j + ηz

8: Compute η that minimizes fj(ηx
′) and set x

(t)
j = ηx′

9: end for
10: end for
11: Return Z and the associated low rank approximation L′

Remark. Steps 7 and 8 of the algorithm involve a line search. This is easy in our case because the
associated functions of η are univariate quadratics.

We start with some notation concerning the target rank-k solution L (as promised by the
statement of Theorem 1). Suppose that L = UV T , where the columns of U are orthonormal, and
let uj ∈ Rd,vj ∈ Rk denote the jth columns of U and V T respectively. Because of the orthonormal
columns in U , we have ‖vj‖2 = ‖Lj‖2, where Lj is the jth column of L. Our first goal is to obtain

a column-wise control on ‖Lj‖ / ‖aj‖. Define the column j to be good if ‖Lj‖2 / ‖aj‖2 ≤ Λ/ε and
bad otherwise. In what follows, we denote by G the set of all good columns. The following lemma is
easy to see.
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Lemma 6. The total mass of the bad columns of A is small. I.e.,
∑

j 6∈G ‖aj‖
2 ≤ ε ‖A‖2F .

Proof. Suppose the contrary, and assume that the inequality fails to hold. By the definition of bad,
we have that ∑

j 6∈G
‖Lj‖2 >

∑
j 6∈G

Λ

ε
‖aj‖2 ≥ Λ ‖A‖2F .

This contradicts our assumption about the bound on ‖L‖2F (property (b) in Theorem 1).

The lemma allows us to focus on the good columns for most of our analysis. We now introduce
the following notation to track the progress of the algorithm.
Notation. We denote

δj =
fj(Lj)

‖aj‖22
, θ

(t)
j =

fj(x
(t)
j )

‖aj‖22
. (5)

Thus, informally, our goal is to ensure that θ
(t)
j ≥ δj − ε on average. We also study the following

weighted averages:

δ∗ =

∑
j∈G ‖aj‖

2
2 δj

‖AG‖2F
, ψ(t) =

∑
j∈G ‖aj‖

2
2 θ

(t)
j

‖AG‖2F
, (6)

where AG is the submatrix of A comprising only the good columns. The next lemma shows that if
ψ(t) − δ∗ is large, then the (t+ 1)th iteration makes considerable progress. Formally,

Lemma 7. Suppose that after the t’th iteration of the algorithm we have ψ(t) > δ∗. Then there
exists a z such that ∑

j∈G
|〈∇fj(x(t)

j ), z〉|2 ≥
ε ‖AG‖2F (ψ(t) − δ∗)2

kΛ

Proof. The idea will be to prove that one of the {ui}i∈[k] satisfies the condition of the lemma. We do
this by applying Lemma 5 to each of the good columns. Step 8 ensures that the current representation
for each column cannot be improved by rescaling, which is essential for applying Lemma 5. Consider
any j ∈ G. This implies that Lj can be written as

∑
i∈[k] αiui, where

∑
i α

2
i ≤ Λ

ε ‖aj‖
2
2 (indeed the

αi are precisely the entries of the column vj). Thus, by applying Lemma 5, we get

∑
i∈[k]

|〈∇fj(x(t)
j ),ui〉|2 ≥

ε(fj(x
(t)
j )− fj(Lj))2

+

Λ ‖aj‖22

=
ε ‖aj‖22 (θ

(t)
j − δj)2

+

Λ
. (7)

We first show that the sum of the RHS above over j ∈ G is large. By viewing
‖aj‖22
‖AG‖2F

as a probability

distribution over the indices j ∈ G and using the fact that E[X2] ≥ E[X]2, we get

∑
j∈G

‖aj‖22
‖AG‖2F

(θ
(t)
j − δj)

2
+ ≥

∑
j∈G

‖aj‖22
‖AG‖2F

(θ
(t)
j − δj)+

2
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Using the observation that for any real numbers c, d, (c)+ + (d)+ ≥ (c+ d)+ (and generalizing this
to a sum of multiple terms), the RHS above can be simplified (using (6)) as

∑
j∈G

‖aj‖22
‖AG‖2F

(θ
(t)
j − δj)+ ≥ (ψ(t) − δ∗)+.

The RHS is positive by assumption, and thus plugging the above back into (7), we get:

∑
i∈[k]

∑
j∈G
|〈∇fj(x(t)

j ),ui〉|2 ≥
ε ‖AG‖2F (ψ(t) − δ∗)2

Λ
.

Thus, by averaging, there exists an index i that satisfies the conclusion of the lemma. This completes
the proof.

The next lemma bounds the progress after t steps of the algorithm.

Lemma 8. Let ε < 1/2 be a given error parameter. The number of iterations needed to achieve
ψ(t) − δ∗ ≤ 2ε is O

(
kΛ
ε2

)
.

Proof. Recall that ψ(t) and δ∗ only involve the good columns. Define βt := ψ(t) − δ∗, and note that
βt clearly only reduces as t increases. We are done if βt ≤ 2ε, and thus consider some t ≤ 8kΛ

ε2
and

assume that βt > 2ε.
We claim that in the next O(kΛ/εβt) steps, the value of βt reduces by a factor 2. To see this,

suppose the contrary.
Now in each iteration, the algorithm finds some z with ‖z‖ = 1 such that the total leftover

mass (over all the columns) reduces by at least the bound given by Lemma 7. This is because

the algorithm finds z that maximizes
∑

j〈∇fj(x
(t−1)
j ), z〉2, and by Lemma 4, this also quantifies

the total mass reduction. (Note that we have used the fact that all the weights are ∈ [0, 1] when
applying the Lemma.) Thus, since βt′ ≥ βt/2 for all the time steps t′ we are considering, the mass
reduction is at least

ε ‖AG‖2F β2
t

4kΛ
≥
ε ‖A‖2F β2

t

8kΛ
,

where we used ε < 1/2 and Lemma 6. Thus if this continues for 8kΛ/εβt steps, the total mass
reduction (which includes the reduction on bad columns) is ≥ βt ‖A‖2F . But since βt > 2ε and at
most ε ‖A‖2F of the mass is on the bad columns, this contradicts our assumption that βt did not
reduce by a factor 2.

Thus, we have argued that as long as βt > 2ε, it takes ≤ 8kΛ/εβt steps for βt to reduce to βt/2.
Since β0 ≤ 1, we have that it takes ≤ 2j · 8kΛ

ε steps for βt to reduce from 2−j to 2−(j+1). Thus, as

the geometric series converges to twice the last term, we have that βt reduces to ≤ 2ε after 2
2ε ·

8kΛ
ε

steps, completing the proof of the lemma.

We can now complete the proof of Theorem 1.

Proof of Theorem 1. Lemma 8 gives us that after O
(
kΛ
ε2

)
steps, we have ψ(t) − δ∗ ≤ 2ε. Combined

with Lemma 6, we have that the overall error in approximation is at most 2ε ‖AG‖2F + ε ‖A‖2F ≤
3ε ‖A‖2F . This completes the proof (after replacing ε by ε/3 throughout).
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3 Low rank approximation with `p error

The high level outline of our algorithm is similar to the `2 setting. However, we need the right
target decomposition, and need to set up the analysis carefully so as to make the rank-one update
at every step efficient.

3.1 Identifying a target decomposition

Let A be the matrix to be approximated and W the weight matrix as before. We make the same
assumption: L = UV T is the target decomposition, and we have ‖L‖pFp

/ ‖A‖pFp
≤ Λ, for some

parameter Λ.
Recall that the starting point in our analysis in the case of `2 error was to decompose L as UV T

using the SVD, so that we have a U with orthonormal columns, and a V such that ‖Lj‖ = ‖vj‖.
Implicit here is the fact that the `2 norm is rotation invariant (using a different basis U maintains
the norm property). Unfortunately, this is not true in the case of `p norms. A priori, it is not clear
if there exists a good decomposition that allows a property such as the above for all the columns,
nor is it clear what normalization one should choose for the columns of U . E.g., should they have
‖·‖p = 1, or a different norm such as `2 or the dual of `p?

So our first step is to describe the target decomposition and its properties.

Lemma 9. Let L ∈ Rd×n be any rank k matrix with k ≤ min{d, n}. Then there exists a decomposi-
tion L = UV T into (d× k) and (k × n) matrices such that (a) the columns of U satisfy ‖ui‖p = 1

for all i ∈ [p], (b) for all j ∈ [n], the columns of V T satisfy ‖vj‖∞ ≤ ‖Lj‖p.

Proof. The proof uses the following simple observation about rank k matrices.
Observation. Let M ∈ Rd×n be a rank k matrix. Then there exist a subset S of k columns of M

with the property that all the other columns can be expressed as
∑

i∈S αiMi, with |αi| ≤ 1 for all i.
The observation follows by an extremal argument, considering the k columns such that the

volume of the associated parallelopiped is maximized. We refer the reader to [Chierichetti et al.,
2017] (Lemma 2) for a proof. (The argument itself is classic, and the property above is related to
the notion of an Auerbach basis in Banach spaces. See [Taylor, 1947, Martini et al., 2001]. One of
the early applications of this idea in the CS literature was in the work of [Awerbuch and Kleinberg,
2004].)

For our lemma, we apply the observation above to the matrix M whose columns are Mj =
Lj

‖Lj‖p
.

Let the chosen columns of M be denoted by the vectors ui, for i ∈ [k]. Then we have that all
the other Mj can be expressed as

∑
i αiui with |αi| ≤ 1, and thus the corresponding Lj can be

expressed using coefficients |αi| ≤ ‖Lj‖p. By construction, the ui have ‖·‖p = 1, which completes
the proof of the lemma.

The lemma allows us to use the framework from Section 2 to develop an iterative algorithm.

3.2 Single vector analysis

The first main step is to obtain analogs of Lemmas 4 and 5
Let w, a ∈ Rd, and define the function fw,p : Rd 7→ R as:

fw,p(v) =
∑
i∈[d]

wi|ai − vi|p, (8)
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where wi, ai are the ith entries as before. Observe that the function fw,p is convex (as it is a sum of
convex functions). The key to our proof is an appropriate smoothness property for f , which we
prove use the following lemma from [Adil et al., 2019].

Lemma 10 (Lemma 4.5 of [Adil et al., 2019]). Let y ∈ R and ∆ be any parameter. Then we have

|y + ∆|p ≤ |y|p + g∆ + 2pγp(|y|,∆),

where g is the derivative of |y|p, i.e., g = p|y|p−2y, and γp is the function (originally introduced
in [Bubeck et al., 2018]):

γp(t,∆) =

{
p
2 t
p−2∆2 if |∆| ≤ t,
|∆|p +

(p
2 − 1

)
tp otherwise.

Using this lemma, we will be able to show the following analog of Lemma 4.

Lemma 11. Let a, x, w be defined as above, and let u ∈ Rd be a vector such that |〈∇fw,p(x), u〉| ≥
γ ≥ 0 and

∑
iwi|ui|p ≤ 1. Then there exists η such that for some constant cp = Op(1),

fw,p(x− ηu) ≤ fw,p(x)− γ2

cp(fw,p(x))
p−2
p

.

Proof. Let η be a parameter that we will choose appropriate. We start by observing that fw,p(x−
ηu) =

∑
iwi|ai − xi − ηui|p. In what follows, we define y = (a − x) for simplicity. Thus, using

Lemma 10, we have

fw,p(x− ηu) ≤
∑
i

wi [|yi|p − ηgiui + 2pγp(|yi|, ηui)] ,

where gi is the gradient p|yi|p−2yiui. We will also use the following upper bound on the function γp:

γp(t,∆) ≤ |∆|p +
p

2
tp−2∆2. (9)

This follows from a simple case analysis from the definition in Lemma 10. By replacing u with −u
if necessary, we may assume that the hypothesis |〈∇fw,p(x), u〉| ≥ γ implies that

∑
iwigiui ≥ γ.

Thus the decrease in the value of fw,p is at least

D := ηγ − 2p
∑
i

wiγp(|yi|, ηui).

The rest of the proof will aim to choose an η > 0 and show a lower bound on D. Using (9), we have

D ≥ ηγ − 2p
∑
i

wi

(
ηp|ui|p +

p

2
|yi|p−2η2|ui|2

)
.

The first of the two terms in γp is easy to handle, by noting that
∑

iwiη
p|ui|p ≤ ηp (using the

hypothesis on u). Thus, let us focus on the other term. We claim that

∑
i

wi|yi|p−2u2
i ≤

(∑
i

wi|ui|p
)2/p(∑

i

wi|yi|p
) p−2

p

. (10)
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This follows from Hölder’s inequality 〈α, β〉 ≤ ‖α‖ρ ‖β‖ρ′ , applied to the vectors α, β whose
coordinates are

|αi| = w
2
p

i |ui|
2, |βi| = w

p−2
p

i |yi|p−2,

and ρ = p/2 (and the dual norm ρ′ = p/(p− 2)). Now, the first term on the RHS of (10) is bounded
by 1 as before. The second term is related to the value of fw,p, as by definition, fw,p(x) =

∑
iwi|yi|p.

Let us write F = fw,p(x) in what follows.
Putting the above observations together, we have that the decrease D satisfies

D ≥ ηγ − 2p
(
ηp +

pη2

2
F

p−2
p

)
= ηγ − 2pηp − p2p−1F

p−2
p η2.

Our choice of η will ensure that the second term is upper bounded by the third term. This is
equivalent to 2ηp−2 ≤ pF (p−2)/p. As p ≥ 2, this will hold as long as η ≤ F 1/p.

The value of η we consider is

η =
γ

p2p+1F (p−2)/p
.

Showing that this is ≤ F 1/p is equivalent to showing that γ ≤ p2p+1F (p−1)/p. By assumption, the
gradient term |〈∇fw,p(x), u〉| ≥ γ, thus

γ ≤ p
∑
i

wi|yi|p−2yiui

≤ p

(∑
i

wi|yi|p
) p−1

p
(∑

i

wi|ui|p
) 1

p

.

Since the second term is ≤ 1, we have that η < F 1/p, as desired.
Thus, for the above value of η, we have

D ≥ ηγ − p2pF
p−2
p η2 ≥ γ2

p2p+2F
p−2
p

.

Plugging in the definition of F completes the proof of the lemma.

Our analysis will also need an analog of Lemma 5 where fw is replaced by fw,p. This is immediate
because the proof only relies on the convexity of fw, and thus also applies to fw,p.

3.3 Algorithm and analysis

Similar to the `2 case, we define

fj,p(v) =
∑
r∈[d]

wj,r|aj,r − vr|p, (11)

where wj is the weight vector for the jth column and wj,r denotes the rth coordinate of wj (similarly
for aj).
Algorithm. The algorithm for the `p error case is precisely the same as before, but instead of
working with the functions fj , we work with fj,p (when taking gradients). The main change is

11



in Step 5 of the algorithm, where instead of finding a vector z that maximizes
∑

j〈∇fj(x
(t)
j ), z〉2

subject to ‖z‖ = 1 (which reduces to finding the top singular vector of an appropriate matrix), we
now need to solve the following:

max
∑
j

〈∇fj,p(x(t)
j ), z〉2

(fj,p(x
(t)
j ))

p−2
p

subject to ‖z‖p = 1. (12)

This can be re-written as finding a vector z that maximizes ‖Mz‖22 subject to ‖z‖p = 1, for

an appropriate matrix M (which we can construct since we know x
(t)
j and f). This is exactly the

problem of computing the so-called p 7→ 2 operator norm of the matrix M . The classic result
of [Nesterov, 1998] shows that the problem admits a constant factor approximation. More recently,
the work [Bhattiprolu et al., 2019] obtains nearly tight factors for the problem. Both these algorithms
are based on a semidefinite programming relaxation for approximating the operator norm, and
crucially rely on p ≥ 2 in their analysis. We summarize these results as follows.

Theorem 12. [Nesterov, 1998, Bhattiprolu et al., 2019] For any p ≥ 2, there exists an efficient
(polynomial time) algorithm for approximating the p 7→ 2 operator norm of a matrix M to a factor
only depending on p (which indeed turns out to be O(

√
p) using the result of [Steinberg, 2005])

Specifically, the algorithm outputs a z with ‖z‖p = 1, such that the objective value in (12) is Ω
(

1
p

)
times the optimum.

Our analysis once again involves quantities δj and θ
(t)
j , defined as follows:

δj =
fj,p(Lj)

‖aj‖pp
, θ

(t)
j =

fj,p(x
(t)
j )

‖aj‖pp
. (13)

We also define weighted averages as before:

δ∗ =

∑
j∈G ‖aj‖

p
p δj

‖AG‖pFp

, ψ(t) =

∑
j∈G ‖aj‖

p
p θ

(t)
j

‖AG‖pFp

. (14)

The following lemma shows that as long as ψ(t) − δ∗ is large enough, the algorithm makes
significant progress.

Lemma 13. Suppose that after the t’th iteration of the algorithm we have ψ(t) > δ∗. Then there
exists a unit vector z such that

∑
j∈G

|〈∇fj,p(x(t)
j ), z〉|2

(fj,p(x
(t)
j ))

p−2
p

≥
ε2/p ‖AG‖pFp

(ψ(t) − δ∗)2

k2Λ2/p
.

Proof. The proof follows the structure of that of Lemma 7, and will show that one of the ui satisfy
the conclusion of the lemma. Consider some good column j.

Our updates ensure that we can apply Lemma 5 (where fj is replaced by fj,p). The value of Λ
that we use in the lemma statement is the following: every coefficient used is ≤ ‖Lj‖p in magnitude,

from Lemma 9. Since j is a good column, this is at most
(

Λ
ε

)1/p ‖aj‖p. As there are k terms, the
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sum of squared coefficients is bounded by k ‖aj‖2p
(

Λ
ε

)2/p
. Plugging this in, and writing C =

(
Λ
ε

)2/p
for convenience, we obtain:

∑
i∈[k]

|〈∇fj,p(x(t)
j ),ui〉|2 ≥

(fj,p(x
(t)
j )− fj,p(Lj))2

+

kC ‖aj‖2p

=
‖aj‖2pp (θ

(t)
j − δj)2

+

kC ‖aj‖2p
. (15)

Thus, since fj,p(x
(t)
j ) = θ

(t)
j ‖aj‖

p
p by definition, we have (after plugging in above and simplifying

the exponent of ‖aj‖p)

∑
i∈[k]

|〈∇fj,p(x(t)
j ),ui〉|2

(fj,p(x
(t)
j ))

p−2
p

≥
‖aj‖pp (θ

(t)
j − δj)2

+

kC(θ
(t)
j )

p−2
p

≥
‖aj‖pp (θ

(t)
j − δj)2

+

kC
.

The second inequality uses the fact that p ≥ 2 and θ
(t)
j ∈ (0, 1]. Then, we can sum over the columns

j ∈ G, and mimicking the idea from the proof of Lemma 7 (this time using ‖aj‖pp / ‖AG‖
p
Fp

as the

distribution), we get

∑
i∈[k]

∑
j∈G

|〈∇fj,p(x(t)
j ),ui〉|2

(fj,p(x
(t)
j ))

p−2
p

≥
‖AG‖pFp

(ψ(t) − δ∗)2

kC
.

Thus by averaging and plugging in the value of C, one of the ui must satisfy the conclusion of the
lemma.

We will first establish an analog of Lemma 8 for the current setting.

Lemma 14. Let ε < 1/2 be a given error parameter. The number of iterations needed to achieve

ψ(t) − δ∗ ≤ 2ε is O
(
pk2Λ2/p

ε1+2/p

)
.

Proof. Similar to the `2 case, define βt := ψ(t) − δ∗, and note that βt clearly only reduces as t

increases. We are done if βt ≤ 2ε, and thus consider some t ≤ 8pk2Λ2/p

ε2/p
and assume that βt > 2ε.

We claim that in the next O(pk2Λ2/p/ε2/pβt) steps, the value of βt reduces by a factor 2. To see
this, suppose the contrary.

In each iteration, the algorithm finds some z with ‖z‖p = 1 such that the total leftover mass (over
all the columns) reduces by at least the bound given by Lemma 7. This is because the algorithm

finds z that is an approximation for the the problem of maximizing
∑

j

〈∇fj,p(x
(t)
j ),z〉2

(fj,p(x
(t)
j ))

p−2
p

which we can

see is Ω(1/p) approximation to the optimum by Theorem 12. By Lemma 11, this also quantifies
the total mass reduction. (Note that we have used the fact that all the weights are ∈ [0, 1] when
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applying the Lemma.) Thus, since βt′ ≥ βt/2 for all the time steps t′ we are considering, the mass
reduction is at least

ε2/p ‖AG‖pFp
β2
t

4pk2Λ2/p
≥
ε2/p ‖A‖pFp

β2
t

8pk2Λ2/p
,

where we used ε < 1/2 and the definition of good columns. Thus if this continues for (8pk2Λ2/p)/(ε2/pβt)
steps, the total mass reduction (which includes the reduction on bad columns) is ≥ βt ‖A‖2F . But
since βt > 2ε and at most ε ‖A‖2F of the mass is on the bad columns, this contradicts our assumption
that βt did not reduce by a factor 2.

Thus, we have argued that as long as βt > 2ε, it takes ≤ 8pk2Λ2/p/ε2/pβt steps for βt to reduce

to βt/2. Since β0 ≤ 1, we have that it takes ≤ 2j · 8pk2Λ2/p

ε2/p
steps for βt to reduce from 2−j to 2−(j+1).

Thus, as the geometric series converges to twice the last term, we have that βt reduces to ≤ 2ε after
2
2ε ·

8pk2Λ2/p

ε2/p
steps, completing the proof of the lemma.

Given this lemma, the proof of Theorem 2 follows as before.

Proof of Theorem 2. First, we can see that from Lemma 14 the number of steps needed to reach

ψ(t) − δ∗ ≤ 2ε is O
(
pk2Λ2/p

ε1+2/p

)
.

Finally, observing that the bound on the total mass of the bad columns carries over to the `p
case, the theorem follows.

3.4 Unconditional result for uniform weights

We now show how to deduce Theorem 3 using Theorem 2.

Proof of Theorem 3. We only need to check that the matrix achieving the optimal error (say L∗)
satisfies the conditions of Theorem 2. This is true because

‖L∗‖Fp
= ‖(L∗ −A) +A‖Fp

≤ ‖L∗ −A‖Fp
+ ‖A‖Fp

.

By definition, ‖L∗ −A‖Fp
= Optk, which is ≤ ‖A‖Fp

. This implies that the assumption holds
with Λ = 2p.

4 Experiments

In this section we evaluate our algorithm (wlra-iter) for weighted low rank approximation by
comparing its performance with three baselines: (a) applying SVD to the matrix A (svd) (b)
applying SVD to weighted matrix W ◦A (wsvd) (c) regularized weighted low rank approximation
algorithm with sketching in [Ban et al., 2019b] (rwlra-sk). In (c), we use the alternating minimization
based algorithm provided in [Ban et al., 2019b]. We present experiments on both synthetic and real
data below.
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4.1 Synthetic datasets

We conduct two sets of experiments. In the first set, we vary the output rank k′ and show how the
error changes for each algorithm. In the second set, we demonstrate how the error in each algorithm
changes as the signal to noise ratio (SNR) varies: the signal is a low rank matrix and we add
Gaussian noise to it. In each experiment, we measure the scaled error (

∑
ijWij(Aij − Zij)2)/ ‖A‖2F

where Z is the solution output by each algorithm (we note that in the experiments in [Ban et al.,
2019b], the objective value is plotted instead of the error thus our experiments are not comparable);
we average results over 10 independent runs.

We first generate 500 × 5 dimensional matrices M1,M2 with random orthonormal vectors as
columns and a diagonal matrix S with diagonal elements [1, 0.9, (0.9)2, (0.9)3, (0.9)4] (normalized).
Thus M = M1SM

T
2 is a rank 5 matrix with ‖M‖F = 1. In each experiment we create matrix A by

adding a noise matrix N with Nij ∼ N (0, σ2) to M . We set the sketch size parameter in rwlra-sk
to 100 in all experiments. We generate weight matrices of 500× 500 dimension with the following
configurations.

• W1: Each element is sampled from {1, 0.1, 0.01} with probabilities {0.85, 0.1, 0.05}.
• W2: Each element is sampled from {1, 0.1, 0.01} with probabilities {0.05, 0.1, 0.85}.
• W3: Each element is sampled from the interval [0, 1] uniformly at random.

• W4: Each element is sampled from {0, 1} with probabilities 0.3, 0.7.

• W5: Elements corresponding to largest 50000 |Aij |s are set to 0, and 1 elsewhere.

• W6: Block diagonal is set to 0 where the block size is 100× 100, and 1 elsewhere.

• W7: A random binary matrix is first chosen by setting each entry to 1 with probability 0.1
and 0 otherwise. Following this, the first 100 columns of first 150 rows are set to 1.

In the first set of experiments, we plot the error of each algorithm with output rank k′ in the list
(5, 10, 15, 20, 25, 30, 35, 40, 50, 60). Here we fix σ = 0.005 (thus SNR ≈ 0.16) and λ = 0.05 for weight
matrix settings W1,W4,W5,W6 and λ = 0.01 for weight matrix settings W2,W3,W7 in rwlra-wk.
Figure 1 shows the error rates of each algorithm for different weight matrices.

In the second set of experiments, we plot the error of each algorithm as the SNR is increased
from 0.0004 to 4. Here we fix k′ = 50 and λ = 0.005 for weight matrix settings W1,W2,W3 and
λ = 0.01 for weight matrix settings W4,W5,W6,W7 in rwlra-wk. We control SNR by changing σ
appropriately. Figure 2 shows the error rates of each algorithm for different weight matrices. The
results show the greedy procedure achieving small recovery error even in low SNR regimes.

4.2 Real datasets

In this section we compare the performance of wlra-iter with svd and wsvd. We do not include
rwlra-sk in this set of experiments as it is difficult to tune the parameter λ in rwlra-sk and it is not
in the scope of this paper. We use following four datasets in this set of experiments.

1. NIPS Conference Papers 1987-2015 Dataset (size 11463× 5811) [Perrone et al., 2017]: sampled
10000 rows without replacement.

2. Landmark Dataset (size 71952× 2704)(Pereyra/landmark in [Davis and Hu, 2011]): sampled
10000 rows without replacement.
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Figure 1: Error rates of wlra-iter, svd, wsvd, rwlra-sk as k′ is increased - synthetic datasets.
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Figure 2: Errors of wlra-iter, svd, wsvd, rwlra-sk as SNR is increased - synthetic datasets
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3. Symmetric Stiffness Matrix, Frame Building Dataset (size 1074× 1074)(HB/bcsstk08 in [Davis
and Hu, 2011]).

4. Blog Feedback DataSet (size 52396× 280) [Buza, 2014].

We standardize features of each dataset by removing the mean and scaling to unit variance. We
generate weight matrices corresponding to each dataset with following three configurations.

• W1: Each element is sampled from {1, 0.1, 0.01} with probabilities {0.85, 0.1, 0.05}.
• W2: Each element is sampled from the interval [0, 1] uniformly at random.

• W3: A random binary matrix is first chosen by setting each entry to 1 with probability 0.1
and 0 otherwise. Following this, the first 30% columns of first 90% rows are set to 1.

We plot the error with k′ in the list (10, 20, 30, 50, 70) and show how the error changes for each
algorithm. Similar to synthetic data experiments, we measure the scaled error (

∑
ijWij(Aij −

Zij)
2)/ ‖A‖2F where Z is the solution output by each algorithm. We average results over 10

independent runs. Figures 3, 4, 5, 6 show the how the error changes with k′ in each dataset.
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Figure 3: Errors of wlra-iter, svd, wsvd as k′ is increased - NIPS Conference Papers 1987-2015
Dataset.
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Figure 4: Errors of wlra-iter, svd, wsvd as k′ is increased - Landmark Dataset.

5 Conclusion

We study a natural greedy algorithm for the weighted low rank approximation problem and establish
novel additive error guarantees in `2 and `p norms for p > 2 under a new, realistic, assumption
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Figure 5: Errors of wlra-iter, svd, wsvd as k′ is increased - Symmetric Stiffness Matrix, Frame
Building Dataset.
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Figure 6: Errors of wlra-iter, svd, wsvd as k′ is increased - Blog Feedback DataSet.

on the target low rank matrix. Our algorithm is easy to implement and works well in practice,
compared to natural baselines and previous approaches.
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