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Appendices

A. Generalized entropies as regularizers
We present information measures which are often used as
regularizers.

Example A.1 (Shannon entropy). Let R(x, y) =
�HS(x, y), where

HS(x, y) = �x log x � y log y.

Then HS(x, 1 � x) is the Shannon entropy of a probability
distribution (x, 1 � x) and

r(x) = R(x, 1 � x) = �HS(x, 1 � x)

= x log x + (1 � x) log(1 � x).

From
r
0(x) = log

x

1 � x

we observe that r 2 SSC.5

Example A.2 (Arimoto entropies). We consider the class of
Arimoto entropies (Csiszár, 2008), that is functions defined
as

H⌘(x, y) = ⌘(x) + ⌘(y),

where ⌘ 2 C2((0, 1)) is a concave function.6

We define
R(x, y) = �H⌘(x, y).

Then, by its definition, R 2 C2((0, 1)2) and R(y, x) =
R(x, y). Moreover,

r(x) = R(x, 1�x) = �H⌘(x, 1�x) = �⌘(x)�⌘(1�x),

r
0(x) = �⌘

0(x)+⌘
0(1�x) and r

00(x) = �⌘
00(x)�⌘

00(1�x).

Thus, r is convex and the limit limx!1� ⌘
0(x) is finite.

Therefore, the condition for R = �H⌘ 2 SSC is steep-
ness of ⌘ at zero:

lim
x!0+

⌘
0(x) = 1. (11)

Hence, R = �H⌘ 2 SSC if and only if ⌘ satisfies (11).

Several well-known regularizers are given by (negative)
Arimoto entropies satisfying (11). For instance, the Shan-
non entropy from Example A.1 is an Arimoto entropy for
⌘(x) = �x log x, as well as log-barrier regularizer obtained

5By substituting the (negative) Shannon Entropy as R into (4)
we obtain the Multiplicative Weights Update algorithm.

6In the decision theory Arimoto entropies correspond to sepa-
rable Bregman scores (Grünwald & Dawid, 2004).

from ⌘(x) = log x. Another widely used (especially in sta-
tistical physics) example of Arimoto entropy is the Havrda-
Charvát-Tsallis entropy.7

Example A.3 (Havrda-Charvát-Tsallis entropies). The
Havrda-Charvát-Tsallis entropy for q 2 (0, 1) is defined
as

Hq(x, y) =

(
1

1�q (xq + y
q � 1) for q 6= 1

HS(x, y) for q = 1
. (12)

Hq is an Arimoto entropy for ⌘(x) = 1
1�q

�
x

q � 1
2

�
, satis-

fying (11) for 0 < q < 1. If R(x, y) = �Hq(x, y) then

r(x) = R(x, 1 � x) =
1

q � 1
(xq + (1 � x)q � 1),

r
0(x) =

q

q � 1

�
x

q�1 � (1 � x)q�1
�
,

and r 2 SSC for q 2 (0, 1].

For q > 1 the Havrda-Charvát-Tsallis entropy does not
satisfy (11) and, consequently, the regularizer R emerging
from the Havrda-Charvát-Tsallis entropy does not belong
to SSC. Standard non-example is Euclidean norm, which
we get from (12) when q = 2. Then

r(x) = R(x, 1�x) = �H2(x, 1�x) = x
2 +(1�x)2 �1

and as limx!0+ r
0(x) = �2, R doesn’t belong to SSC.

Evidently there exist functions which are not Arimoto en-
tropies but also generate regularizers that belong to SSC,
one of them being the Rényi entropy of order q < 1.

Example A.4 (Rényi entropies). The Shannon entropy rep-
resents an expected mean of individual informations of the
form Ik = � log pk. Rényi (Rényi, 1961) introduced al-
ternative information measures, namely generalized means
g
�1(
P

pkg(Ik)), where g is a continuous, strictly mono-
tone function.Then, the Rényi entropy of order q 6= 1 corre-
spond to g(x) = exp((1 � q)x), namely:

H
R
q (x, y) =

(
1

1�q log (xq + y
q) , for q 6= 1

HS(x, y), for q = 1
.

As the variables x and y are not separable, this is not an
Arimoto entropy. However, for R(x, y) = �H

R
q (x, y), R 2

7This entropy (called also entropy of degree q) was first in-
troduced by Havrda and Charvát (Havrda & Charvát, 1967) and
used to bound probability of error for testing multiple hypotheses.
In statistical physics it is known as Tsallis entropy, referring to
(Tsallis, 1988).
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C2((0, 1)2) and R(y, x) = R(x, y). Moreover,

r(x) = R(x, 1 � x) = �H
R
q (x, 1 � x)

=
1

q � 1
log (xq + (1 � x)q)

and

r
0(x) =

q

q � 1
· x

q�1 � (1 � x)q�1

xq + (1 � x)q
.

Thus, for q 2 (0, 1) we know that r
00(x) > 0 on (0, 1) and

limx!0+ r
0(x) = �1. Because H

R
1 = HS we infer that

R 2 SSC for q 2 (0, 1].

B. Regularity of log-barrier dynamics
To understand better the phenomenon discussed in Section
8, let us investigate regularity of fa,b. Nice properties of
interval maps are guaranteed by the negative Schwarzian
derivative. Let us recall that the Schwarzian derivative of f

is given by the formula

Sf =
f
000

f 0 � 3

2

✓
f
00

f 0

◆2

.

A “metatheorem” states that almost all natural noninvertible
interval maps have negative Schwarzian derivative. Note
that, by Lemma 3.2.ii, if a  � 0(b) then fa,b is a home-
omorphism, so we should not expect negative Schwarzian
derivative for that case. For maps with negative Schwarzian
derivative each attracting or neutral periodic orbit has a crit-
ical point in its immediate basin of attraction. Thus, if we
show that the Schwarzian derivative is negative, then we
will know that all periodic orbits can be find by studying be-
havior of critical points of fa,b. Therefore, we want to show
that Sfa,b < 0 for sufficiently large a for fa,b determined
by log-barrier regularizer.

In general, computation of Schwarzian derivative may be
very complicated. However, there is a useful formula

S(h � f) = (f 0)2 ((Sh) � f) + Sf. (13)

The function fa,b is given by (7). Consider

g(x) := ( � fa,b)(x) =  (x) + a(x � b).

By (13) we have that

Sg = (f 0
a,b)

2 ((S ) � fa,b) + Sfa,b.

At the same time

Sg(x) = S( (x) + a(x � b)).

Therefore,

(f 0
a,b(x))2 ((S ) � fa,b(x))+Sfa,b(x) = S( (x)+a(x�b)).

(14)

Direct computations yield

S (x) =
6

(x2 + (1 � x)2)2
> 0

and

S( (x) + a(x � b)) =
6
⇥
1 � a(x4 + (1 � x)4)

⇤

[x2 + (1 � x)2 � ax2(1 � x)2]2
.

Observe that x
4 + (1 � x)4 > 1

8 for all x 2 [0, 1]. Thus
1 � a(x4 + (1 � x)4) 6 1 � a

8 , and

S( (x) + a(x � b)) < 0 for a > 8. (15)

Therefore, Sfa,b < 0 for a > 8. Moreover,

max
b2[0,1]

 0(b) =  0(1/2) = �8.

Thus,

Sfa,b(x) < 0 for all a > � 0(b) � 8.

C. Proofs
Proof of Proposition 3.1. Due to the condition R(x, y) =
R(y, x), we have that @R

@x (x, 1 � x) = @R
@y (1 � x, x). Thus,

if '(x) = 1 � x, then:

 (1 � x) = �[r('(x))]0 = �@R

@x
(1 � x, x) +

@R

@y
(1 � x, x)

= �@R

@y
(x, 1 � x) +

@R

@x
(x, 1 � x)

= r
0(x) = � (x).

This implies (i). Moreover  0(x) = �r
00(x) < 0. Thus,  

is decreasing.

lim
x!0+

 (x) = � lim
x!0+

r
0(x) = 1.

From (i) we obtain that limx!1�  (x) = �1.

Proof of Lemma 3.2. We obtain (i) directly from (7) and the
fact that  is decreasing.

 is a homeomorphism, thus if y =  (x) for some x 2
(0, 1), then

y =  ( �1(y)) = � (1 � �1(y)).

Hence,
 �1(�y) = 1 � �1(y).
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Now let x 2 (0, 1). Then

(' � fa,b)(x) = 1 � fa,b(x) = 1 � �1 ( (x) + a(x � b))

=  �1 (� (x) � a(x � b))

=  �1
�
 (1 � x) + a

�
(1 � x) � (1 � b)

��

= (fa,1�b � ')(x),

and (ii) follows.

By (i), fa,b(x) > x for x 2 (0, b) and fa,b(x) < x for
x 2 (b, 1). Therefore, there exists 0 < �1 < min{b, 1 � b}
such that | 12 �x| > | 12 �fa,b(x)| for x 2 (0, 1)\(�1, 1��1).
There exists also �2 > 0 such that fa,b([�1, 1 � �1]) ⇢
(�2, 1 � �2). Set � = min{�1, �2}. Then, the interval I =
[�, 1 � �] is invariant.

To complete the proof of (iii) we need to show that I is
attracting. Assume that x 2 (0, 1) \ I is such that its fa,b-
trajectory never enters I . Since �  �1, the distance between
f

n
a,b(x) and I (that is, dI(fn

a,b(x)), where dI(z) = � � z

for z 2 [0, �] and dI(z) = z � (1 � �) for z 2 [1 � �, 1]) is
decreasing and � < f(�) < 1 � �. Sequence dI(fn

a,b(x)) is
decreasing and bounded from below by 0, so it is convergent
to some ✏ � 0. Therefore, the !-set of the trajectory of x is
a non-empty subset of d

�1
I ({✏}) = I✏ = {� � ✏, 1 � � + ✏}.

However, no non-empty subset of I✏ can be invariant (and
thus, can be an !-set of a trajectory), because ��✏  �1 and
thus fa,b(I✏) ⇢ (� � ✏, 1�� + ✏), and fa,b(I✏)\I✏ = ;. By
this contradiction, such x does not exist, thus I is globally
attracting.

Proof of Theorem 4.2. Fix x0 2 (0, 1) and let xk =
f

k
a,b(x0).

From (7) we get by induction that

xn = fa,b(xn�1) =  �1

 
 (x0) + a

 
n�1X

k=0

(xk � b)

!!
.

(16)

By Lemma 3.2.iii there is � > 0 such that there exists
a closed, globally absorbing and invariant interval I ⇢
(�, 1 � �). Thus, for sufficiently large n

� < xn =  �1

 
 (x0) + a

 
n�1X

k=0

(xk � b)

!!
< 1 � �.

 is decreasing, thus

 (�) >  (x0) + a

 
n�1X

k=0

(xk � b)

!
>  (1 � �).

Therefore

1

an
( (�) � (x0)) >

1

n

n�1X

k=0

xk�b >
1

an
( (1 � �) � (x0)) ,

so
�����
1

n

n�1X

k=0

xk � b

����� <
1

an
max{| (�) � (x0)| , | (1 � �) � (x0)|}.

Thus, (8) follows.

Proof of Lemma 6.1. Without loss of generality we can as-
sume that x < y. Then

y � x

2
g
0
✓

x + y

2

◆
�
Z x+y

2

x
g
0(t) dt =

Z x+y
2

x

Z x+y
2

t
g
00(s) ds dt

>

Z y

x+y
2

Z t

x+y
2

g
00(s) ds dt =

Z y

x+y
2

g
0(t) dt �y � x

2
g
0
✓

x + y

2

◆
,

where the inequality follows from the fact that g
00(s) is

smaller in the latter region while the integration is over the
set of the same size. Therefore,

g
0
✓

x + y

2

◆
>

1

y � x

Z y

x
g
0(t) dt =

g(y) � g(x)

y � x
,

which completes the proof of lemma.

Proof of Theorem 6.2. In order to prove this theorem it is
sufficient to show that fa,b doesn’t have periodic orbits of
period 2.

Suppose that {x0, x1} 2 (0, 1) is a periodic orbit of fa,b of
period 2.

x0 + x1

2
= b.

We have that x1 =  �1 ( (x0) + a(x0 � b)), and there-
fore,

 (x1) =  (x0) + a(x0 � b).

Thus,  (x1) � (x0) = �a
2 (x1 � x0), or equivalently

a = �2 ·  (x1) � (x0)

x1 � x0
. (17)

By Lemma 6.1

 0(b) >
 (x1) � (x0)

x1 � x0
= �a

2
, (18)

but the point b is attracting if and only if  0(b) < �a
2 ,

which contradicts the inequality (18). Therefore, f has no
periodic point of period 2.

Now, by (Block & Coppel, 2006), Chapter VI, Proposition
1, every trajectory of f converges to a fixed point.
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Figure 3. Graph of fa,b for a = 3.25, b = 0.61 generated
by the regularizer r(x) = (1 � x) log(1 � x) + x log x �
0.4167 log(�x2 + x+ 0.11).

Proof of Proposition 6.4. Let us take b = 0.61 and a =
3.25 (see the graph of fa,b in Figure 3). Set

⇠(x) :=  (x) + a(x � b)

= log(1 � x) � log x + 0.4167

✓
1

1.1 � x
� 1

x + 0.1

◆

+ 3.25 · (x � 0.61).

Since a < 3.282596521095308 ⇡ �2 0(b), the fixed point
b is attracting.

To show that fa,b is chaotic, we will prove that fa,b has a
periodic point of period 6. With this aim, we will show that
(f2)3(x) < x < f

2(x) for any x 2 [0.9559, 0.956]. We
start by showing that ⇠(x) is monotone on [0.9559, 0.956].
Formula for the derivative of ⇠(x) is

⇠
0(x) = � 1

1 � x
� 1

x
+ 0.4167 ·

✓
1

(1.1 � x)2
+

1

(x + 0.1)2

◆

+ 3.25.

Set z = (x� 0.5)2. Then ⇠
0(x) = 0 if and only if g(z) = 0,

where

g(z) = 3.25 · z3 � 1.3191 · z2 + 0.377874 · z � 0.050706.

We have

g
0(z) = 9.75 · z

2 � 2.6382 · z + 0.377874,

and the discriminant of this quadratic polynomial is neg-
ative. Therefore, g has only one zero (approximately

0.2077259768645677), so ⇠
0 has only two zeros, symmetric

with respect to 0.5. Thus, as

⇠
0(0.9559) ⇡ �0.03051955745677404,

⇠
0(0.956) ⇡ �0.05413532613604133

there is no zero of ⇠
0 between these two points. Moreover,

those computations give us an approximation to both zeros
of ⇠

0: 0.0442303467050842 and 0.9557696532949158.

Now we look at the first six images of [0.9559, 0.956]:

 (0.063) ⇡ 0.5449390463486314
⇠(0.956) ⇡ 0.5450794481395858
⇠(0.9559)⇡ 0.5450836794177281
 (0.062) ⇡ 0.5458384284441133

 (0.991) ⇡ �1.26049734857964
⇠(0.062) ⇡ �1.235161571555887
⇠(0.063) ⇡ �1.232810953651368
 (0.99) ⇡ �1.189231609934426

 (0.52) ⇡ �0.03369120600501601
⇠(0.991) ⇡ �0.02224734857964017
⇠(0.99) ⇡ 0.04576839006557365
 (0.47) ⇡ 0.05052025169168718

 (0.76) ⇡ �0.4116261583651984
⇠(0.47) ⇡ �0.4044797483083129
⇠(0.52) ⇡ �0.3261912060050159
 (0.69) ⇡ �0.3112461911278587

 (0.54) ⇡ �0.06732925721803665
⇠(0.69) ⇡ �0.05124619112785883
⇠(0.76) ⇡ 0.07587384163480165
 (0.45) ⇡ 0.08411125490271053

 (0.8) ⇡ �0.4602943611198909
⇠(0.45) ⇡ �0.4358887450972894
⇠(0.54) ⇡ �0.2948292572180365
 (0.65) ⇡ �0.2486392084062237.

We have fa,b(x) =  �1(⇠(x)), so  (fa,b(x)) = ⇠(x).
Write hx, yi for [x, y] or [y, x]. If h⇠(x), ⇠(y)i ⇢
h (z), (w)i and ⇠ is monotone on hx, yi, then
hfa,b(x), fa,b(y)i ⇢ hz, wi. Thus, the computations show
that

f
2
a,b([0.9559, 0.956]) ⇢ [0.99, 0.991]

and
f

6
a,b([0.9559, 0.956]) ⇢ [0.65, 0.8].

Therefore, for any x 2 [0.9559, 0.956] we have

(f2
a,b)

3(x) < x < (f2
a,b)(x),
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so by theorem from (Li et al., 1982), f
2
a,b has a periodic

point of period 3 and fa,b has a periodic point of period 6.
Thus, because fa,b has a periodic point of period that is not
a power of 2, the topological entropy h(fa,b) is positive (see
(Misiurewicz, 1979)) and it is Li-Yorke chaotic.

Proof of Theorem 7.1. By Lemma 3.2.ii, without loss of
generality, we may assume b 2 (0,

1
2 ). We will show

that there exists x0 2 (0, 1) such that f
3
a,b(x0) < x0 <

fa,b(x0).

Fix a > 0 and b, x 2 (0, 1). We set xn = f
n
a,b(x), then

formula (16) holds. Hence fa,b(x) > x if and only if x < b

and, because  �1 is decreasing, f
3
a,b(x) < x is equivalent

to x + fa,b(x) + f
2
a,b(x) > 3b.

From the fact that b 2 (0,
1
2 ) we have that 3b � 1 < b. So

we can take x0 > 0 such that 3b � 1 < x0 < b. Then
fa,b(x0) > x0. Moreover

lim
a!1

fa,b(x0) = lim
a!1

 �1 ( (x0) + a(x0 � b)) = 1.

Thus, since 3b � x0 < 1, there exists ab > 0 such that
if a > ab, then fa,b(x0) > 3b � x0, so x0 + fa,b(x0) +
f

2
a,b(x0) > 3b. Hence, if a > ab, then f

3
a,b(x0) < x0.

Now we conclude that fa,b has a periodic point of period
3 for a > ab, from theorem from (Li et al., 1982), which
implies that if f

n(x) < x < f(x) for some odd n > 1, then
f has a periodic point of period n.

Proof of 7.3. By Lemma 3.2.ii the maps fa and ' commute.
Set ga = ' � fa = fa �'. Since ' is an involution, we have
g
2
a = f

2
a . We show that the dynamics of fa is simple, no

matter how large a is.

We aim to find fixed points and points of period 2 of fa and
ga. Clearly,

fa(0) = 0, fa(1) = 1, ga(0) = 1, ga(1) = 0.

By (16) we have

f
2
a (x) =  �1( (x) + a(x + fa(x) � 1)),

so the fixed points of f
2
a are 0, 1 and the solutions to x +

fa(x) � 1 = 0, that is, to ga(x) = x. Thus, the fixed points
of g

2
a (which, as we noticed, is equal to f

2
a ) are the fixed

points of ga and 0 and 1.

We can choose the invariant interval Ia = Ia,1/2 symmetric,
so that '(Ia) = Ia. Let us look at Ga = ga|Ia : Ia ! Ia.
All fixed points of G

2
a are also fixed points of Ga, so Ga has

no periodic points of period 2. By the Sharkovsky Theorem,
Ga has no periodic points other than fixed points. For such

maps it is known (see, e.g., (Block & Coppel, 2006)) that
the !-limit set of every trajectory is a singleton of a fixed
point, that is, every trajectory converges to a fixed point. If
x 2 (0, 1) \ Ia, then the ga-trajectory of x after a finite time
enters Ia, so ga-trajectories of all points of (0, 1) converge
to a fixed point of ga in Ia. Observe that a fixed point of ga

can be a fixed point of fa (other that 0, 1) or a periodic point
of fa of period 2. Thus, the fa-trajectory of every point of
(0, 1) converges to a fixed point or a periodic orbit of period
2 of fa, other than 0 and 1.

Observe now that 1/2 is a fixed point of both fa and ga.
The fixed points of ga in [0, 1/2] are the solutions of the
equation ga(x) = x, which is equivalent to fa(x) = 1 � x,
further to

 (x) + a(x � 1/2) =  (1 � x)

and finally, by Proposition 3.1.i, to

2 (x) = �a(x � 1/2).

Define �a(x) = �a/2(x�1/2). We look for �a 2 (0, 1/2)
such that

 (�a) = �a(�a). (19)

We know that  (1/2) = �a(1/2) = 0 and �
0
a(1/2) =

�a
2 . As  0(1/2) < 0 ( is strictly decreasing) there is no

solution of (19) in (0, 1/2) for sufficiently small a. Then,
1/2 is the only fixed point of ga in (0, 1). Thus, 1/2 will
attract all points from (0, 1).

If �
0
a(1/2) <  0(1/2), then there exists x 2 (0, 1/2) such

that �a(x) >  (x). Because limx!0+  (x) = +1 and
limx!0+ �a(x) = a/4 and both functions are continuous,
there exists �a 2 (0, 1/2) such that  (�a) = �a(�a). Fi-
nally, �

0
a(1/2) <  0(1/2) if and only if a > �2 0(1/2).

Lastly, if  is convex on some neighborhood of zero, that is
(0, �), then we can choose a (sufficiently large) such that all
solutions of (19) in (0,

1
2 ) lay in (0, �). From the fact that

 is convex on this interval and �a is an affine function we
obtain uniqueness of �a.

D. Figures
In this Section we include the figures described in Sec-
tion 8 of the main part of the text. As already discussed,
we observe a plethora of complex phenomena such as the
simultaneous creation and destruction of different attractors,
locally complex behavior and different period doubling phe-
nomena (not always leading to chaos) for different type of
regularizers.
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Figure 4. Simultaneous creation and destruction of different
attractors. The bifurcation diagrams for fa,b where the dynamics
is determined by taking (negative) log-barrier regularizer with
parameter b = 0.61. On the horizontal axis the parameter a
is between 146.97 and 147, and on the vertical axis values of
fa,b between 0.27 and 0.34 are shown. As starting points for
bifurcation diagrams two critical points of fa,b are taken (regularity
of this map, see Appendix B, guarantees that their trajectories
detect all attractors). — red refers to the critical point in (0, 0.5)
and blue to the critical point in (0.5, 1). Each critical point is
iterated 4000 times, visualizing the last 200 iterates. On the top
picture first red and then blue trajectories are drawn and on the
bottom one first blue and then red. We observe the collapse of the
red attractor (built on the left critical point) with the simultaneous
creation of the blue one (built on the right critical point).

Figure 5. Locally complex behavior. The bifurcation diagrams
for fa,b where the dynamics is determined by taking (negative)
log-barrier as the regularizer for b = 0.61. On the horizontal axis
the parameter a is between 153 and 156.5, and on the vertical
axis values of fa,b are between 0.03 and 0.13. As starting points
for bifurcation diagrams two critical points of fa,b are taken —
red refers to the critical point in (0, 0.5) and blue the critical
point in (0.5, 1). Each critical point is iterated 4000 times, then
visualizing the last 200 iterates. On the top picture first red and
then blue trajectories are drawn, and on the bottom one the order
is reversed. As a increases chaotic behavior of orbits disappears
(around 153.25). Then, within the window [153.25, 156.3], chaos
emerges at [153.5, 154] and vanishes. Then trajectories jump, one
after the other, and then generate a chaotic attractor which then
spreads, vanishes, and finally spreads onto the whole interval.
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Figure 6. Period-doubling not always lead to chaos.The bifurca-
tion diagrams for fa,b where the dynamics is determined by taking
(negative) Havrda-Charvát-Tsallis entropy with q = 0.5 as the
regularizer, that is, r(x) = 1p

x
� 1p

1�x
. We fix b = 0.61. On

the horizontal axis the parameter a is between 39.75 and 40, and
on the vertical axis values of fa,b are between 0.65 and 0.8. As
starting points for bifurcation diagrams two critical points of fa,b
are taken — red refers to the critical point in (0, 0.5) and blue the
critical point in (0.5, 1). Each critical point is iterated 4000 times,
then visualizing the last 200 iterates. On the top picture first red
and then blue trajectories are drawn, and on the bottom one the
order is reversed. As a increases both trajectories go through the
same forward and backward period doubling steps. Then, as a
increases from 39.915 to 39.93, the trajectory of the right critical
point escapes the attractor which she shared with the trajectory of
the left critical point, and builds separate chaotic attractor. Then it
jumps back to the red attractor.

Figure 7. Period-doubling road to chaos with log-barrier reg-
ularizer. The bifurcation diagrams for fa,b where the dynamics
is determined by taking (negative) log-barrier as the regularizer:
r(x) = � log x � log(1 � x) for b = 0.61. On the horizontal
axis the parameter a is between 10 and 190, and on the vertical
axis the value of fa,b ranges between 0 and 1. As starting points
for bifurcation diagrams two critical points of fa,b are taken (reg-
ularity of this map, see Appendix B, guarantees that by studying
their trajectories we visit all attractors) — red refers to the left
critical point (in (0, 0.5)) and blue to the right critical point (in
(0.5, 1)). Each critical point is iterated 4000 times, visualizing
the last 200 iterates. On the top picture first red and then blue
trajectories are drawn, and on the bottom one the order is reversed.
The first bifurcation takes place at the moment when the Nash equi-
librium b becomes repelling. Then we observe period-doubling
route to chaos. In addition two different attractors are visible for
a 2 (92, 96).
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Figure 8. Period-doubling road to chaos with Havrda-Charvát-
Tsallis regularizer. The bifurcation diagrams for fa,b where the
dynamics is determined by taking (negative) Havrda-Charvát-
Tsallis entropy with q = 0.5 as the regularizer and b = 0.61.
On the horizontal axis the parameter a is between 4 and 46, and
on the vertical axis values of fa,b ranges between 0 and 1. As
starting points for bifurcation diagrams two critical points of
fa,b are taken — red refers to the critical point in (0, 0.5) and
blue the critical point in (0.5, 1). Each critical point is iterated
4000 times, then visualizing the last 200 iterates. On the top
picture first red and then blue trajectories are drawn, and on
the bottom one the order is reversed. The first bifurcation takes
place at the moment when the Nash equilibrium b becomes
repelling. Then we observe period-doubling route to chaos. In
addition two different attractors are visible for a 2 (22.5, 24.5).


